101
|
Zhou Y, Srinivasan S, Mirnezami SV, Kusmec A, Fu Q, Attigala L, Salas Fernandez MG, Ganapathysubramanian B, Schnable PS. Semiautomated Feature Extraction from RGB Images for Sorghum Panicle Architecture GWAS. PLANT PHYSIOLOGY 2019; 179:24-37. [PMID: 30389784 PMCID: PMC6324233 DOI: 10.1104/pp.18.00974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/21/2018] [Indexed: 05/20/2023]
Abstract
Because structural variation in the inflorescence architecture of cereal crops can influence yield, it is of interest to identify the genes responsible for this variation. However, the manual collection of inflorescence phenotypes can be time consuming for the large populations needed to conduct genome-wide association studies (GWAS) and is difficult for multidimensional traits such as volume. A semiautomated phenotyping pipeline, TIM (Toolkit for Inflorescence Measurement), was developed and used to extract unidimensional and multidimensional features from images of 1,064 sorghum (Sorghum bicolor) panicles from 272 genotypes comprising a subset of the Sorghum Association Panel. GWAS detected 35 unique single-nucleotide polymorphisms associated with variation in inflorescence architecture. The accuracy of the TIM pipeline is supported by the fact that several of these trait-associated single-nucleotide polymorphisms (TASs) are located within chromosomal regions associated with similar traits in previously published quantitative trait locus and GWAS analyses of sorghum. Additionally, sorghum homologs of maize (Zea mays) and rice (Oryza sativa) genes known to affect inflorescence architecture are enriched in the vicinities of TASs. Finally, our TASs are enriched within genomic regions that exhibit high levels of divergence between converted tropical lines and cultivars, consistent with the hypothesis that these chromosomal intervals were targets of selection during modern breeding.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | | | | | - Aaron Kusmec
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Qi Fu
- College of Agronomy, China Agricultural University, 100083 Beijing, China
| | | | | | | | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- College of Agronomy, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
102
|
Singh V, Sergeeva L, Ligterink W, Aloni R, Zemach H, Doron-Faigenboim A, Yang J, Zhang P, Shabtai S, Firon N. Gibberellin Promotes Sweetpotato Root Vascular Lignification and Reduces Storage-Root Formation. FRONTIERS IN PLANT SCIENCE 2019; 10:1320. [PMID: 31849998 PMCID: PMC6897044 DOI: 10.3389/fpls.2019.01320] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/23/2019] [Indexed: 05/11/2023]
Abstract
Sweetpotato yield depends on a change in the developmental fate of adventitious roots into storage-roots. The mechanisms underlying this developmental switch are still unclear. We examined the hypothesis claiming that regulation of root lignification determines storage-root formation. We show that application of the plant hormone gibberellin increased stem elongation and root gibberellin levels, while having inhibitory effects on root system parameters, decreasing lateral root number and length, and significantly reducing storage-root number and diameter. Furthermore, gibberellin enhanced root xylem development, caused increased lignin deposition, and, at the same time, decreased root starch accumulation. In accordance with these developmental effects, gibberellin application upregulated expression levels of sweetpotato orthologues of Arabidopsis vascular development regulators (IbNA075, IbVND7, and IbSND2) and of lignin biosynthesis genes (IbPAL, IbC4H, Ib4CL, IbCCoAOMT, and IbCAD), while downregulating starch biosynthesis genes (IbAGPase and IbGBSS) in the roots. Interestingly, gibberellin downregulated root expression levels of orthologues of the Arabidopsis BREVIPEDICELLUS transcription factor (IbKN2 and IbKN3), regulator of meristem maintenance. The results substantiate our hypothesis and mark gibberellin as an important player in regulation of sweetpotato root development, suggesting that increased fiber formation and lignification inhibit storage-root formation and yield. Taken together, our findings provide insight into the mechanisms underlying sweetpotato storage-root formation and provide a valuable database of genes for further research.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Hanita Zemach
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Jun Yang
- Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Peng Zhang
- Institute of Plant Physiology & Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Sara Shabtai
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Nurit Firon
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- *Correspondence: Nurit Firon,
| |
Collapse
|
103
|
Ma J, Wei L, Li J, Li H. The Analysis of Genes and Phytohormone Metabolic Pathways Associated with Leaf Shape Development in Liriodendron chinense via De Novo Transcriptome Sequencing. Genes (Basel) 2018; 9:E577. [PMID: 30486397 PMCID: PMC6316054 DOI: 10.3390/genes9120577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/10/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022] Open
Abstract
The leaf, a photosynthetic organ that plays an indispensable role in plant development and growth, has a certain ability to adapt to the environment and exhibits tremendous diversity among angiosperms. Liriodendron chinense, an ancestral angiosperm species, is very popular in landscaping. The leaf of this species has two lobes and resembles a Qing Dynasty Chinese robe; thus, leaf shape is the most valuable ornamental trait of the tree. In this work, to determine the candidate genes associated with leaf development in L. chinense, scanning electron microscopy (SEM) was employed to distinguish the developmental stages of tender leaves. Four stages were clearly separated, and transcriptome sequencing was performed for two special leaf stages. Altogether, there were 48.23 G clean reads in the libraries of the two leaf developmental stages, and 48,107 assembled unigenes were annotated with five databases. Among four libraries, 3118 differentially expressed genes (DEGs) were enriched in expression profiles. We selected ten DEGs associated with leaf development and validated their expression patterns via quantitative real-time PCR (qRT-PCR) assays. Most validation results were closely correlated with the RNA-sequencing data. Taken together, we examined the dynamic process of leaf development and indicated that several transcription factors and phytohormone metabolism genes may participate in leaf shape development. The transcriptome data analysis presented in this work aims to provide basic insights into the mechanisms mediating leaf development, and the results serve as a reference for the genetic breeding of ornamental traits in L. chinense.
Collapse
Affiliation(s)
- Jikai Ma
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Lingmin Wei
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiayu Li
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Huogen Li
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
104
|
A High-Density EST-SSR-Based Genetic Map and QTL Analysis of Dwarf Trait in Cucurbita pepo L. Int J Mol Sci 2018; 19:ijms19103140. [PMID: 30322052 PMCID: PMC6213718 DOI: 10.3390/ijms19103140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
As one of the earliest domesticated species, Cucurbita pepo (including squash and pumpkin) is rich in phenotypic polymorphism and has huge economic value. In this research, using 1660 expressed sequence tags-simple sequence repeats (EST-SSRs) and 632 genomic simple sequence repeats (gSSRs), we constructed the highest-density EST-SSR-based genetic map in Cucurbita genus, which spanned 2199.1 cM in total and harbored 623 loci distributed in 20 linkage groups. Using this map as a bridge, the two previous gSSR maps were integrated by common gSSRs and the corresponding relationships around chromosomes in three sets of genomes were also collated. Meanwhile, one large segmental inversion that existed between our map and the C. pepo genome was detected. Furthermore, three Quantitative Trait Loci (QTLs) of the dwarf trait (gibberellin-sensitive dwarf type) in C. pepo were located, and the candidate region that covered the major QTL spanned 1.39 Mb, which harbored a predicted gibberellin 2-β-oxidase gene. Considering the rich phenotypic polymorphism, the important economic value in the Cucurbita genus species and several advantages of the SSR marker were identified; thus, this high-density EST-SSR-based genetic map will be useful in Pumpkin and Squash breeding work in the future.
Collapse
|
105
|
Song S, Chen Y, Liu L, See YHB, Mao C, Gan Y, Yu H. OsFTIP7 determines auxin-mediated anther dehiscence in rice. NATURE PLANTS 2018; 4:495-504. [PMID: 29915329 DOI: 10.1038/s41477-018-0175-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/11/2018] [Indexed: 05/06/2023]
Abstract
Anther dehiscence determines successful sexual reproduction of flowering plants through timely release of pollen grains for pollination and fertilization. Downregulation of auxin levels during pollen mitosis is essential for promoting anther dehiscence along with pollen maturation. How this key transition of auxin levels is regulated in male organs remains elusive. Here, we report that the rice FT-INTERACTING PROTEIN 7 is highly expressed in anthers before pollen mitotic divisions and facilitates nuclear translocation of a homeodomain transcription factor, Oryza sativa homeobox 1, which directly suppresses a predominant auxin biosynthetic gene, OsYUCCA4, during the late development of anthers. This confers a key switch of auxin levels between meiosis of microspore mother cells and pollen mitotic divisions, thus controlling the timing of anther dehiscence during rice anthesis. Our findings shed light on the mechanism of hormonal control of anther dehiscence, and provide a new avenue for creating hormone-sensitive male sterile lines for hybrid plant breeding.
Collapse
Affiliation(s)
- Shiyong Song
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Ying Chen
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yen How Benjamin See
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Chuanzao Mao
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
106
|
Scofield S, Murison A, Jones A, Fozard J, Aida M, Band LR, Bennett M, Murray JAH. Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network. Development 2018; 145:dev157081. [PMID: 29650590 PMCID: PMC5992597 DOI: 10.1242/dev.157081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/21/2018] [Indexed: 01/29/2023]
Abstract
The Arabidopsis homeodomain transcription factor SHOOT MERISTEMLESS (STM) is crucial for shoot apical meristem (SAM) function, yet the components and structure of the STM gene regulatory network (GRN) are largely unknown. Here, we show that transcriptional regulators are overrepresented among STM-regulated genes and, using these as GRN components in Bayesian network analysis, we infer STM GRN associations and reveal regulatory relationships between STM and factors involved in multiple aspects of SAM function. These include hormone regulation, TCP-mediated control of cell differentiation, AIL/PLT-mediated regulation of pluripotency and phyllotaxis, and specification of meristem-organ boundary zones via CUC1. We demonstrate a direct positive transcriptional feedback loop between STM and CUC1, despite their distinct expression patterns in the meristem and organ boundary, respectively. Our further finding that STM activates expression of the CUC1-targeting microRNA miR164c combined with mathematical modelling provides a potential solution for this apparent contradiction, demonstrating that these proposed regulatory interactions coupled with STM mobility could be sufficient to provide a mechanism for CUC1 localisation at the meristem-organ boundary. Our findings highlight the central role for the STM GRN in coordinating SAM functions.
Collapse
Affiliation(s)
- Simon Scofield
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Alexander Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Angharad Jones
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - John Fozard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Leah R Band
- Centre for Plant Integrative Biology, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Malcolm Bennett
- Centre for Plant Integrative Biology, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - James A H Murray
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
107
|
He R, Ni Y, Li J, Jiao Z, Zhu X, Jiang Y, Li Q, Niu J. Quantitative Changes in the Transcription of Phytohormone-Related Genes: Some Transcription Factors Are Major Causes of the Wheat Mutant dmc Not Tillering. Int J Mol Sci 2018; 19:ijms19051324. [PMID: 29710831 PMCID: PMC5983577 DOI: 10.3390/ijms19051324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/17/2023] Open
Abstract
Tiller number is an important agronomic trait for grain yield of wheat (Triticum aestivum L.). A dwarf-monoculm wheat mutant (dmc) was obtained from cultivar Guomai 301 (wild type, WT). Here, we explored the molecular basis for the restrained tiller development of the mutant dmc. Two bulked samples of the mutant dmc (T1, T2 and T3) and WT (T4, T5 and T6) with three biological replicates were comparatively analyzed at the transcriptional level by bulked RNA sequencing (RNA-Seq). In total, 68.8 Gb data and 463 million reads were generated, 80% of which were mapped to the wheat reference genome of Chinese Spring. A total of 4904 differentially expressed genes (DEGs) were identified between the mutant dmc and WT. DEGs and their related major biological functions were characterized based on GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) categories. These results were confirmed by quantitatively analyzing the expression profiles of twelve selected DEGs via real-time qRT-PCR. The down-regulated gene expressions related to phytohormone syntheses of auxin, zeatin, cytokinin and some transcription factor (TF) families of TALE, and WOX might be the major causes of the mutant dmc, not tillering. Our work provides a foundation for subsequent tiller development research in the future.
Collapse
Affiliation(s)
- Ruishi He
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China.
| | - Junchang Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Xinxin Zhu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
108
|
Kulkarni KP, Patil G, Valliyodan B, Vuong TD, Shannon JG, Nguyen HT, Lee JD. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome 2018; 61:217-222. [PMID: 29365289 DOI: 10.1139/gen-2017-0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.
Collapse
Affiliation(s)
- Krishnanand P Kulkarni
- a School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gunvant Patil
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Babu Valliyodan
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tri D Vuong
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - J Grover Shannon
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Henry T Nguyen
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeong-Dong Lee
- a School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
109
|
Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-Y-Terrón R, Martínez-Contreras RD. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiol Res 2018; 208:85-98. [PMID: 29551215 DOI: 10.1016/j.micres.2018.01.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 11/26/2022]
Abstract
Gibberellins (GAs) are natural complex biomolecules initially identified as secondary metabolites in the fungus Gibberella fujikuroi with strong implications in plant physiology. GAs have been identified in different fungal and bacterial species, in some cases related to virulence, but the full understanding of the role of these metabolites in the different organisms would need additional investigation. In this review, we summarize the current evidence regarding a common pathway for GA synthesis in fungi, bacteria and plant from the genes depicted as part of the GA production cluster to the enzymes responsible for the catalytic transformations and the biosynthetical routes involved. Moreover, we present the relationship between these observations and the biotechnological applications of GAs in plants, which has shown an enormous commercial impact.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | - Nancy Martínez-Montiel
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | - Jenny García-Sánchez
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | | | - Rebeca D Martínez-Contreras
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico.
| |
Collapse
|
110
|
Nelissen H, Sun X, Rymen B, Jikumaru Y, Kojima M, Takebayashi Y, Abbeloos R, Demuynck K, Storme V, Vuylsteke M, De Block J, Herman D, Coppens F, Maere S, Kamiya Y, Sakakibara H, Beemster GT, Inzé D. The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:615-627. [PMID: 28730636 PMCID: PMC5787831 DOI: 10.1111/pbi.12801] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 05/05/2023]
Abstract
Growth is characterized by the interplay between cell division and cell expansion, two processes that occur separated along the growth zone at the maize leaf. To gain further insight into the transition between cell division and cell expansion, conditions were investigated in which the position of this transition zone was positively or negatively affected. High levels of gibberellic acid (GA) in plants overexpressing the GA biosynthesis gene GA20-OXIDASE (GA20OX-1OE ) shifted the transition zone more distally, whereas mild drought, which is associated with lowered GA biosynthesis, resulted in a more basal positioning. However, the increased levels of GA in the GA20OX-1OE line were insufficient to convey tolerance to the mild drought treatment, indicating that another mechanism in addition to lowered GA levels is restricting growth during drought. Transcriptome analysis with high spatial resolution indicated that mild drought specifically induces a reprogramming of transcriptional regulation in the division zone. 'Leaf Growth Viewer' was developed as an online searchable tool containing the high-resolution data.
Collapse
Affiliation(s)
- Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Xiao‐Huan Sun
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Bart Rymen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Yusuke Jikumaru
- Growth Regulation Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Mikko Kojima
- Plant Productivity Systems Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Yumiko Takebayashi
- Plant Productivity Systems Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Rafael Abbeloos
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Kirin Demuynck
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Veronique Storme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Marnik Vuylsteke
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Jolien De Block
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Dorota Herman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Frederik Coppens
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Steven Maere
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Yuji Kamiya
- Growth Regulation Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Gerrit T.S. Beemster
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
- Department of BiologyUniversity of AntwerpAntwerpBelgium
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| |
Collapse
|
111
|
Tenreira T, Lange MJP, Lange T, Bres C, Labadie M, Monfort A, Hernould M, Rothan C, Denoyes B. A Specific Gibberellin 20-Oxidase Dictates the Flowering-Runnering Decision in Diploid Strawberry. THE PLANT CELL 2017; 29:2168-2182. [PMID: 28874507 PMCID: PMC5635972 DOI: 10.1105/tpc.16.00949] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/14/2017] [Accepted: 08/31/2017] [Indexed: 05/18/2023]
Abstract
Asexual and sexual reproduction occur jointly in many angiosperms. Stolons (elongated stems) are used for asexual reproduction in the crop species potato (Solanum tuberosum) and strawberry (Fragaria spp), where they produce tubers and clonal plants, respectively. In strawberry, stolon production is essential for vegetative propagation at the expense of fruit yield, but the underlying molecular mechanisms are unknown. Here, we show that the stolon deficiency trait of the runnerless (r) natural mutant in woodland diploid strawberry (Fragaria vesca) is due to a deletion in the active site of a gibberellin20-oxidase (GA20ox) gene, which is expressed primarily in the axillary meristem dome and primordia and in developing stolons. This mutation, which is found in all r mutants, goes back more than three centuries. When FveGA20ox4 is mutated, axillary meristems remain dormant or produce secondary shoots terminated by inflorescences, thus increasing the number of inflorescences in the plant. The application of bioactive gibberellin (GA) restored the runnering phenotype in the r mutant, indicating that GA biosynthesis in the axillary meristem is essential for inducing stolon differentiation. The possibility of regulating the runnering-flowering decision in strawberry via FveGA20ox4 provides a path for improving productivity in strawberry by controlling the trade-off between sexual reproduction and vegetative propagation.
Collapse
Affiliation(s)
- Tracey Tenreira
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | | | - Theo Lange
- TU Braunschweig, Institut für Pfanzenbiologie, 38106 Braunschweig, Germany
| | - Cécile Bres
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Marc Labadie
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Amparo Monfort
- IRTA, Center of Research in Agrigenomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Valles), 08193 Barcelona, Spain
| | - Michel Hernould
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Christophe Rothan
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Béatrice Denoyes
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| |
Collapse
|
112
|
Chang Y, Yan M, Yu J, Zhu D, Zhao Q. The 5' untranslated region of potato SBgLR gene contributes to pollen-specific expression. PLANTA 2017; 246:389-403. [PMID: 28444448 DOI: 10.1007/s00425-017-2695-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION The 5'UTR of SBgLR enhances gene expression by regulating both its transcription and translation. SBgLR (Solanum tuberosum genomic lysine rich) is a pollen-specific gene in Solanum tuberosum that encodes a microtubule-associated protein. The region from -85 to +180 (transcription start site at +1) was determined to be critical for specific expression in pollen grains. Transient and stable expression assays showed that the 5'UTR (from +1 to +184) enhanced gene expression in all detected tissues of transgenic tobacco. Deletion analysis demonstrated that the secondary structure of the 5'UTR had no effect on pollen-specific SBgLR expression, while the region from +31 to +60 was crucial. Further investigation indicated that mRNA expression was slightly decreased when the +31 to +60 region was deleted, but the mRNA decay rate remained unchanged. Mutation analysis also confirmed that the pollen-specific element TTTCT, located at +37, played an important role in pollen-specific expression. Using yeast one-hybrid screening, we isolated a DNA-binding with one finger (Dof) protein gene (StDof23) and an AT-hook motif nuclear-localized (AHL) protein gene (StAHL) from potato pollen. Further investigation indicated that StDof23 interacted with and positively regulated the +31 to +60 region; moreover, StAHL interacted with and negatively regulated the -49 to +60 region. These results demonstrate that the 5'UTR not only enhanced gene expression but also altered the tissue-specific expression pattern by regulating both transcription and translation.
Collapse
Affiliation(s)
- Yujie Chang
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Min Yan
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
- , Building C, Block 88 Kechuang 6th Street Yizhuang Biomedical Park, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China.
| |
Collapse
|
113
|
Douglas SJ, Li B, Kliebenstein DJ, Nambara E, Riggs CD. A novel Filamentous Flower mutant suppresses brevipedicellus developmental defects and modulates glucosinolate and auxin levels. PLoS One 2017; 12:e0177045. [PMID: 28493925 PMCID: PMC5426679 DOI: 10.1371/journal.pone.0177045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/23/2017] [Indexed: 12/02/2022] Open
Abstract
BREVIPEDICELLUS (BP) encodes a class-I KNOTTED1-like homeobox (KNOX) transcription factor that plays a critical role in conditioning a replication competent state in the apical meristem, and it also governs growth and cellular differentiation in internodes and pedicels. To search for factors that modify BP signaling, we conducted a suppressor screen on bp er (erecta) plants and identified a mutant that ameliorates many of the pleiotropic defects of the parent line. Map based cloning and complementation studies revealed that the defect lies in the FILAMENTOUS FLOWER (FIL) gene, a member of the YABBY family of transcriptional regulators that contribute to meristem organization and function, phyllotaxy, leaf and floral organ growth and polarity, and are also known to repress KNOX gene expression. Genetic and cytological analyses of the fil-10 suppressor line indicate that the role of FIL in promoting growth is independent of its previously characterized influences on meristem identity and lateral organ polarity, and likely occurs non-cell-autonomously from superior floral organs. Transcription profiling of inflorescences revealed that FIL downregulates numerous transcription factors which in turn may subordinately regulate inflorescence architecture. In addition, FIL, directly or indirectly, activates over a dozen genes involved in glucosinolate production in part by activating MYB28, a known activator of many aliphatic glucosinolate biosynthesis genes. In the bp er fil-10 suppressor mutant background, enhanced expression of CYP71A13, AMIDASE1 (AMI) and NITRILASE genes suggest that auxin levels can be modulated by shunting glucosinolate metabolites into the IAA biosynthetic pathway, and increased IAA levels in the bp er fil-10 suppressor accompany enhanced internode and pedicel elongation. We propose that FIL acts to oppose KNOX1 gene function through a complex regulatory network that involves changes in secondary metabolites and auxin.
Collapse
Affiliation(s)
- Scott J. Douglas
- Department of Biological Sciences, University of Toronto-Scarborough, Scarborough, Ontario, Canada
| | - Baohua Li
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- DynaMo Center of Excellence, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Gene Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - C. Daniel Riggs
- Department of Biological Sciences, University of Toronto-Scarborough, Scarborough, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Gene Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
114
|
Tsuda K, Abraham-Juarez MJ, Maeno A, Dong Z, Aromdee D, Meeley R, Shiroishi T, Nonomura KI, Hake S. KNOTTED1 Cofactors, BLH12 and BLH14, Regulate Internode Patterning and Vein Anastomosis in Maize. THE PLANT CELL 2017; 29:1105-1118. [PMID: 28381444 PMCID: PMC5466031 DOI: 10.1105/tpc.16.00967] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 05/20/2023]
Abstract
Monocot stems lack the vascular cambium and instead have characteristic structures in which intercalary meristems generate internodes and veins remain separate and scattered. However, developmental processes of these unique structures have been poorly described. BELL1-like homeobox (BLH) transcription factors (TFs) are known to heterodimerize with KNOTTED1-like homeobox TFs to play crucial roles in shoot meristem maintenance, but their functions are elusive in monocots. We found that maize (Zea mays) BLH12 and BLH14 have redundant but important roles in stem development. BLH12/14 interact with KNOTTED1 (KN1) in vivo and accumulate in overlapping domains in shoot meristems, young stems, and provascular bundles. Similar to kn1 loss-of-function mutants, blh12 blh14 (blh12/14) double mutants fail to maintain axillary meristems. Unique to blh12/14 is an abnormal tassel branching and precocious internode differentiation that results in dwarfism and reduced veins in stems. Micro-computed tomography observation of vascular networks revealed that blh12/14 double mutants had reduced vein number due to fewer intermediate veins in leaves and precocious anastomosis in young stems. Based on these results, we propose two functions of BLH12/14 during stem development: (1) maintaining intercalary meristems that accumulate KN1 and prevent precocious internode differentiation and (2) preventing precocious anastomosis of provascular bundles in young stems to ensure the production of sufficient independent veins.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Maria-Jazmin Abraham-Juarez
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Albany, California 94710
| | - Akiteru Maeno
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Zhaobin Dong
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Albany, California 94710
| | - Dale Aromdee
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Albany, California 94710
| | | | - Toshihiko Shiroishi
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Albany, California 94710
| |
Collapse
|
115
|
Yuan C, Ai J, Chang H, Xiao W, Liu L, Zhang C, He Z, Huang J, Li J, Guo X. CKB1 is involved in abscisic acid and gibberellic acid signaling to regulate stress responses in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2017; 130:587-598. [PMID: 28342111 DOI: 10.1007/s10265-017-0924-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/11/2016] [Indexed: 05/08/2023]
Abstract
Casein kinase II (CK2), an evolutionarily well-conserved Ser/Thr kinase, plays critical roles in all higher organisms including plants. CKB1 is a regulatory subunit beta of CK2. In this study, homozygous T-DNA mutants (ckb1-1 and ckb1-2) and over-expression plants (35S:CKB1-1, 35S:CKB1-2) of Arabidopsis thaliana were studied to understand the role of CKB1 in abiotic stress and gibberellic acid (GA) signaling. Histochemical staining showed that although CKB1 was expressed in all organs, it had a relatively higher expression in conducting tissues. The ckb1 mutants showed reduced sensitivity to abscisic acid (ABA) during seed germination and seedling growth. The increased stomatal aperture, leaf water loss and proline accumulation were observed in ckb1 mutants. In contrast, the ckb1 mutant had increased sensitivity to polyaluminum chloride during seed germination and hypocotyl elongation. We obtained opposite results in over-expression plants. The expression levels of a number of genes in the ABA and GA regulatory network had changed. This study demonstrates that CKB1 is an ABA signaling-related gene, which subsequently influences GA metabolism, and may play a positive role in ABA signaling.
Collapse
Affiliation(s)
- Congying Yuan
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Jianping Ai
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hongping Chang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Wenjun Xiao
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Cheng Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Zhuang He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Ji Huang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Jinyan Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Xinhong Guo
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China.
| |
Collapse
|
116
|
Basile A, Fambrini M, Pugliesi C. The vascular plants: open system of growth. Dev Genes Evol 2017; 227:129-157. [PMID: 28214944 DOI: 10.1007/s00427-016-0572-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
What is fascinating in plants (true also in sessile animals such as corals and hydroids) is definitely their open and indeterminate growth, as a result of meristematic activity. Plants as well as animals are characterized by a multicellular organization, with which they share a common set of genes inherited from a common eukaryotic ancestor; nevertheless, circa 1.5 billion years of evolutionary history made the two kingdoms very different in their own developmental biology. Flowering plants, also known as angiosperms, arose during the Cretaceous Period (145-65 million years ago), and up to date, they count around 235,000 species, representing the largest and most diverse group within the plant kingdom. One of the foundations of their success relies on the plant-pollinator relationship, essentially unique to angiosperms that pushed large speciation in both plants and insects and on the presence of the carpel, the structure devoted to seed enclosure. A seed represents the main organ preserving the genetic information of a plant; during embryogenesis, the primary axis of development is established by two groups of pluripotent cells: the shoot apical meristem (SAM), responsible for gene rating all aboveground organs, and the root apical meristem (RAM), responsible for producing all underground organs. During postembryonic shoot development, axillary meristem (AM) initiation and outgrowth are responsible for producing all secondary axes of growth including inflorescence branches or flowers. The production of AMs is tightly linked to the production of leaves and their separation from SAM. As leaf primordia are formed on the flanks of the SAM, a region between the apex and the developing organ is established and referred to as boundary zone. Interaction between hormones and the gene network in the boundary zone is fundamental for AM initiation. AMs only develop at the adaxial base of the leaf; thus, AM initiation is also strictly associated with leaf polarity. AMs function as new SAMs: form axillary buds with a few leaves and then the buds can either stay dormant or develop into shoot branches to define a plant architecture, which in turn affects assimilate production and reproductive efficiency. Therefore, the radiation of angiosperms was accompanied by a huge diversification in growth forms that determine an enormous morphological plasticity helping plants to environmental changes. In this review, we focused on the developmental processes of AM initiation and outgrowth. In particular, we summarized the primary growth of SAM, the key role of positional signals for AM initiation, and the dissection of molecular players involved in AM initiation and outgrowth. Finally, the interaction between phytohormone signals and gene regulatory network controlling AM development was discussed.
Collapse
Affiliation(s)
- Alice Basile
- Institute of Biology, RWTH Aachen University, Aachen, Germany
| | - Marco Fambrini
- Dipartimento di Scienze Agrarie, Ambientali e Agro-alimentari, Università degli Studi di Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Dipartimento di Scienze Agrarie, Ambientali e Agro-alimentari, Università degli Studi di Pisa, Pisa, Italy.
| |
Collapse
|
117
|
Rosa M, Abraham-Juárez MJ, Lewis MW, Fonseca JP, Tian W, Ramirez V, Luan S, Pauly M, Hake S. The Maize MID-COMPLEMENTING ACTIVITY Homolog CELL NUMBER REGULATOR13/NARROW ODD DWARF Coordinates Organ Growth and Tissue Patterning. THE PLANT CELL 2017; 29:474-490. [PMID: 28254777 PMCID: PMC5385958 DOI: 10.1105/tpc.16.00878] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 05/07/2023]
Abstract
Organogenesis occurs through cell division, expansion, and differentiation. How these cellular processes are coordinated remains elusive. The maize (Zea mays) leaf provides a robust system to study cellular differentiation due to its distinct tissues and cell types. The narrow odd dwarf (nod) mutant displays defects at both the cellular and tissue level that increase in severity throughout growth. nod mutant leaves have reduced size due to fewer and smaller cells compared with the wild type. The juvenile-to-adult transition is delayed, and proximal distal-patterning is abnormal in this mutant. Differentiation of specialized cells such as those forming stomata and trichomes is incomplete. Analysis of nod-1 sectors suggests that NOD plays a cell-autonomous function in the leaf. We cloned nod positionally and found that it encodes CELL NUMBER REGULATOR13 (CNR13), the maize MID-COMPLEMENTING ACTIVITY homolog. CNR13/NOD is localized to the membrane and is enriched in dividing tissues. Transcriptome analysis of nod mutants revealed overrepresentation of cell wall, hormone metabolism, and defense gene categories. We propose that NOD coordinates cell activity in response to intrinsic and extrinsic cues.
Collapse
Affiliation(s)
- Marisa Rosa
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | | | - Michael W Lewis
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - João Pedro Fonseca
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143
| | - Wang Tian
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Vicente Ramirez
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Markus Pauly
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
| |
Collapse
|
118
|
Song Z, Zhang L, Wang Y, Li H, Li S, Zhao H, Zhang H. Constitutive Expression of miR408 Improves Biomass and Seed Yield in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2114. [PMID: 29422907 PMCID: PMC5789609 DOI: 10.3389/fpls.2017.02114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/27/2017] [Indexed: 05/21/2023]
Abstract
miR408 is highly conserved among different plant species and targets transcripts encoding copper-binding proteins. The function of miR408 in reproductive development remains largely unclear despite it being known to play important roles during vegetative development in Arabidopsis. Here, we show that transgenic Arabidopsis plants overexpressing MIR408 have altered morphology including significantly increased leaf area, petiole length, plant height, flower size, and silique length, resulting in enhanced biomass and seed yield. The increase in plant size was primarily due to cell expansion rather than cell proliferation, and was consistent with higher levels of myosin gene expression and gibberellic acid (GA) measured in transgenic plants. In addition, photosynthetic rate was significantly increased in the MIR408-overexpressing plants, as manifested by higher levels of chloroplastic copper content and plastocyanin (PC) expression. In contrast, overexpression of miR408-regulated targets, Plantacyanin and Laccase 13, resulted in reduced biomass production and seed yield. RNA-sequencing revealed that genes involved in primary metabolism and stress response were preferentially enriched in the genes upregulated in MIR408-overexpressing plants. These results indicate that miR408 plays an important role in regulating biomass and seed yield and that MIR408 may be a potential candidate gene involved in the domestication of agricultural crops.
Collapse
|
119
|
Kebrom TH, McKinley B, Mullet JE. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:159. [PMID: 28649278 PMCID: PMC5480195 DOI: 10.1186/s13068-017-0848-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/14/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Bioenergy sorghum accumulates 75% of shoot biomass in stem internodes. Grass stem internodes are formed during vegetative growth and elongate in response to developmental and environmental signals. To identify genes and molecular mechanisms that modulate the extent of internode growth, we conducted microscopic and transcriptomic analyses of four successive sub-apical vegetative internodes representing different stages of internode development of the bioenergy sorghum genotype R.07020. RESULTS Stem internodes of sorghum genotype R.07020 are formed during the vegetative phase and their length is enhanced by environmental signals such as shade and floral induction in short days. During vegetative growth, the first visible and youngest sub-apical internode was ~0.7 cm in length, whereas the fourth fully expanded internode was ~5 cm in length. Microscopic analyses revealed that all internode tissue types including pith parenchyma and vascular bundles are present in the four successive internodes. Growth in the first two sub-apical internodes occurred primarily through an increase in cell number consistent with expression of genes involved in the cell cycle and DNA replication. Growth of the 3rd internode was associated with an increase in cell length and growth cessation in the 4th internode was associated with up-regulation of genes involved in secondary cell wall deposition. The expression of genes involved in hormone metabolism and signaling indicates that GA, BR, and CK activity decreased while ethylene, ABA, and JA increased in the 3rd/4th internodes. While the level of auxin appears to be increasing as indicated by the up-regulation of ARFs, down-regulation of TIR during development indicates that auxin signaling is also modified. The expression patterns of transcription factors are closely associated with their role during the development of the vegetative internodes. CONCLUSIONS Microscopic and transcriptome analyses of four successive sub-apical internodes characterized the developmental progression of vegetative stem internodes from initiation through full elongation in the sorghum genotype R.07020. Transcriptome profiling indicates that dynamic variation in the levels and action of GA, CK, IAA, BR, ethylene, ABA, and JA modulate gene expression and growth during internode growth and development. This study provides detailed microscopic and transcriptomic data useful for identifying genes and molecular pathways regulating internode elongation in response to various developmental and environmental signals.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| | - Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| | - John E. Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
120
|
Bhalerao RP, Fischer U. Environmental and hormonal control of cambial stem cell dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:79-87. [PMID: 27965368 DOI: 10.1093/jxb/erw466] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Perennial trees have the amazing ability to adjust their growth rate to both adverse and favorable seasonally reoccurring environmental conditions over hundreds of years. In trunks and stems, the basis for the tuning of seasonal growth rate is the regulation of cambial stem cell activity. Cambial stem cell quiescence and dormancy protect the tree from potential physiological and genomic damage caused by adverse growing conditions and may permit a long lifespan. Cambial dormancy and longevity are both aspects of a tree's life for which the study of cambial stem cell behavior in the annual model plant Arabidopsis is inadequate. Recent functional analyses of hormone perception and catabolism mutants in Populus indicate that shoot-derived long-range signals, as well as local cues, steer cambial activity. Auxin is central to the regulation of cambial activity and probably also maintenance. Emerging genome editing and phenotyping technologies will enable the identification of down-stream targets of hormonal action and facilitate the genetic dissection of complex traits of cambial biology.
Collapse
Affiliation(s)
- Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Urs Fischer
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| |
Collapse
|
121
|
Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX. The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems. PLoS Genet 2016; 12:e1006386. [PMID: 27764111 PMCID: PMC5072697 DOI: 10.1371/journal.pgen.1006386] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/26/2016] [Indexed: 11/21/2022] Open
Abstract
Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process. Grain number per panicle, a valuable agronomic trait for rice yield improvement, is profoundly affected by reproductive meristem activity. This activity, in turn, is controlled by transcriptional and plant hormone regulators, especially KNOX proteins and cytokinins. However, little is known about the roles of GAs in these processes in rice and how the regulatory network functions due to the complexity of crosstalk between plant hormone regulators. In this study, we identify a novel GA biosynthesis gene in rice and demonstrate its role in improving grain number and grain yield. We also propose that the KNOX-mediated cytokinin-GA activity rebalancing mechanisms regulate inflorescence meristem development and maintenance processes, providing a possible tool for high-yield rice breeding.
Collapse
Affiliation(s)
- Yuan Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education, Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xue-Fei Mi
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Xin-Min Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Jian-Long Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, China
- * E-mail: (JLX); (HXL)
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- * E-mail: (JLX); (HXL)
| |
Collapse
|
122
|
Richardson A, Rebocho AB, Coen E. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity. THE PLANT CELL 2016; 28:2079-2096. [PMID: 27553356 PMCID: PMC5059799 DOI: 10.1105/tpc.16.00284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/05/2016] [Accepted: 08/22/2016] [Indexed: 05/02/2023]
Abstract
Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth.
Collapse
Affiliation(s)
- Annis Richardson
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Alexandra B Rebocho
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Enrico Coen
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
123
|
Fang SC, Chen JC, Wei MJ. Protocorms and Protocorm-Like Bodies Are Molecularly Distinct from Zygotic Embryonic Tissues in Phalaenopsis aphrodite. PLANT PHYSIOLOGY 2016; 171:2682-700. [PMID: 27338813 PMCID: PMC4972297 DOI: 10.1104/pp.16.00841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/18/2016] [Indexed: 05/08/2023]
Abstract
The distinct reproductive program of orchids provides a unique evolutionary model with pollination-triggered ovule development and megasporogenesis, a modified embryogenesis program resulting in seeds with immature embryos, and mycorrhiza-induced seed germination. However, the molecular mechanisms that have evolved to establish these unparalleled developmental programs are largely unclear. Here, we conducted comparative studies of genome-wide gene expression of various reproductive tissues and captured the molecular events associated with distinct reproductive programs in Phalaenopsis aphrodite Importantly, our data provide evidence to demonstrate that protocorm-like body (PLB) regeneration (the clonal regeneration practice used in the orchid industry) does not follow the embryogenesis program. Instead, we propose that SHOOT MERISTEMLESS, a class I KNOTTED-LIKE HOMEOBOX gene, is likely to play a role in PLB regeneration. Our studies challenge the current understanding of the embryonic identity of PLBs. Taken together, the data obtained establish a fundamental framework for orchid reproductive development and provide a valuable new resource to enable the prediction of gene regulatory networks that is required for specialized developmental programs of orchid species.
Collapse
Affiliation(s)
- Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan (S.-C.F., J.-C.C., M.-J.W.); andAgricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., J.-C.C., M.-J.W.)
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan (S.-C.F., J.-C.C., M.-J.W.); andAgricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., J.-C.C., M.-J.W.)
| | - Miao-Ju Wei
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan (S.-C.F., J.-C.C., M.-J.W.); andAgricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., J.-C.C., M.-J.W.)
| |
Collapse
|
124
|
Xu Q, Krishnan S, Merewitz E, Xu J, Huang B. Gibberellin-Regulation and Genetic Variations in Leaf Elongation for Tall Fescue in Association with Differential Gene Expression Controlling Cell Expansion. Sci Rep 2016; 6:30258. [PMID: 27457585 PMCID: PMC4960529 DOI: 10.1038/srep30258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Leaf elongation rate (LER) is an important factor controlling plant growth and productivity. The objective of this study was to determine whether genetic variation in LER for a fast-growing ('K-31'), and a dwarf cultivar ('Bonsai') of tall fescue (Festuca arundinacea) and gibberellic acid (GA) regulation of LER were associated with differential expression of cell-expansion genes. Plants were treated with GA3, trinexapac-ethyl (TE) (GA inhibitor), or water (untreated control) in a hydroponic system. LER of 'K-31' was 63% greater than that of 'Bonsai', which corresponded with 32% higher endogenous GA4 content in leaf and greater cell elongation and production rates under the untreated control condition. Exogenous application of GA3 significantly enhanced LER while TE treatment inhibited leaf elongation due to GA3-stimulation or TE-inhibition of cell elongation and production rate in leaves for both cultivars. Real-time quantitative polymerase chain reaction analysis revealed that three α-expansins, one β-expansin, and three xyloglucan endotransglycosylase (XET) genes were associated with GA-stimulation of leaf elongation, of which, the differential expression of EXPA4 and EXPA7 was related to the genotypic variation in LER of two cultivars. Those differentially-expressed expansin and XET genes could play major roles in genetic variation and GA-regulated leaf elongation in tall fescue.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, United States of America
| | - Sanalkumar Krishnan
- Department of Crop Science, Michigan State University, East Lansing, MI, 48824, United States of America
| | - Emily Merewitz
- Department of Crop Science, Michigan State University, East Lansing, MI, 48824, United States of America
| | - Jichen Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, United States of America
| |
Collapse
|
125
|
Unterseer S, Pophaly SD, Peis R, Westermeier P, Mayer M, Seidel MA, Haberer G, Mayer KFX, Ordas B, Pausch H, Tellier A, Bauer E, Schön CC. A comprehensive study of the genomic differentiation between temperate Dent and Flint maize. Genome Biol 2016; 17:137. [PMID: 27387028 PMCID: PMC4937532 DOI: 10.1186/s13059-016-1009-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/15/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dent and Flint represent two major germplasm pools exploited in maize breeding. Several traits differentiate the two pools, like cold tolerance, early vigor, and flowering time. A comparative investigation of their genomic architecture relevant for quantitative trait expression has not been reported so far. Understanding the genomic differences between germplasm pools may contribute to a better understanding of the complementarity in heterotic patterns exploited in hybrid breeding and of mechanisms involved in adaptation to different environments. RESULTS We perform whole-genome screens for signatures of selection specific to temperate Dent and Flint maize by comparing high-density genotyping data of 70 American and European Dent and 66 European Flint inbred lines. We find 2.2 % and 1.4 % of the genes are under selective pressure, respectively, and identify candidate genes associated with agronomic traits known to differ between the two pools. Taking flowering time as an example for the differentiation between Dent and Flint, we investigate candidate genes involved in the flowering network by phenotypic analyses in a Dent-Flint introgression library and find that the Flint haplotypes of the candidates promote earlier flowering. Within the flowering network, the majority of Flint candidates are associated with endogenous pathways in contrast to Dent candidate genes, which are mainly involved in response to environmental factors like light and photoperiod. The diversity patterns of the candidates in a unique panel of more than 900 individuals from 38 European landraces indicate a major contribution of landraces from France, Germany, and Spain to the candidate gene diversity of the Flint elite lines. CONCLUSIONS In this study, we report the investigation of pool-specific differences between temperate Dent and Flint on a genome-wide scale. The identified candidate genes represent a promising source for the functional investigation of pool-specific haplotypes in different genetic backgrounds and for the evaluation of their potential for future crop improvement like the adaptation to specific environments.
Collapse
Affiliation(s)
- Sandra Unterseer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Saurabh D Pophaly
- Section of Population Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Regina Peis
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Peter Westermeier
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.,Present Address: Institute for Crop Science and Plant Breeding, Bavarian State Research Center, 85354, Freising, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Michael A Seidel
- Plant Genome and System Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Georg Haberer
- Plant Genome and System Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and System Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), 36080, Pontevedra, Spain
| | - Hubert Pausch
- Animal Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
126
|
Mahajan AS, Kondhare KR, Rajabhoj MP, Kumar A, Ghate T, Ravindran N, Habib F, Siddappa S, Banerjee AK. Regulation, overexpression, and target gene identification of Potato Homeobox 15 (POTH15) - a class-I KNOX gene in potato. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4255-72. [PMID: 27217546 PMCID: PMC5301930 DOI: 10.1093/jxb/erw205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and stolons under tuber-inducing short-day conditions. POTH15 promoter activity was detected in apical and axillary meristems, stolon tips, tuber eyes, and meristems of tuber sprouts, indicating its role in meristem maintenance and leaf development. POTH15 overexpression altered multiple morphological traits including leaf and stem development, leaflet number, and number of nodes and branches. In particular, the rachis of the leaf was completely reduced and leaves appeared as a bouquet of leaflets. Comparative transcriptomic analysis of 35S::GUS and two POTH15 overexpression lines identified more than 6000 differentially expressed genes, including 2014 common genes between the two overexpression lines. Functional analysis of these genes revealed their involvement in responses to hormones, biotic/abiotic stresses, transcription regulation, and signal transduction. qRT-PCR of selected candidate target genes validated their differential expression in both overexpression lines. Out of 200 randomly chosen POTH15 targets, 173 were found to have at least one tandem TGAC core motif, characteristic of KNOX interaction, within 3.0kb in the upstream sequence of the transcription start site. Overall, this study provides insights to the role of POTH15 in controlling diverse developmental processes in potato.
Collapse
Affiliation(s)
- Ameya S Mahajan
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| | - Kirtikumar R Kondhare
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| | - Mohit P Rajabhoj
- School of Biology, IISER TVM, Thiruvananthapuram (Trivandrum) - 695016, Kerala, India
| | - Amit Kumar
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| | - Tejashree Ghate
- Dept. of Botany, SPP University (formerly University of Pune), Pune - 411007, Maharashtra, India
| | - Nevedha Ravindran
- Biological Sciences, IISER Bhopal, Bhopal - 462066, Madhya Pradesh, India
| | - Farhat Habib
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| | - Sundaresha Siddappa
- Division of Crop Improvement, Central Potato Research Institute, Shimla - 171001, India
| | - Anjan K Banerjee
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| |
Collapse
|
127
|
Bar M, Israeli A, Levy M, Ben Gera H, Jiménez-Gómez JM, Kouril S, Tarkowski P, Ori N. CLAUSA Is a MYB Transcription Factor That Promotes Leaf Differentiation by Attenuating Cytokinin Signaling. THE PLANT CELL 2016; 28:1602-15. [PMID: 27385816 PMCID: PMC4981134 DOI: 10.1105/tpc.16.00211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2016] [Indexed: 05/04/2023]
Abstract
Leaf morphogenesis and differentiation are highly flexible processes, resulting in a large diversity of leaf forms. The development of compound leaves involves an extended morphogenesis stage compared with that of simple leaves, and the tomato (Solanum lycopersicum) mutant clausa (clau) exposes a potential for extended morphogenesis in tomato leaves. Here, we report that the CLAU gene encodes a MYB transcription factor that has evolved a unique role in compound-leaf species to promote an exit from the morphogenetic phase of tomato leaf development. We show that CLAU attenuates cytokinin signaling, and that clau plants have increased cytokinin sensitivity. The results suggest that flexible leaf patterning involves a coordinated interplay between transcription factors and hormones.
Collapse
Affiliation(s)
- Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Matan Levy
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Hadas Ben Gera
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Stepan Kouril
- Centre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support Faculty of Science, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support Faculty of Science, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, 78371 Olomouc, Czech Republic
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
128
|
Shwartz I, Levy M, Ori N, Bar M. Hormones in tomato leaf development. Dev Biol 2016; 419:132-142. [PMID: 27339291 DOI: 10.1016/j.ydbio.2016.06.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022]
Abstract
Leaf development serves as a model for plant developmental flexibility. Flexible balancing of morphogenesis and differentiation during leaf development results in a large diversity of leaf forms, both between different species and within the same species. This diversity is particularly evident in compound leaves. Hormones are prominent regulators of leaf development. Here we discuss some of the roles of plant hormones and the cross-talk between different hormones in tomato compound-leaf development.
Collapse
Affiliation(s)
- Ido Shwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Matan Levy
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| | - Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
129
|
Galli M, Gallavotti A. Expanding the Regulatory Network for Meristem Size in Plants. Trends Genet 2016; 32:372-383. [PMID: 27129984 DOI: 10.1016/j.tig.2016.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022]
Abstract
The remarkable plasticity of post-embryonic plant development is due to groups of stem-cell-containing structures called meristems. In the shoot, meristems continuously produce organs such as leaves, flowers, and stems. Nearly two decades ago the WUSCHEL/CLAVATA (WUS/CLV) negative feedback loop was established as being essential for regulating the size of shoot meristems by maintaining a delicate balance between stem cell proliferation and cell recruitment for the differentiation of lateral primordia. Recent research in various model species (Arabidopsis, tomato, maize, and rice) has led to discoveries of additional components that further refine and improve the current model of meristem regulation, adding new complexity to a vital network for plant growth and productivity.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA; Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
130
|
Kebrom TH, Mullet JE. Transcriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum. PLANT PHYSIOLOGY 2016; 170:2232-50. [PMID: 26893475 PMCID: PMC4824614 DOI: 10.1104/pp.16.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/13/2016] [Indexed: 05/04/2023]
Abstract
Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorghum genotypes is similar until 6 d after planting when buds of phyB-1 arrest growth, while wild-type buds continue growing and develop into tillers. Transcriptome analysis at this early stage of bud development identified numerous genes that were up to 50-fold differentially expressed in wild-type/phyB-1 buds. Up-regulation of terminal flower1, GA2oxidase, and TPPI could protect axillary meristems in phyB-1 from precocious floral induction and decrease bud sensitivity to sugar signals. After bud growth arrest in phyB-1, expression of dormancy-associated genes such as DRM1, GT1, AF1, and CKX1 increased and ENOD93, ACCoxidase, ARR3/6/9, CGA1, and SHY2 decreased. Continued bud outgrowth in wild-type was correlated with increased expression of genes encoding a SWEET transporter and cell wall invertases. The SWEET transporter may facilitate Suc unloading from the phloem to the apoplast where cell wall invertases generate monosaccharides for uptake and utilization to sustain bud outgrowth. Elevated expression of these genes was correlated with higher levels of cytokinin/sugar signaling in growing buds of wild-type plants.
Collapse
Affiliation(s)
- Tesfamichael H Kebrom
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (T.H.K., J.E.M.)
| | - John E Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (T.H.K., J.E.M.)
| |
Collapse
|
131
|
Yu H, Huang T. Molecular Mechanisms of Floral Boundary Formation in Arabidopsis. Int J Mol Sci 2016; 17:317. [PMID: 26950117 PMCID: PMC4813180 DOI: 10.3390/ijms17030317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 01/03/2023] Open
Abstract
Boundary formation is a crucial developmental process in plant organogenesis. Boundaries separate cells with distinct identities and act as organizing centers to control the development of adjacent organs. In flower development, initiation of floral primordia requires the formation of the meristem-to-organ (M-O) boundaries and floral organ development depends on the establishment of organ-to-organ (O-O) boundaries. Studies in this field have revealed a suite of genes and regulatory pathways controlling floral boundary formation. Many of these genes are transcription factors that interact with phytohormone pathways. This review will focus on the functions and interactions of the genes that play important roles in the floral boundaries and discuss the molecular mechanisms that integrate these regulatory pathways to control the floral boundary formation.
Collapse
Affiliation(s)
- Hongyang Yu
- College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Ave., Shenzhen 518060, China.
- College of Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Ave., Shenzhen 518060, China.
| | - Tengbo Huang
- College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Ave., Shenzhen 518060, China.
| |
Collapse
|
132
|
Wuddineh WA, Mazarei M, Zhang JY, Turner GB, Sykes RW, Decker SR, Davis MF, Udvardi MK, Stewart CN. Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:520. [PMID: 27200006 PMCID: PMC4848298 DOI: 10.3389/fpls.2016.00520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/01/2016] [Indexed: 05/18/2023]
Abstract
High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.
Collapse
Affiliation(s)
- Wegi A. Wuddineh
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Ji-Yi Zhang
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Geoffrey B. Turner
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Stephen R. Decker
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Michael K. Udvardi
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- *Correspondence: C. Neal Stewart Jr.,
| |
Collapse
|
133
|
Sharma P, Lin T, Hannapel DJ. Targets of the StBEL5 Transcription Factor Include the FT Ortholog StSP6A. PLANT PHYSIOLOGY 2016; 170:310-24. [PMID: 26553650 PMCID: PMC4704582 DOI: 10.1104/pp.15.01314] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/06/2015] [Indexed: 05/03/2023]
Abstract
The BEL1-like family of transcription factors is ubiquitous in plants and plays important roles in regulating development. They function in tandem with KNOTTED1 types to bind to a double TTGAC motif in the upstream sequence of target genes. StBEL5 of potato (Solanum tuberosum) functions as a mobile RNA signal that is transcribed in leaves, moves down into stolons in response to short days, and induces tuber formation. Despite their importance, however, very little is known about the targets of BEL1-like transcription factors. To better understand this network, we made use of a phloem-mobile BEL5 induction model, an ethanol-inducible system coupled with RNA sequencing analysis, and a screen for tandem TTGAC cis-elements in the upstream sequence to catalog StBEL5 target genes. Induction of StBEL5 activated several genes that are also induced by StSP6A (S. tuberosum SELF-PRUNING 6A), a FLOWERING LOCUS T coregulator that functions as a signal for tuberization. Both enhancement and suppression of StBEL5 expression were also closely linked to StSP6A transcriptional activity. Site mutagenesis in tandem TTGAC motifs located in the upstream sequence of StSP6A suppressed the short day-induced activity of its promoter in both young tubers and leaves. The expression profile of StBEL5 induced in stolons from plants grown under long-day conditions revealed almost 10,000 differentially expressed genes, including important tuber marker genes and genes involved in cell growth, transcription, floral development, and hormone metabolism. In a random screen of 200 differentially expressed targets of StBEL5, 92% contained tandem TTGAC motifs in the upstream sequence within 3 kb of the transcription start site.
Collapse
Affiliation(s)
- Pooja Sharma
- Plant Biology Major, Iowa State University, Ames, Iowa 50011-1100
| | - Tian Lin
- Plant Biology Major, Iowa State University, Ames, Iowa 50011-1100
| | - David J Hannapel
- Plant Biology Major, Iowa State University, Ames, Iowa 50011-1100
| |
Collapse
|
134
|
Yan F, Hu G, Ren Z, Deng W, Li Z. Ectopic expression a tomato KNOX Gene Tkn4 affects the formation and the differentiation of meristems and vasculature. PLANT MOLECULAR BIOLOGY 2015; 89:589-605. [PMID: 26456092 DOI: 10.1007/s11103-015-0387-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/26/2015] [Indexed: 05/21/2023]
Abstract
The KNOTTED-LIKE HOMEODOMAIN genes are involved in maintenance of the shoot apical meristem which produces the whole above-ground body of vascular plants. In this report, a tomato homolog gene, named as Tkn4 (a nucleus targeted transcription factor) was identified and characterized. By performing RT-PCR, the transcript level of Tkn4 was separately found in stem, root, stamen, stigma, fruit and sepal but hardly visible in the leaf. Besides, Tkn4 was induced by a series of plant hormones. Overexpression of Tkn4 gene in tomato resulted in dwarf phenotype and strongly repressed the formation of shoot apical meristem, lateral meristem and cambiums in transgenic lines. The transgenic lines had wrinkled leaves and anatomic analysis showed that there was no obvious palisade tissues in the leaves and the layer of cells changed in vascular tissue (xylem and phloem). To explore the regulation network of Tkn4, RNA-sequencing was performed in overexpression lines and wild type plants, by which many genes related to the synthesis and the signal transduction of cytokinin, auxin, gibberellin, ethylene, abscisic acid, and tracheary element differentiation or extracellular matrix synthesis were significantly regulated. Taken together, our results demonstrate that Tkn4 plays important roles in regulating the biosynthesis and signal transduction of diverse plant hormones, and the formation and differentiation of meristems and vasculature in tomato.
Collapse
Affiliation(s)
- Fang Yan
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Guojian Hu
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Zhenxin Ren
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Wei Deng
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Zhengguo Li
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
135
|
Tsuda K, Hake S. Diverse functions of KNOX transcription factors in the diploid body plan of plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:91-6. [PMID: 26190742 DOI: 10.1016/j.pbi.2015.06.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 05/18/2023]
Abstract
KNOX genes were initially found as shoot meristem regulators in angiosperms. Recent studies in diverse plant lineages however, have revealed the divergence of KNOX gene function during the evolution of diploid body plans. Using genomic approaches, class I KNOX transcription factors have been shown to regulate multiple hormone pathways including auxin and brassinosteroid as well as many transcription factors that play important roles in plant development. Class I KNOX proteins appear to be activators, whereas class II proteins act as repressors in transcriptional regulation of their target genes.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
136
|
Gerttula S, Zinkgraf M, Muday GK, Lewis DR, Ibatullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A. Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus. THE PLANT CELL 2015; 27:2800-13. [PMID: 26410302 PMCID: PMC4682325 DOI: 10.1105/tpc.15.00531] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 05/18/2023]
Abstract
Angiosperm trees reorient their woody stems by asymmetrically producing a specialized xylem tissue, tension wood, which exerts a strong contractile force resulting in negative gravitropism of the stem. Here, we show, in Populus trees, that initial gravity perception and response occurs in specialized cells through sedimentation of starch-filled amyloplasts and relocalization of the auxin transport protein, PIN3. Gibberellic acid treatment stimulates the rate of tension wood formation and gravibending and enhances tissue-specific expression of an auxin-responsive reporter. Gravibending, maturation of contractile fibers, and gibberellic acid (GA) stimulation of tension wood formation are all sensitive to transcript levels of the Class I KNOX homeodomain transcription factor-encoding gene ARBORKNOX2 (ARK2). We generated genome-wide transcriptomes for trees in which gene expression was perturbed by gravistimulation, GA treatment, and modulation of ARK2 expression. These data were employed in computational analyses to model the transcriptional networks underlying wood formation, including identification and dissection of gene coexpression modules associated with wood phenotypes, GA response, and ARK2 binding to genes within modules. We propose a model for gravitropism in the woody stem in which the peripheral location of PIN3-expressing cells relative to the cambium results in auxin transport toward the cambium in the top of the stem, triggering tension wood formation, while transport away from the cambium in the bottom of the stem triggers opposite wood formation.
Collapse
Affiliation(s)
- Suzanne Gerttula
- US Forest Service, Pacific Southwest Research Station, Davis, California 95618
| | - Matthew Zinkgraf
- US Forest Service, Pacific Southwest Research Station, Davis, California 95618
| | - Gloria K Muday
- Wake Forest University, Winston-Salem, North Carolina 27106
| | - Daniel R Lewis
- Wake Forest University, Winston-Salem, North Carolina 27106
| | - Farid M Ibatullin
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S-106 91 Stockholm, Sweden Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S-106 91 Stockholm, Sweden Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Foster Hart
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Vladimir Filkov
- Department of Computer Science, University of California, Davis, California 95618
| | - Andrew Groover
- US Forest Service, Pacific Southwest Research Station, Davis, California 95618 Department of Plant Biology, University of California, Davis, California 95618
| |
Collapse
|
137
|
Bar M, Ben-Herzel O, Kohay H, Shtein I, Ori N. CLAUSA restricts tomato leaf morphogenesis and GOBLET expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:888-902. [PMID: 26189897 DOI: 10.1111/tpj.12936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 05/24/2023]
Abstract
Leaf morphogenesis and differentiation are highly flexible processes. The development of compound leaves is characterized by an extended morphogenesis stage compared with that of simple leaves. The tomato mutant clausa (clau) possesses extremely elaborate compound leaves. Here we show that this elaboration is generated by further extension of the morphogenetic window, partly via the activity of ectopic meristems present on clau leaves. Further, we propose that CLAU might negatively affect expression of the NAM/CUC gene GOBLET (GOB), an important modulator of compound-leaf development, as GOB expression is elevated in clau mutants and reducing GOB expression suppresses the clau phenotype. Expression of GOB is also elevated in the compound leaf mutant lyrate (lyr), and the remarkable enhancement of the clau phenotype by lyr suggests that clau and lyr affect leaf development and GOB in different pathways.
Collapse
Affiliation(s)
- Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Ori Ben-Herzel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Hagay Kohay
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Ilana Shtein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| |
Collapse
|
138
|
De Witte D, Van de Velde J, Decap D, Van Bel M, Audenaert P, Demeester P, Dhoedt B, Vandepoele K, Fostier J. BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements. Bioinformatics 2015; 31:3758-66. [PMID: 26254488 PMCID: PMC4653392 DOI: 10.1093/bioinformatics/btv466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 08/03/2015] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. RESULTS We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. AVAILABILITY AND IMPLEMENTATION BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller CONTACT Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dieter De Witte
- Department of Information Technology (INTEC), Ghent University-iMinds, Ghent, Belgium
| | - Jan Van de Velde
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Dries Decap
- Department of Information Technology (INTEC), Ghent University-iMinds, Ghent, Belgium
| | - Michiel Van Bel
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Pieter Audenaert
- Department of Information Technology (INTEC), Ghent University-iMinds, Ghent, Belgium
| | - Piet Demeester
- Department of Information Technology (INTEC), Ghent University-iMinds, Ghent, Belgium
| | - Bart Dhoedt
- Department of Information Technology (INTEC), Ghent University-iMinds, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Jan Fostier
- Department of Information Technology (INTEC), Ghent University-iMinds, Ghent, Belgium
| |
Collapse
|
139
|
Gallagher KL, Sozzani R, Lee CM. Intercellular protein movement: deciphering the language of development. Annu Rev Cell Dev Biol 2015; 30:207-33. [PMID: 25288113 DOI: 10.1146/annurev-cellbio-100913-012915] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Development in multicellular organisms requires the coordinated production of a large number of specialized cell types through sophisticated signaling mechanisms. Non-cell-autonomous signals are one of the key mechanisms by which organisms coordinate development. In plants, intercellular movement of transcription factors and other mobile signals, such as hormones and peptides, is essential for normal development. Through a combination of different approaches, a large number of non-cell-autonomous signals that control plant development have been identified. We review some of the transcriptional regulators that traffic between cells, as well as how changes in symplasmic continuity affect and are affected by development. We also review current models for how mobile signals move via plasmodesmata and how movement is inhibited. Finally, we consider challenges in and new tools for studying protein movement.
Collapse
Affiliation(s)
- Kimberly L Gallagher
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104; ,
| | | | | |
Collapse
|
140
|
Zhao M, Yang S, Chen CY, Li C, Shan W, Lu W, Cui Y, Liu X, Wu K. Arabidopsis BREVIPEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture. PLoS Genet 2015; 11:e1005125. [PMID: 25822547 PMCID: PMC4379049 DOI: 10.1371/journal.pgen.1005125] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/04/2015] [Indexed: 01/08/2023] Open
Abstract
BREVIPEDICELLUS (BP or KNAT1), a class-I KNOTTED1-like homeobox (KNOX) transcription factor in Arabidopsis thaliana, contributes to shaping the normal inflorescence architecture through negatively regulating other two class-I KNOX genes, KNAT2 and KNAT6. However, the molecular mechanism of BP-mediated transcription regulation remains unclear. In this study, we showed that BP directly interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) both in vitro and in vivo. Loss-of-function BRM mutants displayed inflorescence architecture defects, with clustered inflorescences, horizontally orientated pedicels, and short pedicels and internodes, a phenotype similar to the bp mutants. Furthermore, the transcript levels of KNAT2 and KNAT6 were elevated in brm-3, bp-9 and brm-3 bp-9 double mutants. Increased histone H3 lysine 4 tri-methylation (H3K4me3) levels were detected in brm-3, bp-9 and brm-3 bp-9 double mutants. Moreover, BRM and BP co-target to KNAT2 and KNAT6 genes, and BP is required for the binding of BRM to KNAT2 and KNAT6. Taken together, our results indicate that BP interacts with the chromatin remodeling factor BRM to regulate the expression of KNAT2 and KNAT6 in control of inflorescence architecture. BP is a class-I KNOX transcription factor that controls normal inflorescence architecture development by repressing the expression of two KNOX genes, KNAT2 and KNAT6. In this study, we showed that Arabidopsis BP directly interacts with the SWI2/SNF2 chromatin remodeling ATPase BRM. brm and bp mutants displayed similar inflorescence architecture defects, with clustered inflorescences, horizontally orientated pedicels, and short pedicels and internodes. Furthermore, BP and BRM co-target to KNAT2 and KNAT6 genes and repress their expression. This work reveals a new regulatory mechanism that BP associates with BRM in control of inflorescence architecture development.
Collapse
Affiliation(s)
- Minglei Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chia-Yang Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chenlong Li
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Yuhai Cui
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (XL); (KW)
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- * E-mail: (XL); (KW)
| |
Collapse
|
141
|
Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Wang T, Li Y. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One 2015; 10:e0121624. [PMID: 25807369 PMCID: PMC4373667 DOI: 10.1371/journal.pone.0121624] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
Plant architecture is a key factor for high productivity maize because ideal plant architecture with an erect leaf angle and optimum leaf orientation value allow for more efficient light capture during photosynthesis and better wind circulation under dense planting conditions. To extend our understanding of the genetic mechanisms involved in leaf-related traits, three connected recombination inbred line (RIL) populations including 538 RILs were genotyped by genotyping-by-sequencing (GBS) method and phenotyped for the leaf angle and related traits in six environments. We conducted single population quantitative trait locus (QTL) mapping and joint linkage analysis based on high-density recombination bin maps constructed from GBS genotype data. A total of 45 QTLs with phenotypic effects ranging from 1.2% to 29.2% were detected for four leaf architecture traits by using joint linkage mapping across the three populations. All the QTLs identified for each trait could explain approximately 60% of the phenotypic variance. Four QTLs were located on small genomic regions where candidate genes were found. Genomic predictions from a genomic best linear unbiased prediction (GBLUP) model explained 45±9% to 68±8% of the variation in the remaining RILs for the four traits. These results extend our understanding of the genetics of leaf traits and can be used in genomic prediction to accelerate plant architecture improvement.
Collapse
Affiliation(s)
- Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Zhiwu Zhang
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
142
|
Aguilar-Martínez JA, Uchida N, Townsley B, West DA, Yanez A, Lynn N, Kimura S, Sinha N. Transcriptional, posttranscriptional, and posttranslational regulation of SHOOT MERISTEMLESS gene expression in Arabidopsis determines gene function in the shoot apex. PLANT PHYSIOLOGY 2015; 167:424-42. [PMID: 25524441 PMCID: PMC4326739 DOI: 10.1104/pp.114.248625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/12/2014] [Indexed: 05/21/2023]
Abstract
The activity of SHOOT MERISTEMLESS (STM) is required for the functioning of the shoot apical meristem (SAM). STM is expressed in the SAM but is down-regulated at the site of leaf initiation. STM is also required for the formation of compound leaves. However, how the activity of STM is regulated at the transcriptional, posttranscriptional, and posttranslational levels is poorly understood. We previously found two conserved noncoding sequences in the promoters of STM-like genes across angiosperms, the K-box and the RB-box. Here, we characterize the function of the RB-box in Arabidopsis (Arabidopsis thaliana). The RB-box, along with the K-box, regulates the expression of STM in leaf sinuses, which are areas on the leaf blade with meristematic potential. The RB-box also contributes to restrict STM expression to the SAM. We identified FAR1-RELATED SEQUENCES-RELATED FACTOR1 (FRF1) as a binding factor to the RB-box region. FRF1 is an uncharacterized member of a subfamily of four truncated proteins related to the FAR1-RELATED SEQUENCES factors. Internal deletion analysis of the STM promoter identified a region required to repress the expression of STM in hypocotyls. Expression of STM in leaf primordia under the control of the JAGGED promoter produced plants with partially undifferentiated leaves. We further found that the ELK domain has a role in the posttranslational regulation of STM by affecting the nuclear localization of STM.
Collapse
Affiliation(s)
- José Antonio Aguilar-Martínez
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Naoyuki Uchida
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Brad Townsley
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Donnelly Ann West
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Andrea Yanez
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Nafeesa Lynn
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Seisuke Kimura
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| |
Collapse
|
143
|
Abstract
The development of plant leaves follows a common basic program that is flexible and is adjusted according to species, developmental stage and environmental circumstances. Leaves initiate from the flanks of the shoot apical meristem and develop into flat structures of variable sizes and forms. This process is regulated by plant hormones, transcriptional regulators and mechanical properties of the tissue. Here, we review recent advances in the understanding of how these factors modulate leaf development to yield a substantial diversity of leaf forms. We discuss these issues in the context of leaf initiation, the balance between morphogenesis and differentiation, and patterning of the leaf margin.
Collapse
Affiliation(s)
- Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
144
|
Liu L, Zinkgraf M, Petzold HE, Beers EP, Filkov V, Groover A. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function. THE NEW PHYTOLOGIST 2015; 205:682-94. [PMID: 25377848 DOI: 10.1111/nph.13151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/01/2014] [Indexed: 05/28/2023]
Abstract
The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome. Here, we used chromatin immunoprecipitation sequencing (ChIP-seq) technology to identify ARK1 binding loci genome-wide in Populus. Computational analyses evaluated the distribution of ARK1 binding loci, the function of genes associated with bound loci, the effect of ARK1 binding on transcript levels, and evolutionary conservation of ARK1 binding loci. ARK1 binds to thousands of loci which are highly enriched proximal to the transcriptional start sites of genes of diverse functions. ARK1 target genes are significantly enriched in paralogs derived from the whole-genome salicoid duplication event. Both ARK1 and a maize (Zea mays) homolog, KNOTTED1, preferentially target evolutionarily conserved genes. However, only a small portion of ARK1 target genes are significantly differentially expressed in an ARK1 over-expression mutant. This study describes the functional characteristics and evolution of DNA binding by a transcription factor in an undomesticated tree, revealing complexities similar to those shown for transcription factors in model animal species.
Collapse
Affiliation(s)
- Lijun Liu
- Pacific Southwest Research Station, USDA Forest Service, Davis, CA, 95618, USA
| | | | | | | | | | | |
Collapse
|
145
|
Hepworth SR, Pautot VA. Beyond the Divide: Boundaries for Patterning and Stem Cell Regulation in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1052. [PMID: 26697027 PMCID: PMC4673312 DOI: 10.3389/fpls.2015.01052] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/12/2015] [Indexed: 05/04/2023]
Abstract
The initiation of plant lateral organs from the shoot apical meristem (SAM) is closely associated with the formation of specialized domains of restricted growth known as the boundaries. These zones are required in separating the meristem from the growing primordia or adjacent organs but play a much broader role in regulating stem cell activity and shoot patterning. Studies have revealed a network of genes and hormone pathways that establish and maintain boundaries between the SAM and leaves. Recruitment of these pathways is shown to underlie a variety of processes during the reproductive phase including axillary meristems production, flower patterning, fruit development, and organ abscission. This review summarizes the role of conserved gene modules in patterning boundaries throughout the life cycle.
Collapse
Affiliation(s)
- Shelley R. Hepworth
- Department of Biology, Institute of Biochemistry, Carleton University, OttawaON, Canada
- *Correspondence: Shelley R. Hepworth, ; Véronique A. Pautot,
| | - Véronique A. Pautot
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-SaclayVersailles, France
- *Correspondence: Shelley R. Hepworth, ; Véronique A. Pautot,
| |
Collapse
|
146
|
Abstract
The independent origin and evolution of leaves as small, simple microphylls or larger, more complex megaphylls in plants has shaped and influenced the natural composition of the environment. Significant contributions have come from megaphyllous leaves, characterized usually as flat, thin lamina entrenched with photosynthetic organelles and stomata, which serve as the basis of primary productivity. During the course of evolution, the megaphylls have attained complexity not only in size or venation patterns but also in shape. This has fascinated scientists worldwide, and research has progressed tremendously in understanding the concept of leaf shape determination. Here, we review these studies and discuss the various factors that contributed towards shaping the leaf; initiated as a small bulge on the periphery of the shoot apical meristem (SAM) followed by asymmetric outgrowth, expansion and maturation until final shape is achieved. We found that the underlying factors governing these processes are inherently genetic: PIN1 and KNOX1 are indicators of leaf initiation, HD-ZIPIII, KANADI, and YABBY specify leaf outgrowth while ANGUSTIFOLIA3 and GROWTH-REGULATING FACTOR5 control leaf expansion and maturation; besides, recent research has identified new players such as APUM23, known to specify leaf polarity. In addition to genetic control, environmental factors also play an important role during the final adjustment of leaf shape. This immense amount of information available will serve as the basis for studying and understanding innovative leaf morphologies viz. the pitchers of the carnivorous plant Nepenthes which have evolved to provide additional support to the plant survival in its nutrient-deficient habitat. In hindsight, formation of the pitcher tube in Nepenthes might involve the recruitment of similar genetic mechanisms that occur during sympetaly in Petunia.
Collapse
Affiliation(s)
- Jeremy Dkhar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
147
|
Farquharson KL. Examining the molecular basis of heterophylly in North American lake cress. THE PLANT CELL 2014; 26:4567. [PMID: 25538187 PMCID: PMC4311223 DOI: 10.1105/tpc.114.135434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
148
|
Lewis MW, Bolduc N, Hake K, Htike Y, Hay A, Candela H, Hake S. Gene regulatory interactions at lateral organ boundaries in maize. Development 2014; 141:4590-7. [DOI: 10.1242/dev.111955] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maize leaves have distinct tissues that serve specific purposes. The blade tilts back to photosynthesize and the sheath wraps around the stem to provide structural support and protect young leaves. At the junction between blade and sheath are the ligule and auricles, both of which are absent in the recessive liguleless1 (lg1) mutant. Using an antibody against LG1, we reveal LG1 accumulation at the site of ligule formation and in the axil of developing tassel branches. The dominant mutant Wavy auricle in blade1 (Wab1-R) produces ectopic auricle tissue in the blade and increases the domain of LG1 accumulation. We determined that wab1 encodes a TCP transcription factor by positional cloning and revertant analysis. Tassel branches are few and upright in the wab1 revertant tassel and have an increased branch angle in the dominant mutant. wab1 mRNA is expressed at the base of branches in the inflorescence and is necessary for LG1 expression. wab1 is not expressed in leaves, except in the dominant mutant. The domain of wab1 expression in the Wab1-R leaf closely mirrors the accumulation of LG1. Although wab1 is not needed to induce lg1 expression in the leaf, LG1 is needed to counteract the severe phenotype of the dominant Wab1-R mutant. The regulatory interaction of LG1 and WAB1 reveals a link between leaf shape and tassel architecture, and suggests the ligule is a boundary similar to that at the base of lateral organs.
Collapse
Affiliation(s)
- Michael W. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Nathalie Bolduc
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Kayley Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yadanar Htike
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Angela Hay
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Héctor Candela
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
149
|
Nakayama H, Nakayama N, Seiki S, Kojima M, Sakakibara H, Sinha N, Kimura S. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. THE PLANT CELL 2014; 26:4733-48. [PMID: 25516600 PMCID: PMC4311196 DOI: 10.1105/tpc.114.130229] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/20/2014] [Accepted: 12/02/2014] [Indexed: 05/05/2023]
Abstract
Plants show leaf form alteration in response to changes in the surrounding environment, and this phenomenon is called heterophylly. Although heterophylly is seen across plant species, the regulatory mechanisms involved are largely unknown. Here, we investigated the mechanism underlying heterophylly in Rorippa aquatica (Brassicaceae), also known as North American lake cress. R. aquatica develops pinnately dissected leaves in submerged conditions, whereas it forms simple leaves with serrated margins in terrestrial conditions. We found that the expression levels of KNOTTED1-LIKE HOMEOBOX (KNOX1) orthologs changed in response to changes in the surrounding environment (e.g., change of ambient temperature; below or above water) and that the accumulation of gibberellin (GA), which is thought to be regulated by KNOX1 genes, also changed in the leaf primordia. We further demonstrated that exogenous GA affects the complexity of leaf form in this species. Moreover, RNA-seq revealed a relationship between light intensity and leaf form. These results suggest that regulation of GA level via KNOX1 genes is involved in regulating heterophylly in R. aquatica. The mechanism responsible for morphological diversification of leaf form among species may also govern the variation of leaf form within a species in response to environmental changes.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Nakayama
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| | - Sumer Seiki
- Teacher Education Department, University of San Francisco, San Francisco, California 94117-1080
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
150
|
Wang F, Qiu N, Ding Q, Li J, Zhang Y, Li H, Gao J. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics 2014; 15:807. [PMID: 25242257 PMCID: PMC4180144 DOI: 10.1186/1471-2164-15-807] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth regulating factors (GRFs) have been shown to play important roles in plant growth and development. GRF genes represent a large multigene family in plants. Recently, genome-wide structural and evolutionary analyses of the GRF gene families in Arabidopsis, rice, and maize have been reported. Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important vegetables for agricultural production, and a full genome assembly for this plant has recently been released. However, to our knowledge, the GRF gene family from Chinese cabbage has not been characterized in detail. RESULTS In this study, genome-wide analysis was carried out to identify all the GRF genes in Chinese cabbage. Based on the complete Chinese cabbage genome sequence, 17 nonredundant GRF genes, named BrGRFs, were identified and classified into six groups. Phylogenetic analysis of the translated GRF protein sequences from Chinese cabbage, Arabidopsis, and rice indicated that the Chinese cabbage GRF proteins were more closely related to the GRF proteins of Arabidopsis than to those of rice. Expression profile analysis showed that the BrGRF genes had uneven transcript levels in different organs or tissues, and the transcription of most BrGRF genes was induced by gibberellic acid (GA3) treatment. Additionally, over-expression of BrGRF8 in transgenic Arabidopsis plants increased the sizes of the leaves and other organs by regulation of cell proliferation. CONCLUSIONS The data obtained from this investigation will contribute to a better understanding of the characteristics of the GRF gene family in Chinese cabbage, and provide a basis for further studies to investigate GRF protein function during development as well as for Chinese cabbage-breeding programs to improve yield and/or head size.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianwei Gao
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences/Shandong Key Laboratory of Greenhouse Vegetable Biology/Shandong Branch of National Vegetable Improvement Center, Jinan 250100, China.
| |
Collapse
|