101
|
Dubeaux G, Zelazny E, Vert G. Getting to the root of plant iron uptake and cell-cell transport: Polarity matters! Commun Integr Biol 2015; 8:e1038441. [PMID: 26479146 PMCID: PMC4594254 DOI: 10.1080/19420889.2015.1038441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/08/2014] [Indexed: 11/24/2022] Open
Abstract
Plasma membrane proteins play pivotal roles in mediating responses to endogenous and environmental cues. Regulation of membrane protein levels and establishment of polarity are fundamental for many cellular processes. In plants, IRON-REGULATED TRANSPORTER 1 (IRT1) is the major root iron transporter but is also responsible for the absorption of other divalent metals such as manganese, zinc and cobalt. We recently uncovered that IRT1 is polarly localized to the outer plasma membrane domain of plant root epidermal cells upon depletion of its secondary metal substrates. The endosome-recruited FYVE1 protein interacts with IRT1 in the endocytic pathway and plays a crucial role in the establishment of IRT1 polarity, likely through its recycling to the cell surface. Our work sheds light on the mechanisms of radial transport of nutrients across the different cell types of plant roots toward the vascular tissues and raises interesting parallel with iron transport in mammals.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University; Saclay Plant Sciences ; Gif-sur-Yvette, France
| | - Enric Zelazny
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University; Saclay Plant Sciences ; Gif-sur-Yvette, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University; Saclay Plant Sciences ; Gif-sur-Yvette, France
| |
Collapse
|
102
|
Li S, Zhang X, Zhang XY, Xiao W, Berry JO, Li P, Jin S, Tan S, Zhang P, Zhao WZ, Yin LP. Expression ofMalus xiaojinensisIRT1 (MxIRT1) protein in transgenic yeast cells leads to degradation through autophagy in the presence of excessive iron. Yeast 2015; 32:499-517. [DOI: 10.1002/yea.3075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 02/02/2023] Open
Affiliation(s)
- Shuang Li
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Xi Zhang
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Xiu-Yue Zhang
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Wei Xiao
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
- Department of Microbiology and Immunology; University of Saskatchewan; Saskatoon SK Canada
| | - James O. Berry
- Department of Biological Sciences; State University of New York; Buffalo NY USA
| | - Peng Li
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Si Jin
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Song Tan
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Peng Zhang
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Wei-Zhong Zhao
- Institute of Mathematics and Interdisciplinary Sciences; Capital Normal University; Beijing People's Republic of China
| | - Li-Ping Yin
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| |
Collapse
|
103
|
Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis iron uptake. TRENDS IN PLANT SCIENCE 2015; 20:124-33. [PMID: 25499025 DOI: 10.1016/j.tplants.2014.11.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 05/18/2023]
Abstract
Plants are the principal source of dietary iron (Fe) for most of Earth's population and Fe deficiency can lead to major health problems. Developing strategies to improve plant Fe content is a challenge because Fe is essential and toxic and therefore regulating Fe uptake is crucial for plant survival. Acquiring soil Fe relies on complex regulatory events that occur in root epidermal cells. We review recent advances in elucidating many aspects of the regulation of Fe acquisition. These include the expanding protein network involved in FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT)-dependent gene regulation and novel findings on the intracellular trafficking of the Fe transporter IRON-REGULATED TRANSPORTER 1 (IRT1). We outline future challenges and propose strategies, such as exploiting natural variation, to further expand our knowledge.
Collapse
Affiliation(s)
- Tzvetina Brumbarova
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
104
|
Shen C, Yue R, Sun T, Zhang L, Yang Y, Wang H. OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:148-58. [PMID: 25576000 DOI: 10.1016/j.plantsci.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 05/18/2023]
Abstract
Plant response to iron deficiency is the most important feature for survival in Fe-limited soils. Several phytohormones, including auxin, are involved in iron uptake and homeostasis. However, the mechanisms behind how auxin participates in the iron deficiency response in rice are largely unknown. We found that OsARF16 was involved in the iron deficiency response and the induction of iron deficiency response genes. Most Fe-deficient symptoms could be partially restored in the osarf16 mutant, including dwarfism, photosynthesis decline, a reduction in iron content and root system architecture (RSA) regulation. OsARF16 expression was induced in the roots and shoots by Fe deprivation. Restoration of the phenotype could also be mimicked by 1-NOA, an auxin influx inhibitor. Furthermore, the qRT-PCR data indicated that the induction of Fe-deficiency response genes by iron deficiency was more compromised in the osarf16 mutant than in Nipponbare. In conclusion, osarf16, an auxin insensitive mutant, was involved in iron deficiency response in rice. Our results reveal a new biological function for OsARF16 and provide important information on how ARF-medicated auxin signaling affects iron signaling and the iron deficiency response. This work may help us to improve production or increased Fe nutrition of rice to iron deficiency by regulating auxin signaling.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
105
|
Martins S, Dohmann EMN, Cayrel A, Johnson A, Fischer W, Pojer F, Satiat-Jeunemaître B, Jaillais Y, Chory J, Geldner N, Vert G. Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination. Nat Commun 2015; 6:6151. [PMID: 25608221 DOI: 10.1038/ncomms7151] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
Brassinosteroids are plant steroid hormones that control many aspects of plant growth and development, and are perceived at the cell surface by the plasma membrane-localized receptor kinase BRI1. Here we show that BRI1 is post-translationally modified by K63 polyubiquitin chains in vivo. Using both artificial ubiquitination of BRI1 and generation of an ubiquitination-defective BRI1 mutant form, we demonstrate that ubiquitination promotes BRI1 internalization from the cell surface and is essential for its recognition at the trans-Golgi network/early endosomes (TGN/EE) for vacuolar targeting. Finally, we demonstrate that the control of BRI1 protein dynamics by ubiquitination is an important control mechanism for brassinosteroid responses in plants. Altogether, our results identify ubiquitination and K63-linked polyubiquitin chain formation as a dual targeting signal for BRI1 internalization and sorting along the endocytic pathway, and highlight its role in hormonally controlled plant development.
Collapse
Affiliation(s)
- Sara Martins
- 1] Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France [2] Institut des Sciences du Végétal, Unité Propre de Recherche 2355, Centre National de la Recherche Scientifique, Saclay Plant Sciences, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Esther M N Dohmann
- Department of Plant Molecular Biology, University of Lausanne, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Anne Cayrel
- 1] Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France [2] Institut des Sciences du Végétal, Unité Propre de Recherche 2355, Centre National de la Recherche Scientifique, Saclay Plant Sciences, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Alexander Johnson
- 1] Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France [2] Institut des Sciences du Végétal, Unité Propre de Recherche 2355, Centre National de la Recherche Scientifique, Saclay Plant Sciences, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Wolfgang Fischer
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Florence Pojer
- Protein Crystallography Core Facility, Ecole Polytechnique Fédérale de Lausanne, SV 3827 Station 19, 1015 Lausanne, Switzerland
| | - Béatrice Satiat-Jeunemaître
- 1] Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France [2] Institut des Sciences du Végétal, Unité Propre de Recherche 2355, Centre National de la Recherche Scientifique, Saclay Plant Sciences, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Yvon Jaillais
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS Lyon, Université de Lyon, 46 allée d'Italie, 69364 Lyon 07, France
| | - Joanne Chory
- 1] The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Grégory Vert
- 1] Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France [2] Institut des Sciences du Végétal, Unité Propre de Recherche 2355, Centre National de la Recherche Scientifique, Saclay Plant Sciences, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
106
|
Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene. Biochem Biophys Res Commun 2014; 455:312-7. [DOI: 10.1016/j.bbrc.2014.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022]
|
107
|
Aibara I, Miwa K. Strategies for Optimization of Mineral Nutrient Transport in Plants: Multilevel Regulation of Nutrient-Dependent Dynamics of Root Architecture and Transporter Activity. ACTA ACUST UNITED AC 2014; 55:2027-36. [DOI: 10.1093/pcp/pcu156] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
108
|
Liu TY, Lin WY, Huang TK, Chiou TJ. MicroRNA-mediated surveillance of phosphate transporters on the move. TRENDS IN PLANT SCIENCE 2014; 19:647-55. [PMID: 25001521 DOI: 10.1016/j.tplants.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 05/06/2023]
Abstract
Phosphate (Pi), which is indispensable for the structural and metabolic needs of plants, is acquired and translocated by Pi transporters. Deciphering the regulatory network of Pi signaling and homeostasis that involves the control of Pi transporters trafficking to, and their activity at, the plasma membrane provides insight into how plants adapt to environmental changes in Pi availability. Here, we review recent studies that revealed the involvement of microRNA399-PHOSPHATE 2 (PHO2) and microR827-NITROGEN LIMITATION ADAPTATION (NLA) modules in mediating the ubiquitination and degradation of PHOSPHATE TRANSPORTER 1 (PHT1) and/or PHOSPHATE 1 (PHO1). These discoveries show that miRNAs are an effective way for plants to monitor the turnover of Pi transporters in the membrane system by modulating the functioning of the membrane-associated ubiquitin machinery.
Collapse
Affiliation(s)
- Tzu-Yin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Yi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Teng-Kuei Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
109
|
Abstract
Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development.
Collapse
Affiliation(s)
- Enric Zelazny
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Saclay Plant Sciences, 91190 Gif-sur-Yvette, France
| | - Grégory Vert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Saclay Plant Sciences, 91190 Gif-sur-Yvette, France
| |
Collapse
|
110
|
Abstract
Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Grégory Vert
- Institut des Sciences du Végétal, CNRS UPR 2355, 1 Avenue de la Terrasse, Bâtiment 23A, Gif-sur-Yvette 91190, France
| |
Collapse
|
111
|
Li B, Lu D, Shan L. Ubiquitination of pattern recognition receptors in plant innate immunity. MOLECULAR PLANT PATHOLOGY 2014; 15:737-746. [PMID: 25275148 PMCID: PMC4183980 DOI: 10.1111/mpp.12128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lacking an adaptive immune system, plants largely rely on plasma membrane-resident pattern recognition receptors (PRRs) to sense pathogen invasion. The activation of PRRs leads to the profound immune responses that coordinately contribute to the restriction of pathogen multiplication. Protein post-translational modifications dynamically shape the intensity and duration of the signalling pathways. In this review, we discuss the specific regulation of PRR activation and signalling by protein ubiquitination, endocytosis and degradation, with a particular focus on the bacterial flagellin receptor FLS2 (flagellin sensing 2) in Arabidopsis.
Collapse
Affiliation(s)
- Bo Li
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongping Lu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
112
|
Kobayashi T, Nishizawa NK. Iron sensors and signals in response to iron deficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:36-43. [PMID: 24908504 DOI: 10.1016/j.plantsci.2014.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 05/03/2023]
Abstract
The transcription of genes involved in iron acquisition in plants is induced under iron deficiency, but our understanding of iron sensors and signals remains limited. Iron Deficiency-responsive Element-binding Factor 1 (IDEF1) and Hemerythrin motif-containing Really Interesting New Gene- and Zinc-finger proteins (HRZs)/BRUTUS (BTS) have recently emerged as candidate iron sensors because of their functions as potent regulators of iron deficiency responses and their iron-binding properties. IDEF1 is a central transcriptional regulator of graminaceous genes involved in iron uptake and utilization, predominantly during the early stages of iron deficiency. HRZs/BTS are E3 ubiquitin ligases and negative regulators of iron deficiency responses in both graminaceous and non-graminaceous plants. Rice OsHRZ1 and OsHRZ2 are also potent regulators of iron accumulation. Characterizing these putative iron sensors also provides clues to understanding the nature of iron signals, which may involve ionized iron itself, other metals, oxygen, redox status, heme and iron-sulfur clusters, in addition to metabolites affected by iron deficiency. Systemic iron responses may also be regulated by phloem-mobile iron and its chelators such as nicotianamine. Iron sensors and signals will be identified by demonstration of signal transmission by IDEF1, HRZs/BTS, or unknown factors.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| |
Collapse
|
113
|
Yasuda S, Sato T, Maekawa S, Aoyama S, Fukao Y, Yamaguchi J. Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14-3-3 proteins. J Biol Chem 2014; 289:15179-93. [PMID: 24722992 PMCID: PMC4140878 DOI: 10.1074/jbc.m113.533133] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/02/2014] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr(209), Ser(247), Ser(270), and Ser(303) as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr(209) and Ser(247) on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr(209) peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response.
Collapse
Affiliation(s)
- Shigetaka Yasuda
- From the Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan and
| | - Takeo Sato
- From the Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan and
| | - Shugo Maekawa
- From the Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan and
| | - Shoki Aoyama
- From the Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan and
| | - Yoichiro Fukao
- the Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Junji Yamaguchi
- From the Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan and
| |
Collapse
|
114
|
Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci U S A 2014; 111:8293-8. [PMID: 24843126 DOI: 10.1073/pnas.1402262111] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.
Collapse
|
115
|
Blum A, Brumbarova T, Bauer P, Ivanov R. Hormone influence on the spatial regulation of IRT1 expression in iron-deficient Arabidopsis thaliana roots. PLANT SIGNALING & BEHAVIOR 2014; 9:e28787. [PMID: 24721759 PMCID: PMC4091473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 02/28/2024]
Abstract
The IRON-REGULATED TRANSPORTER1 (IRT1) is the principal importer of soil iron in Arabidopsis thaliana. It has a complex intracellular trafficking behavior, including continuous cycling between plasma membrane and endosomes. SORTING NEXIN1 is required for the recycling of endosome-localized IRT1. In its absence, IRT1 is mistargeted for degradation, resulting in reduced plant iron-uptake efficiency. Consequently, IRT1 promoter activity gets limited to a specific portion of the root. We tested the influence of two hormones known to positively affect iron uptake on IRT1 spatial regulation. We found that ethylene treatment in wild-type background mimics the effects of the SNX-loss-of-function situation. Conversely, auxin splits the IRT1 expression zone and forces it toward the two extremities of the root. This shows that IRT1 expression along the root is modulated by ethylene-auxin interplay.
Collapse
Affiliation(s)
- Ailisa Blum
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
| | - Tzvetina Brumbarova
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| | - Petra Bauer
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| | - Rumen Ivanov
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| |
Collapse
|
116
|
Blum A, Brumbarova T, Bauer P, Ivanov R. Hormone influence on the spatial regulation of IRT1 expression in iron-deficient Arabidopsis thaliana roots. PLANT SIGNALING & BEHAVIOR 2014; 9:28787. [PMID: 24721759 PMCID: PMC4091473 DOI: 10.4161/psb.28787] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 05/21/2023]
Abstract
The IRON-REGULATED TRANSPORTER1 (IRT1) is the principal importer of soil iron in Arabidopsis thaliana. It has a complex intracellular trafficking behavior, including continuous cycling between plasma membrane and endosomes. SORTING NEXIN1 is required for the recycling of endosome-localized IRT1. In its absence, IRT1 is mistargeted for degradation, resulting in reduced plant iron-uptake efficiency. Consequently, IRT1 promoter activity gets limited to a specific portion of the root. We tested the influence of two hormones known to positively affect iron uptake on IRT1 spatial regulation. We found that ethylene treatment in wild-type background mimics the effects of the SNX-loss-of-function situation. Conversely, auxin splits the IRT1 expression zone and forces it toward the two extremities of the root. This shows that IRT1 expression along the root is modulated by ethylene-auxin interplay.
Collapse
Affiliation(s)
- Ailisa Blum
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
| | - Tzvetina Brumbarova
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| | - Petra Bauer
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| | - Rumen Ivanov
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
- Correspondence to: Rumen Ivanov,
| |
Collapse
|
117
|
Ivanov R, Brumbarova T, Blum A, Jantke AM, Fink-Straube C, Bauer P. SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1. THE PLANT CELL 2014; 26:1294-307. [PMID: 24596241 PMCID: PMC4001385 DOI: 10.1105/tpc.113.116244] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 05/18/2023]
Abstract
Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components involved in the regulation of Arabidopsis thaliana iron deficiency responses, we identified the members of the SORTING NEXIN (SNX) protein family. SNX loss-of-function plants display enhanced susceptibility to iron deficiency in comparison to the wild type. The absence of SNX led to reduced iron import efficiency into the root. SNX1 showed partial colocalization with the principal root iron importer IRON-REGULATED TRANSPORTER1 (IRT1). In SNX loss-of-function plants, IRT1 protein levels were decreased compared with the wild type due to enhanced IRT1 degradation. This resulted in diminished amounts of the IRT1 protein at the plasma membrane. snx mutants exhibited enhanced iron deficiency responses compared with the wild type, presumably due to the lower iron uptake through IRT1. Our results reveal a role of SNX1 for the correct trafficking of IRT1 and, thus, for modulating the activity of the iron uptake machinery.
Collapse
Affiliation(s)
- Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
- Address correspondence to
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | - Ailisa Blum
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | - Anna-Maria Jantke
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
118
|
Maekawa S, Inada N, Yasuda S, Fukao Y, Fujiwara M, Sato T, Yamaguchi J. The carbon/nitrogen regulator ARABIDOPSIS TOXICOS EN LEVADURA31 controls papilla formation in response to powdery mildew fungi penetration by interacting with SYNTAXIN OF PLANTS121 in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:879-87. [PMID: 24394775 PMCID: PMC3912113 DOI: 10.1104/pp.113.230995] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/02/2014] [Indexed: 05/19/2023]
Abstract
The carbon/nitrogen (C/N) balance of plants is not only required for growth and development but also plays an important role in basal immunity. However, the mechanisms that link C/N regulation and basal immunity are poorly understood. We previously demonstrated that the Arabidopsis (Arabidopsis thaliana) Arabidopsis Tóxicos en Levadura31 (ATL31) ubiquitin ligase, a regulator of the C/N response, positively regulates the defense response against bacterial pathogens. In this study, we identified the plasma membrane-localized soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor SYNTAXIN OF PLANTS121 (SYP121) as a novel ATL31 interactor. The syp121-1 loss-of-function mutant showed similar hypersensitivity to C/N stress conditions as the atl31 atl6 double mutant. SYP121 is essential for resistance to penetration by powdery mildew fungus and positively regulates the formation of cell wall appositions (papillae) at fungal entry sites. Microscopic analysis demonstrated that ATL31 was specifically localized around papillae. In addition, ATL31 overexpressors showed accelerated papilla formation, enhancing their resistance to penetration by powdery mildew fungus. Together, these data indicate that ATL31 plays an important role in connecting the C/N response with basal immunity by promoting papilla formation through its association with SYP121.
Collapse
|
119
|
Tomanov K, Luschnig C, Bachmair A. Ubiquitin Lys 63 chains - second-most abundant, but poorly understood in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:15. [PMID: 24550925 PMCID: PMC3907715 DOI: 10.3389/fpls.2014.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/14/2014] [Indexed: 05/20/2023]
Abstract
Covalent attachment of the small modifier ubiquitin to Lys ε-amino groups of proteins is surprisingly diverse. Once attached to a substrate, ubiquitin is itself frequently modified by ubiquitin, to form chains. All seven Lys residues of ubiquitin, as well as its N-terminal Met, can be ubiquitylated, implying cellular occurrence of different ubiquitin chain types. The available data suggest that the synthesis, recognition, and hydrolysis of different chain types are precisely regulated. This remarkable extent of control underlies a versatile cellular response to substrate ubiquitylation. In this review, we focus on roles of Lys63-linked ubiquitin chains in plants. Despite limited available knowledge, several recent findings illustrate the importance of these chains as signaling components in plants.
Collapse
Affiliation(s)
- Konstantin Tomanov
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of ViennaVienna, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Andreas Bachmair
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of ViennaVienna, Austria
| |
Collapse
|
120
|
Olsen LI, Palmgren MG. Many rivers to cross: the journey of zinc from soil to seed. FRONTIERS IN PLANT SCIENCE 2014; 5:30. [PMID: 24575104 PMCID: PMC3921580 DOI: 10.3389/fpls.2014.00030] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/23/2014] [Indexed: 05/18/2023]
Abstract
An important goal of micronutrient biofortification is to enhance the amount of bioavailable zinc in the edible seed of cereals and more specifically in the endosperm. The picture is starting to emerge for how zinc is translocated from the soil through the mother plant to the developing seed. On this journey, zinc is transported from symplast to symplast via multiple apoplastic spaces. During each step, zinc is imported into a symplast before it is exported again. Cellular import and export of zinc requires passage through biological membranes, which makes membrane-bound transporters of zinc especially interesting as potential transport bottlenecks. Inside the cell, zinc can be imported into or exported out of organelles by other transporters. The function of several membrane proteins involved in the transport of zinc across the tonoplast, chloroplast or plasma membranes are currently known. These include members of the ZIP (ZRT-IRT-like Protein), and MTP (Metal Tolerance Protein) and heavy metal ATPase (HMA) families. An important player in the transport process is the ligand nicotianamine that binds zinc to increase its solubility in living cells and in this way buffers the intracellular zinc concentration.
Collapse
Affiliation(s)
- Lene I. Olsen
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research FoundationFrederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Michael G. Palmgren
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research FoundationFrederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- *Correspondence: Michael G. Palmgren, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark e-mail:
| |
Collapse
|
121
|
Baisa GA, Mayers JR, Bednarek SY. Budding and braking news about clathrin-mediated endocytosis. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:718-25. [PMID: 24139529 DOI: 10.1016/j.pbi.2013.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 05/07/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the predominate mechanism of endocytosis in eukaryotes, but an understanding of this mechanism in plants has lagged behind yeast and mammalian systems. The generation of Arabidopsis mutant libraries, and the development of the molecular tools and equipment necessary to characterize these plant lines has led to an astonishing number of new insights into the mechanisms of membrane trafficking in plants. Over the past few years progress has been made on identifying, and in some instances confirming, the core components of CME in plants. This review focuses on the recent progress made in the understanding of the mechanism and regulation of CME in plants.
Collapse
Affiliation(s)
- Gary A Baisa
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
122
|
Lin WY, Huang TK, Chiou TJ. Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. THE PLANT CELL 2013; 25:4061-74. [PMID: 24122828 PMCID: PMC3877804 DOI: 10.1105/tpc.113.116012] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/14/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
Members of the Arabidopsis thaliana phosphate transporter1 (PHT1) family are key players in acquisition of Pi from the rhizosphere, and their regulation is indispensable for the maintenance of cellular Pi homeostasis. Here, we reveal posttranslational regulation of Pi transport through modulation of degradation of PHT1 proteins by the RING-type ubiquitin E3 ligase, nitrogen limitation adaptation (NLA). Loss of function of NLA caused high Pi accumulation resulting from increases in the levels of several PHT1s at the protein rather than the transcript level. Evidence of decreased endocytosis and ubiquitination of PHT1s in nla mutants and interaction between NLA and PHT1s in the plasma membranes suggests that NLA directs the ubiquitination of plasma membrane-localized PHT1s, which triggers clathrin-dependent endocytosis followed by endosomal sorting to vacuoles. Furthermore, different subcellular localization of NLA and phosphate2 (pho2; a ubiquitin E2 conjugase) and the synergistic effect of the accumulation of PHT1s and Pi in nla pho2 mutants suggest that they function independently but cooperatively to regulate PHT1 protein amounts. Intriguingly, NLA and PHO2 are the targets of two Pi starvation-induced microRNAs, miR827 and miR399, respectively. Therefore, our findings uncover modulation of Pi transport activity in response to Pi availability through the integration of a microRNA-mediated posttranscriptional pathway and a ubiquitin-mediated posttranslational regulatory pathway.
Collapse
Affiliation(s)
- Wei-Yi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Teng-Kuei Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
123
|
Yates G, Sadanandom A. Ubiquitination in plant nutrient utilization. FRONTIERS IN PLANT SCIENCE 2013; 4:452. [PMID: 24282407 PMCID: PMC3824359 DOI: 10.3389/fpls.2013.00452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/22/2013] [Indexed: 05/21/2023]
Abstract
Ubiquitin (Ub) is well-established as a major modifier of signaling in eukaryotes. However, the extent to which plants rely on Ub for regulating nutrient uptake is still in its infancy. The main characteristic of ubiquitination is the conjugation of Ub onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The Ub-proteasome system is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental conditions. This perspective will discuss how plants utilize Ub conjugation for sensing environmental nutrient levels. We will highlight recent advances in understanding how Ub aids nutrient homeostasis by affecting the trafficking of membrane bound transporters. Given the overrepresentation of genes encoding Ub-metabolizing enzymes in plants, intracellular signaling events regulated by Ub that lead to transcriptional responses due to nutrient starvation is an under explored area ripe for new discoveries. We provide new insight into how Ub based biochemical tools can be exploited to reveal new molecular components that affect nutrient signaling. The mechanistic nature of Ub signaling indicates that dominant form of any new molecular components can be readily generated and are likely shed new light on how plants cope with nutrient limiting conditions. Finally as part of future challenges in this research area we introduce the newly discovered roles of Ub-like proteins in nutrient homeostasis.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- *Correspondence: Ari Sadanandom, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK e-mail:
| |
Collapse
|