101
|
Liu D, Zhang J, Liu X, Wang W, Liu D, Teng Z, Fang X, Tan Z, Tang S, Yang J, Zhong J, Zhang Z. Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in upland cotton. BMC Genomics 2016; 17:295. [PMID: 27094760 PMCID: PMC4837631 DOI: 10.1186/s12864-016-2605-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Improving fiber quality is a major challenge in cotton breeding, since the molecular basis of fiber quality traits is poorly understood. Fine mapping and candidate gene prediction of quantitative trait loci (QTL) controlling cotton fiber quality traits can help to elucidate the molecular basis of fiber quality. In our previous studies, one major QTL controlling multiple fiber quality traits was identified near the T1 locus on chromosome 6 in Upland cotton. RESULTS To finely map this major QTL, the F2 population with 6975 individuals was established from a cross between Yumian 1 and a recombinant inbred line (RIL118) selected from a recombinant inbred line population (T586 × Yumian 1). The QTL was mapped to a 0.28-cM interval between markers HAU2119 and SWU2302. The QTL explained 54.7 % (LOD = 222.3), 40.5 % (LOD = 145.0), 50.0 % (LOD = 194.3) and 30.1 % (LOD = 100.4) of phenotypic variation with additive effects of 2.78, -0.43, 2.92 and 1.90 units for fiber length, micronaire, strength and uniformity, respectively. The QTL region corresponded to a 2.7-Mb interval on chromosome 10 in the G. raimondii genome sequence and a 5.3-Mb interval on chromosome A06 in G. hirsutum. The fiber of Yumian 1 was much longer than that of RIL118 from 3 DPA to 7 DPA. RNA-Seq of ovules at 0 DPA and fibers at 5 DPA from Yumian 1 and RIL118 showed four genes in the QTL region of the G. raimondii genome to be extremely differentially expressed. RT-PCR analysis showed three genes in the QTL region of the G. hirsutum genome to behave similarly. CONCLUSIONS This study mapped a major QTL influencing four fiber quality traits to a 0.28-cM interval and identified three candidate genes by RNA-Seq and RT-PCR analysis. Integration of fine mapping and RNA-Seq is a powerful strategy to uncover candidates for QTL in large genomes.
Collapse
Affiliation(s)
- Dexin Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Jian Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Xueying Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Dajun Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Zhonghua Teng
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Xiaomei Fang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Zhaoyun Tan
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Shiyi Tang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Jinghong Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Jianwei Zhong
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China.
| |
Collapse
|
102
|
Lv F, Li P, Zhang R, Li N, Guo W. Functional divergence of GhCFE5 homoeologs revealed in cotton fiber and Arabidopsis root cell development. PLANT CELL REPORTS 2016; 35:867-81. [PMID: 26759310 DOI: 10.1007/s00299-015-1928-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 12/19/2015] [Accepted: 12/29/2015] [Indexed: 05/20/2023]
Abstract
In GhCFE5 homoeologs, GhCFE5D interacted with more actin homologs and stronger interaction activity than GhCFE5A. GhCFE5D - but not GhCFE5A -overexpression severely disrupted actin cytoskeleton organization and significantly suppressed cell elongation. Homoeologous genes are common in polyploid plants; however, their functional divergence is poorly elucidated. Allotetraploid Upland cotton (Gossypium hirsutum, AADD) is the most widely cultivated cotton; accounting for more than 90 % of the world's cotton production. Here, we characterized GhCFE5A and GhCFE5D homoeologs from G. hirsutum acc TM-1. GhCFE5 homoeologs are expressed preferentially in fiber cells; and a significantly greater accumulation of GhCFE5A mRNA than GhCFE5D mRNA was found in all tested tissues. Overexpression of GhCFE5D but not GhCFE5A seriously inhibits the Arabidopsis hypocotyl and root cell elongation. Yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) analysis showed that compared with GhCFE5A, GhCFE5D interacts with more actin homologs and has a stronger interaction activity both from Arabidopsis and Upland cotton. Interestingly, subcellular localization showed that GhCFE5 resides on the cortical endoplasmic reticulum (ER) network and is colocalized with actin cables. The interaction activities between GhCFE5 homoeologs and actin differ in their effects on F-actin structure in transgenic Arabidopsis root cells. The F-actin changed direction from vertical to lateral, and the actin cytoskeleton organization was severely disrupted in GhCFE5D-overexpressing root cells. These data support the functional divergence of GhCFE5 homoeologs in the actin cytoskeleton structure and cell elongation, implying an important role for GhCFE5 in the evolution and selection of cotton fiber.
Collapse
Affiliation(s)
- Fenni Lv
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Peng Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Nina Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
103
|
Li Y, Tu L, Pettolino FA, Ji S, Hao J, Yuan D, Deng F, Tan J, Hu H, Wang Q, Llewellyn DJ, Zhang X. GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:951-63. [PMID: 26269378 PMCID: PMC11388876 DOI: 10.1111/pbi.12450] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/08/2015] [Accepted: 05/26/2015] [Indexed: 05/18/2023]
Abstract
Cotton provides us the most important natural fibre. High fibre quality is the major goal of cotton breeding, and introducing genes conferring longer, finer and stronger fibre from Gossypium barbadense to Gossypium hirsutum is an important breeding strategy. We previously analysed the G. barbadense fibre development mechanism by gene expression profiling and found two homoeologous fibre-specific α-expansins from G. barbadense, GbEXPA2 and GbEXPATR. GbEXPA2 (from the DT genome) is a classical α-expansin, while its homoeolog, GbEXPATR (AT genome), encodes a truncated protein lacking the normal C-terminal polysaccharide-binding domain of other α-expansins and is specifically expressed in G. barbadense. Silencing EXPA in G. hirsutum induced shorter fibres with thicker cell walls. GbEXPA2 overexpression in G. hirsutum had no effect on mature fibre length, but produced fibres with a slightly thicker wall and increased crystalline cellulose content. Interestingly, GbEXPATR overexpression resulted in longer, finer and stronger fibres coupled with significantly thinner cell walls. The longer and thinner fibre was associated with lower expression of a number of secondary wall-associated genes, especially chitinase-like genes, and walls with lower cellulose levels but higher noncellulosic polysaccharides which advocated that a delay in the transition to secondary wall synthesis might be responsible for better fibre. In conclusion, we propose that α-expansins play a critical role in fibre development by loosening the cell wall; furthermore, a truncated form, GbEXPATR, has a more dramatic effect through reorganizing secondary wall synthesis and metabolism and should be a candidate gene for developing G. hirsutum cultivars with superior fibre quality.
Collapse
Affiliation(s)
- Yang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Filomena A Pettolino
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Canberra, ACT, Australia
| | - Shengmei Ji
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Juan Hao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fenglin Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiafu Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Danny J Llewellyn
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Canberra, ACT, Australia
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
104
|
Huang J, Chen F, Wu S, Li J, Xu W. Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2016; 59:194-205. [PMID: 26803299 DOI: 10.1007/s11427-015-4991-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/25/2022]
Abstract
The secondary cell wall in mature cotton fibers contains over 90% cellulose with low quantities of xylan and lignin. However, little is known regarding the regulation of secondary cell wall biosynthesis in cotton fibers. In this study, we characterized an R2R3-MYB transcription factor, GhMYB7, in cotton. GhMYB7 is expressed at a high level in developing fibers and encodes a MYB protein that is targeted to the cell nucleus and has transcriptional activation activity. Ectopic expression of GhMYB7 in Arabidopsis resulted in small, curled, dark green leaves and also led to shorter inflorescence stems. A cross-sectional assay of basal stems revealed that cell wall thickness of vessels and interfascicular fibers was higher in transgenic lines overexpressing GhMYB7 than in the wild type. Constitutive expression of GhMYB7 in Arabidopsis activated the expression of a suite of secondary cell wall biosynthesis-related genes (including some secondary cell wall-associated transcription factors), leading to the ectopic deposition of cellulose and lignin. The ectopic deposition of secondary cell walls may have been initiated before the cessation of cell expansion. Moreover, GhMYB7 was capable of binding to the promoter regions of AtSND1 and AtCesA4, suggesting that GhMYB7 may function upstream of NAC transcription factors. Collectively, these findings suggest that GhMYB7 is a potential transcriptional activator, which may participate in regulating secondary cell wall biosynthesis of cotton fibers.
Collapse
Affiliation(s)
- Junfeng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Feng Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Siyu Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
105
|
Han L, Li Y, Sun Y, Wang H, Kong Z, Xia G. The two domains of cotton WLIM1a protein are functionally divergent. SCIENCE CHINA-LIFE SCIENCES 2016; 59:206-12. [PMID: 26803305 DOI: 10.1007/s11427-016-5002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuanbao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongduo Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guixian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
106
|
Shinya T, Iwata E, Nakahama K, Fukuda Y, Hayashi K, Nanto K, Rosa AC, Kawaoka A. Transcriptional Profiles of Hybrid Eucalyptus Genotypes with Contrasting Lignin Content Reveal That Monolignol Biosynthesis-related Genes Regulate Wood Composition. FRONTIERS IN PLANT SCIENCE 2016; 7:443. [PMID: 27148283 PMCID: PMC4829581 DOI: 10.3389/fpls.2016.00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/21/2016] [Indexed: 05/16/2023]
Abstract
Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected 3-year old hybrid Eucalyptus (Eucalyptus urophylla × Eucalyptus grandis) genotypes (AM063 and AM380) that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0 and 48.2%, α-cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA) and sucrose synthase (SUSY) were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase and xyloglucan endotransglucoxylase than those in AM380. Most monolignol biosynthesis-related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase, cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL). Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF, and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents in Eucalyptus plants.
Collapse
Affiliation(s)
- Tomotaka Shinya
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Eiji Iwata
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Katsuhiko Nakahama
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Yujiroh Fukuda
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Kazunori Hayashi
- Forest Research Division, Amapa Frorestal e Celulose S.A.Santana, Brazil
| | - Kazuya Nanto
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Antonio C. Rosa
- Forest Research Division, Amapa Frorestal e Celulose S.A.Santana, Brazil
| | - Akiyoshi Kawaoka
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
- *Correspondence: Akiyoshi Kawaoka,
| |
Collapse
|
107
|
Wang K, Huang G, Zhu Y. Transposable elements play an important role during cotton genome evolution and fiber cell development. SCIENCE CHINA-LIFE SCIENCES 2015; 59:112-21. [PMID: 26687725 DOI: 10.1007/s11427-015-4928-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 11/26/2022]
Abstract
Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities.
Collapse
Affiliation(s)
- Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
108
|
Mittal A, Jiang Y, Ritchie GL, Burke JJ, Rock CD. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:78-95. [PMID: 26706061 DOI: 10.1016/j.plantsci.2015.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 05/23/2023]
Abstract
There is a longstanding problem of an inverse relationship between cotton fiber qualities versus high yields. To better understand drought stress signaling and adaptation in cotton (Gossypium hirsutum) fiber development, we expressed the Arabidopsis transcription factors RELATED_TO_ABA-INSENSITIVE3/VIVIPAROUS1/(RAV1) and AtRAV2, which encode APETALA2-Basic3 domain proteins shown to repress transcription of FLOWERING_LOCUS_T (FT) and to promote stomatal opening cell-autonomously. In three years of field trials, we show that AtRAV1 and AtRAV2-overexpressing cotton had ∼5% significantly longer fibers with only marginal decreases in yields under well-watered or drought stress conditions that resulted in 40-60% yield penalties and 3-7% fiber length penalties in control plants. The longer transgenic fibers from drought-stressed transgenics could be spun into yarn which was measurably stronger and more uniform than that from well-watered control fibers. The transgenic AtRAV1 and AtRAV2 lines flowered later and retained bolls at higher nodes, which correlated with repression of endogenous GhFT-Like (FTL) transcript accumulation. Elevated expression early in development of ovules was observed for GhRAV2L, GhMYB25-Like (MYB25L) involved in fiber initiation, and GhMYB2 and GhMYB25 involved in fiber elongation. Altered expression of RAVs controlling critical nodes in developmental and environmental signaling hierarchies has the potential for phenotypic modification of crops.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Yingwen Jiang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Glen L Ritchie
- Department of Plant and Soils Science, Texas Tech University, Lubbock, TX 79409-2122, United States.
| | - John J Burke
- USDA-ARS Plant Stress and Germplasm Laboratory, Lubbock, TX 79415, United States.
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| |
Collapse
|
109
|
|
110
|
Srivastava V, Verma PK. Genome Wide Identification of LIM Genes in Cicer arietinum and Response of Ca-2LIMs in Development, Hormone and Pathogenic Stress. PLoS One 2015; 10:e0138719. [PMID: 26418014 PMCID: PMC4587737 DOI: 10.1371/journal.pone.0138719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic lineage-specific LIM protein (LIN11, ISL1, and MEC3) family play pivotal role in modulation of actin dynamics and transcriptional regulation. The systematic investigation of this family has not been carried in detail and rare in legumes. Current study involves the mining of Cicer arietinum genome for the genes coding for LIM domain proteins and displayed significant homology with LIM genes of other species. The analysis led to the identification of 15 members, which were positioned on chickpea chromosomes. The phylogenetic and motif analysis suggested their categorization into two sub-families i.e., Ca-2LIMs and Ca-DA1/DAR, which comprised of nine and six candidates, respectively. Further sub-categories of Ca-2LIMs were recognised as αLIM, βLIM, δLIM and γLIM. The LIM genes within their sub-families displayed conserved genomic and motif organization. The expression pattern of Ca-2LIMs across developmental and reproductive tissues demonstrated strong correlation with established consensus. The Ca-2LIM belongs to PLIM and GLIM (XLIM) was found highly expressed in floral tissue. Others showed ubiquitous expression pattern with their dominance in stem. Under hormonal and pathogenic conditions these LIMs were found to up-regulate during salicylic acid, abscisic acid and Ascochyta rabiei treatment or infection; and down-regulated in response to jasmonic acid treatment. The findings of this work, particularly in terms of modulation of LIM genes under biotic stress will open up the way to further explore and establish the role of chickpea LIMs in plant defense response.
Collapse
Affiliation(s)
- Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
111
|
Wang M, Yuan D, Tu L, Gao W, He Y, Hu H, Wang P, Liu N, Lindsey K, Zhang X. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). THE NEW PHYTOLOGIST 2015; 207:1181-97. [PMID: 25919642 DOI: 10.1111/nph.13429] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/22/2015] [Indexed: 05/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts of at least 200 bp in length, possess no apparent coding capacity and are involved in various biological regulatory processes. Until now, no systematic identification of lncRNAs has been reported in cotton (Gossypium spp.). Here, we describe the identification of 30 550 long intergenic noncoding RNA (lincRNA) loci (50 566 transcripts) and 4718 long noncoding natural antisense transcript (lncNAT) loci (5826 transcripts). LncRNAs are rich in repetitive sequences and preferentially expressed in a tissue-specific manner. The detection of abundant genome-specific and/or lineage-specific lncRNAs indicated their weak evolutionary conservation. Approximately 76% of homoeologous lncRNAs exhibit biased expression patterns towards the At or Dt subgenomes. Compared with protein-coding genes, lncRNAs showed overall higher methylation levels and their expression was less affected by gene body methylation. Expression validation in different cotton accessions and coexpression network construction helped to identify several functional lncRNA candidates involved in cotton fibre initiation and elongation. Analysis of integrated expression from the subgenomes of lncRNAs generating miR397 and its targets as a result of genome polyploidization indicated their pivotal functions in regulating lignin metabolism in domesticated tetraploid cotton fibres. This study provides the first comprehensive identification of lncRNAs in Gossypium.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhui Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghui He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keith Lindsey
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
112
|
Wang ZA, Li Q, Ge XY, Yang CL, Luo XL, Zhang AH, Xiao JL, Tian YC, Xia GX, Chen XY, Li FG, Wu JH. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton. Sci Rep 2015; 5:10343. [PMID: 26179843 PMCID: PMC4503954 DOI: 10.1038/srep10343] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/10/2015] [Indexed: 12/18/2022] Open
Abstract
Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition.
Collapse
Affiliation(s)
- Zhi-An Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Cotton Research, Shanxi Agricultural Academy of Science, Yuncheng, 044000, China
| | - Qing Li
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Yang Ge
- The State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Chun-Lin Yang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Li Luo
- Institute of Cotton Research, Shanxi Agricultural Academy of Science, Yuncheng, 044000, China
| | - An-Hong Zhang
- Institute of Cotton Research, Shanxi Agricultural Academy of Science, Yuncheng, 044000, China
| | - Juan-Li Xiao
- Institute of Cotton Research, Shanxi Agricultural Academy of Science, Yuncheng, 044000, China
| | - Ying-Chuan Tian
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gui-Xian Xia
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Ying Chen
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fu-Guang Li
- The State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Jia-He Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
113
|
Sun X, Gong SY, Nie XY, Li Y, Li W, Huang GQ, Li XB. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2015; 154:420-32. [PMID: 25534543 DOI: 10.1111/ppl.12317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/30/2014] [Accepted: 12/12/2014] [Indexed: 05/22/2023]
Abstract
Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.
Collapse
Affiliation(s)
- Xiang Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Ying Nie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
114
|
Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics 2015; 16:477. [PMID: 26116072 PMCID: PMC4482290 DOI: 10.1186/s12864-015-1708-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/19/2015] [Indexed: 11/20/2022] Open
Abstract
Background The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. Results Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. Conclusions The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John R Tuttle
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Gyoungju Nah
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mary V Duke
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | | | - Xueying Guan
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qingxin Song
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Z Jeffrey Chen
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Brian E Scheffler
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
115
|
Lv F, Wang H, Wang X, Han L, Ma Y, Wang S, Feng Z, Niu X, Cai C, Kong Z, Zhang T, Guo W. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1877-89. [PMID: 25609828 PMCID: PMC4669550 DOI: 10.1093/jxb/eru530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 05/18/2023]
Abstract
Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development.
Collapse
Affiliation(s)
- Fenni Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Haihai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Wang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinping Ma
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sen Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhidi Feng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
116
|
Yang CL, Liang S, Wang HY, Han LB, Wang FX, Cheng HQ, Wu XM, Qu ZL, Wu JH, Xia GX. Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae. MOLECULAR PLANT 2015; 8:399-411. [PMID: 25704161 DOI: 10.1016/j.molp.2014.11.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 05/19/2023]
Abstract
In this study, we identified a defense-related major latex protein (MLP) from upland cotton (designated GhMLP28) and investigated its functional mechanism. GhMLP28 transcripts were ubiquitously present in cotton plants, with higher accumulation in the root. Expression of the GhMLP28 gene was induced by Verticillium dahliae inoculation and was responsive to defense signaling molecules, including ethylene, jasmonic acid, and salicylic acid. Knockdown of GhMLP28 expression by virus-induced gene silencing resulted in increased susceptibility of cotton plants to V. dahliae infection, while ectopic overexpression of GhMLP28 in tobacco improved the disease tolerance of the transgenic plants. Further analysis revealed that GhMLP28 interacted with cotton ethylene response factor 6 (GhERF6) and facilitated the binding of GhERF6 to GCC-box element. Transient expression assay demonstrated that GhMLP28 enhanced the transcription factor activity of GhERF6, which led to the augmented expression of some GCC-box genes. GhMLP28 proteins were located in both the nucleus and cytoplasm and their nuclear distribution was dependent on the presence of GhERF6. Collectively, these results demonstrate that GhMLP28 acts as a positive regulator of GhERF6, and synergetic actions of the two proteins may contribute substantially to protection against V. dahliae infection in cotton plants.
Collapse
Affiliation(s)
- Chun-Lin Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Li-Bo Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Fu-Xin Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Huan-Qing Cheng
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Zhan-Liang Qu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Jia-He Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China.
| | - Gui-Xian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China.
| |
Collapse
|
117
|
Li L, Li Y, Wang NN, Li Y, Lu R, Li XB. Cotton LIM domain-containing protein GhPLIM1 is specifically expressed in anthers and participates in modulating F-actin. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:528-534. [PMID: 25294521 DOI: 10.1111/plb.12243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
As one form of actin binding protein (ABP), LIM domain protein can trigger the formation of actin bundles during plant growth and development. In this study, a cDNA (designated GhPLIM1) encoding a LIM domain protein with 216 amino acid residues was identified from a cotton flower cDNA library. Quantitative RT-PCR indicated that GhPLIM1 is specifically expressed in cotton anthers, and its expression levels are regulated during anther development of cotton. GhPLIM1:eGFP transformed cotton cells display a distributed network of eGFP fluorescence, suggesting that GhPLIM1 protein is mainly localised to the cell cytoskeleton. In vitro high-speed co-sedimentation and low co-sedimentation assays indicate that GhPLIM1 protein not only directly binds actin filaments but also bundles F-actin. Further biochemical experiments verified that GhPLIM1 protein can protect F-actin against depolymerisation by Lat B. Thus, our data demonstrate that GhPLIM1 functions as an actin binding protein (ABP) in modulating actin filaments in vitro, suggesting that GhPLIM1 may be involved in regulating the actin cytoskeleton required for pollen development in cotton.
Collapse
Affiliation(s)
- L Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
118
|
The homeodomain-containing transcription factor, GhHOX3, is a key regulator of cotton fiber elongation. SCIENCE CHINA-LIFE SCIENCES 2015; 58:309-10. [DOI: 10.1007/s11427-015-4813-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
119
|
Bajwa KS, Shahid AA, Rao AQ, Bashir A, Aftab A, Husnain T. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. FRONTIERS IN PLANT SCIENCE 2015; 6:838. [PMID: 26583018 PMCID: PMC4628126 DOI: 10.3389/fpls.2015.00838] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/24/2015] [Indexed: 05/20/2023]
Abstract
Cotton fiber is multigenic trait controlled by number of genes. Previous studies suggest that one of these genes may be responsible for switching cotton fiber growth on and off to influence the fiber quality produced from a cotton seed. In the present study, the Gossypium hirsutum GhEXPA8 fiber expansin gene was introduced into local cotton variety NIAB 846 by using an Agrobacterium-mediated gene transformation. The neomycin phosphotransferase (NPTII) gene was used as a selection marker for screening of putative transgenic cotton plants. Integration and expression of the fiber expansin gene in cotton plants was confirmed with molecular techniques including Southern blot analyses, real-time PCR. Cellulose assay was used for measurement of cellulose contents of transgenic cotton fiber. The data collected from 3 years of field performance of the transgenic cotton plants expressing GhEXPA8 showed that significant improvement has been made in fiber lengths and micronaire values as compared to control G. hirsutum variety NIAB 846 cotton plants. Statistical techniques were also used for analysis of fiber and agronomic characteristics. The results of this study support improvement of cotton fiber through genetic modification.
Collapse
Affiliation(s)
- Kamran S. Bajwa
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
- *Correspondence: Kamran S. Bajwa
| | - Ahmad A. Shahid
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| | - Abdul Q. Rao
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| | - Aftab Bashir
- Plant Biotechnology, Nuclear Institute of Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Asia Aftab
- Plant Biotechnology, Nuclear Institute of Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Tayyab Husnain
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| |
Collapse
|
120
|
Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 2014; 5:5519. [PMID: 25413731 PMCID: PMC4263147 DOI: 10.1038/ncomms6519] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 10/08/2014] [Indexed: 11/16/2022] Open
Abstract
Cotton fibres are unusually long, single-celled epidermal seed trichomes and a model for plant cell growth, but little is known about the regulation of fibre cell elongation. Here we report that a homeodomain-leucine zipper (HD-ZIP) transcription factor, GhHOX3, controls cotton fibre elongation. GhHOX3 genes are localized to the 12th homoeologous chromosome set of allotetraploid cotton cultivars, associated with quantitative trait loci (QTLs) for fibre length. Silencing of GhHOX3 greatly reduces (>80%) fibre length, whereas its overexpression leads to longer fibre. Combined transcriptomic and biochemical analyses identify target genes of GhHOX3 that also contain the L1-box cis-element, including two cell wall loosening protein genes GhRDL1 and GhEXPA1. GhHOX3 interacts with GhHD1, another homeodomain protein, resulting in enhanced transcriptional activity, and with cotton DELLA, GhSLR1, repressor of the growth hormone gibberellin (GA). GhSLR1 interferes with the GhHOX3–GhHD1 interaction and represses target gene transcription. Our results uncover a novel mechanism whereby a homeodomain protein transduces GA signal to promote fibre cell elongation. Cotton fibre is the most important renewable material for textiles, with a huge economic output. Here the authors show that a homeodomain-leucine zipper transcription factor, GhHOX3, transduces a gibberellin signal that in turn promotes fibre cell elongation.
Collapse
|
121
|
Guan X, Song Q, Chen ZJ. Polyploidy and small RNA regulation of cotton fiber development. TRENDS IN PLANT SCIENCE 2014; 19:516-28. [PMID: 24866591 DOI: 10.1016/j.tplants.2014.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/21/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
Cotton is not only the most important source of renewal textile fibers, but also an excellent model for studying cell fate determination and polyploidy effects on gene expression and evolution of domestication traits. The combination of A and D-progenitor genomes into allotetraploid cotton induces intergenomic interactions and epigenetic effects, leading to the unequal expression of homoeologous genes. Small RNAs regulate the expression of transcription and signaling factors related to cellular growth, development and adaptation. An example is miRNA-mediated preferential degradation of homoeologous mRNAs encoding MYB-domain transcription factors that are required for the initiation of leaf trichomes in Arabidopsis and of seed fibers in cotton. This example of coevolution between small RNAs and their homoeologous targets could shape morphological traits such as fibers during the selection and domestication of polyploid crops.
Collapse
Affiliation(s)
- Xueying Guan
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Qingxin Song
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
122
|
Lockhart J. Towards breeding strong but fine cotton fibers with a little help from WLIM1a. THE PLANT CELL 2013; 25:4281. [PMID: 24220633 PMCID: PMC3875715 DOI: 10.1105/tpc.113.251110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|