101
|
Llabata P, Richter J, Faus I, Słomiňska-Durdasiak K, Zeh LH, Gadea J, Hauser MT. Involvement of the eIF2α Kinase GCN2 in UV-B Responses. FRONTIERS IN PLANT SCIENCE 2019; 10:1492. [PMID: 31850012 PMCID: PMC6892979 DOI: 10.3389/fpls.2019.01492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
GCN2 (general control nonrepressed 2) is a serine/threonine-protein kinase that regulates translation in response to stressors such as amino acid and purin deprivation, cold shock, wounding, cadmium, and UV-C exposure. Activated GCN2 phosphorylates the α-subunit of the eukaryotic initiation factor 2 (eIF2) leading to a drastic inhibition of protein synthesis and shifting translation to specific mRNAs. To investigate the role of GCN2 in responses to UV-B radiation its activity was analyzed through eIF2α phosphorylation assays in mutants of the specific UV-B and stress signaling pathways of Arabidopsis thaliana. EIF2α phosphorylation was detectable 30 min after UV-B exposure, independent of the UV-B photoreceptor UV RESISTANCE LOCUS8 and its downstream signaling components. GCN2 dependent phosphorylation of eIF2α was also detectable in mutants of the stress related MAP kinases, MPK3 and MPK6 and their negative regulator map kinase phosphatase1 (MKP1). Transcription of downstream components of the UV-B signaling pathway, the Chalcone synthase (CHS) was constitutively higher in gcn2-1 compared to wildtype and further increased upon UV-B while GLUTATHIONE PEROXIDASE7 (GPX7) behaved similarly to wildtype. The UVR8 independent FAD-LINKED OXIDOREDUCTASE (FADox) had a lower basal expression in gcn2-1 which was increased upon UV-B. Since high fluence rates of UV-B induce DNA damage the expression of the RAS ASSOCIATED WITH DIABETES PROTEIN51 (RAD51) was quantified before and after UV-B. While the basal expression was similar to wildtype it was significantly less induced upon UV-B in the gcn2-1 mutant. This expression pattern correlates with the finding that gcn2 mutants develop less cyclobutane pyrimidine dimers after UV-B exposure. Quantification of translation with the puromycination assay revealed that gcn2 mutants have an increased rate of translation which was also higher upon UV-B. Growth of gcn2 mutants to chronic UV-B exposure supports GCN2's role as a negative regulator of UV-B responses. The elevated resistance of gcn2 mutants towards repeated UV-B exposure points to a critical role of GCN2 in the regulation of translation upon UV-B.
Collapse
Affiliation(s)
- Paula Llabata
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
- Institute of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
- Bellvitge Biomedical Research Institute IDIBELL, Barcelona, Spain
| | - Julia Richter
- Institute of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Isabel Faus
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Karolina Słomiňska-Durdasiak
- Institute of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Lukas Hubert Zeh
- Institute of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jose Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Marie-Theres Hauser
- Institute of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Marie-Theres Hauser,
| |
Collapse
|
102
|
Qian M, Kalbina I, Rosenqvist E, Jansen MAK, Teng Y, Strid Å. UV regulates the expression of phenylpropanoid biosynthesis genes in cucumber (Cucumis sativus L.) in an organ and spectrum dependent manner. Photochem Photobiol Sci 2019; 18:424-433. [DOI: 10.1039/c8pp00480c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A combination of a substantial number of cis-acting regulatory elements (MREs, ACEs, and G-boxes) is present in promoters of copies of phenylpropanoid biosynthesis genes that show strongly enhanced expression under UV-B-containing light in Cucumis sativus.
Collapse
Affiliation(s)
- Minjie Qian
- School of Science and Technology
- Örebro Life Science Centre
- Örebro University
- SE-70182 Örebro
- Sweden
| | - Irina Kalbina
- School of Science and Technology
- Örebro Life Science Centre
- Örebro University
- SE-70182 Örebro
- Sweden
| | - Eva Rosenqvist
- Section of Crop Sciences
- Department of Plant and Environmental Sciences
- University of Copenhagen
- DK-2630 Taastrup
- Denmark
| | - Marcel A. K. Jansen
- School of Biological
- Earth and Environmental Sciences
- University College Cork
- Cork
- Ireland
| | - Yuanwen Teng
- Department of Horticulture
- The State Agricultural Ministry Key Laboratory of Horticultural Plant Growth
- Development & Quality Improvement
- Zhejiang University
- Hangzhou 310058
| | - Åke Strid
- School of Science and Technology
- Örebro Life Science Centre
- Örebro University
- SE-70182 Örebro
- Sweden
| |
Collapse
|
103
|
Li C, Liu S, Zhang W, Chen K, Zhang P. Transcriptional profiling and physiological analysis reveal the critical roles of ROS-scavenging system in the Antarctic moss Pohlia nutans under Ultraviolet-B radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:113-122. [PMID: 30448024 DOI: 10.1016/j.plaphy.2018.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Accepted: 10/30/2018] [Indexed: 05/21/2023]
Abstract
Organisms suffer more harmful ultraviolet radiation in the Antarctica due to the ozone layer destruction. Bryophytes are the dominant flora in the Antarctic continent. However, the molecular mechanism of Antarctic moss adaptation to UV-B radiation remains unclear. In the research, the transcriptional profiling of the Antarctic moss Pohlia nutans under UV-B radiation was conducted by Illumina HiSeq2500 platform. Totally, 72,922 unigenes with N50 length of 1434 bp were generated. Differential expression analysis demonstrated that 581 unigenes were markedly up-regulated and 249 unigenes were significantly down-regulated. The gene clustering analysis showed that these differentially expressed genes (DEGs) includes several transcription factors, photolyases, antioxidant enzymes, and flavonoid biosynthesis-related genes. Further analyses suggested that the content of malondialdehyde (MDA), the activities of several antioxidant enzymes (i.e., catalase, peroxidase, and glutathione reductase) were significantly enhanced upon UV-B treatment. Furthermore, the content of flavonoids and the gene expression levels of their synthesis-related enzymes were also markedly increased when plants were exposed to UV-B light. Therefore, these results suggested that the pathways of antioxidant enzymes, flavonoid synthesis and photolyases were the main defense systems that contributed to the adaption of Pohlia nutans to the enhanced UV-B radiation in Antarctica.
Collapse
Affiliation(s)
- Chengcheng Li
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Shenghao Liu
- Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
| | - Wei Zhang
- School of Environment, Qingdao University, Qingdao, 266061, China
| | - Kaoshan Chen
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
104
|
Yang B, Song Z, Li C, Jiang J, Zhou Y, Wang R, Wang Q, Ni C, Liang Q, Chen H, Fan LM. RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity. PLoS Genet 2018; 14:e1007839. [PMID: 30566447 PMCID: PMC6317822 DOI: 10.1371/journal.pgen.1007839] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/03/2019] [Accepted: 11/19/2018] [Indexed: 12/03/2022] Open
Abstract
MYB transcription factors are involved in many biological processes, including metabolism, development and responses to biotic and abiotic stresses. RADIALIS-LIKE SANT/MYB 1 (RSM1) belongs to a MYB-related subfamily, and previous transcriptome analysis suggests that RSM1 may play roles in plant development, stress responses and plant hormone signaling. However, the molecular mechanisms of RSM1 action in response to abiotic stresses remain obscure. We show that down-regulation or up-regulation of RSM1 expression alters the sensitivity of seed germination and cotyledon greening to abscisic acid (ABA), NaCl and mannitol in Arabidopsis. The expression of RSM1 is dynamically regulated by ABA and NaCl. Transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) regulate RSM1 expression via binding to the RSM1 promoter. Genetic analyses reveal that RSM1 mediates multiple functions of HY5 in responses of seed germination, post-germination development to ABA and abiotic stresses, and seedling tolerance to salinity. Pull-down and BiFC assays show that RSM1 interacts with HY5/HYH in vitro and in vivo. RSM1 and HY5/HYH may function as a regulatory module in responses to ABA and abiotic stresses. RSM1 binds to the promoter of ABA INSENSITIVE 5 (ABI5), thereby regulating its expression, while RSM1 interaction also stimulates HY5 binding to the ABI5 promoter. However, no evidence was found in the dual-luciferase transient expression assay to support that RSM enhances the activation of ABI5 expression by HY. In summary, HY5/HYH and RSM1 may converge on the ABI5 promoter and independently or somehow dependently regulate ABI5 expression and ABI5-downstream ABA and abiotic stress-responsive genes, thereby improving the adaption of plants to the environment. The phytohormone abscisic acid (ABA) regulates multiple developmental processes in plants, including seed dormancy and germination, growth, and abiotic stress responses. The transcription factor ELONGATED HYPOCOTYL 5 (HY5), a core regulator of light signaling, is involved in ABA and abiotic stress responses by directly regulating the expression of ABA INSENSITIVE 5 (ABI5). In this study, we show that a MYB-related transcription factor, RADIALIS-LIKE SANT/MYB 1 (RSM1), plays important roles in ABA and salinity signaling in Arabidopsis, and we dissect the relationship between RSM1 and HY5. RSM1 interacts with HY5/HYH in vitro and in vivo and they may function as a regulatory module in responses to ABA and abiotic stresses. RSM1 binds to the promoter of ABI5, thereby regulating its expression; moreover, RSM1 interaction stimulates HY5 binding to the ABI5 promoter, but RSM1 was not found to enhance the activation of ABI5 expression by HY5. Genetic analyses reveal that RSM1 mediates the functions of HY5 in responses of seed germination, post-germination developmental responses to ABA and abiotic stresses, and seedling tolerance to salinity. In summary, our work demonstrates that HY5/HYH and RSM1 may bind with the ABI5 promoter to regulate ABI5 expression independently or somehow dependently, thereby controlling the expression of ABI5-downstream target genes in ABA and salinity signaling.
Collapse
Affiliation(s)
- Bencan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Zihao Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Chaonan Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Jiahao Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yangyang Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Ruipu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Qi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Chang Ni
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Qing Liang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Liu-Min Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
105
|
Hajdu A, Dobos O, Domijan M, Bálint B, Nagy I, Nagy F, Kozma-Bognár L. ELONGATED HYPOCOTYL 5 mediates blue light signalling to the Arabidopsis circadian clock. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1242-1254. [PMID: 30256479 DOI: 10.1111/tpj.14106] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 05/21/2023]
Abstract
Circadian clocks are gene networks producing 24-h oscillations at the level of clock gene expression that are synchronized to environmental cycles via light signals. The ELONGATED HYPOCOTYL 5 (HY5) transcription factor is a signalling hub acting downstream of several photoreceptors and is a key mediator of photomorphogenesis. Here we describe a mechanism by which light quality could modulate the pace of the circadian clock through governing abundance of HY5. We show that hy5 mutants display remarkably shorter period rhythms in blue but not in red light or darkness, and blue light is more efficient than red to induce accumulation of HY5 at transcriptional and post-transcriptional levels. We demonstrate that the pattern and level of HY5 accumulation modulates its binding to specific promoter elements of the majority of clock genes, but only a few of these show altered transcription in the hy5 mutant. Mathematical modelling suggests that the direct effect of HY5 on the apparently non-responsive clock genes could be masked by feedback from the clock gene network. We conclude that the information on the ratio of blue and red components of the white light spectrum is decoded and relayed to the circadian oscillator, at least partially, by HY5.
Collapse
Affiliation(s)
- Anita Hajdu
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| | - Orsolya Dobos
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Mirela Domijan
- Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL, UK
| | | | - István Nagy
- SeqOmics Ltd, Mórahalom, H-6782, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H-6726, Hungary
| |
Collapse
|
106
|
Clayton WA, Albert NW, Thrimawithana AH, McGhie TK, Deroles SC, Schwinn KE, Warren BA, McLachlan ARG, Bowman JL, Jordan BR, Davies KM. UVR8-mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort Marchantia polymorpha and flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:503-517. [PMID: 30044520 DOI: 10.1111/tpj.14044] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 05/21/2023]
Abstract
Damaging UVB radiation is a major abiotic stress facing land plants. In angiosperms the UV RESISTANCE LOCUS8 (UVR8) photoreceptor coordinates UVB responses, including inducing biosynthesis of protective flavonoids. We characterised the UVB responses of Marchantia polymorpha (marchantia), the model species for the liverwort group of basal plants. Physiological, chemical and transcriptomic analyses were conducted on wild-type marchantia exposed to three different UVB regimes. CRISPR/Cas9 was used to obtain plant lines with mutations for components of the UVB signal pathway or the flavonoid biosynthetic pathway, and transgenics overexpressing the marchantia UVR8 sequence were generated. The mutant and transgenic lines were analysed for changes in flavonoid content, their response to UVB exposure, and transcript abundance of a set of 48 genes that included components of the UVB response pathway characterised for angiosperms. The marchantia UVB response included many components in common with Arabidopsis, including production of UVB-absorbing flavonoids, the central activator role of ELONGATED HYPOCOTYL5 (HY5), and negative feedback regulation by REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1). Notable differences included the greater importance of CHALCONE ISOMERASE-LIKE (CHIL). Mutants disrupted in the response pathway (hy5) or flavonoid production (chalcone isomerase, chil) were more easily damaged by UVB. Mutants (rup1) or transgenics (35S:MpMYB14) with increased flavonoid content had increased UVB tolerance. The results suggest that UVR8-mediated flavonoid induction is a UVB tolerance character conserved across land plants and may have been an early adaptation to life on land.
Collapse
Affiliation(s)
- William A Clayton
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Amali H Thrimawithana
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tony K McGhie
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Simon C Deroles
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ben A Warren
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Andrew R G McLachlan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Brian R Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| |
Collapse
|
107
|
Liu L, Li Y, She G, Zhang X, Jordan B, Chen Q, Zhao J, Wan X. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC PLANT BIOLOGY 2018; 18:233. [PMID: 30314466 PMCID: PMC6186127 DOI: 10.1186/s12870-018-1440-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/24/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tea is the most popular nonalcoholic beverage worldwide for its pleasant characteristics and healthful properties. Catechins, theanine and caffeine are the major natural products in tea buds and leaves that determine tea qualities such as infusion colors, tastes and fragrances, as well as their health benefits. Shading is a traditional and effective practice to modify natural product accumulation and to enhance the tea quality in tea plantation. However, the mechanism underlying the shading effects is not fully understood. This study aims to explore the regulation of flavonoid biosynthesis in Camellia sinensis under shading by using both metabolomic and transcriptional analyses. RESULTS While shading enhanced chlorophyll accumulation, major catechins, including C, EC, GC and EGC, decreased significantly in tea buds throughout the whole shading period. The reduction of catechins and flavonols were consistent with the simultaneous down-regulation of biosynthetic genes and TFs associated with flavonoid biosynthesis. Of 16 genes involved in the flavonoid biosynthetic pathway, F3'H and FLS significantly decreased throughout shading while the others (PAL, CHSs, DFR, ANS, ANR and LAR, etc.) temporally decreased in early or late shading stages. Gene co-expression cluster analysis suggested that a number of photoreceptors and potential genes involved in UV-B signal transductions (UVR8_L, HY5, COP1 and RUP1/2) showed decreasing expression patterns consistent with structural genes (F3'H, FLS, ANS, ANR, LAR, DFR and CHSs) and potential TFs (MYB4, MYB12, MYB14 and MYB111) involved in flavonoid biosynthesis, when compared with genes in the UV-A/blue and red/far-red light signal transductions. The KEGG enrichment and matrix correlation analyses also attributed the regulation of catechin biosynthesis to the UVR8-mediated signal transduction pathway. Further UV-B treatment in the controlled environment confirmed UV-B induction on flavonols and EGCG accumulation in tea leaves. CONCLUSIONS We proposed that catechin biosynthesis in C. sinensis leaves is predominantly regulated by UV through the UVR8-mediated signal transduction pathway to MYB12/MYB4 downstream effectors, to modulate flavonoid accumulation. Our study provides new insights into our understanding of regulatory mechanisms for shading-enhanced tea quality.
Collapse
Affiliation(s)
- Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yingying Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Brian Jordan
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, 7647 New Zealand
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| |
Collapse
|
108
|
Dröge-Laser W, Snoek BL, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:36-49. [PMID: 29860175 DOI: 10.1016/j.pbi.2018.05.001] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 05/18/2023]
Abstract
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups.
Collapse
Affiliation(s)
- Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| |
Collapse
|
109
|
Yuan TT, Xu HH, Zhang Q, Zhang LY, Lu YT. The COP1 Target SHI-RELATED SEQUENCE5 Directly Activates Photomorphogenesis-Promoting Genes. THE PLANT CELL 2018; 30:2368-2382. [PMID: 30150309 PMCID: PMC6241259 DOI: 10.1105/tpc.18.00455] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/25/2018] [Accepted: 08/24/2018] [Indexed: 05/03/2023]
Abstract
Plant seedlings undergo distinct developmental processes in the dark and in the light. Several genes, including ELONGATED HYPOCOTYL5 (HY5), B-BOX PROTEIN21 (BBX21), and BBX22, have been identified as photomorphogenesis-promoting factors in Arabidopsis thaliana; however, the overexpression of these genes does not induce photomorphogenesis in the dark. Using an activation-tagging approach, we identified SRS5ox, which overexpresses SHI-RELATED SEQUENCE5 (SRS5) following induction with estradiol. SRS5 overexpression in SRS5ox and Pro35S:SRS5-GFP seedlings results in a constitutive photomorphogenesis phenotype in the dark, whereas SRS5 loss of function in the srs5-2 mutant results in long hypocotyls in the light. This indicates that SRS5 is a positive regulator of photomorphogenesis. Furthermore, SRS5 promotes photomorphogenesis by directly binding to the promoters of photomorphogenesis-promoting genes, such as HY5, BBX21, and BBX22, and activating their expression, thus affecting the expression of downstream light-signaling genes. These data indicate that SRS5 acts in the upregulation of photomorphogenesis-promoting genes. In addition, CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which plays a central repressive role in seedling photomorphogenesis, directly ubiquitinates SRS5, promoting its degradation in the dark. Taken together, our results demonstrate that SRS5 directly activates the expression of downstream genes HY5, BBX21, and BBX22 and is a target of COP1-mediated degradation in Arabidopsis.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Heng-Hao Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qing Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lin-Yu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
110
|
Arongaus AB, Chen S, Pireyre M, Glöckner N, Galvão VC, Albert A, Winkler JB, Fankhauser C, Harter K, Ulm R. Arabidopsis RUP2 represses UVR8-mediated flowering in noninductive photoperiods. Genes Dev 2018; 32:1332-1343. [PMID: 30254107 PMCID: PMC6169840 DOI: 10.1101/gad.318592.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Abstract
Arongaus et al. show that genetic mutation of REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) renders the facultative long day plant Arabidopsis thaliana a day-neutral plant (specifically under light conditions that include UV-B radiation) and dependent on the UV RESISTANCE LOCUS 8 (UVR8) UV-B photoreceptor. Plants have evolved complex photoreceptor-controlled mechanisms to sense and respond to seasonal changes in day length. This ability allows plants to optimally time the transition from vegetative growth to flowering. UV-B is an important part intrinsic to sunlight; however, whether and how it affects photoperiodic flowering has remained elusive. Here, we report that, in the presence of UV-B, genetic mutation of REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) renders the facultative long day plant Arabidopsis thaliana a day-neutral plant and that this phenotype is dependent on the UV RESISTANCE LOCUS 8 (UVR8) UV-B photoreceptor. We provide evidence that the floral repression activity of RUP2 involves direct interaction with CONSTANS, repression of this key activator of flowering, and suppression of FLOWERING LOCUS T transcription. RUP2 therefore functions as an essential repressor of UVR8-mediated induction of flowering under noninductive short day conditions and thus provides a crucial mechanism of photoperiodic flowering control.
Collapse
Affiliation(s)
- Adriana B Arongaus
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Song Chen
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Marie Pireyre
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Nina Glöckner
- Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Vinicius C Galvão
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Klaus Harter
- Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva 4, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
111
|
Lin F, Jiang Y, Li J, Yan T, Fan L, Liang J, Chen ZJ, Xu D, Deng XW. B-BOX DOMAIN PROTEIN28 Negatively Regulates Photomorphogenesis by Repressing the Activity of Transcription Factor HY5 and Undergoes COP1-Mediated Degradation. THE PLANT CELL 2018; 30:2006-2019. [PMID: 30099385 PMCID: PMC6181009 DOI: 10.1105/tpc.18.00226] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
Plants have evolved a delicate molecular system to fine-tune their growth and development in response to dynamically changing light environments. In this study, we found that BBX28, a B-box domain protein, negatively regulates photomorphogenic development in a dose-dependent manner in Arabidopsis thaliana BBX28 interferes with the binding of transcription factor HY5 to the promoters of its target genes through physical interactions, thereby repressing its activity and negatively affecting HY5-regulated gene expression. In darkness, BBX28 associates with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and undergoes COP1-mediated degradation via the 26S proteasome system. Collectively, these results demonstrate that BBX28 acts as a key factor in the COP1-HY5 regulatory hub by maintaining proper HY5 activity to ensure normal photomorphogenic development in plants.
Collapse
Affiliation(s)
- Fang Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Jiang
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Tingting Yan
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liumin Fan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiansheng Liang
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712
| | - Dongqing Xu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
112
|
Kim DH, Park S, Lee JY, Ha SH, Lee JG, Lim SH. A Rice B-Box Protein, OsBBX14, Finely Regulates Anthocyanin Biosynthesis in Rice. Int J Mol Sci 2018; 19:ijms19082190. [PMID: 30060460 PMCID: PMC6121638 DOI: 10.3390/ijms19082190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are responsible pigments for giving attractive colors of plant organs and nutraceutical benefits of grains. Anthocyanin biosynthesis is known to be regulated by transcription factors and other regulatory proteins. In rice (Oryza sativa), the R2R3 MYB transcription factor (TF) OsC1 and a bHLH TF, OsB2, were previously reported to control anthocyanin biosynthesis in vegetative tissues and seeds, respectively; however, the regulatory mechanisms of the anthocyanin biosynthesis by TFs remain largely unknown. In this study, we identified OsBBX14, a homolog of Arabidopsis thaliana B-box domain protein 22 (AtBBX22), and investigated its function. The transcript level of OsBBX14 was high in pigmented rice seeds and gradually increased as the seeds matured. The ectopic expression of OsBBX14 in Arabidopsis resulted in a dramatic increase in anthocyanin accumulation in its seedlings. Using a steroid receptor-based inducible activation system, OsBBX14 and OsHY5 were found to directly activate OsC1 or OsB2 in an independent or collaborative manner. Yeast two hybrid revealed that the second B-box domain of OsBBX14 physically interacts with the bZIP domain of OsHY5. These results suggest that the anthocyanin biosynthesis in rice is induced and finely tuned by OsBBX14 in collaboration with OsHY5.
Collapse
Affiliation(s)
- Da-Hye Kim
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea.
| | - Sangkyu Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea.
| | - Jong-Yeol Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea.
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Jun-Gu Lee
- Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896, Korea.
| | - Sun-Hyung Lim
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea.
| |
Collapse
|
113
|
Transcripts from downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:7831-7836. [PMID: 29915080 PMCID: PMC6064979 DOI: 10.1073/pnas.1804971115] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The upstream ORFs (uORFs) in the 5′UTRs of mRNA often function as repressors of main ORF translation or triggers of nonsense-mediated mRNA decay. In this study, we report on transcription start site (TSS) selection when etiolated Arabidopsis seedlings are exposed to blue light, and reveal that transcription from uORF-avoiding TSSs is induced throughout the genome. It is possible that transcripts arising from TSSs downstream of uORFs evade uORF-mediated inhibition of gene expression. Thus, uORF-avoiding transcription starts are an important mechanism of gene expression regulation during a plant’s response to environmental changes. Plants adapt to alterations in light conditions by controlling their gene expression profiles. Expression of light-inducible genes is transcriptionally induced by transcription factors such as HY5. However, few detailed analyses have been carried out on the control of transcription start sites (TSSs). Of the various wavelengths of light, it is blue light (BL) that regulates physiological responses such as hypocotyl elongation and flowering time. To understand how gene expression is controlled not only by transcript abundance but also by TSS selection, we examined genome-wide TSS profiles in Arabidopsis seedlings after exposure to BL irradiation following initial growth in the dark. Thousands of genes use multiple TSSs, and some transcripts have upstream ORFs (uORFs) that take precedence over the main ORF (mORF) encoding proteins. The uORFs often function as translation inhibitors of the mORF or as triggers of nonsense-mediated mRNA decay (NMD). Transcription from TSSs located downstream of the uORFs in 220 genes is enhanced by BL exposure. This type of regulation is found in HY5 and HYH, major regulators of light-dependent gene expression. Translation efficiencies of the genes showing enhanced usage of these TSSs increased upon BL exposure. We also show that transcripts from TSSs upstream of uORFs in 45 of the 220 genes, including HY5, accumulated in a mutant of NMD. These results suggest that BL controls gene expression not only by enhancing transcriptions but also by choosing the TSS, and transcripts from downstream TSSs evade uORF-mediated inhibition to ensure high expression of light-regulated genes.
Collapse
|
114
|
Li H, Li Y, Deng H, Sun X, Wang A, Tang X, Gao Y, Zhang N, Wang L, Yang S, Liu Y, Wang S. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Sci Rep 2018. [PMID: 29666396 DOI: 10.1016/s41598-018-24309-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Plants utilize energy from sunlight to perform photosynthesis in chloroplast, an organelle that could be damaged by solar UV radiation. The ultraviolet-B (UV-B) photoreceptor UVR8 is required for UV-B perception and signal transduction. However, little is known about how UVR8 influence chloroplast development under UV-B radiation. Here, we characterized tomato UVR8 gene (SlUVR8) and our results indicated that SlUVR8 facilitate plant acclimation to UV-B stress by orchestrating expression of the UVB-responsive genes (HY5 and CHS) and accumulating UV-absorptive compounds. In addition, we also discovered that SlUVR8 promotes fruit chloroplast development through enhancing accumulation of transcription factor GOLDEN2-LIKE2 (SlGLK2) which determines chloroplast and chlorophyll levels. Furthermore, UV-B radiation could increase expression of SlGLK2 and its target genes in fruits and leaves. SlUVR8 is required for UVB-induced SlGLK2 expression. Together, our work not only identified the conserved functions of SlUVR8 gene in response to UV-B stress, but also uncovered a novel role that SlUVR8 could boost chloroplast development by accumulating SlGLK2 proteins.
Collapse
Affiliation(s)
- Huirong Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuxiang Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Heng Deng
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiaochun Sun
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Sheng, China
| | - Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yongfeng Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Ning Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Lihuan Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Shuzhang Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Songhu Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
115
|
Li H, Li Y, Deng H, Sun X, Wang A, Tang X, Gao Y, Zhang N, Wang L, Yang S, Liu Y, Wang S. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Sci Rep 2018; 8:6097. [PMID: 29666396 PMCID: PMC5904186 DOI: 10.1038/s41598-018-24309-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Plants utilize energy from sunlight to perform photosynthesis in chloroplast, an organelle that could be damaged by solar UV radiation. The ultraviolet-B (UV-B) photoreceptor UVR8 is required for UV-B perception and signal transduction. However, little is known about how UVR8 influence chloroplast development under UV-B radiation. Here, we characterized tomato UVR8 gene (SlUVR8) and our results indicated that SlUVR8 facilitate plant acclimation to UV-B stress by orchestrating expression of the UVB-responsive genes (HY5 and CHS) and accumulating UV-absorptive compounds. In addition, we also discovered that SlUVR8 promotes fruit chloroplast development through enhancing accumulation of transcription factor GOLDEN2-LIKE2 (SlGLK2) which determines chloroplast and chlorophyll levels. Furthermore, UV-B radiation could increase expression of SlGLK2 and its target genes in fruits and leaves. SlUVR8 is required for UVB-induced SlGLK2 expression. Together, our work not only identified the conserved functions of SlUVR8 gene in response to UV-B stress, but also uncovered a novel role that SlUVR8 could boost chloroplast development by accumulating SlGLK2 proteins.
Collapse
Affiliation(s)
- Huirong Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.,CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuxiang Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Heng Deng
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiaochun Sun
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.,Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Sheng, China
| | - Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yongfeng Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Ning Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Lihuan Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Shuzhang Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China. .,School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Songhu Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
116
|
Henry-Kirk RA, Plunkett B, Hall M, McGhie T, Allan AC, Wargent JJ, Espley RV. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica). PLANT, CELL & ENVIRONMENT 2018; 41:675-688. [PMID: 29315644 DOI: 10.1111/pce.13125] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Ultraviolet-B light (UV-B) is one environmental signal perceived by plants that affects the flavonoid pathway and influences the levels of anthocyanins, flavonols, and proanthocyanidins. To understand the mechanisms underlying UV exposure, apple trees were grown under spectral filters that altered transmission of solar UV light. Fruit analysis showed that UV induced changes in physiology, metabolism, and gene expression levels during development over a season. These changes were sustained after storage. Under low UV, ripening was delayed, fruit size decreased, and anthocyanin and flavonols were reduced. Expression analysis showed changes in response to UV light levels for genes in the regulation and biosynthesis of anthocyanin and flavonols. Transcription of flavonol synthase (FLS), ELONGATED HYPOCOTYL 5 (HY5), MYB10, and MYB22 were down-regulated throughout fruit development under reduced UV. Functional testing showed that the FLS promoter was activated by HY5, and this response was enhanced by the presence of MYB22. The MYB22 promoter can also be activated by the anthocyanin regulator, MYB10. As ambient levels of UV light vary around the globe, this study has implications for future crop production, the quality of which can be determined by the response to UV.
Collapse
Affiliation(s)
- Rebecca A Henry-Kirk
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Miriam Hall
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Tony McGhie
- Plant and Food Research, Palmerston North Research Centre, Palmerston North, 4442, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Jason J Wargent
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| |
Collapse
|
117
|
Demarsy E, Goldschmidt-Clermont M, Ulm R. Coping with 'Dark Sides of the Sun' through Photoreceptor Signaling. TRENDS IN PLANT SCIENCE 2018; 23:260-271. [PMID: 29233601 DOI: 10.1016/j.tplants.2017.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 05/19/2023]
Abstract
Plants grow in constantly changing environments, including highly variable light intensities. Sunlight provides the energy that drives photosynthesis and is thus of the utmost importance for plant growth and the generation of oxygen, which the majority of life on Earth depends on. However, exposure to either insufficient or excess levels of light can have detrimental effects and cause light stress. Whereas exposure to insufficient light limits photosynthetic activity, resulting in 'energy starvation', exposure to excess light can damage the photosynthetic apparatus. Furthermore, strong sunlight is associated with high levels of potentially damaging UV-B radiation. Different classes of photoreceptors play important roles in coping with the negative aspects of sunlight, for which specific mechanisms are emerging that are reviewed here.
Collapse
Affiliation(s)
- Emilie Demarsy
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
118
|
Xu D, Jiang Y, Li J, Holm M, Deng XW. The B-Box Domain Protein BBX21 Promotes Photomorphogenesis. PLANT PHYSIOLOGY 2018; 176:2365-2375. [PMID: 29259103 PMCID: PMC5841706 DOI: 10.1104/pp.17.01305] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
B-box-containing (BBX) proteins play critical roles in a variety of cellular and developmental processes in plants. BBX21 (also known as SALT TOLERANCE HOMOLOG2), which contains two B-box domains in tandem at the N terminus, has been previously demonstrated as a key component involved in the COP1-HY5 signaling hub. However, the exact molecular and physiological roles of B-box domains in BBX21 are largely unclear. Here, we found that structurally disruption of the second B-box domain, but not the first one, in BBX21 completely abolishes its biological and physiological activity in conferring hyperphotomorphogenetic phenotype in Arabidopsis (Arabidopsis thaliana). Intact B-box domains in BBX21 are not required for interaction with COP1 and its degradation by COP1 via the 26S proteasome system. However, disruption of the second B-box of BBX21 nearly impairs its ability for binding of T/G-box within the HY5 promoter both in vitro and in vivo, as well as controlling HY5 and HY5-regulated gene expression in Arabidopsis seedlings. Taken together, this study provides a mechanistic framework in which BBX21 directly binds to the T/G-box present in the HY5 promoter possibly through its second B-box domain, which in turn controls HY5 and HY5-regulated gene expression to promote photomorphogenesis.
Collapse
Affiliation(s)
- Dongqing Xu
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712
| | - Yan Jiang
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Magnus Holm
- Department of Biological and Environmental Sciences, Gothenburg University, SE-405 30 Gothenburg, Sweden
| | - Xing Wang Deng
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
119
|
van Gelderen K, Kang C, Pierik R. Light Signaling, Root Development, and Plasticity. PLANT PHYSIOLOGY 2018; 176:1049-1060. [PMID: 28939624 PMCID: PMC5813542 DOI: 10.1104/pp.17.01079] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/19/2017] [Indexed: 05/20/2023]
Abstract
Light signaling can affect root development and plasticity, either directly or through shoot-root communication via sugars, hormones, light, or other mobile factors.
Collapse
Affiliation(s)
| | - Chiakai Kang
- Plant Ecophysiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
120
|
Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, Shi N, Li X, Zhang P, Liu H. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. NATURE PLANTS 2018; 4:98-107. [PMID: 29379156 DOI: 10.1038/s41477-017-0099-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) is an ultraviolet-B (UVB) radiation photoreceptor that mediates light responses in plants. How plant UVR8 acts in response to UVB light is not well understood. Here, we report the identification and characterization of the Arabidopsis WRKY DNA-BINDING PROTEIN 36 (WRKY36) protein. WRKY36 interacts with UVR8 in yeast and Arabidopsis cells and it promotes hypocotyl elongation by inhibiting HY5 transcription. Inhibition of hypocotyl elongation under UVB requires the inhibition of WRKY36. WRKY36 binds to the W-box motif of the HY5 promoter to inhibit its transcription, while nuclear localized UVR8 directly interacts with WRKY36 to inhibit WRKY36-DNA binding both in vitro and in vivo, leading to the release of inhibition of HY5 transcription. These results indicate that WRKY36 is a negative regulator of HY5 and that UVB represses WRKY36 via UVR8 to promote the transcription of HY5 and photomorphogenesis. The UVR8-WRKY36 interaction in the nucleus represents a novel mechanism of early UVR8 signal transduction in Arabidopsis.
Collapse
Affiliation(s)
- Yu Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Tong Liang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Libo Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Shao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingxing Gu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruixin Shang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Nan Shi
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
121
|
van Gelderen K, Kang C, Paalman R, Keuskamp D, Hayes S, Pierik R. Far-Red Light Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor. THE PLANT CELL 2018; 30:101-116. [PMID: 29321188 PMCID: PMC5810572 DOI: 10.1105/tpc.17.00771] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 05/20/2023]
Abstract
Plants in dense vegetation compete for resources and detect competitors through reflection of far-red (FR) light from surrounding plants. This reflection causes a reduced red (R):FR ratio, which is sensed through phytochromes. Low R:FR induces shade avoidance responses of the shoot and also changes the root system architecture, although this has received little attention so far. Here, we investigate the molecular mechanisms through which light detection in the shoot regulates root development in Arabidopsis thaliana We do so using a combination of microscopy, gene expression, and mutant study approaches in a setup that allows root imaging without exposing the roots to light treatment. We show that low R:FR perception in the shoot decreases the lateral root (LR) density by inhibiting LR emergence. This decrease in LR emergence upon shoot FR enrichment is regulated by phytochrome-dependent accumulation of the transcription factor ELONGATED HYPOCOTYL5 (HY5) in the LR primordia. HY5 regulates LR emergence by decreasing the plasma membrane abundance of PIN-FORMED3 and LIKE-AUX1 3 auxin transporters. Accordingly, FR enrichment reduces the auxin signal in the overlaying cortex cells, and this reduces LR outgrowth. This shoot-to-root communication can help plants coordinate resource partitioning under competition for light in high density fields.
Collapse
Affiliation(s)
- Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Chiakai Kang
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Richard Paalman
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Diederik Keuskamp
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Scott Hayes
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|
122
|
Díaz-Ramos LA, O'Hara A, Kanagarajan S, Farkas D, Strid Å, Jenkins GI. Difference in the action spectra for UVR8 monomerisation and HY5 transcript accumulation in Arabidopsis. Photochem Photobiol Sci 2018; 17:1108-1117. [DOI: 10.1039/c8pp00138c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The action spectrum for monomerisation of the plant UV-B photoreceptor UVR8 peaks at a shorter wavelength than that for HY5 transcript accumulation, mediated by UVR8, in the same tissue.
Collapse
Affiliation(s)
- L. Aranzazú Díaz-Ramos
- Institute of Molecular
- Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- Bower Building
| | - Andrew O'Hara
- Institute of Molecular
- Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- Bower Building
| | - Selvaraju Kanagarajan
- School of Science & Technology
- Örebro Life Science Center
- Örebro University
- SE-70182 Örebro
- Sweden
| | - Daniel Farkas
- School of Science & Technology
- Örebro Life Science Center
- Örebro University
- SE-70182 Örebro
- Sweden
| | - Åke Strid
- School of Science & Technology
- Örebro Life Science Center
- Örebro University
- SE-70182 Örebro
- Sweden
| | - Gareth I. Jenkins
- Institute of Molecular
- Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- Bower Building
| |
Collapse
|
123
|
Jenkins GI. Photomorphogenic responses to ultraviolet-B light. PLANT, CELL & ENVIRONMENT 2017; 40:2544-2557. [PMID: 28183154 DOI: 10.1111/pce.12934] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 05/18/2023]
Abstract
Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood.
Collapse
Affiliation(s)
- Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
124
|
Qian M, Ni J, Niu Q, Bai S, Bao L, Li J, Sun Y, Zhang D, Teng Y. Response of miR156- SPL Module during the Red Peel Coloration of Bagging-Treated Chinese Sand Pear ( Pyrus pyrifolia Nakai). Front Physiol 2017; 8:550. [PMID: 28824447 PMCID: PMC5545762 DOI: 10.3389/fphys.2017.00550] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 07/14/2017] [Indexed: 11/18/2022] Open
Abstract
MicroRNA156 is an evolutionarily highly conserved plant micro-RNA (miRNA) that controls an age-dependent flowering pathway. miR156 and its target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes regulate anthocyanin accumulation in plants, but it is unknown whether this process is affected by light. Red Chinese sand pear (Pyrus pyrifolia) fruits exhibit a unique coloration pattern in response to bagging treatments, which makes them appropriate for studying the molecular mechanism underlying light-induced anthocyanin accumulation in fruit. Based on high-throughput miRNA and degradome sequencing data, we determined that miR156 was expressed in pear fruit peels, and targeted four SPL genes. Light-responsive elements were detected in the promoter regions of the miR156a and miR156ba precursors. We identified 19 SPL genes using the “Suli” pear (Pyrus pyrifolia Chinese White Pear Group) genome database, of which seven members were putative miR156 targets. The upregulated expression of anthocyanin biosynthetic and regulatory genes and downregulated expression of PpSPL2, PpSPL5, PpSPL7, PpSPL9, PpSPL10, PpSPL13, PpSPL16, PpSPL17, and PpSPL18 were observed in pear fruits after bags were removed from plants during the anthocyanin accumulation period. Additionally, miR156a/ba/g/s/sa abundance increased after bags were removed. Yeast two-hybrid results suggested that PpMYB10, PpbHLH, and PpWD40 could form a protein complex, probably involved in anthocyanin biosynthesis. Additionally, PpSPL10 and PpSPL13 interacted with PpMYB10. The results obtained in this study are helpful in understanding the possible role of miR156 and its target PpSPL genes in regulating light-induced red peel coloration and anthocyanin accumulation in pear.
Collapse
Affiliation(s)
- Minjie Qian
- Department of Horticulture, Zhejiang UniversityHangzhou, China.,The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of ChinaHangzhou, China.,Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhou, China
| | - Junbei Ni
- Department of Horticulture, Zhejiang UniversityHangzhou, China.,The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of ChinaHangzhou, China.,Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhou, China
| | - Qingfeng Niu
- Department of Horticulture, Zhejiang UniversityHangzhou, China.,The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of ChinaHangzhou, China.,Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhou, China
| | - Songling Bai
- Department of Horticulture, Zhejiang UniversityHangzhou, China.,The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of ChinaHangzhou, China.,Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhou, China
| | - Lu Bao
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jianzhao Li
- Department of Horticulture, Zhejiang UniversityHangzhou, China.,The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of ChinaHangzhou, China.,Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhou, China
| | - Yongwang Sun
- Department of Horticulture, Zhejiang UniversityHangzhou, China.,The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of ChinaHangzhou, China.,Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhou, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang UniversityHangzhou, China.,The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of ChinaHangzhou, China.,Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhou, China
| |
Collapse
|
125
|
Zhang X, Huai J, Shang F, Xu G, Tang W, Jing Y, Lin R. A PIF1/PIF3-HY5-BBX23 Transcription Factor Cascade Affects Photomorphogenesis. PLANT PHYSIOLOGY 2017; 174:2487-2500. [PMID: 28687557 PMCID: PMC5543951 DOI: 10.1104/pp.17.00418] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/01/2017] [Indexed: 05/18/2023]
Abstract
Light signaling plays an essential role in controlling higher plants' early developmental process termed as photomorphogenesis. Transcriptional regulation is a vital mechanism that is orchestrated by transcription factors and other regulatory proteins working in concert to finely tune gene expression. Although many transcription factors/regulators have been characterized in the light-signaling pathway, their interregulation remains largely unknown. Here, we show that PHYTOCHROME-INTERACTING FACTOR3 (PIF3) and PIF1 transcription factors directly bind to the regulatory regions of ELONGATED HYPOCOTYL5 (HY5) and a B-box gene BBX23 and activate their expression in Arabidopsis (Arabidopsis thaliana). We found that BBX23 and its close homolog gene BBX22 play a redundant role in regulating hypocotyl growth, and that plants overexpressing BBX23 display reduced hypocotyl elongation under red, far-red, and blue light conditions. Intriguingly, BBX23 transcription is inhibited by light, whereas its protein is degraded in darkness. Furthermore, we demonstrate that HY5 physically interacts with BBX23, and these two proteins coordinately regulate the expression of both light-induced and light-repressed genes. BBX23 is also recruited to the promoter sequences of the light-responsive genes in a partial HY5-dependent manner. Taken together, our study reveals that the transcriptional cascade consisting of PIF1/PIF3, HY5, and BBX23 controls photomorphogenesis, providing a transcriptional regulatory layer by which plants fine-tune their growth in response to changing light environment.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fangfang Shang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Xu
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
126
|
Zhang Y, Li C, Zhang J, Wang J, Yang J, Lv Y, Yang N, Liu J, Wang X, Palfalvi G, Wang G, Zheng L. Dissection of HY5/HYH expression in Arabidopsis reveals a root-autonomous HY5-mediated photomorphogenic pathway. PLoS One 2017; 12:e0180449. [PMID: 28683099 PMCID: PMC5500333 DOI: 10.1371/journal.pone.0180449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
ELONGATED HYPOCOTYL 5 (HY5), a member of the bZIP gene family, is a positive regulator of the light signaling pathway in Arabidopsis thaliana. Whereas the hy5 mutant exhibits an elongated hypocotyl when grown in the light, the hy5 homolog (hyh) mutant does not. Although the functions of HY5 and HYH in light-mediated seedling development have been revealed, the tissue-specific expression patterns of HY5 and HYH and their interconnected regulation are largely unknown. Here, we report that HY5 regulates HYH expression in roots and contributes to root growth under different light conditions. We generated HY5 and HYH transcriptional and translational fusion reporter lines to investigate their expression patterns. HY5 was constitutively expressed in all root tissues, while HYH was predominantly expressed in root xylem cells. Root growth after a dark-to-light transition was perturbed in the hy5 and hy5hyh mutant lines, but not in the hyh mutant line, indicating that HY5 plays a major role in light-regulated root growth. Light-induced HY5/HYH expression occurred autonomously in roots. HYH expression in roots was decreased in the hy5 mutant, suggesting that HY5 regulates HYH expression. Collectively, these results indicate that an organ-specific HY5-mediated pathway controls root photomorphogenic development independently of light signaling in the shoot.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Chen Li
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jingxuan Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Jiajing Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingwei Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanxia Lv
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Nian Yang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jianping Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Gergo Palfalvi
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- * E-mail: (GW); (LZ)
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- * E-mail: (GW); (LZ)
| |
Collapse
|
127
|
Bernula P, Crocco CD, Arongaus AB, Ulm R, Nagy F, Viczián A. Expression of the UVR8 photoreceptor in different tissues reveals tissue-autonomous features of UV-B signalling. PLANT, CELL & ENVIRONMENT 2017; 40:1104-1114. [PMID: 28058744 DOI: 10.1111/pce.12904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/20/2016] [Accepted: 12/24/2016] [Indexed: 05/04/2023]
Abstract
The Arabidopsis UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) orchestrates the expression of hundreds of genes, many of which can be associated with UV-B tolerance. UV-B does not efficiently penetrate into tissues, yet UV-B regulates complex growth and developmental responses. To unravel to what extent and how UVR8 located in different tissues contributes to UV-B-induced responses, we expressed UVR8 fused to the YELLOW FLUORESCENT PROTEIN (YFP) under the control of tissue-specific promoters in a uvr8 null mutant background. We show that (1) UVR8 localized in the epidermis plays a major role in regulating cotyledon expansion, and (2) expression of UVR8 in the mesophyll is important to protect adult plants from the damaging effects of UV-B. We found that UV-B induces transcription of selected genes, including the key transcriptional regulator ELONGATED HYPOCOTYL 5 (HY5), only in tissues that express UVR8. Thus, we suggest that tissue-autonomous and simultaneous UVR8 signalling in different tissues mediates, at least partly, developmental and defence responses to UV-B.
Collapse
Affiliation(s)
- Péter Bernula
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Carlos Daniel Crocco
- Department of Botany and Plant Biology, Sciences III, University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Adriana Beatriz Arongaus
- Department of Botany and Plant Biology, Sciences III, University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, Sciences III, University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
128
|
Yin R, Ulm R. How plants cope with UV-B: from perception to response. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:42-48. [PMID: 28411583 DOI: 10.1016/j.pbi.2017.03.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 05/19/2023]
Abstract
Ultraviolet-B radiation (UV-B) is an intrinsic part of the solar radiation that reaches the Earth's surface and affects the biosphere. Plants have evolved a specific UV-B signaling pathway mediated by the UVR8 photoreceptor that regulates growth, development, and acclimation. Major recent advances have contributed to our understanding of the UVR8 photocycle, UV-B-responsive protein-protein interactions, regulation of UVR8 subcellular localization, and UVR8-regulated physiological responses. Here, we review the latest progress in our understanding of UVR8 signaling and UV-B responses, which includes studies in the unicellular alga Chlamydomonas reinhardtii and the flowering plant Arabidopsis.
Collapse
Affiliation(s)
- Ruohe Yin
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
129
|
An JP, Qu FJ, Yao JF, Wang XN, You CX, Wang XF, Hao YJ. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. HORTICULTURE RESEARCH 2017; 4:17023. [PMID: 28611922 PMCID: PMC5461414 DOI: 10.1038/hortres.2017.23] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 05/18/2023]
Abstract
The basic leucine zipper (bZIP) transcription factor HY5 plays a multifaceted role in plant growth and development. Here the apple MdHY5 gene was cloned based on its homology with Arabidopsis HY5. Expression analysis demonstrated that MdHY5 transcription was induced by light and abscisic acid treatments. Electrophoretic mobility shift assays and transient expression assays subsequently showed that MdHY5 positively regulated both its own transcription and that of MdMYB10 by binding to E-box and G-box motifs, respectively. Furthermore, we obtained transgenic apple calli that overexpressed the MdHY5 gene, and apple calli coloration assays showed that MdHY5 promoted anthocyanin accumulation by regulating expression of the MdMYB10 gene and downstream anthocyanin biosynthesis genes. In addition, the transcript levels of a series of nitrate reductase genes and nitrate uptake genes in both wild-type and transgenic apple calli were detected. In association with increased nitrate reductase activities and nitrate contents, the results indicated that MdHY5 might be an important regulator in nutrient assimilation. Taken together, these results indicate that MdHY5 plays a vital role in anthocyanin accumulation and nitrate assimilation in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Feng-Jia Qu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Ji-Fang Yao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Xiao-Na Wang
- College of Life Science, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
- ()
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
- ()
| |
Collapse
|
130
|
Banerjee A, Roychoudhury A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. PROTOPLASMA 2017; 254:3-16. [PMID: 26669319 DOI: 10.1007/s00709-015-0920-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/01/2015] [Indexed: 05/21/2023]
Abstract
One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
131
|
UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2016; 113:14864-14869. [PMID: 27930292 DOI: 10.1073/pnas.1607695114] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.
Collapse
|
132
|
Velanis CN, Herzyk P, Jenkins GI. Regulation of transcription by the Arabidopsis UVR8 photoreceptor involves a specific histone modification. PLANT MOLECULAR BIOLOGY 2016; 92:425-443. [PMID: 27534420 PMCID: PMC5080334 DOI: 10.1007/s11103-016-0522-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 08/02/2016] [Indexed: 05/21/2023]
Abstract
The photoreceptor UV RESISTANCE LOCUS 8 (UVR8) specifically mediates photomorphogenic responses to UV-B wavelengths. UVR8 acts by regulating transcription of a set of genes, but the underlying mechanisms are unknown. Previous research indicated that UVR8 can associate with chromatin, but the specificity and functional significance of this interaction are not clear. Here we show, by chromatin immunoprecipitation, that UV-B exposure of Arabidopsis increases acetylation of lysines K9 and/or K14 of histone H3 at UVR8-regulated gene loci in a UVR8-dependent manner. The transcription factors HY5 and/or HYH, which mediate UVR8-regulated transcription, are also required for this chromatin modification, at least for the ELIP1 gene. Furthermore, sequencing of the immunoprecipitated DNA revealed that all UV-B-induced enrichments in H3K9,14diacetylation across the genome are UVR8-dependent, and approximately 40 % of the enriched loci contain known UVR8-regulated genes. In addition, inhibition of histone acetylation by anacardic acid reduces the UV-B induced, UVR8 mediated expression of ELIP1 and CHS. No evidence was obtained in yeast 2-hybrid assays for a direct interaction between either UVR8 or HY5 and several proteins involved in light-regulated histone modification, nor for the involvement of these proteins in UVR8-mediated responses in plants, although functional redundancy between proteins could influence the results. In summary, this study shows that UVR8 regulates a specific chromatin modification associated with transcriptional regulation of a set of UVR8-target genes.
Collapse
Affiliation(s)
- Christos N Velanis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1QH, UK
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
133
|
Gangappa SN, Botto JF. The Multifaceted Roles of HY5 in Plant Growth and Development. MOLECULAR PLANT 2016; 9:1353-1365. [PMID: 27435853 DOI: 10.1016/j.molp.2016.07.002] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 05/18/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, inhibits hypocotyl growth and lateral root development, and promotes pigment accumulation in a light-dependent manner in Arabidopsis. Recent research on its role in different processes such as hormone, nutrient, abiotic stress (abscisic acid, salt, cold), and reactive oxygen species signaling pathways clearly places HY5 at the center of a transcriptional network hub. HY5 regulates the transcription of a large number of genes by directly binding to cis-regulatory elements. Recently, HY5 has also been shown to activate its own expression under both visible and UV-B light. Moreover, HY5 acts as a signal that moves from shoot to root to promote nitrate uptake and root growth. Here, we review recent advances on HY5 research in diverse aspects of plant development and highlight still open questions that need to be addressed in the near future for a complete understanding of its function in plant signaling and beyond.
Collapse
Affiliation(s)
- Sreeramaiah N Gangappa
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg 40530, Sweden.
| | - Javier F Botto
- IFEVA, UBA, CONICET, Facultad de Agronomía, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina.
| |
Collapse
|
134
|
Bo K, Wang H, Pan Y, Behera TK, Pandey S, Wen C, Wang Y, Simon PW, Li Y, Chen J, Weng Y. SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation. PLANT PHYSIOLOGY 2016; 172:1273-1292. [PMID: 27559036 PMCID: PMC5047076 DOI: 10.1104/pp.16.00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/22/2016] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the UVR8-mediated signaling pathway is employed to attain UVB protection and acclimation to deal with low-dosage UVB (LDUVB)-induced stresses. Here, we identified SHORT HYPOCOTYL1 (SH1) in cucumber (Cucumis sativus), which regulates LDUVB-dependent hypocotyl elongation by modulating the UVR8 signaling pathway. We showed that hypocotyl elongation in cucumbers carrying the recessive sh1 allele was LDUVB insensitive and that Sh1 encoded a human SMARCA3-like chromatin remodeling factor. The allele frequency and distribution pattern at this locus among natural populations supported the wild cucumber origin of sh1 for local adaptation, which was under selection during domestication. The cultivated cucumber carries predominantly the Sh1 allele; the sh1 allele is nearly fixed in the semiwild Xishuangbanna cucumber, and the wild cucumber population is largely at Hardy-Weinberg equilibrium for the two alleles. The SH1 protein sequence was highly conserved among eukaryotic organisms, but its regulation of hypocotyl elongation in cucumber seems to be a novel function. While Sh1 expression was inhibited by LDUVB, its transcript abundance was highly correlated with hypocotyl elongation rate and the expression level of cell-elongation-related genes. Expression profiling of key regulators in the UVR8 signaling pathway revealed significant differential expression of CsHY5 between two near isogenic lines of Sh1 Sh1 and CsHY5 acted antagonistically at transcriptional level. A working model was proposed in which Sh1 regulates LDUVB-dependent hypocotyl elongation in cucumber through changing the chromatin states and thus the accessibility of CsHY5 in the UVR8 signaling pathway to promoters of LDUVB-responsive genes for hypocotyl elongation.
Collapse
Affiliation(s)
- Kailiang Bo
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Hui Wang
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Tusar K Behera
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Sudhakar Pandey
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Changlong Wen
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Philipp W Simon
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Yuhong Li
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Jinfeng Chen
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| |
Collapse
|
135
|
Loyola R, Herrera D, Mas A, Wong DCJ, Höll J, Cavallini E, Amato A, Azuma A, Ziegler T, Aquea F, Castellarin SD, Bogs J, Tornielli GB, Peña-Neira A, Czemmel S, Alcalde JA, Matus JT, Arce-Johnson P. The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5429-5445. [PMID: 27543604 PMCID: PMC5049392 DOI: 10.1093/jxb/erw307] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is a species well known for its adaptation to radiation. However, photomorphogenic factors related to UV-B responses have not been molecularly characterized. We cloned and studied the role of UV-B RECEPTOR (UVR1), ELONGATED HYPOCOTYL 5 (HY5), and HY5 HOMOLOGUE (HYH) from V. vinifera We performed gene functional characterizations, generated co-expression networks, and tested them in different environmental conditions. These genes complemented the Arabidopsis uvr8 and hy5 mutants in morphological and secondary metabolic responses to radiation. We combined microarray and RNA sequencing (RNA-seq) data with promoter inspections to identify HY5 and HYH putative target genes and their DNA binding preferences. Despite sharing a large set of common co-expressed genes, we found different hierarchies for HY5 and HYH depending on the organ and stress condition, reflecting both co-operative and partially redundant roles. New candidate UV-B gene markers were supported by the presence of HY5-binding sites. These included a set of flavonol-related genes that were up-regulated in a HY5 transient expression assay. We irradiated in vitro plantlets and fruits from old potted vines with high and low UV-B exposures and followed the accumulation of flavonols and changes in gene expression in comparison with non-irradiated conditions. UVR1, HY5, and HYH expression varied with organ, developmental stage, and type of radiation. Surprisingly, UVR1 expression was modulated by shading and temperature in berries, but not by UV-B radiation. We propose that the UV-B response machinery favours berry flavonol accumulation through the activation of HY5 and HYH at different developmental stages at both high and low UV-B exposures.
Collapse
Affiliation(s)
- Rodrigo Loyola
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Herrera
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abraham Mas
- Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB (CRAG), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | | | - Janine Höll
- Centre for Organismal Studies Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | - Akifumi Azuma
- Grape and Persimmon Research Division, Institute of Fruit Tree and Tea Science, NARO, Higashihiroshima, 73992494, Japan
| | - Tobias Ziegler
- Centre for Organismal Studies Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile Center for Applied Ecology and Sustainability, Santiago, Chile
| | | | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany Weincampus Neustadt, DLR Rheinpfalz, D-67435 Neustadt, Germany
| | | | - Alvaro Peña-Neira
- Departamento de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Stefan Czemmel
- Quantitative Biology Center (QBIC), University of Tuebingen, Germany
| | - José Antonio Alcalde
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB (CRAG), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
136
|
Vanhaelewyn L, Prinsen E, Van Der Straeten D, Vandenbussche F. Hormone-controlled UV-B responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4469-82. [PMID: 27401912 DOI: 10.1093/jxb/erw261] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory for Functional Plant Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | - Filip Vandenbussche
- Laboratory for Functional Plant Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
137
|
COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc Natl Acad Sci U S A 2016; 113:E4415-22. [PMID: 27407149 DOI: 10.1073/pnas.1607074113] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B-induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B-induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B-activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8(W285A) accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B-activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B-induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling.
Collapse
|
138
|
BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proc Natl Acad Sci U S A 2016; 113:7655-60. [PMID: 27325768 DOI: 10.1073/pnas.1607687113] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BBX21 (also known as SALT TOLERANCE HOMOLOG 2), a B-box (BBX)-containing protein, has been previously identified as a positive regulator of light signaling; however, the precise role of BBX21 in regulating seedling photomorphogenesis remains largely unclear. In this study, we report that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) interacts with BBX21 in vivo and is able to ubiquitinate BBX21 in vitro. Thus, BBX21 is targeted for 26S proteasome-mediated degradation in dark-grown Arabidopsis seedlings in a COP1-dependent manner. Moreover, we show that BBX21 binds to the T/G-box in the ELONGATED HYPOCOTYL 5 (HY5) promoter and directly activates HY5 expression in the light. Transgenic seedlings overexpressing BBX21 exhibit dramatically shortened hypocotyls in the light, and this phenotype is dependent on a functional HY5. Taken together, our data suggest a molecular base underlying BBX21-mediated seedling photomorphogenesis, indicating that BBX21 is a pivotal component involved in the COP1-HY5 regulatory hub.
Collapse
|
139
|
Wei CQ, Chien CW, Ai LF, Zhao J, Zhang Z, Li KH, Burlingame AL, Sun Y, Wang ZY. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. J Genet Genomics 2016; 43:555-563. [PMID: 27523280 DOI: 10.1016/j.jgg.2016.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Plant growth is controlled by integration of hormonal and light-signaling pathways. BZS1 is a B-box zinc finger protein previously characterized as a negative regulator in the brassinosteroid (BR)-signaling pathway and a positive regulator in the light-signaling pathway. However, the mechanisms by which BZS1/BBX20 integrates light and hormonal pathways are not fully understood. Here, using a quantitative proteomic workflow, we identified several BZS1-associated proteins, including light-signaling components COP1 and HY5. Direct interactions of BZS1 with COP1 and HY5 were verified by yeast two-hybrid and co-immunoprecipitation assays. Overexpression of BZS1 causes a dwarf phenotype that is suppressed by the hy5 mutation, while overexpression of BZS1 fused with the SRDX transcription repressor domain (BZS1-SRDX) causes a long-hypocotyl phenotype similar to hy5, indicating that BZS1's function requires HY5. BZS1 positively regulates HY5 expression, whereas HY5 negatively regulates BZS1 protein level, forming a feedback loop that potentially contributes to signaling dynamics. In contrast to BR, strigolactone (SL) increases BZS1 level, whereas the SL responses of hypocotyl elongation, chlorophyll and HY5 accumulation are diminished in the BZS1-SRDX seedlings, indicating that BZS1 is involved in these SL responses. These results demonstrate that BZS1 interacts with HY5 and plays a central role in integrating light and multiple hormone signals for photomorphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Chuang-Qi Wei
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Chih-Wei Chien
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Lian-Feng Ai
- Hebei Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China, Shijiazhuang 050051, China
| | - Jun Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhenzhen Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Center of Basic Forestry and Proteomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Yu Sun
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
140
|
Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, Schmid-Siegert E, Goldschmidt-Clermont M, Ulm R. UV-B Perception and Acclimation in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:966-83. [PMID: 27020958 PMCID: PMC4863380 DOI: 10.1105/tpc.15.00287] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 03/25/2016] [Indexed: 05/03/2023]
Abstract
Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection.
Collapse
Affiliation(s)
- Kimberley Tilbrook
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Marine Dubois
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Carlos D Crocco
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Ruohe Yin
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Richard Chappuis
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Guillaume Allorent
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Emanuel Schmid-Siegert
- SIB-Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
141
|
Binkert M, Crocco CD, Ekundayo B, Lau K, Raffelberg S, Tilbrook K, Yin R, Chappuis R, Schalch T, Ulm R. Revisiting chromatin binding of the Arabidopsis UV-B photoreceptor UVR8. BMC PLANT BIOLOGY 2016; 16:42. [PMID: 26864020 PMCID: PMC4750278 DOI: 10.1186/s12870-016-0732-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/06/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plants perceive UV-B through the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor and UVR8 activation leads to changes in gene expression such as those associated with UV-B acclimation and stress tolerance. Albeit functionally unrelated, UVR8 shows some homology with RCC1 (Regulator of Chromatin Condensation 1) proteins from non-plant organisms at the sequence level. These proteins act as guanine nucleotide exchange factors for Ran GTPases and bind chromatin via histones. Subsequent to the revelation of this sequence homology, evidence was presented showing that UVR8 activity involves interaction with chromatin at the loci of some target genes through histone binding. This suggested a UVR8 mode-of-action intimately and directly linked with gene transcription. However, several aspects of UVR8 chromatin association remained undefined, namely the impact of UV-B on the process and how UVR8 chromatin association related to the transcription factor ELONGATED HYPOCOTYL 5 (HY5), which is important for UV-B signalling and has overlapping chromatin targets. Therefore, we have investigated UVR8 chromatin association in further detail. RESULTS Unlike the claims of previous studies, our chromatin immunoprecipitation (ChIP) experiments do not confirm UVR8 chromatin association. In contrast to human RCC1, recombinant UVR8 also does not bind nucleosomes in vitro. Moreover, fusion of a VP16 activation domain to UVR8 did not alter expression of proposed UVR8 target genes in transient gene expression assays. Finally, comparison of the Drosophila DmRCC1 and the Arabidopsis UVR8 crystal structures revealed that critical histone- and DNA-interaction residues apparent in DmRCC1 are not conserved in UVR8. CONCLUSION This has led us to conclude that the cellular activity of UVR8 likely does not involve its specific binding to chromatin at target genes.
Collapse
Affiliation(s)
- Melanie Binkert
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Carlos D Crocco
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Babatunde Ekundayo
- Department of Molecular Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Kelvin Lau
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Sarah Raffelberg
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Kimberley Tilbrook
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
- Present Address: CSIRO Agriculture, Canberra, Australia.
| | - Ruohe Yin
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Richard Chappuis
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Thomas Schalch
- Department of Molecular Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.
| | - Roman Ulm
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
142
|
Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, Ruperti B, Tornielli GB. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1979. [PMID: 28105033 PMCID: PMC5214514 DOI: 10.3389/fpls.2016.01979] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 05/20/2023]
Abstract
A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2. When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera, we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine.
Collapse
Affiliation(s)
| | - Erika Cavallini
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Laura Finezzo
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Maura Begheldo
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| | - Benedetto Ruperti
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| | | |
Collapse
|
143
|
Overexpressing the wheat dihydroflavonol 4-reductase gene TaDFR increases anthocyanin accumulation in an Arabidopsis dfr mutant. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0373-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
144
|
Hayami N, Sakai Y, Kimura M, Saito T, Tokizawa M, Iuchi S, Kurihara Y, Matsui M, Nomoto M, Tada Y, Yamamoto YY. The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements. PLANT PHYSIOLOGY 2015; 169:840-55. [PMID: 26175515 PMCID: PMC4577391 DOI: 10.1104/pp.15.00398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/13/2015] [Indexed: 05/05/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5.
Collapse
Affiliation(s)
- Natsuki Hayami
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Yusaku Sakai
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Mitsuhiro Kimura
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Tatsunori Saito
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Mutsutomo Tokizawa
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Satoshi Iuchi
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Yukio Kurihara
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Minami Matsui
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Mika Nomoto
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Yasuomi Tada
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| |
Collapse
|
145
|
Abstract
Plants are able to sense UV-B through the UV-B photoreceptor UVR8. UV-B photon absorption by a UVR8 homodimer leads to UVR8 monomerization and interaction with the downstream signaling factor COP1. This then initiates changes in gene expression, which lead to several metabolic and morphological alterations. A major response is the activation of mechanisms associated with UV-B acclimation and UV-B tolerance, including biosynthesis of sunscreen metabolites, antioxidants and DNA repair enzymes. To balance the response, UVR8 is inactivated by regulated re-dimerization. Apart from their importance for plants, UVR8 and its interacting protein COP1 have already proved useful for the optogenetic toolkit used to engineer synthetic light-dependent responses.
Collapse
Affiliation(s)
- Roman Ulm
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211, Geneva, 4, Switzerland.
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
146
|
Galvão VC, Fankhauser C. Sensing the light environment in plants: photoreceptors and early signaling steps. Curr Opin Neurobiol 2015; 34:46-53. [PMID: 25638281 DOI: 10.1016/j.conb.2015.01.013] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 01/22/2023]
Abstract
Plants must constantly adapt to a changing light environment in order to optimize energy conversion through the process of photosynthesis and to limit photodamage. In addition, plants use light cues for timing of key developmental transitions such as initiation of reproduction (transition to flowering). Plants are equipped with a battery of photoreceptors enabling them to sense a very broad light spectrum spanning from UV-B to far-red wavelength (280-750nm). In this review we briefly describe the different families of plant photosensory receptors and the mechanisms by which they transduce environmental information to influence numerous aspects of plant growth and development throughout their life cycle.
Collapse
Affiliation(s)
- Vinicius Costa Galvão
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
147
|
Yin R, Arongaus AB, Binkert M, Ulm R. Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis. THE PLANT CELL 2015; 27:202-13. [PMID: 25627067 PMCID: PMC4330580 DOI: 10.1105/tpc.114.133868] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 05/17/2023]
Abstract
UV-B photon reception by the Arabidopsis thaliana homodimeric UV RESISTANCE LOCUS8 (UVR8) photoreceptor leads to its monomerization and a crucial interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Relay of the subsequent signal regulates UV-B-induced photomorphogenesis and stress acclimation. Here, we report that two separate domains of UVR8 interact with COP1: the β-propeller domain of UVR8 mediates UV-B-dependent interaction with the WD40 repeats-based predicted β-propeller domain of COP1, whereas COP1 activity is regulated by interaction through the UVR8 C-terminal C27 domain. We show not only that the C27 domain is required for UVR8 activity but also that chemically induced expression of the C27 domain is sufficient to mimic UV-B signaling. We further show, in contrast with COP1, that the WD40 repeat proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1) and RUP2 interact only with the UVR8 C27 domain. This coincides with their facilitation of UVR8 reversion to the ground state by redimerization and their potential to interact with UVR8 in a UV-B-independent manner. Collectively, our results provide insight into a key mechanism of photoreceptor-mediated signaling and its negative feedback regulation.
Collapse
Affiliation(s)
- Ruohe Yin
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Adriana B Arongaus
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Melanie Binkert
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
148
|
Abstract
The circadian clock modulates plant responses to environmental stimuli. In a recent study we showed that light and the circadian clock regulate daily changes in sensitivity to short treatments of high UV-B. Here we demonstrate that these time dependent changes in UV-B stress sensitivity are not mediated by the UV-B receptor UV resistantce locus 8. We also discuss the potential mechanisms involved in this process and the role of the circadian clock in the acclimation to UV-B.
Collapse
Key Words
- COP1, CONSTITUTIVELY PHOTOMORPHOGENIC 1
- ELF3, EARLY FLOWERING 3
- ELF4, EARLY FLOWERING 4
- HY5, ELONGATED HYPOCOTYL 5
- HYH, HY5 HOMOLOGUE
- LUX, LUX ARRHYTHMO
- PHR1, PHOTOLYASE 1
- UV-B, circadian, UVR8, stress, adaptation, transcription
- UVH1, ULTRAVIOLET HYPERSENSITIVE 1
- UVR3, UV RESISTANCE LOCUS 3
- UVR8, UV RESISTANCE LOCUS 8
Collapse
Affiliation(s)
- Elyse Horak
- Department of Plant Biology; Michigan State University; East Lansing, MI USA
| | - Eva M. Farré
- Department of Plant Biology; Michigan State University; East Lansing, MI USA
- Correspondence to: Eva M. Farré;
| |
Collapse
|
149
|
|