101
|
Yuan C, Ai J, Chang H, Xiao W, Liu L, Zhang C, He Z, Huang J, Li J, Guo X. CKB1 is involved in abscisic acid and gibberellic acid signaling to regulate stress responses in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2017; 130:587-598. [PMID: 28342111 DOI: 10.1007/s10265-017-0924-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/11/2016] [Indexed: 05/08/2023]
Abstract
Casein kinase II (CK2), an evolutionarily well-conserved Ser/Thr kinase, plays critical roles in all higher organisms including plants. CKB1 is a regulatory subunit beta of CK2. In this study, homozygous T-DNA mutants (ckb1-1 and ckb1-2) and over-expression plants (35S:CKB1-1, 35S:CKB1-2) of Arabidopsis thaliana were studied to understand the role of CKB1 in abiotic stress and gibberellic acid (GA) signaling. Histochemical staining showed that although CKB1 was expressed in all organs, it had a relatively higher expression in conducting tissues. The ckb1 mutants showed reduced sensitivity to abscisic acid (ABA) during seed germination and seedling growth. The increased stomatal aperture, leaf water loss and proline accumulation were observed in ckb1 mutants. In contrast, the ckb1 mutant had increased sensitivity to polyaluminum chloride during seed germination and hypocotyl elongation. We obtained opposite results in over-expression plants. The expression levels of a number of genes in the ABA and GA regulatory network had changed. This study demonstrates that CKB1 is an ABA signaling-related gene, which subsequently influences GA metabolism, and may play a positive role in ABA signaling.
Collapse
Affiliation(s)
- Congying Yuan
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Jianping Ai
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hongping Chang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Wenjun Xiao
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Cheng Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Zhuang He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Ji Huang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Jinyan Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Xinhong Guo
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China.
| |
Collapse
|
102
|
Ying Y, Yue W, Wang S, Li S, Wang M, Zhao Y, Wang C, Mao C, Whelan J, Shou H. Two h-Type Thioredoxins Interact with the E2 Ubiquitin Conjugase PHO2 to Fine-Tune Phosphate Homeostasis in Rice. PLANT PHYSIOLOGY 2017; 173:812-824. [PMID: 27895204 PMCID: PMC5210762 DOI: 10.1104/pp.16.01639] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/27/2016] [Indexed: 05/02/2023]
Abstract
Phosphate overaccumulator2 (PHO2) encodes a ubiquitin-conjugating E2 enzyme that is a major negative regulator of the inorganic phosphate (Pi)-starvation response-signaling pathway. A yeast two-hybrid (Y2H) screen in rice (Oryza sativa; Os) using OsPHO2 as bait revealed an interaction between OsPHO2 and two h-type thioredoxins, OsTrxh1 and OsTrxh4. These interactions were confirmed in vivo using bimolecular fluorescence complementation (BiFC) of OsPHO2 and OsTrxh1/h4 in rice protoplasts and by in vitro pull-down assays with 6His-tagged OsTrxh1/h4 and GST-tagged OsPHO2. Y2H assays revealed that amino acid Cys-445 of OsPHO2 and an N-terminal Cys in the "WCGPC" motif of Trxhs were required for the interaction. Split-ubiquitin Y2H analyses and BiFC assays in rice protoplasts confirmed the interaction of OsPHO2 with PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 (OsPHF1), and PHOSPHATE1;2 (OsPHO1;2) in the endoplasmic reticulum and Golgi membrane system, where OsPHO2 mediates the degradation of OsPHF1 in both tobacco (Nicotiana benthamiana) leaves and rice seedlings. Characterization of rice pho2 complemented lines, transformed with an endogenous genomic OsPHO2 or OsPHO2C445S (a constitutively reduced form) fragment, indicated that OsPHO2C445S restored Pi concentration in rice to statistically significant lower levels compared to native OsPHO2 Moreover, the suppression of OsTrxh1 (knockdown and knockout) resulted in slightly higher Pi concentration than that of wild-type Nipponbare in leaves. These results demonstrate that OsPHO2 is under redox control by thioredoxins, which fine-tune its activity and link Pi homeostasis with redox balance in rice.
Collapse
Affiliation(s)
- Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Wenhao Yue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Shuai Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Min Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Chuang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| |
Collapse
|
103
|
Zhu J, Wang WS, Ma D, Zhang LY, Ren F, Yuan TT. A role for CK2 β subunit 4 in the regulation of plant growth, cadmium accumulation and H 2O 2 content under cadmium stress in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:240-247. [PMID: 27750098 DOI: 10.1016/j.plaphy.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 05/26/2023]
Abstract
Protein kinase CK2, which consists of two α and two β subunits, plays an essential role in plant development and is implicated in plant responses to abiotic stresses, including salt and heat. However, the function of CK2 in response to heavy metals such as cadmium (Cd) has not yet been established. In this study, the transgenic line CKB4ox, which overexpresses CKB4 encoding the CK2β subunit and has elevated CK2 activity, was used to investigate the potential role of CK2 in response to Cd stress in Arabidopsis thaliana. Under Cd stress, CKB4ox showed reduced root growth and biomass accumulation as well as decreased chlorophyll and proline contents compared with wild type. Furthermore, increased Cd accumulation and a higher H2O2 content were found in CKB4ox, possibly contributing to the inhibition of CKB4ox growth under Cd stress. Additionally, altered levels of Cd and H2O2 were found to be associated with decreased expression of genes involved in Cd efflux, Cd sequestration and H2O2 scavenging. Taken together, these results suggest that elevated expression of CKB4 and increased CK2 activity enhance the sensitivity of plants to Cd stress by affecting Cd and H2O2 accumulation, including the modulation of genes involved in Cd transport and H2O2 scavenging. This study provides direct evidence for the involvement of plant CK2 in the response to Cd stress.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Shu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lin-Yu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
104
|
Jakobsen I, Smith SE, Smith FA, Watts-Williams SJ, Clausen SS, Grønlund M. Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6173-6186. [PMID: 27811084 PMCID: PMC5100028 DOI: 10.1093/jxb/erw383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Capturing the full growth potential in crops under future elevated CO2 (eCO2) concentrations would be facilitated by improved understanding of eCO2 effects on uptake and use of mineral nutrients. This study investigates interactions of eCO2, soil phosphorus (P), and arbuscular mycorrhizal (AM) symbiosis in Medicago truncatula and Brachypodium distachyon grown under the same conditions. The focus was on eCO2 effects on vegetative growth, efficiency in acquisition and use of P, and expression of phosphate transporter (PT) genes. Growth responses to eCO2 were positive at P sufficiency, but under low-P conditions they ranged from non-significant in M. truncatula to highly significant in B. distachyon Growth of M. truncatula was increased by AM at low P conditions at both CO2 levels and eCO2×AM interactions were sparse. Elevated CO2 had small effects on P acquisition, but enhanced conversion of tissue P into biomass. Expression of PT genes was influenced by eCO2, but effects were inconsistent across genes and species. The ability of eCO2 to partly mitigate P limitation-induced growth reductions in B. distachyon was associated with enhanced P use efficiency, and requirements for P fertilizers may not increase in such species in future CO2-rich climates.
Collapse
Affiliation(s)
- Iver Jakobsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Sally E Smith
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Soils Group, School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, SA 5005, Australia
| | - F Andrew Smith
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Soils Group, School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, SA 5005, Australia
| | - Stephanie J Watts-Williams
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Boyce Thompson Institute, Tower Rd, Ithaca, NY 14853, USA
| | - Signe S Clausen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Mette Grønlund
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Thorvaldsensvej 40, Frederiksberg C, Denmark
| |
Collapse
|
105
|
Yu FW, Zhu XF, Li GJ, Kronzucker HJ, Shi WM. The Chloroplast Protease AMOS1/EGY1 Affects Phosphate Homeostasis under Phosphate Stress. PLANT PHYSIOLOGY 2016; 172:1200-1208. [PMID: 27516532 PMCID: PMC5047092 DOI: 10.1104/pp.16.00786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/10/2016] [Indexed: 05/28/2023]
Abstract
Plastid intramembrane proteases in Arabidopsis (Arabidopsis thaliana) are involved in jasmonic acid biosynthesis, chloroplast development, and flower morphology. Here, we show that Ammonium-Overly-Sensitive1 (AMOS1), a member of the family of plastid intramembrane proteases, plays an important role in the maintenance of phosphate (P) homeostasis under P stress. Loss of function of AMOS1 revealed a striking resistance to P starvation. amos1 plants displayed retarded root growth and reduced P accumulation in the root compared to wild type (Col-0) under P-replete control conditions, but remained largely unaffected by P starvation, displaying comparable P accumulation and root and shoot growth under P-deficient conditions. Further analysis revealed that, under P-deficient conditions, the cell wall, especially the pectin fraction of amos1, released more P than that of wild type, accompanied by a reduction of the abscisic acid (ABA) level and an increase in ethylene production. By using an ABA-insensitive mutant, abi4, and applying ABA and ACC exogenously, we found that ABA inhibits cell wall P remobilization while ethylene facilitates P remobilization from the cell wall by increasing the pectin concentration, suggesting ABA can counteract the effect of ethylene. Furthermore, the elevated ABA level and the lower ethylene production also correlated well with the mimicked P deficiency in amos1 Thus, our study uncovers the role of AMOS1 in the maintenance of P homeostasis through ABA-antagonized ethylene signaling.
Collapse
Affiliation(s)
- Fang Wei Yu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Guang Jie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Herbert J Kronzucker
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Wei Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| |
Collapse
|
106
|
Sasaki A, Yamaji N, Ma JF. Transporters involved in mineral nutrient uptake in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3645-53. [PMID: 26931170 DOI: 10.1093/jxb/erw060] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the most important roles of plant roots is to take up essential mineral nutrients from the soil for use in plant growth and development. The uptake of mineral elements is mediated by various transporters belonging to different transporter families. Here we reviewed transporters for the uptake of macronutrients and micronutrients identified in rice, an important staple food for half of the world's population. Rice roots are characterized by having two Casparian strips on the exodermis and endodermis and by the formation of aerenchyma in the mature root zone. This distinct anatomical structure dictates that a pair of influx and efflux transporters at both the exodermis and endodermis is required for the radial transport of a mineral element from the soil solution to the stele. Some transporters showing polar localization at the distal and proximal sides of the exodermis and endodermis have been identified for silicon and manganese, forming an efficient uptake system. However, transporters for the uptake of most mineral elements remain to be identified.
Collapse
Affiliation(s)
- Akimasa Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| |
Collapse
|
107
|
Gu M, Chen A, Sun S, Xu G. Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? MOLECULAR PLANT 2016; 9:396-416. [PMID: 26714050 DOI: 10.1016/j.molp.2015.12.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/18/2015] [Accepted: 12/11/2015] [Indexed: 05/18/2023]
Abstract
It has been almost 25 years since the first report of the gene encoding a high-affinity phosphate transporter (PT), PHO84, in yeast. Since then, an increasing number of yeast PHO84 homologs as well as other genes encoding proteins with phosphate (Pi) transport activities have been identified and functionally characterized in diverse plant species. Great progress has been made also in deciphering the molecular mechanism underlying the regulation of the abundance and/or activity of these genes and their products. The regulatory genes affect plant Pi homeostasis commonly through direct or indirect regulation of the abundance of PTs at different levels. However, little has been achieved in the use of PTs for developing genetically modified crops with high phosphorus use efficiency (PUE). This might be a consequence of overemphasizing Pi uptake from the rhizosphere and lack of knowledge about the roles of PTs in Pi transport and recycling within the plant that are required to optimize PUE. Here, we mainly focused on the genes encoding proteins with Pi transport activities and the emerging understanding of their regulation at the transcriptional, post-transcriptional, translational, and post-translational levels. In addition, we propose potential strategies for effective use of PTs in improving plant growth and development.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China.
| |
Collapse
|
108
|
DiTusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH, Dearman KM, Smith AP. A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. THE NEW PHYTOLOGIST 2016; 209:762-72. [PMID: 26010225 DOI: 10.1111/nph.13472] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/21/2015] [Indexed: 05/18/2023]
Abstract
Pteris vittata exhibits enhanced arsenic uptake, but the corresponding mechanisms are not well known. The prevalent form of arsenic in most soils is arsenate, which is a phosphate analog and a substrate for Phosphate transporter 1 (Pht1) transporters. Herein we identify and characterize three P. vittata Pht1 transporters. Pteris vittata Pht1 cDNAs were isolated and characterized via heterologous expression in Saccharomyces cerevisiae (yeast) and Nicotiana benthamiana leaves. Expression of the PvPht1 loci in P. vittata gametophytes was also examined in response to phosphate deficiency and arsenate exposure. Expression of each of the PvPht1 cDNAs complemented the phosphate uptake defect of a yeast mutant. Compared with yeast cells expressing Arabidopsis thaliana Pht1;5, cells expressing PvPht1;3 were more sensitive to arsenate, and accumulated more arsenic. Uptake assays with yeast cells and radiolabeled (32)P revealed that PvPht1;3 and AtPht1;5 have similar affinities for phosphate, but the affinity of PvPht1;3 for arsenate is much greater. In P. vittata gametophytes, PvPht1;3 transcript levels increased in response to phosphate (Pi) deficiency and arsenate exposure. PvPht1;3 is induced by Pi deficiency and arsenate, and encodes a phosphate transporter that has a high affinity for arsenate. PvPht1;3 probably contributes to the enhanced arsenate uptake capacity and affinity exhibited by P. vittata.
Collapse
Affiliation(s)
- Sandra Feuer DiTusa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Elena B Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Robert W Wallace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Molly A Silvers
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Thomas N Steele
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alia H Elnagar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kelsey M Dearman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
109
|
Cardona-López X, Cuyas L, Marín E, Rajulu C, Irigoyen ML, Gil E, Puga MI, Bligny R, Nussaume L, Geldner N, Paz-Ares J, Rubio V. ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis. THE PLANT CELL 2015; 27:2560-81. [PMID: 26342016 PMCID: PMC4815105 DOI: 10.1105/tpc.15.00393] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 05/18/2023]
Abstract
Prior to the release of their cargoes into the vacuolar lumen, sorting endosomes mature into multivesicular bodies (MVBs) through the action of ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT (ESCRT) protein complexes. MVB-mediated sorting of high-affinity phosphate transporters (PHT1) to the vacuole limits their plasma membrane levels under phosphate-sufficient conditions, a process that allows plants to maintain phosphate homeostasis. Here, we describe ALIX, a cytosolic protein that associates with MVB by interacting with ESCRT-III subunit SNF7 and mediates PHT1;1 trafficking to the vacuole in Arabidopsis thaliana. We show that the partial loss-of-function mutant alix-1 displays reduced vacuolar degradation of PHT1;1. ALIX derivatives containing the alix-1 mutation showed reduced interaction with SNF7, providing a simple molecular explanation for impaired cargo trafficking in alix-1 mutants. In fact, the alix-1 mutation also hampered vacuolar sorting of the brassinosteroid receptor BRI1. We also show that alix-1 displays altered vacuole morphogenesis, implying a new role for ALIX proteins in vacuolar biogenesis, likely acting as part of ESCRT-III complexes. In line with a presumed broad target spectrum, the alix-1 mutation is pleiotropic, leading to reduced plant growth and late flowering, with stronger alix mutations being lethal, indicating that ALIX participates in diverse processes in plants essential for their life.
Collapse
Affiliation(s)
| | - Laura Cuyas
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lès-Durance Cedex, France
| | - Elena Marín
- Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lès-Durance Cedex, France
| | - Charukesi Rajulu
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | | | - Erica Gil
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | - María Isabel Puga
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | - Richard Bligny
- Laboratoire de Physiologie Cellulaire Vegetale, Unité Mixte de Recherche 5168, Institut de Recherche en Technologie et Sciences pour le Vivant, CEA, Grenoble Cedex 9, France
| | - Laurent Nussaume
- Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lès-Durance Cedex, France
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Javier Paz-Ares
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | - Vicente Rubio
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| |
Collapse
|