101
|
Pfeiffer ML, Winkler J, Van Damme D, Jacobs TB, Nowack MK. Conditional and tissue-specific approaches to dissect essential mechanisms in plant development. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102119. [PMID: 34653951 PMCID: PMC7612331 DOI: 10.1016/j.pbi.2021.102119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 05/19/2023]
Abstract
Reverse genetics approaches are routinely used to investigate gene function. However, mutations, especially in critical genes, can lead to pleiotropic effects as severe as lethality, thus limiting functional studies in specific contexts. Approaches that allow for modifications of genes or gene products in a specific spatial or temporal setting can overcome these limitations. The advent of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technologies has not only revolutionized targeted genome modification in plants but also enabled new possibilities for inducible and tissue-specific manipulation of gene functions at the DNA and RNA levels. In addition, novel approaches for the direct manipulation of target proteins have been introduced in plant systems. Here, we review the current development in tissue-specific and conditional manipulation approaches at the DNA, RNA, and protein levels.
Collapse
Affiliation(s)
- Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| |
Collapse
|
102
|
Torres-Martínez HH, Napsucialy-Mendivil S, Dubrovsky JG. Cellular and molecular bases of lateral root initiation and morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102115. [PMID: 34742019 DOI: 10.1016/j.pbi.2021.102115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Lateral root development is essential for the establishment of the plant root system. Lateral root initiation is a multistep process that impacts early primordium morphogenesis and is linked to the formation of a morphogenetic field of pericycle founder cells. Gradual recruitment of founder cells builds this morphogenetic field in an auxin-dependent manner. The complex process of lateral root primordium morphogenesis includes several subprocesses, which are presented in this review. The underlying cellular and molecular mechanisms of these subprocesses are examined.
Collapse
Affiliation(s)
- Héctor H Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico.
| |
Collapse
|
103
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
104
|
Sharma VK, Marla S, Zheng W, Mishra D, Huang J, Zhang W, Morris GP, Cook DE. CRISPR guides induce gene silencing in plants in the absence of Cas. Genome Biol 2022; 23:6. [PMID: 34980227 PMCID: PMC8722000 DOI: 10.1186/s13059-021-02586-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND RNA-targeting CRISPR-Cas can provide potential advantages over DNA editing, such as avoiding pleiotropic effects of genome editing, providing precise spatiotemporal regulation, and expanded function including antiviral immunity. RESULTS Here, we report the use of CRISPR-Cas13 in plants to reduce both viral and endogenous RNA. Unexpectedly, we observe that crRNA designed to guide Cas13 could, in the absence of the Cas13 protein, cause substantial reduction in RNA levels as well. We demonstrate Cas13-independent guide-induced gene silencing (GIGS) in three plant species, including stable transgenic Arabidopsis. Small RNA sequencing during GIGS identifies the production of small RNA that extend beyond the crRNA expressed sequence in samples expressing multi-guide crRNA. Additionally, we demonstrate that mismatches in guide sequences at position 10 and 11 abolish GIGS. Finally, we show that GIGS is elicited by guides that lack the Cas13 direct repeat and can extend to Cas9 designed crRNA of at least 28 base pairs, indicating that GIGS can be elicited through a variety of guide designs and is not dependent on Cas13 crRNA sequences or design. CONCLUSIONS Collectively, our results suggest that GIGS utilizes endogenous RNAi machinery despite the fact that crRNA are unlike canonical triggers of RNAi such as miRNA, hairpins, or long double-stranded RNA. Given similar evidence of Cas13-independent silencing in an insect system, it is likely GIGS is active across many eukaryotes. Our results show that GIGS offers a novel and flexible approach to RNA reduction with potential benefits over existing technologies for crop improvement and functional genomics.
Collapse
Affiliation(s)
| | - Sandeep Marla
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Wenguang Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Divya Mishra
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jun Huang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - David Edward Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
105
|
Decaestecker W, Bollier N, Buono RA, Nowack MK, Jacobs TB. Protoplast Preparation and Fluorescence-Activated Cell Sorting for the Evaluation of Targeted Mutagenesis in Plant Cells. Methods Mol Biol 2022; 2464:205-221. [PMID: 35258835 DOI: 10.1007/978-1-0716-2164-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescence-activated cell sorting (FACS) allows for the enrichment of specific plant cell populations after protoplasting. In this book chapter, we describe the transformation and protoplasting of an Arabidopsis thaliana cell suspension culture (PSB-D, derived from MM2d) that can be used for the evaluation of CRISPR vectors in a subpopulation of cells. We also describe the protoplasting of Arabidopsis thaliana cells from the roots and stomatal lineage for the evaluation of tissue-specific gene editing. These protocols allow us to rapidly and accurately quantify various CRISPR systems in plant cells.
Collapse
Affiliation(s)
- Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Norbert Bollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
106
|
Singha DL, Das D, Sarki YN, Chowdhury N, Sharma M, Maharana J, Chikkaputtaiah C. Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects. PLANTA 2021; 255:28. [PMID: 34962611 DOI: 10.1007/s00425-021-03811-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
Collapse
Affiliation(s)
- Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Yogita N Sarki
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
107
|
Roszak P, Heo JO, Blob B, Toyokura K, Sugiyama Y, de Luis Balaguer MA, Lau WWY, Hamey F, Cirrone J, Madej E, Bouatta AM, Wang X, Guichard M, Ursache R, Tavares H, Verstaen K, Wendrich J, Melnyk CW, Oda Y, Shasha D, Ahnert SE, Saeys Y, De Rybel B, Heidstra R, Scheres B, Grossmann G, Mähönen AP, Denninger P, Göttgens B, Sozzani R, Birnbaum KD, Helariutta Y. Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization. Science 2021; 374:eaba5531. [PMID: 34941412 PMCID: PMC8730638 DOI: 10.1126/science.aba5531] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the plant meristem, tissue-wide maturation gradients are coordinated with specialized cell networks to establish various developmental phases required for indeterminate growth. Here, we used single-cell transcriptomics to reconstruct the protophloem developmental trajectory from the birth of cell progenitors to terminal differentiation in the Arabidopsis thaliana root. PHLOEM EARLY DNA-BINDING-WITH-ONE-FINGER (PEAR) transcription factors mediate lineage bifurcation by activating guanosine triphosphatase signaling and prime a transcriptional differentiation program. This program is initially repressed by a meristem-wide gradient of PLETHORA transcription factors. Only the dissipation of PLETHORA gradient permits activation of the differentiation program that involves mutual inhibition of early versus late meristem regulators. Thus, for phloem development, broad maturation gradients interface with cell-type-specific transcriptional regulators to stage cellular differentiation.
Collapse
Affiliation(s)
- Pawel Roszak
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Jung-Ok Heo
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Bernhard Blob
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Koichi Toyokura
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
- GRA&GREEN Inc., Incubation Facility, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Yuki Sugiyama
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | | | - Winnie W Y Lau
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Fiona Hamey
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jacopo Cirrone
- Computer Science Department, Courant Institute for Mathematical Sciences, New York University, New York, NY, USA
| | - Ewelina Madej
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alida M Bouatta
- Plant Systems Biology, Technical University of Munich, Freising, Germany
| | - Xin Wang
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Marjorie Guichard
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Robertas Ursache
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Hugo Tavares
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Bioinformatics Training Facility, Department of Genetics, University of Cambridge, Cambridge, UK
| | - Kevin Verstaen
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jos Wendrich
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Charles W Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, the Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Dennis Shasha
- Computer Science Department, Courant Institute for Mathematical Sciences, New York University, New York, NY, USA
| | - Sebastian E Ahnert
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, British Library, London, UK
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Renze Heidstra
- Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Ben Scheres
- Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
- Rijk Zwaan R&D, 4793 Fijnaart, Netherlands
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Philipp Denninger
- Plant Systems Biology, Technical University of Munich, Freising, Germany
| | - Berthold Göttgens
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, USA
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
108
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
109
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
110
|
Triozzi PM, Schmidt HW, Dervinis C, Kirst M, Conde D. Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba. TREE PHYSIOLOGY 2021; 41:2216-2227. [PMID: 33960379 PMCID: PMC8597961 DOI: 10.1093/treephys/tpab066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/20/2021] [Indexed: 05/13/2023]
Abstract
Although the CRISPR/Cas9 system has been successfully used for crop breeding, its application remains limited in forest trees. Here, we describe an efficient gene editing strategy for hybrid poplar, (Populus tremula × alba INRA clone 717-1B4) based on the Golden Gate MoClo cloning. To test the system efficiency for generating single gene mutants, two single guide RNAs (sgRNAs) were designed and incorporated into the MoClo Tool Kit level 2 binary vector with the Cas9 expression cassette to mutate the SHORT ROOT (SHR) gene. Moreover, we also tested its efficiency for introducing mutations in two genes simultaneously by expressing one sgRNA targeting a single site of the YUC4 gene and the other sgRNA targeting the PLT1 gene. For a robust evaluation of the approach, we repeated the strategy to target the LBD12 and LBD4 genes simultaneously, using an independent construct. We generated hairy roots by Agrobacterium rhizogenes-mediated leaf transformation. Sequencing results confirmed the CRISPR/Cas9-mediated mutation in the targeted sites of PtaSHR. Biallelic and homozygous knockout mutations were detected. A deletion spanning both target sites and small insertions/deletions were the most common mutations. Out of the 22 SHR alleles sequenced, 21 were mutated. The phenotype's characterization showed that transgenic roots with biallelic mutations for the SHR gene lacked a defined endodermal single cell layer, suggesting a conserved gene function similar to its homolog in Arabidopsis Arabidopsis thaliana (L.) Heynh. Sequencing results also revealed the high efficiency of the system for generating double mutants. Biallelic mutations for both genes in the yuc4/plt1 and lbd12/lbd4 roots were detected in three (yuc4/plt1) and two (lbd12/lbd4) out of four transgenic roots evaluated. A small deletion or a single nucleotide insertion at the single target site was the most common mutations. This CRISPR/Cas9 strategy arises as a rapid, simple and standardized gene-editing tool to evaluate the gene role in essential developmental programs such as radial cell differentiation of poplar roots.
Collapse
Affiliation(s)
- Paolo M Triozzi
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, 136 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| | - Henry W Schmidt
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, 136 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| | - Christopher Dervinis
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, 136 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| | - Matias Kirst
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, 136 Newins-Ziegler Hall, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, 2550 Hull Road Fifield Hall, room 1509 Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL 32611, USA
| | - Daniel Conde
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, 136 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| |
Collapse
|
111
|
Balcerowicz M, Shetty KN, Jones AM. Fluorescent biosensors illuminating plant hormone research. PLANT PHYSIOLOGY 2021; 187:590-602. [PMID: 35237816 PMCID: PMC8491072 DOI: 10.1093/plphys/kiab278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/22/2021] [Indexed: 05/20/2023]
Abstract
Phytohormones act as key regulators of plant growth that coordinate developmental and physiological processes across cells, tissues and organs. As such, their levels and distribution are highly dynamic owing to changes in their biosynthesis, transport, modification and degradation that occur over space and time. Fluorescent biosensors represent ideal tools to track these dynamics with high spatiotemporal resolution in a minimally invasive manner. Substantial progress has been made in generating a diverse set of hormone sensors with recent FRET biosensors for visualising hormone concentrations complementing information provided by transcriptional, translational and degron-based reporters. In this review, we provide an update on fluorescent biosensor designs, examine the key properties that constitute an ideal hormone biosensor, discuss the use of these sensors in conjunction with in vivo hormone perturbations and highlight the latest discoveries made using these tools.
Collapse
Affiliation(s)
| | | | - Alexander M. Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Author for communication:
| |
Collapse
|
112
|
Abarca A, Franck CM, Zipfel C. Family-wide evaluation of RAPID ALKALINIZATION FACTOR peptides. PLANT PHYSIOLOGY 2021; 187:996-1010. [PMID: 34608971 PMCID: PMC8491022 DOI: 10.1093/plphys/kiab308] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 05/04/2023]
Abstract
Plant peptide hormones are important players that control various aspects of the lives of plants. RAPID ALKALINIZATION FACTOR (RALF) peptides have recently emerged as important players in multiple physiological processes. Numerous studies have increased our understanding of the evolutionary processes that shaped the RALF family of peptides. Nevertheless, to date, there is no comprehensive, family-wide functional study on RALF peptides. Here, we analyzed the phylogeny of the proposed multigenic RALF peptide family in the model plant Arabidopsis (Arabidopsis thaliana), ecotype Col-0, and tested a variety of physiological responses triggered by RALFs. Our phylogenetic analysis reveals that two of the previously proposed RALF peptides are not genuine RALF peptides, which leads us to propose a revision to the consensus AtRALF peptide family annotation. We show that the majority of AtRALF peptides, when applied exogenously as synthetic peptides, induce seedling or root growth inhibition and modulate reactive oxygen species (ROS) production in Arabidopsis. Moreover, our findings suggest that alkalinization and growth inhibition are, generally, coupled characteristics of RALF peptides. Additionally, we show that for the majority of the peptides, these responses are genetically dependent on FERONIA, suggesting a pivotal role for this receptor kinase in the perception of multiple RALF peptides.
Collapse
Affiliation(s)
- Alicia Abarca
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Christina M. Franck
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
- Author for communication:
| |
Collapse
|
113
|
Welchen E, Gonzalez DH. Breaking boundaries: exploring short- and long-distance mitochondrial signalling in plants. THE NEW PHYTOLOGIST 2021; 232:494-501. [PMID: 34255867 DOI: 10.1111/nph.17614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/29/2021] [Indexed: 05/20/2023]
Abstract
Communication of mitochondria with other cell compartments is essential for the coordination of cellular functions. Mitochondria send retrograde signals through metabolites, redox changes, direct organelle contacts and protein trafficking. Accumulating evidence indicates that, in animal systems, changes in mitochondrial function also trigger responses in other, either neighbouring or distantly located, cells. Although not clearly established, there are indications that this type of communication may also be operative in plants. Grafting experiments suggested that the translocation of entire mitochondria or submitochondrial vesicles between neighbouring cells is possible in plants, as already documented in animals. Changes in mitochondrial function also regulate cell-to-cell communication via plasmodesmata and may be transmitted over long distances through plant hormones acting as mitokines to relay mitochondrial signals to distant tissues. Long-distance movement of transcripts encoding mitochondrial proteins involved in crucial aspects of metabolism and retrograde signalling was also described. Finally, changes in mitochondrial reactive species (ROS) production may affect the 'ROS wave' that triggers systemic acquired acclimation throughout the plant. In this review, we summarise available evidence suggesting that mitochondria establish sophisticated communications not only within the cell but also with neighbouring cells and distant tissues to coordinate plant growth and stress responses in a cell nonautonomous manner.
Collapse
Affiliation(s)
- Elina Welchen
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Daniel H Gonzalez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| |
Collapse
|
114
|
Jacott CN, Ridout CJ, Murray JD. Unmasking Mildew Resistance Locus O. TRENDS IN PLANT SCIENCE 2021; 26:1006-1013. [PMID: 34175219 DOI: 10.1016/j.tplants.2021.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Loss of Mildew Resistance Locus O (MLO) in barley confers durable resistance to powdery mildew fungi, which has led to its wide deployment in agriculture. Although MLO is a susceptibility factor, it has become nearly synonymous with powdery mildew resistance. However, MLO has been recently implicated in colonization by arbuscular mycorrhizal fungi and a fungal endophyte, confirming its importance for biotrophic interactions and in promoting symbiosis. Other MLO proteins are involved in essential sensory processes, particularly fertilization and thigmotropism. We propose external stimulus perception as a common theme in these interactions and consider a unified biochemical role, potentially relating to reactive oxygen species (ROS) and calcium regulation, for MLOs across tissues and processes.
Collapse
Affiliation(s)
- Catherine N Jacott
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Christopher J Ridout
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS-araJIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Centre for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
115
|
Jha SG, Borowsky AT, Cole BJ, Fahlgren N, Farmer A, Huang SSC, Karia P, Libault M, Provart NJ, Rice SL, Saura-Sanchez M, Agarwal P, Ahkami AH, Anderton CR, Briggs SP, Brophy JAN, Denolf P, Di Costanzo LF, Exposito-Alonso M, Giacomello S, Gomez-Cano F, Kaufmann K, Ko DK, Kumar S, Malkovskiy AV, Nakayama N, Obata T, Otegui MS, Palfalvi G, Quezada-Rodríguez EH, Singh R, Uhrig RG, Waese J, Van Wijk K, Wright RC, Ehrhardt DW, Birnbaum KD, Rhee SY. Vision, challenges and opportunities for a Plant Cell Atlas. eLife 2021; 10:e66877. [PMID: 34491200 PMCID: PMC8423441 DOI: 10.7554/elife.66877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.
Collapse
Affiliation(s)
- Suryatapa Ghosh Jha
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Alexander T Borowsky
- Department of Botany and Plant Sciences, University of California, RiversideRiversideUnited States
| | - Benjamin J Cole
- Joint Genome Institute, Lawrence Berkeley National LaboratoryWalnut CreekUnited States
| | - Noah Fahlgren
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | - Andrew Farmer
- National Center for Genome ResourcesSanta FeUnited States
| | | | - Purva Karia
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincolnUnited States
| | - Nicholas J Provart
- Department of Cell and Systems Biology and the Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Selena L Rice
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Maite Saura-Sanchez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos AiresBuenos AiresArgentina
| | - Pinky Agarwal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Amir H Ahkami
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Steven P Briggs
- Department of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | | | | | - Luigi F Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico IINapoliItaly
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Plant Biology, Carnegie Institution for ScienceTübingenGermany
| | | | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universitaet zu BerlinBerlinGermany
| | - Dae Kwan Ko
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| | - Sagar Kumar
- Department of Plant Breeding & Genetics, Mata Gujri College, Fatehgarh Sahib, Punjabi UniversityPatialaIndia
| | - Andrey V Malkovskiy
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-LincolnMadisonUnited States
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-MadisonMadisonUnited States
| | - Gergo Palfalvi
- Division of Evolutionary Biology, National Institute for Basic BiologyOkazakiJapan
| | - Elsa H Quezada-Rodríguez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de MéxicoLeónMexico
| | - Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhianaIndia
| | - R Glen Uhrig
- Department of Science, University of AlbertaEdmontonCanada
| | - Jamie Waese
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Klaas Van Wijk
- School of Integrated Plant Science, Plant Biology Section, Cornell UniversityIthacaUnited States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia TechBlacksburgUnited States
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| |
Collapse
|
116
|
Xia X, Cheng X, Li R, Yao J, Li Z, Cheng Y. Advances in application of genome editing in tomato and recent development of genome editing technology. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2727-2747. [PMID: 34076729 PMCID: PMC8170064 DOI: 10.1007/s00122-021-03874-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 05/07/2023]
Abstract
Genome editing, a revolutionary technology in molecular biology and represented by the CRISPR/Cas9 system, has become widely used in plants for characterizing gene function and crop improvement. Tomato, serving as an excellent model plant for fruit biology research and making a substantial nutritional contribution to the human diet, is one of the most important applied plants for genome editing. Using CRISPR/Cas9-mediated targeted mutagenesis, the re-evaluation of tomato genes essential for fruit ripening highlights that several aspects of fruit ripening should be reconsidered. Genome editing has also been applied in tomato breeding for improving fruit yield and quality, increasing stress resistance, accelerating the domestication of wild tomato, and recently customizing tomato cultivars for urban agriculture. In addition, genome editing is continuously innovating, and several new genome editing systems such as the recent prime editing, a breakthrough in precise genome editing, have recently been applied in plants. In this review, these advances in application of genome editing in tomato and recent development of genome editing technology are summarized, and their leaving important enlightenment to plant research and precision plant breeding is also discussed.
Collapse
Affiliation(s)
- Xuehan Xia
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Xinhua Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
117
|
Deciphering Plant Chromatin Regulation via CRISPR/dCas9-Based Epigenome Engineering. EPIGENOMES 2021; 5:epigenomes5030017. [PMID: 34968366 PMCID: PMC8594717 DOI: 10.3390/epigenomes5030017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023] Open
Abstract
CRISPR-based epigenome editing uses dCas9 as a platform to recruit transcription or chromatin regulators at chosen loci. Despite recent and ongoing advances, the full potential of these approaches to studying chromatin functions in vivo remains challenging to exploit. In this review we discuss how recent progress in plants and animals provides new routes to investigate the function of chromatin regulators and address the complexity of associated regulations that are often interconnected. While efficient transcriptional engineering methodologies have been developed and can be used as tools to alter the chromatin state of a locus, examples of direct manipulation of chromatin regulators remain scarce in plants. These reports also reveal pitfalls and limitations of epigenome engineering approaches that are nevertheless informative as they are often associated with locus- and context-dependent features, which include DNA accessibility, initial chromatin and transcriptional state or cellular dynamics. Strategies implemented in different organisms to overcome and even take advantage of these limitations are highlighted, which will further improve our ability to establish the causality and hierarchy of chromatin dynamics on genome regulation.
Collapse
|
118
|
Gala HP, Lanctot A, Jean-Baptiste K, Guiziou S, Chu JC, Zemke JE, George W, Queitsch C, Cuperus JT, Nemhauser JL. A single-cell view of the transcriptome during lateral root initiation in Arabidopsis thaliana. THE PLANT CELL 2021; 33:2197-2220. [PMID: 33822225 PMCID: PMC8364244 DOI: 10.1093/plcell/koab101] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/31/2021] [Indexed: 05/20/2023]
Abstract
Root architecture is a major determinant of plant fitness and is under constant modification in response to favorable and unfavorable environmental stimuli. Beyond impacts on the primary root, the environment can alter the position, spacing, density, and length of secondary or lateral roots. Lateral root development is among the best-studied examples of plant organogenesis, yet there are still many unanswered questions about its earliest steps. Among the challenges faced in capturing these first molecular events is the fact that this process occurs in a small number of cells with unpredictable timing. Single-cell sequencing methods afford the opportunity to isolate the specific transcriptional changes occurring in cells undergoing this fate transition. Using this approach, we successfully captured the transcriptomes of initiating lateral root primordia in Arabidopsis thaliana and discovered many upregulated genes associated with this process. We developed a method to selectively repress target gene transcription in the xylem pole pericycle cells where lateral roots originate and demonstrated that the expression of several of these targets is required for normal root development. We also discovered subpopulations of cells in the pericycle and endodermal cell files that respond to lateral root initiation, highlighting the coordination across cell files required for this fate transition.
Collapse
Affiliation(s)
- Hardik P. Gala
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Amy Lanctot
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Ken Jean-Baptiste
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sarah Guiziou
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jonah C. Chu
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Joseph E. Zemke
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Wesley George
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Author for correspondence: (J.T.C.); (J.L.N.)
| | - Jennifer L. Nemhauser
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Author for correspondence: (J.T.C.); (J.L.N.)
| |
Collapse
|
119
|
de Vries L, Guevara-Rozo S, Cho M, Liu LY, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:167. [PMID: 34353358 PMCID: PMC8344217 DOI: 10.1186/s13068-021-02010-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development. Herein, we describe evolving techniques and strategies for altering the metabolic pathways related to plant cell wall biosynthesis, and highlight the resulting impact on chemistry, architecture, and polymer interactions. Furthermore, this review illustrates how these unique targeted cell wall modifications could significantly extend the number, diversity, and value of products generated in existing and emerging biorefineries. These modifications can further target the ability for processing of engineered wood into advanced high performance materials. In doing so, we attempt to illuminate the complex connection on how polymer chemistry and structure can be tailored to advance renewable material applications, using all the chemical constituents of plant-derived biopolymers, including pectins, hemicelluloses, cellulose, and lignins.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA
| | - Sydne Guevara-Rozo
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Li-Yang Liu
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Scott Renneckar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA.
| |
Collapse
|
120
|
Huang TK, Puchta H. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic Res 2021; 30:529-549. [PMID: 33646511 PMCID: PMC8316200 DOI: 10.1007/s11248-021-00238-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/13/2021] [Indexed: 12/26/2022]
Abstract
In the last years, tremendous progress has been made in the development of CRISPR/Cas-mediated genome editing tools. A number of natural CRISPR/Cas nuclease variants have been characterized. Engineered Cas proteins have been developed to minimize PAM restrictions, off-side effects and temperature sensitivity. Both kinds of enzymes have, by now, been applied widely and efficiently in many plant species to generate either single or multiple mutations at the desired loci by multiplexing. In addition to DSB-induced mutagenesis, specifically designed CRISPR/Cas systems allow more precise gene editing, resulting not only in random mutations but also in predefined changes. Applications in plants include gene targeting by homologous recombination, base editing and, more recently, prime editing. We will evaluate these different technologies for their prospects and practical applicability in plants. In addition, we will discuss a novel application of the Cas9 nuclease in plants, enabling the induction of heritable chromosomal rearrangements, such as inversions and translocations. This technique will make it possible to change genetic linkages in a programmed way and add another level of genome engineering to the toolbox of plant breeding. Also, strategies for tissue culture free genome editing were developed, which might be helpful to overcome the transformation bottlenecks in many crops. All in all, the recent advances of CRISPR/Cas technology will help agriculture to address the challenges of the twenty-first century related to global warming, pollution and the resulting food shortage.
Collapse
Affiliation(s)
- Teng-Kuei Huang
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany.
| |
Collapse
|
121
|
Razzaq A, Kaur P, Akhter N, Wani SH, Saleem F. Next-Generation Breeding Strategies for Climate-Ready Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:620420. [PMID: 34367194 PMCID: PMC8336580 DOI: 10.3389/fpls.2021.620420] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/14/2021] [Indexed: 05/17/2023]
Abstract
Climate change is a threat to global food security due to the reduction of crop productivity around the globe. Food security is a matter of concern for stakeholders and policymakers as the global population is predicted to bypass 10 billion in the coming years. Crop improvement via modern breeding techniques along with efficient agronomic practices innovations in microbiome applications, and exploiting the natural variations in underutilized crops is an excellent way forward to fulfill future food requirements. In this review, we describe the next-generation breeding tools that can be used to increase crop production by developing climate-resilient superior genotypes to cope with the future challenges of global food security. Recent innovations in genomic-assisted breeding (GAB) strategies allow the construction of highly annotated crop pan-genomes to give a snapshot of the full landscape of genetic diversity (GD) and recapture the lost gene repertoire of a species. Pan-genomes provide new platforms to exploit these unique genes or genetic variation for optimizing breeding programs. The advent of next-generation clustered regularly interspaced short palindromic repeat/CRISPR-associated (CRISPR/Cas) systems, such as prime editing, base editing, and de nova domestication, has institutionalized the idea that genome editing is revamped for crop improvement. Also, the availability of versatile Cas orthologs, including Cas9, Cas12, Cas13, and Cas14, improved the editing efficiency. Now, the CRISPR/Cas systems have numerous applications in crop research and successfully edit the major crop to develop resistance against abiotic and biotic stress. By adopting high-throughput phenotyping approaches and big data analytics tools like artificial intelligence (AI) and machine learning (ML), agriculture is heading toward automation or digitalization. The integration of speed breeding with genomic and phenomic tools can allow rapid gene identifications and ultimately accelerate crop improvement programs. In addition, the integration of next-generation multidisciplinary breeding platforms can open exciting avenues to develop climate-ready crops toward global food security.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Naheed Akhter
- College of Allied Health Professional, Faculty of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
122
|
Blomme J, Liu X, Jacobs TB, De Clerck O. A molecular toolkit for the green seaweed Ulva mutabilis. PLANT PHYSIOLOGY 2021; 186:1442-1454. [PMID: 33905515 PMCID: PMC8260120 DOI: 10.1093/plphys/kiab185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 06/02/2023]
Abstract
The green seaweed Ulva mutabilis is an ecologically important marine primary producer as well as a promising cash crop cultivated for multiple uses. Despite its importance, several molecular tools are still needed to better understand seaweed biology. Here, we report the development of a flexible and modular molecular cloning toolkit for the green seaweed U. mutabilis based on a Golden Gate cloning system. The toolkit presently contains 125 entry vectors, 26 destination vectors, and 107 functionally validated expression vectors. We demonstrate the importance of endogenous regulatory sequences for transgene expression and characterize three endogenous promoters suitable to drive transgene expression. We describe two vector architectures to express transgenes via two expression cassettes or a bicistronic approach. The majority of selected transformants (50%-80%) consistently give clear visual transgene expression. Furthermore, we made different marker lines for intracellular compartments after evaluating 13 transit peptides and 11 tagged endogenous Ulva genes. Our molecular toolkit enables the study of Ulva gain-of-function lines and paves the way for gene characterization and large-scale functional genomics studies in a green seaweed.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent 9000, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
| | - Xiaojie Liu
- Department of Biology, Phycology Research Group, Ghent University, Ghent 9000, Belgium
| | - Thomas B Jacobs
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
123
|
Vangheluwe N, Beeckman T. Lateral Root Initiation and the Analysis of Gene Function Using Genome Editing with CRISPR in Arabidopsis. Genes (Basel) 2021; 12:genes12060884. [PMID: 34201141 PMCID: PMC8227676 DOI: 10.3390/genes12060884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Lateral root initiation is a post-embryonic process that requires the specification of a subset of pericycle cells adjacent to the xylem pole in the primary root into lateral root founder cells. The first visible event of lateral root initiation in Arabidopsis is the simultaneous migration of nuclei in neighbouring founder cells. Coinciding cell cycle activation is essential for founder cells in the pericycle to undergo formative divisions, resulting in the development of a lateral root primordium (LRP). The plant signalling molecule, auxin, is a major regulator of lateral root development; the understanding of the molecular mechanisms controlling lateral root initiation has progressed tremendously by the use of the Arabidopsis model and a continual improvement of molecular methodologies. Here, we provide an overview of the visible events, cell cycle regulators, and auxin signalling cascades related to the initiation of a new LRP. Furthermore, we highlight the potential of genome editing technology to analyse gene function in lateral root initiation, which provides an excellent model to answer fundamental developmental questions such as coordinated cell division, growth axis establishment as well as the specification of cell fate and cell polarity.
Collapse
Affiliation(s)
- Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Correspondence:
| |
Collapse
|
124
|
Li Z, Zhang C, Zhang Y, Zeng W, Cesarino I. Coffee cell walls—composition, influence on cup quality and opportunities for coffee improvements. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The coffee beverage is the second most consumed drink worldwide after water. In coffee beans, cell wall storage polysaccharides (CWSPs) represent around 50 per cent of the seed dry mass, mainly consisting of galactomannans and arabinogalactans. These highly abundant structural components largely influence the organoleptic properties of the coffee beverage, mainly due to the complex changes they undergo during the roasting process. From a nutritional point of view, coffee CWSPs are soluble dietary fibers shown to provide numerous health benefits in reducing the risk of human diseases. Due to their influence on coffee quality and their health-promoting benefits, CWSPs have been attracting significant research attention. The importance of cell walls to the coffee industry is not restricted to beans used for beverage production, as several coffee by-products also present high concentrations of cell wall components. These by-products include cherry husks, cherry pulps, parchment skin, silver skin, and spent coffee grounds, which are currently used or have the potential to be utilized either as food ingredients or additives, or for the generation of downstream products such as enzymes, pharmaceuticals, and bioethanol. In addition to their functions during plant development, cell walls also play a role in the plant’s resistance to stresses. Here, we review several aspects of coffee cell walls, including chemical composition, biosynthesis, their function in coffee’s responses to stresses, and their influence on coffee quality. We also propose some potential cell wall–related biotechnological strategies envisaged for coffee improvements.
Collapse
Affiliation(s)
| | | | | | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
125
|
Ahmed S, Kouser S, Asgher M, Gandhi SG. Plant aquaporins: A frontward to make crop plants drought resistant. PHYSIOLOGIA PLANTARUM 2021; 172:1089-1105. [PMID: 33826759 DOI: 10.1111/ppl.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/10/2021] [Accepted: 04/03/2021] [Indexed: 05/25/2023]
Abstract
Drought stress alters gene expression and causes cellular damage in crop plants. Drought inhibits photosynthesis by reducing the content and the activity of the photosynthetic carbon reduction cycle, ultimately decreasing the crop yield. The role of aquaporins (AQP) in improving the growth and adaptation of crop plants under drought stress is of importance. AQP form channels and control water transport in and out of the cells and are associated with drought tolerance mechanisms. The current review addresses: (1) the evolution of AQPs in plants, (2) the classification of plant AQPs, (3) the role of AQPs in drought alleviation in crop plants, and (4) the phytohormone crosstalk with AQPs in crops exposed to drought stress.
Collapse
Affiliation(s)
- Sajad Ahmed
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Shaista Kouser
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sumit G Gandhi
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
126
|
Winkler J, Mylle E, De Meyer A, Pavie B, Merchie J, Grones P, Van Damme D. Visualizing protein-protein interactions in plants by rapamycin-dependent delocalization. THE PLANT CELL 2021; 33:1101-1117. [PMID: 33793859 PMCID: PMC7612334 DOI: 10.1093/plcell/koab004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
Identifying protein-protein interactions (PPIs) is crucial for understanding biological processes. Many PPI tools are available, yet only some function within the context of a plant cell. Narrowing down even further, only a few tools allow complex multi-protein interactions to be visualized. Here, we present a conditional in vivo PPI tool for plant research that meets these criteria. Knocksideways in plants (KSP) is based on the ability of rapamycin to alter the localization of a bait protein and its interactors via the heterodimerization of FKBP and FRB domains. KSP is inherently free from many limitations of other PPI systems. This in vivo tool does not require spatial proximity of the bait and prey fluorophores and it is compatible with a broad range of fluorophores. KSP is also a conditional tool and therefore the visualization of the proteins in the absence of rapamycin acts as an internal control. We used KSP to confirm previously identified interactions in Nicotiana benthamiana leaf epidermal cells. Furthermore, the scripts that we generated allow the interactions to be quantified at high throughput. Finally, we demonstrate that KSP can easily be used to visualize complex multi-protein interactions. KSP is therefore a versatile tool with unique characteristics and applications that complements other plant PPI methods.
Collapse
Affiliation(s)
- Joanna Winkler
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Evelien Mylle
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Andreas De Meyer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | | | - Julie Merchie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Peter Grones
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniёl Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
127
|
Autran D, Bassel GW, Chae E, Ezer D, Ferjani A, Fleck C, Hamant O, Hartmann FP, Jiao Y, Johnston IG, Kwiatkowska D, Lim BL, Mahönen AP, Morris RJ, Mulder BM, Nakayama N, Sozzani R, Strader LC, ten Tusscher K, Ueda M, Wolf S. What is quantitative plant biology? QUANTITATIVE PLANT BIOLOGY 2021; 2:e10. [PMID: 37077212 PMCID: PMC10095877 DOI: 10.1017/qpb.2021.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.
Collapse
Affiliation(s)
- Daphné Autran
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - George W. Bassel
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daphne Ezer
- The Alan Turing Institute, London, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Breisgau, Germany
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, École normale supérieure (ENS) de Lyon, Université Claude Bernard Lyon (UCBL), Lyon, France
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, Université de Lyon, Lyon, France
| | | | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Dorota Kwiatkowska
- Institute of Biology, Biotechnology and Environment Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Boon L. Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Ari Pekka Mahönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Bela M. Mulder
- Department of Living Matter, Institute AMOLF, Amsterdam, The Netherlands
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ross Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North CarolinaUSA
| | - Lucia C. Strader
- Department of Biology, Duke University, Durham, North Carolina, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MissouriUSA
| | - Kirsten ten Tusscher
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
128
|
Vu LD, Xu X, Zhu T, Pan L, van Zanten M, de Jong D, Wang Y, Vanremoortele T, Locke AM, van de Cotte B, De Winne N, Stes E, Russinova E, De Jaeger G, Van Damme D, Uauy C, Gevaert K, De Smet I. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nat Commun 2021; 12:2842. [PMID: 33990595 PMCID: PMC8121802 DOI: 10.1038/s41467-021-23112-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Plants respond to mild warm temperature conditions by increased elongation growth of organs to enhance cooling capacity, in a process called thermomorphogenesis. To this date, the regulation of thermomorphogenesis has been exclusively shown to intersect with light signalling pathways. To identify regulators of thermomorphogenesis that are conserved in flowering plants, we map changes in protein phosphorylation in both dicots and monocots exposed to warm temperature. We identify MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASE4 (MAP4K4)/TARGET OF TEMPERATURE3 (TOT3) as a regulator of thermomorphogenesis that impinges on brassinosteroid signalling in Arabidopsis thaliana. In addition, we show that TOT3 plays a role in thermal response in wheat, a monocot crop. Altogether, the conserved thermal regulation by TOT3 expands our knowledge of thermomorphogenesis beyond the well-studied pathways and can contribute to ensuring food security under a changing climate. Plants respond to warmth via growth processes termed thermomorphogenesis. Here, via a phosphoproteomics approach, the authors show that the mitogen activated protein kinase TOT3 regulates thermomorphogenesis in both wheat and Arabidopsis and modifies brassinosteroid signaling in Arabidopsis.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Dorrit de Jong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Tim Vanremoortele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Anna M Locke
- Soybean & Nitrogen Fixation Research Unit, United States Department of Agriculture- Agricultural Research Service, Raleigh, NC, 27695, USA.,Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium.,VIB Headquarters, 9052, Gent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, UK
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium. .,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium.
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium. .,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.
| |
Collapse
|
129
|
Lunardon A, Kariuki SM, Axtell MJ. Expression and processing of polycistronic artificial microRNAs and trans-acting siRNAs from transiently introduced transgenes in Solanum lycopersicum and Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1087-1104. [PMID: 33655542 DOI: 10.1111/tpj.15221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Targeted gene silencing using small regulatory RNAs is a widely used technique for genetic studies in plants. Artificial microRNAs are one common approach, as they have the advantage of producing just a single functional small RNA, which can be designed for high target specificity and low off-target effects. Simultaneous silencing of multiple targets with artificial microRNAs can be achieved by producing polycistronic microRNA precursors. Alternatively, specialized trans-acting short interfering RNA (tasiRNA) precursors can be designed to produce several specific tasiRNAs at once. Here we tested several artificial microRNA- and tasiRNA-based methods for multiplexed gene silencing in Solanum lycopersicum (tomato) and Nicotiana benthamiana. All analyses used transiently expressed transgenes delivered by infiltration of leaves with Agrobacterium tumefacians. Small RNA sequencing analyses revealed that many previously described approaches resulted in poor small RNA processing. The 5'-most microRNA precursor hairpins on polycistronic artificial microRNA precursors were generally processed more accurately than precursors at the 3'-end. Polycistronic artificial microRNAs where the hairpin precursors were separated by transfer RNAs had the best processing precision. Strikingly, artificial tasiRNA precursors failed to be processed in the expected phased manner in our system. These results highlight the need for further development of multiplexed artificial microRNA and tasiRNA strategies. The importance of small RNA sequencing, as opposed to single-target assays such as RNA blots or real-time polymerase chain reaction, is also discussed.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Samwel Muiruri Kariuki
- International Institute of Tropical Agriculture, Nairobi, PO Box 30709-00100, Kenya
- Department of Plant Sciences, Kenyatta University, Nairobi, PO Box 43844-00100, Kenya
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
130
|
Ganie SA, Wani SH, Henry R, Hensel G. Improving rice salt tolerance by precision breeding in a new era. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101996. [PMID: 33444976 DOI: 10.1016/j.pbi.2020.101996] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 05/03/2023]
Abstract
Rice is a premier staple food that constitutes the bulk of the daily diet of the majority of people in Asia. Agricultural productivity must be boosted to support this huge demand for rice. However, production is jeopardized by soil salinity. Advances in whole-genome sequencing, marker-assisted breeding strategies, and targeted mutagenesis have substantially improved the toolbox of today's breeders. Given that salinity has a major influence on rice at both the seedling and reproductive stages, understanding and manipulating this trait will have an enormous impact on sustainable production. This article summarizes recent developments in the understanding of the mechanisms of salt tolerance and how state-of-the-art tools such as RNA guided CRISPR endonuclease technology including targeted mutagenesis or base and prime editing can help in gene discovery and functional analysis as well as in transferring favorable alleles into elite breeding material to speed the breeding of salt-tolerant rice cultivars.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan 731235, West Bengal, India.
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani - 192101, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, J&K, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, OT Gatersleben, 06466 Seeland, Germany; Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
131
|
Bollier N, Andrade Buono R, Jacobs TB, Nowack MK. Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:651-653. [PMID: 33305496 PMCID: PMC8051595 DOI: 10.1111/pbi.13525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 05/29/2023]
Affiliation(s)
- Norbert Bollier
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Thomas B. Jacobs
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|
132
|
Collins SP, Rostain W, Liao C, Beisel CL. Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR-Cas12a gRNA switch. Nucleic Acids Res 2021; 49:2985-2999. [PMID: 33619539 PMCID: PMC7968991 DOI: 10.1093/nar/gkab100] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR technologies increasingly require spatiotemporal and dosage control of nuclease activity. One promising strategy involves linking nuclease activity to a cell's transcriptional state by engineering guide RNAs (gRNAs) to function only after complexing with a ‘trigger’ RNA. However, standard gRNA switch designs do not allow independent selection of trigger and guide sequences, limiting gRNA switch application. Here, we demonstrate the modular design of Cas12a gRNA switches that decouples selection of these sequences. The 5′ end of the Cas12a gRNA is fused to two distinct and non-overlapping domains: one base pairs with the gRNA repeat, blocking formation of a hairpin required for Cas12a recognition; the other hybridizes to the RNA trigger, stimulating refolding of the gRNA repeat and subsequent gRNA-dependent Cas12a activity. Using a cell-free transcription-translation system and Escherichia coli, we show that designed gRNA switches can respond to different triggers and target different DNA sequences. Modulating the length and composition of the sensory domain altered gRNA switch performance. Finally, gRNA switches could be designed to sense endogenous RNAs expressed only under specific growth conditions, rendering Cas12a targeting activity dependent on cellular metabolism and stress. Our design framework thus further enables tethering of CRISPR activities to cellular states.
Collapse
Affiliation(s)
- Scott P Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - William Rostain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Chunyu Liao
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.,Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany.,Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
133
|
Ramos Báez R, Nemhauser JL. Expansion and innovation in auxin signaling: where do we grow from here? Development 2021; 148:dev187120. [PMID: 33712444 PMCID: PMC7970066 DOI: 10.1242/dev.187120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The phytohormone auxin plays a role in almost all growth and developmental responses. The primary mechanism of auxin action involves the regulation of transcription via a core signaling pathway comprising proteins belonging to three classes: receptors, co-receptor/co-repressors and transcription factors. Recent studies have revealed that auxin signaling can be traced back at least as far as the transition to land. Moreover, studies in flowering plants have highlighted how expansion of the gene families encoding auxin components is tied to functional diversification. As we review here, these studies paint a picture of auxin signaling evolution as a driver of innovation.
Collapse
Affiliation(s)
- Román Ramos Báez
- University of Washington, Department of Biology, Seattle, WA 98105-1800, USA
| | | |
Collapse
|
134
|
Nadakuduti SS, Enciso-Rodríguez F. Advances in Genome Editing With CRISPR Systems and Transformation Technologies for Plant DNA Manipulation. FRONTIERS IN PLANT SCIENCE 2021; 11:637159. [PMID: 33519884 PMCID: PMC7840963 DOI: 10.3389/fpls.2020.637159] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 05/24/2023]
Abstract
The year 2020 marks a decade since the first gene-edited plants were generated using homing endonucleases and zinc finger nucleases. The advent of CRISPR/Cas9 for gene-editing in 2012 was a major science breakthrough that revolutionized both basic and applied research in various organisms including plants and consequently honored with "The Nobel Prize in Chemistry, 2020." CRISPR technology is a rapidly evolving field and multiple CRISPR-Cas derived reagents collectively offer a wide range of applications for gene-editing and beyond. While most of these technological advances are successfully adopted in plants to advance functional genomics research and development of innovative crops, others await optimization. One of the biggest bottlenecks in plant gene-editing has been the delivery of gene-editing reagents, since genetic transformation methods are only established in a limited number of species. Recently, alternative methods of delivering CRISPR reagents to plants are being explored. This review mainly focuses on the most recent advances in plant gene-editing including (1) the current Cas effectors and Cas variants with a wide target range, reduced size and increased specificity along with tissue specific genome editing tool kit (2) cytosine, adenine, and glycosylase base editors that can precisely install all possible transition and transversion mutations in target sites (3) prime editing that can directly copy the desired edit into target DNA by search and replace method and (4) CRISPR delivery mechanisms for plant gene-editing that bypass tissue culture and regeneration procedures including de novo meristem induction, delivery using viral vectors and prospects of nanotechnology-based approaches.
Collapse
Affiliation(s)
- Satya Swathi Nadakuduti
- Department of Environmental Horticulture, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Felix Enciso-Rodríguez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria – Agrosavia, Mosquera, Colombia
| |
Collapse
|
135
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
136
|
Nenadić M, Vermeer JEM. Dynamic cytokinin signalling landscapes during lateral root formation in Arabidopsis. QUANTITATIVE PLANT BIOLOGY 2021; 2:e13. [PMID: 37077210 PMCID: PMC10095801 DOI: 10.1017/qpb.2021.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023]
Abstract
By forming lateral roots, plants expand their root systems to improve anchorage and absorb more water and nutrients from the soil. Each phase of this developmental process in Arabidopsis is tightly regulated by dynamic and continuous signalling of the phytohormones cytokinin and auxin. While the roles of auxin in lateral root organogenesis and spatial accommodation by overlying cell layers have been well studied, insights on the importance of cytokinin is still somewhat limited. Cytokinin is a negative regulator of lateral root formation with versatile modes of action being activated at different root developmental zones. Here, we review the latest progress made towards our understanding of these spatially separated mechanisms of cytokinin-mediated signalling that shape lateral root initiation, outgrowth and emergence and highlight some of the enticing open questions.
Collapse
Affiliation(s)
- Milica Nenadić
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| | - Joop E. M. Vermeer
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Author for correspondence: Joop E. M. Vermeer, E-mail:
| |
Collapse
|
137
|
Shipman EN, Yu J, Zhou J, Albornoz K, Beckles DM. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? HORTICULTURE RESEARCH 2021; 8:1. [PMID: 33384412 PMCID: PMC7775472 DOI: 10.1038/s41438-020-00428-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 05/22/2023]
Abstract
Postharvest waste and loss of horticultural crops exacerbates the agricultural problems facing humankind and will continue to do so in the next decade. Fruits and vegetables provide us with a vast spectrum of healthful nutrients, and along with ornamentals, enrich our lives with a wide array of pleasant sensory experiences. These commodities are, however, highly perishable. Approximately 33% of the produce that is harvested is never consumed since these products naturally have a short shelf-life, which leads to postharvest loss and waste. This loss, however, could be reduced by breeding new crops that retain desirable traits and accrue less damage over the course of long supply chains. New gene-editing tools promise the rapid and inexpensive production of new varieties of crops with enhanced traits more easily than was previously possible. Our aim in this review is to critically evaluate gene editing as a tool to modify the biological pathways that determine fruit, vegetable, and ornamental quality, especially after storage. We provide brief and accessible overviews of both the CRISPR-Cas9 method and the produce supply chain. Next, we survey the literature of the last 30 years, to catalog genes that control or regulate quality or senescence traits that are "ripe" for gene editing. Finally, we discuss barriers to implementing gene editing for postharvest, from the limitations of experimental methods to international policy. We conclude that in spite of the hurdles that remain, gene editing of produce and ornamentals will likely have a measurable impact on reducing postharvest loss and waste in the next 5-10 years.
Collapse
Affiliation(s)
- Emma N Shipman
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Plant Biology Graduate Group, University of California, Davis, CA, 95616, USA.
| | - Jingwei Yu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Karin Albornoz
- Departamento de Produccion Vegetal, Universidad de Concepcion, Region del BioBio, Concepcion, Chile.
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
138
|
De Bruyn C, Ruttink T, Eeckhaut T, Jacobs T, De Keyser E, Goossens A, Van Laere K. Establishment of CRISPR/Cas9 Genome Editing in Witloof (Cichorium intybus var. foliosum). Front Genome Ed 2020; 2:604876. [PMID: 34713228 PMCID: PMC8525355 DOI: 10.3389/fgeed.2020.604876] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023] Open
Abstract
Cichorium intybus var. foliosum (witloof) is an economically important crop with a high nutritional value thanks to many specialized metabolites, such as polyphenols and terpenoids. However, witloof plants are rich in sesquiterpene lactones (SL) which are important for plant defense but also impart a bitter taste, thus limiting industrial applications. Inactivating specific genes in the SL biosynthesis pathway could lead to changes in the SL metabolite content and result in altered bitterness. In this study, a CRISPR/Cas9 genome editing workflow was implemented for witloof, starting with polyethylene glycol (PEG) mediated protoplast transfection for CRISPR/Cas9 vector delivery, followed by whole plant regeneration and mutation analysis. Protoplast transfection efficiencies ranged from 20 to 26 %. A CRISPR/Cas9 vector targeting the first exon of the phytoene desaturase (CiPDS) gene was transfected into witloof protoplasts and resulted in the knockout of CiPDS, giving rise to an albino phenotype in 23% of the regenerated plants. Further implementing our protocol, the SL biosynthesis pathway genes germacrene A synthase (GAS), germacrene A oxidase (GAO), and costunolide synthase (COS) were targeted in independent experiments. Highly multiplex (HiPlex) amplicon sequencing of the genomic target loci revealed plant mutation frequencies of 27.3, 42.7, and 98.3% in regenerated plants transfected with a CRISPR/Cas9 vector targeting CiGAS, CiGAO, and CiCOS, respectively. We observed different mutation spectra across the loci, ranging from consistently the same +1 nucleotide insertion in CiCOS across independent mutated lines, to a complex set of 20 mutation types in CiGAO across independent mutated lines. These results demonstrate a straightforward workflow for genome editing based on transfection and regeneration of witloof protoplasts and subsequent HiPlex amplicon sequencing. Our CRISPR/Cas9 workflow can enable gene functional research and faster incorporation of novel traits in elite witloof lines in the future, thus facilitating the development of novel industrial applications for witloof.
Collapse
Affiliation(s)
- Charlotte De Bruyn
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- *Correspondence: Charlotte De Bruyn
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Tom Eeckhaut
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Thomas Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| |
Collapse
|
139
|
Tiwari M, Trivedi P, Pandey A. Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food Energy Secur 2020. [DOI: 10.1002/fes3.258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Manish Tiwari
- National Institute of Plant Genome Research New Delhi India
| | - Prabodh Trivedi
- CSIR‐Central Institute of Medicinal and Aromatic Plants Lucknow India
| | | |
Collapse
|
140
|
A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form. Curr Biol 2020; 30:4857-4868.e6. [DOI: 10.1016/j.cub.2020.09.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
|
141
|
Champeyroux C, Stoof C, Rodriguez-Villalon A. Signaling phospholipids in plant development: small couriers determining cell fate. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:61-71. [PMID: 32771964 DOI: 10.1016/j.pbi.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 05/23/2020] [Indexed: 05/25/2023]
Abstract
The survival of plants hinges on their ability to perceive various environmental stimuli and translate them into appropriate biochemical responses. Phospholipids, a class of membrane lipid compounds that are asymmetrically distributed within plant cells, stand out among signal transmitters for their diversity of mechanisms by which they modulate stress and developmental processes. By modifying the chemo-physical properties of the plasma membrane (PM) as well as vesicle trafficking, phospholipids contribute to changes in the protein membrane landscape, and hence, signaling responses. In this article, we review the distinct signaling mechanisms phospholipids are involved in, with a special focus on the nuclear role of these compounds. Additionally, we summarize exemplary developmental processes greatly influenced by phospholipids.
Collapse
Affiliation(s)
- Chloe Champeyroux
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Claudia Stoof
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
142
|
Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 2020; 21:661-677. [PMID: 32973356 DOI: 10.1038/s41580-020-00288-9] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/26/2022]
Abstract
The prokaryote-derived CRISPR-Cas genome editing technology has altered plant molecular biology beyond all expectations. Characterized by robustness and high target specificity and programmability, CRISPR-Cas allows precise genetic manipulation of crop species, which provides the opportunity to create germplasms with beneficial traits and to develop novel, more sustainable agricultural systems. Furthermore, the numerous emerging biotechnologies based on CRISPR-Cas platforms have expanded the toolbox of fundamental research and plant synthetic biology. In this Review, we first briefly describe gene editing by CRISPR-Cas, focusing on the newest, precise gene editing technologies such as base editing and prime editing. We then discuss the most important applications of CRISPR-Cas in increasing plant yield, quality, disease resistance and herbicide resistance, breeding and accelerated domestication. We also highlight the most recent breakthroughs in CRISPR-Cas-related plant biotechnologies, including CRISPR-Cas reagent delivery, gene regulation, multiplexed gene editing and mutagenesis and directed evolution technologies. Finally, we discuss prospective applications of this game-changing technology.
Collapse
|
143
|
Feder A, Jensen S, Wang A, Courtney L, Middleton L, Van Eck J, Liu Y, Giovannoni JJ. Tomato fruit as a model for tissue-specific gene silencing in crop plants. HORTICULTURE RESEARCH 2020; 7:142. [PMID: 32922814 PMCID: PMC7459100 DOI: 10.1038/s41438-020-00363-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/24/2020] [Accepted: 07/07/2020] [Indexed: 05/04/2023]
Abstract
Use of CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated 9)-mediated genome editing has proliferated for use in numerous plant species to modify gene function and expression, usually in the context of either transient or stably inherited genetic alternations. While extremely useful in many applications, modification of some loci yields outcomes detrimental to further experimental evaluation or viability of the target organism. Expression of Cas9 under a promoter conferring gene knockouts in a tissue-specific subset of genomes has been demonstrated in insect and animal models, and recently in Arabidopsis. We developed an in planta GFP (green fluorescent protein) assay system to demonstrate fruit-specific gene editing in tomato using a phosphoenolpyruvate carboxylase 2 gene promoter. We then targeted a SET-domain containing polycomb protein, SlEZ2, previously shown to yield pleiotropic phenotypes when targeted via 35S-driven RNA interference and we were able to characterize fruit phenotypes absent additional developmental perturbations. Tissue-specific gene editing will have applications in assessing function of essential genes otherwise difficult to study via germline modifications and will provide routes to edited genomes in tissues that could not otherwise be recovered when their germline modification perturbs their normal development.
Collapse
Affiliation(s)
- Ari Feder
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA
| | - Sarah Jensen
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY USA
| | - Anquan Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA
- School of Biotechnology and Food Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Lance Courtney
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA
- Section of Plant Biology, Cornell University, Ithaca, NY USA
| | - Lesley Middleton
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA
| | - Joyce Van Eck
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, 230009 Hefei, China
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA
- Section of Plant Biology, Cornell University, Ithaca, NY USA
- US Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY USA
| |
Collapse
|
144
|
Lin Z, Xie F, Triviño M, Karimi M, Bosch M, Franklin-Tong VE, Nowack MK. Ectopic Expression of a Self-Incompatibility Module Triggers Growth Arrest and Cell Death in Vegetative Cells. PLANT PHYSIOLOGY 2020; 183:1765-1779. [PMID: 32561539 PMCID: PMC7401136 DOI: 10.1104/pp.20.00292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/06/2020] [Indexed: 05/04/2023]
Abstract
Self-incompatibility (SI) is used by many angiosperms to reject self-pollen and avoid inbreeding. In field poppy (Papaver rhoeas), SI recognition and rejection of self-pollen is facilitated by a female S-determinant, PrsS, and a male S-determinant, PrpS PrsS belongs to the cysteine-rich peptide family, whose members activate diverse signaling networks involved in plant growth, defense, and reproduction. PrsS and PrpS are tightly regulated and expressed solely in pistil and pollen cells, respectively. Interaction of cognate PrsS and PrpS triggers pollen tube growth inhibition and programmed cell death (PCD) of self-pollen. We previously demonstrated functional intergeneric transfer of PrpS and PrsS to Arabidopsis (Arabidopsis thaliana) pollen and pistil. Here, we show that PrpS and PrsS, when expressed ectopically, act as a bipartite module to trigger a self-recognition:self-destruct response in Arabidopsis independently of its reproductive context in vegetative cells. The addition of recombinant PrsS to seedling roots expressing the cognate PrpS resulted in hallmark features of the P rhoeas SI response, including S-specific growth inhibition and PCD of root cells. Moreover, inducible expression of PrsS in PrpS-expressing seedlings resulted in rapid death of the entire seedling. This demonstrates that, besides specifying SI, the bipartite PrpS-PrsS module can trigger growth arrest and cell death in vegetative cells. Heterologous, ectopic expression of a plant bipartite signaling module in plants has not been shown previously and, by extrapolation, our findings suggest that cysteine-rich peptides diversified for a variety of specialized functions, including the regulation of growth and PCD.
Collapse
Affiliation(s)
- Zongcheng Lin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent 9052, Belgium
| | - Fei Xie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent 9052, Belgium
| | - Marina Triviño
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent 9052, Belgium
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent 9052, Belgium
| | - Maurice Bosch
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | | | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent 9052, Belgium
| |
Collapse
|
145
|
Wang X, Ye L, Lyu M, Ursache R, Löytynoja A, Mähönen AP. An inducible genome editing system for plants. NATURE PLANTS 2020; 6:766-772. [PMID: 32601420 PMCID: PMC7611339 DOI: 10.1038/s41477-020-0695-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/17/2020] [Indexed: 05/02/2023]
Abstract
Conditional manipulation of gene expression is a key approach to investigating the primary function of a gene in a biological process. While conditional and cell-type-specific overexpression systems exist for plants, there are currently no systems available to disable a gene completely and conditionally. Here, we present a new tool with which target genes can efficiently and conditionally be knocked out by genome editing at any developmental stage. Target genes can also be knocked out in a cell-type-specific manner. Our tool is easy to construct and will be particularly useful for studying genes having null alleles that are non-viable or show pleiotropic developmental defects.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Munan Lyu
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Robertas Ursache
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Ari Löytynoja
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
146
|
Ding L, Chaumont F. Are Aquaporins Expressed in Stomatal Complexes Promising Targets to Enhance Stomatal Dynamics? FRONTIERS IN PLANT SCIENCE 2020; 11:458. [PMID: 32373147 PMCID: PMC7186399 DOI: 10.3389/fpls.2020.00458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
The opening and closure of stomata depend on the turgor pressure adjustment by the influx or efflux of ions and water in guard cells. In this process, aquaporins may play important roles by facilitating the transport of water and other small molecules. In this perspective, we consider the potential roles of aquaporins in the membrane diffusion of different molecules (H2O, CO2, and H2O2), processes dependent on abscisic acid and CO2 signaling in guard cells. While the limited data already available emphasizes the roles of aquaporins in stomatal movement, we propose additional approaches to elucidate the specific roles of single or several aquaporin isoforms in the stomata and evaluate the perspectives aquaporins might offer to improve stomatal dynamics.
Collapse
|
147
|
Langin G, Gouguet P, Üstün S. Microbial Effector Proteins - A Journey through the Proteolytic Landscape. Trends Microbiol 2020; 28:523-535. [PMID: 32544439 DOI: 10.1016/j.tim.2020.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
In the evolutionary arms race between pathogens and plants, pathogens evolved effector molecules that they secrete into the host to subvert plant cellular responses in a process termed the effector-targeted pathway (ETP). During recent years the repertoire of ETPs has increased and mounting evidence indicates that the proteasome and autophagy pathways are central hubs of microbial effectors. Both degradation pathways are implicated in a broad array of cellular responses and thus constitute an attractive target for effector proteins to have a broader impact on the host. In this article we first summarize recent findings on how effectors from various pathogens modulate proteolytic pathways and then provide a network analysis of established effector targets implicated in proteolytic degradation machineries. With this network we emphasize the idea that effectors targeting proteolytic degradation pathways will affect the protein synthesis-transport and degradation triangle. We put in perspective that, in utilizing the effector diversity of microbes, we produce excellent tools to study diverse cellular pathways and their possible interplay with each other.
Collapse
Affiliation(s)
- Gautier Langin
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany
| | - Paul Gouguet
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany
| | - Suayib Üstün
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany.
| |
Collapse
|
148
|
Ponce MR, Micol JL. A cornucopia of mutants for understanding plant embryo development. THE NEW PHYTOLOGIST 2020; 226:289-291. [PMID: 32077508 DOI: 10.1111/nph.16343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| |
Collapse
|
149
|
Efficient expression of multiple guide RNAs for CRISPR/Cas genome editing. ABIOTECH 2020; 1:123-134. [PMID: 36304720 PMCID: PMC9590505 DOI: 10.1007/s42994-019-00014-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/21/2019] [Indexed: 01/16/2023]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein system (CRISPR/Cas) has recently become the most powerful tool available for genome engineering in various organisms. With efficient and proper expression of multiple guide RNAs (gRNAs), the CRISPR/Cas system is particularly suitable for multiplex genome editing. During the past several years, different CRISPR/Cas expression strategies, such as two-component transcriptional unit, single transcriptional unit, and bidirectional promoter systems, have been developed to efficiently express gRNAs as well as Cas nucleases. Significant progress has been made to optimize gRNA production using different types of promoters and RNA processing strategies such as ribozymes, endogenous RNases, and exogenous endoribonuclease (Csy4). Besides being constitutively and ubiquitously expressed, inducible and spatiotemporal regulations of gRNA expression have been demonstrated using inducible, tissue-specific, and/or synthetic promoters for specific research purposes. Most recently, the emergence of CRISPR/Cas ribonucleoprotein delivery methods, such as engineered nanoparticles, further revolutionized transgene-free and multiplex genome editing. In this review, we discuss current strategies and future perspectives for efficient expression and engineering of gRNAs with a goal to facilitate CRISPR/Cas-based multiplex genome editing.
Collapse
|
150
|
Atkins PA, Voytas DF. Overcoming bottlenecks in plant gene editing. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:79-84. [PMID: 32143167 DOI: 10.1016/j.pbi.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 05/06/2023]
Abstract
Agriculture has reached a technological inflection point. The development of novel gene editing tools and methods for their delivery to plant cells promises to increase genome malleability and transform plant biology. Whereas gene editing is capable of making a myriad of DNA sequence modifications, its widespread adoption has been hindered by a number of factors, particularly inefficiencies in creating precise DNA sequence modifications and ineffective methods for delivering gene editing reagents to plant cells. Here, we briefly overview the principles of plant genome editing and highlight a subset of the most recent advances that promise to overcome current limitations.
Collapse
Affiliation(s)
- Paul Ap Atkins
- Center for Genome Engineering, Center for Precision Plant Genomics and Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
| | - Daniel F Voytas
- Center for Genome Engineering, Center for Precision Plant Genomics and Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|