101
|
Singh VK, Kolekar MH. Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 81:3-30. [PMID: 34220289 PMCID: PMC8236565 DOI: 10.1007/s11042-021-11158-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/01/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
The novel coronavirus outbreak has spread worldwide, causing respiratory infections in humans, leading to a huge global pandemic COVID-19. According to World Health Organization, the only way to curb this spread is by increasing the testing and isolating the infected. Meanwhile, the clinical testing currently being followed is not easily accessible and requires much time to give the results. In this scenario, remote diagnostic systems could become a handy solution. Some existing studies leverage the deep learning approach to provide an effective alternative to clinical diagnostic techniques. However, it is difficult to use such complex networks in resource constraint environments. To address this problem, we developed a fine-tuned deep learning model inspired by the architecture of the MobileNet V2 model. Moreover, the developed model is further optimized in terms of its size and complexity to make it compatible with mobile and edge devices. The results of extensive experimentation performed on a real-world dataset consisting of 2482 chest Computerized Tomography scan images strongly suggest the superiority of the developed fine-tuned deep learning model in terms of high accuracy and faster diagnosis time. The proposed model achieved a classification accuracy of 96.40%, with approximately ten times shorter response time than prevailing deep learning models. Further, McNemar's statistical test results also prove the efficacy of the proposed model.
Collapse
Affiliation(s)
- Vipul Kumar Singh
- Department of Electrical Engineering, Indian Institute of Technology, Patna, India
| | | |
Collapse
|
102
|
El-Rashidy N, Abdelrazik S, Abuhmed T, Amer E, Ali F, Hu JW, El-Sappagh S. Comprehensive Survey of Using Machine Learning in the COVID-19 Pandemic. Diagnostics (Basel) 2021; 11:1155. [PMID: 34202587 PMCID: PMC8303306 DOI: 10.3390/diagnostics11071155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, the global health population has faced the rapid spreading of coronavirus disease (COVID-19). With the incremental acceleration of the number of infected cases, the World Health Organization (WHO) has reported COVID-19 as an epidemic that puts a heavy burden on healthcare sectors in almost every country. The potential of artificial intelligence (AI) in this context is difficult to ignore. AI companies have been racing to develop innovative tools that contribute to arm the world against this pandemic and minimize the disruption that it may cause. The main objective of this study is to survey the decisive role of AI as a technology used to fight against the COVID-19 pandemic. Five significant applications of AI for COVID-19 were found, including (1) COVID-19 diagnosis using various data types (e.g., images, sound, and text); (2) estimation of the possible future spread of the disease based on the current confirmed cases; (3) association between COVID-19 infection and patient characteristics; (4) vaccine development and drug interaction; and (5) development of supporting applications. This study also introduces a comparison between current COVID-19 datasets. Based on the limitations of the current literature, this review highlights the open research challenges that could inspire the future application of AI in COVID-19.
Collapse
Affiliation(s)
- Nora El-Rashidy
- Machine Learning and Information Retrieval Department, Faculty of Artificial Intelligence, Kafrelsheiksh University, Kafrelsheiksh 13518, Egypt
| | - Samir Abdelrazik
- Information System Department, Faculty of Computer Science and Information Systems, Mansoura University, Mansoura 13518, Egypt;
| | - Tamer Abuhmed
- College of Computing and Informatics, Sungkyunkwan University, Seoul 03063, Korea
| | - Eslam Amer
- Faculty of Computer Science, Misr International University, Cairo 11828, Egypt;
| | - Farman Ali
- Department of Software, Sejong University, Seoul 05006, Korea;
| | - Jong-Wan Hu
- Department of Civil and Environmental Engineering, Incheon National University, Incheon 22012, Korea
| | - Shaker El-Sappagh
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha 13518, Egypt
| |
Collapse
|
103
|
Çallı E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: A survey. Med Image Anal 2021; 72:102125. [PMID: 34171622 DOI: 10.1016/j.media.2021.102125] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
Recent advances in deep learning have led to a promising performance in many medical image analysis tasks. As the most commonly performed radiological exam, chest radiographs are a particularly important modality for which a variety of applications have been researched. The release of multiple, large, publicly available chest X-ray datasets in recent years has encouraged research interest and boosted the number of publications. In this paper, we review all studies using deep learning on chest radiographs published before March 2021, categorizing works by task: image-level prediction (classification and regression), segmentation, localization, image generation and domain adaptation. Detailed descriptions of all publicly available datasets are included and commercial systems in the field are described. A comprehensive discussion of the current state of the art is provided, including caveats on the use of public datasets, the requirements of clinically useful systems and gaps in the current literature.
Collapse
Affiliation(s)
- Erdi Çallı
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands.
| | - Ecem Sogancioglu
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Bram van Ginneken
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Kicky G van Leeuwen
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Keelin Murphy
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| |
Collapse
|
104
|
Zandehshahvar M, van Assen M, Maleki H, Kiarashi Y, De Cecco CN, Adibi A. Toward understanding COVID-19 pneumonia: a deep-learning-based approach for severity analysis and monitoring the disease. Sci Rep 2021; 11:11112. [PMID: 34045510 PMCID: PMC8159925 DOI: 10.1038/s41598-021-90411-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
We report a new approach using artificial intelligence (AI) to study and classify the severity of COVID-19 using 1208 chest X-rays (CXRs) of 396 COVID-19 patients obtained through the course of the disease at Emory Healthcare affiliated hospitals (Atlanta, GA, USA). Using a two-stage transfer learning technique to train a convolutional neural network (CNN), we show that the algorithm is able to classify four classes of disease severity (normal, mild, moderate, and severe) with the average Area Under the Curve (AUC) of 0.93. In addition, we show that the outputs of different layers of the CNN under dominant filters provide valuable insight about the subtle patterns in the CXRs, which can improve the accuracy in the reading of CXRs by a radiologist. Finally, we show that our approach can be used for studying the disease progression in a single patient and its influencing factors. The results suggest that our technique can form the foundation of a more concrete clinical model to predict the evolution of COVID-19 severity and the efficacy of different treatments for each patient through using CXRs and clinical data in the early stages of the disease. This use of AI to assess the severity and possibly predicting the future stages of the disease early on, will be essential in dealing with the upcoming waves of COVID-19 and optimizing resource allocation and treatment.
Collapse
Affiliation(s)
| | - Marly van Assen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hossein Maleki
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yashar Kiarashi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Carlo N De Cecco
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali Adibi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
105
|
Abdulkareem M, Petersen SE. The Promise of AI in Detection, Diagnosis, and Epidemiology for Combating COVID-19: Beyond the Hype. Front Artif Intell 2021; 4:652669. [PMID: 34056579 PMCID: PMC8160471 DOI: 10.3389/frai.2021.652669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 has created enormous suffering, affecting lives, and causing deaths. The ease with which this type of coronavirus can spread has exposed weaknesses of many healthcare systems around the world. Since its emergence, many governments, research communities, commercial enterprises, and other institutions and stakeholders around the world have been fighting in various ways to curb the spread of the disease. Science and technology have helped in the implementation of policies of many governments that are directed toward mitigating the impacts of the pandemic and in diagnosing and providing care for the disease. Recent technological tools, artificial intelligence (AI) tools in particular, have also been explored to track the spread of the coronavirus, identify patients with high mortality risk and diagnose patients for the disease. In this paper, areas where AI techniques are being used in the detection, diagnosis and epidemiological predictions, forecasting and social control for combating COVID-19 are discussed, highlighting areas of successful applications and underscoring issues that need to be addressed to achieve significant progress in battling COVID-19 and future pandemics. Several AI systems have been developed for diagnosing COVID-19 using medical imaging modalities such as chest CT and X-ray images. These AI systems mainly differ in their choices of the algorithms for image segmentation, classification and disease diagnosis. Other AI-based systems have focused on predicting mortality rate, long-term patient hospitalization and patient outcomes for COVID-19. AI has huge potential in the battle against the COVID-19 pandemic but successful practical deployments of these AI-based tools have so far been limited due to challenges such as limited data accessibility, the need for external evaluation of AI models, the lack of awareness of AI experts of the regulatory landscape governing the deployment of AI tools in healthcare, the need for clinicians and other experts to work with AI experts in a multidisciplinary context and the need to address public concerns over data collection, privacy, and protection. Having a dedicated team with expertise in medical data collection, privacy, access and sharing, using federated learning whereby AI scientists hand over training algorithms to the healthcare institutions to train models locally, and taking full advantage of biomedical data stored in biobanks can alleviate some of problems posed by these challenges. Addressing these challenges will ultimately accelerate the translation of AI research into practical and useful solutions for combating pandemics.
Collapse
Affiliation(s)
- Musa Abdulkareem
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - Steffen E. Petersen
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
106
|
Luján-García JE, Villuendas-Rey Y, López-Yáñez I, Camacho-Nieto O, Yáñez-Márquez C. NanoChest-Net: A Simple Convolutional Network for Radiological Studies Classification. Diagnostics (Basel) 2021; 11:775. [PMID: 33925844 PMCID: PMC8145173 DOI: 10.3390/diagnostics11050775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The new coronavirus disease (COVID-19), pneumonia, tuberculosis, and breast cancer have one thing in common: these diseases can be diagnosed using radiological studies such as X-rays images. With radiological studies and technology, computer-aided diagnosis (CAD) results in a very useful technique to analyze and detect abnormalities using the images generated by X-ray machines. Some deep-learning techniques such as a convolutional neural network (CNN) can help physicians to obtain an effective pre-diagnosis. However, popular CNNs are enormous models and need a huge amount of data to obtain good results. In this paper, we introduce NanoChest-net, which is a small but effective CNN model that can be used to classify among different diseases using images from radiological studies. NanoChest-net proves to be effective in classifying among different diseases such as tuberculosis, pneumonia, and COVID-19. In two of the five datasets used in the experiments, NanoChest-net obtained the best results, while on the remaining datasets our model proved to be as good as baseline models from the state of the art such as the ResNet50, Xception, and DenseNet121. In addition, NanoChest-net is useful to classify radiological studies on the same level as state-of-the-art algorithms with the advantage that it does not require a large number of operations.
Collapse
Affiliation(s)
| | - Yenny Villuendas-Rey
- Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Itzamá López-Yáñez
- Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Oscar Camacho-Nieto
- Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Cornelio Yáñez-Márquez
- Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07700, Mexico
| |
Collapse
|
107
|
Abstract
The severe spread of the COVID-19 pandemic has created a situation of public health emergency and global awareness. In our research, we analyzed the demographical factors affecting the global pandemic spread along with the features that lead to death due to the infection. Modeling results stipulate that the mortality rate increase as the age increase and it is found that most of the death cases belong to the age group 60–80. Cluster-based analysis of age groups is also conducted to analyze the maximum targeted age-groups. An association between positive COVID-19 cases and deceased cases are also presented, with the impact on male and female death cases due to corona. Additionally, we have also presented an artificial intelligence-based statistical approach to predict the survival chances of corona infected people in South Korea with the analysis of the impact on the exploratory factors, including age-groups, gender, temporal evolution, etc. To analyze the coronavirus cases, we applied machine learning with hyperparameters tuning and deep learning models with an autoencoder-based approach for estimating the influence of the disparate features on the spread of the disease and predict the survival possibilities of the quarantined patients in isolation. The model calibrated in the study is based on positive corona infection cases and presents the analysis over different aspects that proven to be impactful to analyze the temporal trends in the current situation along with the exploration of deceased cases due to coronavirus. Analysis delineates key points in the outbreak spreading, indicating that the models driven by machine intelligence and deep learning can be effective in providing a quantitative view of the epidemical outbreak.
Collapse
|
108
|
Abstract
Introduction In low-income and middle-income countries, pneumonia remains the leading cause of illness and death in children<5 years. The recommended tool for diagnosing paediatric pneumonia is the interpretation of chest X-ray images, which is difficult to standardise and requires trained clinicians/radiologists. Current automated computational tools have primarily focused on assessing adult pneumonia and were trained on images evaluated by a single specialist. We aim to provide a computational tool using a deep-learning approach to diagnose paediatric pneumonia using X-ray images assessed by multiple specialists trained by the WHO expert X-ray image reading panel. Methods and analysis Approximately 10 000 paediatric chest X-ray images are currently being collected from an ongoing WHO-supported surveillance study in Bangladesh. Each image will be read by two trained clinicians/radiologists for the presence or absence of primary endpoint pneumonia (PEP) in each lung, as defined by the WHO. Images whose PEP labels are discordant in either lung will be reviewed by a third specialist and the final assignment will be made using a majority vote. Convolutional neural networks will be used for lung segmentation to align and scale the images to a reference, and for interpretation of the images for the presence of PEP. The model will be evaluated against an independently collected and labelled set of images from the WHO. The study outcome will be an automated method for the interpretation of chest radiographs for diagnosing paediatric pneumonia. Ethics and dissemination All study protocols were approved by the Ethical Review Committees of the Bangladesh Institute of Child Health, Bangladesh. The study sponsor deemed it unnecessary to attain ethical approval from the Academic and Clinical Central Office for Research and Development of University of Edinburgh, UK. The study uses existing X-ray images from an ongoing WHO-coordinated surveillance. All findings will be published in an open-access journal. All X-ray labels and statistical code will be made openly available. The model and images will be made available on request.
Collapse
|
109
|
Dev K, Khowaja SA, Bist AS, Saini V, Bhatia S. Triage of potential COVID-19 patients from chest X-ray images using hierarchical convolutional networks. Neural Comput Appl 2021; 35:1-16. [PMID: 33649695 PMCID: PMC7905772 DOI: 10.1007/s00521-020-05641-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
The current COVID-19 pandemic has motivated the researchers to use artificial intelligence techniques for a potential alternative to reverse transcription-polymerase chain reaction due to the limited scale of testing. The chest X-ray (CXR) is one of the alternatives to achieve fast diagnosis, but the unavailability of large-scale annotated data makes the clinical implementation of machine learning-based COVID detection difficult. Another issue is the usage of ImageNet pre-trained networks which does not extract reliable feature representations from medical images. In this paper, we propose the use of hierarchical convolutional network (HCN) architecture to naturally augment the data along with diversified features. The HCN uses the first convolution layer from COVIDNet followed by the convolutional layers from well-known pre-trained networks to extract the features. The use of the convolution layer from COVIDNet ensures the extraction of representations relevant to the CXR modality. We also propose the use of ECOC for encoding multiclass problems to binary classification for improving the recognition performance. Experimental results show that HCN architecture is capable of achieving better results in comparison with the existing studies. The proposed method can accurately triage potential COVID-19 patients through CXR images for sharing the testing load and increasing the testing capacity.
Collapse
Affiliation(s)
- Kapal Dev
- CONNECT Centre, Trinity College Dublin, Dublin, Ireland
| | - Sunder Ali Khowaja
- Department of Telecommunication, Faculty of Engineering and Technology, University of Sindh, Jamshoro, Pakistan
| | | | | | - Surbhi Bhatia
- Department of Information Systems, King Faisal University, Hofuf, Saudi Arabia
| |
Collapse
|
110
|
Esteva A, Chou K, Yeung S, Naik N, Madani A, Mottaghi A, Liu Y, Topol E, Dean J, Socher R. Deep learning-enabled medical computer vision. NPJ Digit Med 2021; 4:5. [PMID: 33420381 PMCID: PMC7794558 DOI: 10.1038/s41746-020-00376-2] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields-including medicine-to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques-powered by deep learning-for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit-including cardiology, pathology, dermatology, ophthalmology-and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.
Collapse
Affiliation(s)
| | | | | | - Nikhil Naik
- Salesforce AI Research, San Francisco, CA, USA
| | - Ali Madani
- Salesforce AI Research, San Francisco, CA, USA
| | | | - Yun Liu
- Google Research, Mountain View, CA, USA
| | - Eric Topol
- Scripps Research Translational Institute, La Jolla, CA, USA
| | - Jeff Dean
- Google Research, Mountain View, CA, USA
| | | |
Collapse
|
111
|
Singh RK, Pandey R, Babu RN. COVIDScreen: explainable deep learning framework for differential diagnosis of COVID-19 using chest X-rays. Neural Comput Appl 2021; 33:8871-8892. [PMID: 33437132 PMCID: PMC7791540 DOI: 10.1007/s00521-020-05636-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
COVID-19 has emerged as a global crisis with unprecedented socio-economic challenges, jeopardizing our lives and livelihoods for years to come. The unavailability of vaccines for COVID-19 has rendered rapid testing of the population instrumental in order to contain the exponential rise in cases of infection. Shortage of RT-PCR test kits and delays in obtaining test results calls for alternative methods of rapid and reliable diagnosis. In this article, we propose a novel deep learning-based solution using chest X-rays which can help in rapid triaging of COVID-19 patients. The proposed solution uses image enhancement, image segmentation, and employs a modified stacked ensemble model consisting of four CNN base-learners along with Naive Bayes as meta-learner to classify chest X-rays into three classes viz. COVID-19, pneumonia, and normal. An effective pruning strategy as introduced in the proposed framework results in increased model performance, generalizability, and decreased model complexity. We incorporate explainability in our article by using Grad-CAM visualization in order to establish trust in the medical AI system. Furthermore, we evaluate multiple state-of-the-art GAN architectures and their ability to generate realistic synthetic samples of COVID-19 chest X-rays to deal with limited numbers of training samples. The proposed solution significantly outperforms existing methods, with 98.67% accuracy, 0.98 Kappa score, and F-1 scores of 100, 98, and 98 for COVID-19, normal, and pneumonia classes, respectively, on standard datasets. The proposed solution can be used as one element of patient evaluation along with gold-standard clinical and laboratory testing.
Collapse
Affiliation(s)
| | - Rohan Pandey
- Shiv Nadar University, NCR, Gautam Budh Nagar, India
| | | |
Collapse
|
112
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
113
|
Albadr MAA, Tiun S, Ayob M, AL-Dhief FT, Omar K, Hamzah FA. Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection. PLoS One 2020; 15:e0242899. [PMID: 33320858 PMCID: PMC7737907 DOI: 10.1371/journal.pone.0242899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.
Collapse
Affiliation(s)
| | - Sabrina Tiun
- CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Masri Ayob
- CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Fahad Taha AL-Dhief
- Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Khairuddin Omar
- CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Faizal Amri Hamzah
- Department of Emergency Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
114
|
Rasheed J, Jamil A, Hameed AA, Aftab U, Aftab J, Shah SA, Draheim D. A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. CHAOS, SOLITONS, AND FRACTALS 2020; 141:110337. [PMID: 33071481 PMCID: PMC7547637 DOI: 10.1016/j.chaos.2020.110337] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/04/2023]
Abstract
While the world has experience with many different types of infectious diseases, the current crisis related to the spread of COVID-19 has challenged epidemiologists and public health experts alike, leading to a rapid search for, and development of, new and innovative solutions to combat its spread. The transmission of this virus has infected more than 18.92 million people as of August 6, 2020, with over half a million deaths across the globe; the World Health Organization (WHO) has declared this a global pandemic. A multidisciplinary approach needs to be followed for diagnosis, treatment and tracking, especially between medical and computer sciences, so, a common ground is available to facilitate the research work at a faster pace. With this in mind, this survey paper aimed to explore and understand how and which different technological tools and techniques have been used within the context of COVID-19. The primary contribution of this paper is in its collation of the current state-of-the-art technological approaches applied to the context of COVID-19, and doing this in a holistic way, covering multiple disciplines and different perspectives. The analysis is widened by investigating Artificial Intelligence (AI) approaches for the diagnosis, anticipate infection and mortality rate by tracing contacts and targeted drug designing. Moreover, the impact of different kinds of medical data used in diagnosis, prognosis and pandemic analysis is also provided. This review paper covers both medical and technological perspectives to facilitate the virologists, AI researchers and policymakers while in combating the COVID-19 outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54700, Pakistan
| | - Javaria Aftab
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
| | - Syed Attique Shah
- Department of IT, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Dirk Draheim
- Information Systems Group, Tallinn University of Technology, Akadeemia tee 15a, 12618, Tallinn, Estonia
| |
Collapse
|