101
|
Zhu F, Clauss M. Evaluating membrane affinity by integrating protein orientations. J Mol Graph Model 2014; 54:141-7. [PMID: 25459766 DOI: 10.1016/j.jmgm.2014.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/13/2014] [Accepted: 10/15/2014] [Indexed: 11/16/2022]
Abstract
Energetic interactions of a protein with lipid bilayers determine its propensity to reside in the membrane. Here we seek to evaluate the membrane interactions for EMAPII, a protein found to be released from the cell by unknown mechanisms, as well as several other proteins. Using a knowledge-based coarse-grained membrane potential, we calculate the free energy profiles for these proteins by integrating out the orientation degrees of freedom. Due to the invariance of energy under in-plane rotations about the membrane normal, the orientation space can be reduced to two dimensions and mapped onto the surface of a unit sphere, thus making visualization, sampling and integration more convenient. The integrated free energy profiles determine the relative probabilities along the membrane normal for the proteins regardless of their orientations, and display distinctive characteristics for membrane proteins and water-soluble proteins. The membrane interactions for EMAPII exhibit typical features of a water-soluble protein, with a high energetic barrier to enter or cross the membrane. Our results thus suggest that similar to the non-classical export of FGF1, the release of EMAPII would involve more complicated mechanisms than simple passive diffusion across the membrane.
Collapse
Affiliation(s)
- Fangqiang Zhu
- Department of Physics, Indiana University - Purdue University Indianapolis, United States.
| | - Matthias Clauss
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
102
|
Molecular interactions of CPC, CPB, CTAB, and EPC biosurfactants in aqueous olive oil mixtures analyzed with physicochemical data and SEM micrographs. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2010.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
103
|
Shelar A, Bansal M. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment. Proteins 2014; 82:3420-36. [PMID: 25257385 DOI: 10.1002/prot.24696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/05/2014] [Accepted: 09/16/2014] [Indexed: 11/09/2022]
Abstract
α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins.
Collapse
Affiliation(s)
- Ashish Shelar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
104
|
Clémençon B, Lüscher BP, Fine M, Baumann MU, Surbek DV, Bonny O, Hediger MA. Expression, purification, and structural insights for the human uric acid transporter, GLUT9, using the Xenopus laevis oocytes system. PLoS One 2014; 9:e108852. [PMID: 25286413 PMCID: PMC4186817 DOI: 10.1371/journal.pone.0108852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.
Collapse
Affiliation(s)
- Benjamin Clémençon
- Institute of Biochemistry and Molecular Medicine (IBMM), and NCCR TransCure, University of Bern, Bern, Switzerland
- * E-mail: (BC); (MAH)
| | - Benjamin P. Lüscher
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Michael Fine
- Institute of Biochemistry and Molecular Medicine (IBMM), and NCCR TransCure, University of Bern, Bern, Switzerland
| | - Marc U. Baumann
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Daniel V. Surbek
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Matthias A. Hediger
- Institute of Biochemistry and Molecular Medicine (IBMM), and NCCR TransCure, University of Bern, Bern, Switzerland
- * E-mail: (BC); (MAH)
| |
Collapse
|
105
|
Chang SY, Liu FF, Dong XY, Sun Y. Molecular insight into conformational transmission of human P-glycoprotein. J Chem Phys 2014; 139:225102. [PMID: 24329094 DOI: 10.1063/1.4832740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.
Collapse
Affiliation(s)
- Shan-Yan Chang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fu-Feng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
106
|
ProBLM web server: protein and membrane placement and orientation package. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:838259. [PMID: 25126110 PMCID: PMC4122144 DOI: 10.1155/2014/838259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023]
Abstract
The 3D structures of membrane proteins are typically determined without the presence of a lipid bilayer. For the purpose of studying the role of membranes on the wild type characteristics of the corresponding protein, determining the position and orientation of transmembrane proteins within a membrane environment is highly desirable. Here we report a geometry-based approach to automatically insert a membrane protein with a known 3D structure into pregenerated lipid bilayer membranes with various dimensions and lipid compositions or into a pseudomembrane. The pseudomembrane is built using the Protein Nano-Object Integrator which generates a parallelepiped of user-specified dimensions made up of pseudoatoms. The pseudomembrane allows for modeling the desolvation effects while avoiding plausible errors associated with wrongly assigned protein-lipid contacts. The method is implemented into a web server, the ProBLM server, which is freely available to the biophysical community. The web server allows the user to upload a protein coordinate file and any missing residues or heavy atoms are regenerated. ProBLM then creates a combined protein-membrane complex from the given membrane protein and bilayer lipid membrane or pseudomembrane. The user is given an option to manually refine the model by manipulating the position and orientation of the protein with respect to the membrane.
Collapse
|
107
|
Pogozheva ID, Mosberg HI, Lomize AL. Life at the border: adaptation of proteins to anisotropic membrane environment. Protein Sci 2014; 23:1165-96. [PMID: 24947665 DOI: 10.1002/pro.2508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region-between double bonds and carbonyl groups of lipids. These "midpolar" regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein-lipid binding.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109-1065
| | | | | |
Collapse
|
108
|
Affiliation(s)
- Karen G. Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218;
| |
Collapse
|
109
|
Trésaugues L, Silvander C, Flodin S, Welin M, Nyman T, Gräslund S, Hammarström M, Berglund H, Nordlund P. Structural basis for phosphoinositide substrate recognition, catalysis, and membrane interactions in human inositol polyphosphate 5-phosphatases. Structure 2014; 22:744-55. [PMID: 24704254 DOI: 10.1016/j.str.2014.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/15/2022]
Abstract
SHIP2, OCRL, and INPP5B belong to inositol polyphosphate 5-phophatase subfamilies involved in insulin regulation and Lowes syndrome. The structural basis for membrane recognition, substrate specificity, and regulation of inositol polyphosphate 5-phophatases is still poorly understood. We determined the crystal structures of human SHIP2, OCRL, and INPP5B, the latter in complex with phosphoinositide substrate analogs, which revealed a membrane interaction patch likely to assist in sequestering substrates from the lipid bilayer. Residues recognizing the 1-phosphate of the substrates are highly conserved among human family members, suggesting similar substrate binding modes. However, 3- and 4-phosphate recognition varies and determines individual substrate specificity profiles. The high conservation of the environment of the scissile 5-phosphate suggests a common reaction geometry for all members of the human 5-phosphatase family.
Collapse
Affiliation(s)
- Lionel Trésaugues
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Camilla Silvander
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Susanne Flodin
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Welin
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Tomas Nyman
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Hammarström
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Helena Berglund
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Pär Nordlund
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden; Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Centre for Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
110
|
Marvin DA, Symmons MF, Straus SK. Structure and assembly of filamentous bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:80-122. [PMID: 24582831 DOI: 10.1016/j.pbiomolbio.2014.02.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/09/2014] [Indexed: 12/24/2022]
Abstract
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium. The bacteriophage is a semi-flexible worm-like nucleoprotein filament. The virion comprises a tube of several thousand identical major coat protein subunits around a core of single-stranded circular DNA. Each protein subunit is a polymer of about 50 amino-acid residues, largely arranged in an α-helix. The subunits assemble into a helical sheath, with each subunit oriented at a small angle to the virion axis and interdigitated with neighbouring subunits. A few copies of "minor" phage proteins necessary for infection and/or extrusion of the virion are located at each end of the completed virion. Here we review both the structure of the virion and aspects of its function, such as the way the virion enters the host, multiplies, and exits to prey on further hosts. In particular we focus on our understanding of the way the components of the virion come together during assembly at the membrane. We try to follow a basic rule of empirical science, that one should chose the simplest theoretical explanation for experiments, but be prepared to modify or even abandon this explanation as new experiments add more detail.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - M F Symmons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - S K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
111
|
Nguyen D, Helms V, Lee PH. PRIMSIPLR: Prediction of inner-membrane situated pore-lining residues for alpha-helical transmembrane proteins. Proteins 2014; 82:1503-11. [DOI: 10.1002/prot.24520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/08/2014] [Accepted: 01/16/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Duy Nguyen
- Center for Bioinformatics; Saarland University; D-66041 Saarbrücken Germany
| | - Volkhard Helms
- Center for Bioinformatics; Saarland University; D-66041 Saarbrücken Germany
| | - Po-Hsien Lee
- Center for Bioinformatics; Saarland University; D-66041 Saarbrücken Germany
| |
Collapse
|
112
|
Nugent T, Jones DT. Membrane protein orientation and refinement using a knowledge-based statistical potential. BMC Bioinformatics 2013; 14:276. [PMID: 24047460 PMCID: PMC3852961 DOI: 10.1186/1471-2105-14-276] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/05/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent increases in the number of deposited membrane protein crystal structures necessitate the use of automated computational tools to position them within the lipid bilayer. Identifying the correct orientation allows us to study the complex relationship between sequence, structure and the lipid environment, which is otherwise challenging to investigate using experimental techniques due to the difficulty in crystallising membrane proteins embedded within intact membranes. RESULTS We have developed a knowledge-based membrane potential, calculated by the statistical analysis of transmembrane protein structures, coupled with a combination of genetic and direct search algorithms, and demonstrate its use in positioning proteins in membranes, refinement of membrane protein models and in decoy discrimination. CONCLUSIONS Our method is able to quickly and accurately orientate both alpha-helical and beta-barrel membrane proteins within the lipid bilayer, showing closer agreement with experimentally determined values than existing approaches. We also demonstrate both consistent and significant refinement of membrane protein models and the effective discrimination between native and decoy structures. Source code is available under an open source license from http://bioinf.cs.ucl.ac.uk/downloads/memembed/.
Collapse
Affiliation(s)
- Timothy Nugent
- Bioinformatics Group, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | - David T Jones
- Bioinformatics Group, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
113
|
Deupi X. Relevance of rhodopsin studies for GPCR activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:674-82. [PMID: 24041646 DOI: 10.1016/j.bbabio.2013.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Rhodopsin, the dim-light photoreceptor present in the rod cells of the retina, is both a retinal-binding protein and a G protein-coupled receptor (GPCR). Due to this conjunction, it benefits from an arsenal of spectroscopy techniques that can be used for its characterization, while being a model system for the important family of Class A (also referred to as "rhodopsin-like") GPCRs. For instance, rhodopsin has been a crucial player in the field of GPCR structural biology. Until 2007, it was the only GPCR for which a high-resolution crystal structure was available, so all structure-activity analyses on GPCRs, from structure-based drug discovery to studies of structural changes upon activation, were based on rhodopsin. At present, about a third of currently available GPCR structures are still from rhodopsin. In this review, I show some examples of how these structures can still be used to gain insight into general aspects of GPCR activation. First, the analysis of the third intracellular loop in rhodopsin structures allows us to gain an understanding of the structural and dynamic properties of this region, which is absent (due to protein engineering or poor electron density) in most of the currently available GPCR structures. Second, a detailed analysis of the structure of the transmembrane domains in inactive, intermediate and active rhodopsin structures allows us to detect early conformational changes in the process of ligand-induced GPCR activation. Finally, the analysis of a conserved ligand-activated transmission switch in the transmembrane bundle of GPCRs in the context of the rhodopsin activation cycle, allows us to suggest that the structures of many of the currently available agonist-bound GPCRs may correspond to intermediate active states. While the focus in GPCR structural biology is inevitably moving away from rhodopsin, in other aspects rhodopsin is still at the forefront. For instance, the first studies of the structural basis of disease mutants in GPCRs, or the most detailed analysis of cellular GPCR signal transduction networks using a systems biology approach, have been carried out in rhodopsin. Finally, due again to its unique properties among GPCRs, rhodopsin will likely play an important role in the application of X-ray free electron laser crystallography to time-resolved structural biology in membrane proteins. Rhodopsin, thus, still remains relevant as a model system to study the molecular mechanisms of GPCR activation. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Xavier Deupi
- Condensed Matter Theory Group and Laboratory of Biomolecular Research, Paul Scherrer Institute, WHGA/106, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
114
|
Dyrka W, Bartuzel MM, Kotulska M. Optimization of 3D Poisson-Nernst-Planck model for fast evaluation of diverse protein channels. Proteins 2013; 81:1802-22. [PMID: 23720356 DOI: 10.1002/prot.24326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/02/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
We show the accuracy and applicability of our fast algorithmic implementation of a three-dimensional Poisson-Nernst-Planck (3D-PNP) flow model for characterizing different protein channels. Due to its high computational efficiency, our model can predict the full current-voltage characteristics of a channel within minutes, based on the experimental 3D structure of the channel or its computational model structure. Compared with other methods, such as Brownian dynamics, which currently needs a few weeks of the computational time, or even much more demanding molecular dynamics modeling, 3D-PNP is the only available method for a function-based evaluation of very numerous tentative structural channel models. Flow model tests of our algorithm and its optimal parametrization are provided for five native channels whose experimental structures are available in the protein data bank (PDB) in an open conductive state, and whose experimental current-voltage characteristics have been published. The channels represent very different geometric and structural properties, which makes it the widest test to date of the accuracy of 3D-PNP on real channels. We test whether the channel conductance, rectification, and charge selectivity obtained from the flow model, could be sufficiently sensitive to single-point mutations, related to unsignificant changes in the channel structure. Our results show that the classical 3D-PNP model, under proper parametrization, is able to achieve a qualitative agreement with experimental data for a majority of the tested characteristics and channels, including channels with narrow and irregular conductivity pores. We propose that although the standard PNP model cannot provide insight into complex physical phenomena due to its intrinsic limitations, its semiquantitative agreement is achievable for rectification and selectivity at a level sufficient for the bioinformatical purpose of selecting the best structural models with a great advantage of a very short computational time.
Collapse
Affiliation(s)
- Witold Dyrka
- Group of Bioinformatics and Biophysics of Nanopores, Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wroclaw, Poland
| | | | | |
Collapse
|
115
|
Pogozheva ID, Tristram-Nagle S, Mosberg HI, Lomize AL. Structural adaptations of proteins to different biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2592-608. [PMID: 23811361 DOI: 10.1016/j.bbamem.2013.06.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/04/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
Abstract
To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds.
Collapse
Affiliation(s)
- Irina D Pogozheva
- College of Pharmacy, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-1065, USA.
| | | | | | | |
Collapse
|
116
|
Madhongsa K, Pasan S, Phophetleb O, Nasompag S, Thammasirirak S, Daduang S, Taweechaisupapong S, Lomize AL, Patramanon R. Antimicrobial action of the cyclic peptide bactenecin on Burkholderia pseudomallei correlates with efficient membrane permeabilization. PLoS Negl Trop Dis 2013; 7:e2267. [PMID: 23785532 PMCID: PMC3681726 DOI: 10.1371/journal.pntd.0002267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/01/2013] [Indexed: 01/05/2023] Open
Abstract
Burkholderia pseudomallei is a category B agent that causes Melioidosis, an acute and chronic disease with septicemia. The current treatment regimen is a heavy dose of antibiotics such as ceftazidime (CAZ); however, the risk of a relapse is possible. Peptide antibiotics are an alternative to classical antibiotics as they exhibit rapid action and are less likely to result in the development of resistance. The aim of this study was to determine the bactericidal activity against B. pseudomallei and examine the membrane disrupting abilities of the potent antimicrobial peptides: bactenecin, RTA3, BMAP-18 and CA-MA. All peptides exhibited >97% bactericidal activity at 20 µM, with bactenecin having slightly higher activity. Long term time-kill assays revealed a complete inhibition of cell growth at 50 µM bactenecin and CA-MA. All peptides inhibited biofilm formation comparable to CAZ, but exhibited faster kinetics (within 1 h). Bactenecin exhibited stronger binding to LPS and induced perturbation of the inner membrane of live cells. Interaction of bactenecin with model membranes resulted in changes in membrane fluidity and permeability, leading to leakage of dye across the membrane at levels two-fold greater than that of other peptides. Modeling of peptide binding on the membrane showed stable and deep insertion of bactenecin into the membrane (up to 9 Å). We propose that bactenecin is able to form dimers or large β-sheet structures in a concentration dependent manner and subsequently rapidly permeabilize the membrane, leading to cytosolic leakage and cell death in a shorter period of time compared to CAZ. Bactenecin might be considered as a potent antimicrobial agent for use against B. pseudomallei. Burkholderia pseudomallei is a category B agent that causes Melioidosis, an acute and chronic disease with septicemia. The current treatment regimen is a heavy dose of antibiotics such as ceftazidime (CAZ), however, the risk of a relapse is possible. In this study we demonstrate that bactenecin, CA-MA, RTA3 and BMAP-18 are able to inhibit the growth and biofilm formation of B. pseudomallei. The strong bactericidal activity of bactenecin is attributed to its greater ability to permeabilize the membrane. Computational modeling of these peptide-membrane interactions provide support for a model in which bactenecin is able to penetrate the membrane most effectively due to its cyclical structure. The peptide, bactenecin has the potential to act as a highly effective alternative to CAZ, or as a combination therapy with CAZ in the treatment of melioidosis. Furthermore, understanding the mechanism of bactenecin may help us better design more effective peptides therapeutics of choice for melioidosis.
Collapse
Affiliation(s)
- Kanjana Madhongsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Supaluk Pasan
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Onanong Phophetleb
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sawinee Nasompag
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sompong Thammasirirak
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Suwimol Taweechaisupapong
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Andrei L. Lomize
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
117
|
Cho H, Wu M, Bilgin B, Walton SP, Chan C. Latest developments in experimental and computational approaches to characterize protein-lipid interactions. Proteomics 2013; 12:3273-85. [PMID: 22997137 DOI: 10.1002/pmic.201200255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022]
Abstract
Understanding the functional roles of all the molecules in cells is an ultimate goal of modern biology. An important facet is to understand the functional contributions from intermolecular interactions, both within a class of molecules (e.g. protein-protein) or between classes (e.g. protein-DNA). While the technologies for analyzing protein-protein and protein-DNA interactions are well established, the field of protein-lipid interactions is still relatively nascent. Here, we review the current status of the experimental and computational approaches for detecting and analyzing protein-lipid interactions. Experimental technologies fall into two principal categories, namely solution-based and array-based methods. Computational methods include large-scale data-driven analyses and predictions/dynamic simulations based on prior knowledge of experimentally identified interactions. Advances in the experimental technologies have led to improved computational analyses and vice versa, thereby furthering our understanding of protein-lipid interactions and their importance in biological systems.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
118
|
Nitsche JM, Kasting GB. Permeability of fluid-phase phospholipid bilayers: assessment and useful correlations for permeability screening and other applications. J Pharm Sci 2013; 102:2005-2032. [PMID: 23605505 DOI: 10.1002/jps.23471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 12/20/2012] [Accepted: 01/18/2013] [Indexed: 12/14/2022]
Abstract
Permeability data (P(lip/w) ) for liquid crystalline phospholipid bilayers composed of egg lecithin and dimyristoylphosphatidylcholine (DMPC) are analyzed in terms of a mathematical model that accounts for free surface area and chain-ordering effects in the bilayer as well as size and lipophilicity of the permeating species. Free surface area and chain ordering are largely determined by temperature and cholesterol content of the membrane, molecular size is represented by molecular weight, and lipophilicity of the barrier region is represented by the 1,9-decadiene/water partition coefficient, following earlier work by Xiang, Anderson, and coworkers. A correlating variable χ = MW(n) σ/(1 -σ) is used to link the results from different membrane systems, where different values of n are tried, and σ denotes a reduced phospholipid density. The group (1 -σ)/σ is a measure of free surface area, but can also be interpreted in terms of free volume. A single exponential function of χ is developed that is able to correlate 39 observations of P(lip/w) for different compounds in egg lecithin at low density, and 22 observations for acetic acid in DMPC at higher densities, spanning nine orders of magnitude to within an rms error for log 10 P(lip/w) of 0.20. The best fit found for n = 0.87 ultimately makes χ much closer to the ratio of molecular to free volumes than surface areas. The results serve as a starting point for estimating passive permeability of cell membranes to nonionized solutes as a function of temperature and cholesterol content of the membrane.
Collapse
Affiliation(s)
- Johannes M Nitsche
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260-4200.
| | - Gerald B Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0004
| |
Collapse
|
119
|
Yuzlenko O, Lazaridis T. Membrane protein native state discrimination by implicit membrane models. J Comput Chem 2013; 34:731-8. [PMID: 23224861 PMCID: PMC3584241 DOI: 10.1002/jcc.23189] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/16/2012] [Accepted: 10/28/2012] [Indexed: 02/01/2023]
Abstract
Four implicit membrane models [IMM1, generalized Born (GB)-surface area-implicit membrane (GBSAIM), GB with a simple switching (GBSW), and heterogeneous dielectric GB (HDGB)] were tested for their ability to discriminate the native conformation of five membrane proteins from 450 decoys generated by the Rosetta-Membrane program. The energy ranking of the native state and Z-scores were used to assess the performance of the models. The effect of membrane thickness was examined and was found to be substantial. Quite satisfactory discrimination was achieved with the all-atom IMM1 and GBSW models at 25.4 Å thickness and with the HDGB model at 28.5 Å thickness. The energy components by themselves were not discriminative. Both van der Waals and electrostatic interactions contributed to native state discrimination, to a different extent in each model. Computational efficiency of the models decreased in the order: extended-atom IMM1 > all-atom IMM1 > GBSAIM > GBSW > HDGB. These results encourage the further development and use of implicit membrane models for membrane protein structure prediction.
Collapse
Affiliation(s)
- Olga Yuzlenko
- Department of Chemistry, City College of the City University of New York, 160 Convent Avenue, New York, New York 10031, USA
| | | |
Collapse
|
120
|
Folding of outer membrane proteins. Arch Biochem Biophys 2013; 531:34-43. [DOI: 10.1016/j.abb.2012.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022]
|
121
|
Benjamini A, Smit B. Robust driving forces for transmembrane helix packing. Biophys J 2013; 103:1227-35. [PMID: 22995495 DOI: 10.1016/j.bpj.2012.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022] Open
Abstract
The packing structures of transmembrane helices are traditionally attributed to patterns in residues along the contact surface. In this view, besides keeping the helices confined in the membrane, the bilayer has only a minor effect on the helices structure. Here, we use two different approaches to show that the lipid environment has a crucial effect in determining the cross-angle distribution of packed helices. We analyzed structural data of a membrane proteins database. We show that the distribution of cross angles of helix pairs in this database is statistically indistinguishable from the cross-angle distribution of two noninteracting helices imbedded in the membrane. These results suggest that the cross angle is, to a large extent, determined by the tilt angle of the individual helices. We test this hypothesis using molecular simulations of a coarse-grained model that contains no specific residue interactions. These simulations reproduce the same cross-angle distribution as found in the database. As the tilt angle of a helix is dominated by hydrophobic mismatch between the protein and surrounding lipids, our results indicate that hydrophobic mismatch is the dominant factor guiding the transmembrane helix packing. Other short-range forces might then fine-tune the structure to its final configuration.
Collapse
Affiliation(s)
- Ayelet Benjamini
- Department of Chemistry, University of California, Berkeley, California, USA
| | | |
Collapse
|
122
|
Abstract
The time and length scales accessible by biomolecular simulations continue to increase. This is in part due to improvements in algorithms and computing performance, but is also the result of the emergence of coarse-grained (CG) potentials, which complement and extend the information obtainable from fully detailed models. CG methods have already proven successful for a range of applications that benefit from the ability to rapidly simulate spontaneous self-assembly within a lipid membrane environment, including the insertion and/or oligomerization of a range of "toy models," transmembrane peptides, and single- and multi-domain proteins. While these simplified approaches sacrifice atomistic level detail, it is now straightforward to "reverse map" from CG to atomistic descriptions, providing a strategy to assemble membrane proteins within a lipid environment, prior to all-atom simulation. Moreover, recent developments have been made in "dual resolution" techniques, allowing different molecules in the system to be modeled with atomistic or CG resolution simultaneously.
Collapse
Affiliation(s)
- Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK
| | | |
Collapse
|
123
|
Lomize AL, Pogozheva ID. Solvation models and computational prediction of orientations of peptides and proteins in membranes. Methods Mol Biol 2013; 1063:125-42. [PMID: 23975775 DOI: 10.1007/978-1-62703-583-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Membrane-associated peptides and proteins function in the highly heterogeneous environment of the lipid bilayer whose physico-chemical properties change non-monotonically along the bilayer normal. To simulate insertion of peptides and proteins into membranes and correctly reproduce the energetics of this process, an adequate solvation model and physically realistic representation of the lipid bilayer should be employed. We present a brief overview of the existing solvation models and their application for prediction of binding affinities and orientations of proteins in membranes. Particular emphasis is placed on the recently proposed PPM method, the corresponding web server, and the OPM database that were designed for positioning in membranes of integral and peripheral proteins with known three-dimensional structures.
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
124
|
Ohkubo YZ, Pogorelov TV, Arcario MJ, Christensen GA, Tajkhorshid E. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J 2012; 102:2130-9. [PMID: 22824277 DOI: 10.1016/j.bpj.2012.03.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 11/26/2022] Open
Abstract
Characterizing atomic details of membrane binding of peripheral membrane proteins by molecular dynamics (MD) has been significantly hindered by the slow dynamics of membrane reorganization associated with the phenomena. To expedite lateral diffusion of lipid molecules without sacrificing the atomic details of such interactions, we have developed a novel membrane representation, to our knowledge, termed the highly mobile membrane-mimetic (HMMM) model to study binding and insertion of various molecular species into the membrane. The HMMM model takes advantage of an organic solvent layer to represent the hydrophobic core of the membrane and short-tailed phospholipids for the headgroup region. We demonstrate that using these components, bilayer structures are formed spontaneously and rapidly, regardless of the initial position and orientation of the lipids. In the HMMM membrane, lipid molecules exhibit one to two orders of magnitude enhancement in lateral diffusion. At the same time, the membrane atomic density profile of the headgroup region produced by the HMMM model is essentially identical to those obtained for full-membrane models, indicating the faithful representation of the membrane surface by the model. We demonstrate the efficiency of the model in capturing spontaneous binding and insertion of peripheral proteins by using the membrane anchor (γ-carboxyglutamic-acid-rich domain; GLA domain) of human coagulation factor VII as a test model. Achieving full insertion of the GLA domain consistently in 10 independent unbiased simulations within short simulation times clearly indicates the robustness of the HMMM model in capturing membrane association of peripheral proteins very efficiently and reproducibly. The HMMM model will provide significant improvements to the current all-atom models by accelerating lipid dynamics to examine protein-membrane interactions more efficiently.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
125
|
Abstract
The PDBTM database (available at http://pdbtm.enzim.hu), the first comprehensive and up-to-date transmembrane protein selection of the Protein Data Bank, was launched in 2004. The database was created and has been continuously updated by the TMDET algorithm that is able to distinguish between transmembrane and non-transmembrane proteins using their 3D atomic coordinates only. The TMDET algorithm can locate the spatial positions of transmembrane proteins in lipid bilayer as well. During the last 8 years not only the size of the PDBTM database has been steadily growing from ∼400 to 1700 entries but also new structural elements have been identified, in addition to the well-known α-helical bundle and β-barrel structures. Numerous ‘exotic’ transmembrane protein structures have been solved since the first release, which has made it necessary to define these new structural elements, such as membrane loops or interfacial helices in the database. This article reports the new features of the PDBTM database that have been added since its first release, and our current efforts to keep the database up-to-date and easy to use so that it may continue to serve as a fundamental resource for the scientific community.
Collapse
Affiliation(s)
- Dániel Kozma
- Lendület Membrane Protein Bioinformatics Research Group and Protein Structure Research Group, Institute of Enzymology, MTA RCNS, PO Box 7, H-1518 Budapest, Hungary
| | | | | |
Collapse
|
126
|
The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): structure drives preference for simple neutral glycosphingolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:417-27. [PMID: 23159414 DOI: 10.1016/j.bbalip.2012.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 11/23/2022]
Abstract
Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds. Experimental evidence for a GLTP-fold includes: i) far-UV circular dichroism (CD) showing secondary structure with high alpha-helix content and a low thermally-induced unfolding transition (~41°C); ii) near-UV-CD indicating only subtle tertiary conformational change before/after interaction with membranes containing/lacking glycolipid; iii) Red-shifted tryptophan (Trp) emission wavelength maximum (λ(max)~352nm) for apo-FAPP2-C-terminal domain consistent with surface exposed intrinsic Trp residues; iv) 'signature' GLTP-fold Trp fluorescence response, i.e., intensity decrease (~30%) accompanied by strongly blue-shifted λ(max) (~14nm) upon interaction with membranes containing glycolipid, supporting direct involvement of Trp in glycolipid binding and enabling estimation of partitioning affinities. A structurally-based preference for other simple uncharged GSLs, in addition to glucosylceramide, makes human FAPP2-GLTP more similar to fungal HET-C2 than to plant AtGLTP1 (glucosylceramide-specific) or to broadly GSL-selective human GLTP. These findings along with the distinct mRNA exon/intron organizations originating from single-copy genes on separate human chromosomes suggest adaptive evolutionary divergence by these two GLTP-folds.
Collapse
|
127
|
Nitsche JM, Kasting GB. A correlation for 1,9-decadiene/water partition coefficients. J Pharm Sci 2012; 102:136-44. [PMID: 23132301 DOI: 10.1002/jps.23342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/13/2012] [Accepted: 09/28/2012] [Indexed: 11/08/2022]
Abstract
An important series of papers by Xiang, Anderson, and coworkers has established the strong correlation between phospholipid bilayer membrane permeability and the 1,9-decadiene/water partition coefficient over a wide range of compounds, elevating the importance of K(decadiene/w) as a predictor of molecular bioavailability. On the basis of a 58-point dataset developed by these authors, this research note develops an optimal correlation predicting log(10) K(decadiene/w) in terms of the octanol/water partition coefficient and four of the Abraham solvation parameters, namely A (hydrogen bond acidity), S (polarity/polarizability), E (excess molar refraction), and V (McGowan characteristic volume). The fitted dataset is described to within a root-mean-square error of 0.42, and the probable error in making a prediction for a compound not present therein is 0.49. It is shown that this correlation error for K(decadiene/w) is the dominant source of uncertainty in applying a comprehensive new model of phospholipid bilayer membrane permeability developed in a companion paper (Nitsche and Kasting, submitted for publication), which superposes the effects of molecular size and lipid density upon the decadiene lipophilicity scale. Thus, more experimental studies to augment the limited existing database on K(decadiene/w) are called for.
Collapse
Affiliation(s)
- Johannes M Nitsche
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260-4200, USA
| | | |
Collapse
|
128
|
Schmidt TH, Kandt C. LAMBADA and InflateGRO2: Efficient Membrane Alignment and Insertion of Membrane Proteins for Molecular Dynamics Simulations. J Chem Inf Model 2012; 52:2657-69. [DOI: 10.1021/ci3000453] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas H. Schmidt
- Computational Structural Biology, Department of Life Science Informatics B-IT, Life & Medical Sciences (LIMES) Institute, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Christian Kandt
- Computational Structural Biology, Department of Life Science Informatics B-IT, Life & Medical Sciences (LIMES) Institute, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany
| |
Collapse
|
129
|
Nugent T, Jones DT. Membrane protein structural bioinformatics. J Struct Biol 2012; 179:327-37. [DOI: 10.1016/j.jsb.2011.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
130
|
Lyons JA, Aragão D, Slattery O, Pisliakov AV, Soulimane T, Caffrey M. Structural insights into electron transfer in caa3-type cytochrome oxidase. Nature 2012; 487:514-8. [PMID: 22763450 PMCID: PMC3428721 DOI: 10.1038/nature11182] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 05/04/2012] [Indexed: 11/30/2022]
Abstract
Cytochrome c oxidase is a member of the heme copper oxidase superfamily (HCO)1. HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme’s function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c2–4. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36 Å resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented.
Collapse
Affiliation(s)
- Joseph A Lyons
- Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | | | | | | | | | | |
Collapse
|
131
|
Jaime MDLA, Lopez-Llorca LV, Conesa A, Lee AY, Proctor M, Heisler LE, Gebbia M, Giaever G, Westwood JT, Nislow C. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics. BMC Genomics 2012; 13:267. [PMID: 22727066 PMCID: PMC3505485 DOI: 10.1186/1471-2164-13-267] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/25/2012] [Indexed: 12/30/2022] Open
Abstract
Background Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS’s mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens.
Collapse
Affiliation(s)
- Maria D L A Jaime
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Zhou Y, Moin SM, Urban S, Zhang Y. An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency. Structure 2012; 20:1255-63. [PMID: 22705210 DOI: 10.1016/j.str.2012.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/29/2012] [Accepted: 04/05/2012] [Indexed: 12/11/2022]
Abstract
Rhomboid proteases regulate key cellular pathways, but their biochemical mechanism including how water is made available to the membrane-immersed active site remains ambiguous. We performed four prolonged molecular dynamics simulations initiated from both gate-open and gate-closed states of Escherichia coli rhomboid GlpG in a phospholipid bilayer. GlpG was notably stable in both gating states, experiencing similar tilt and local membrane thinning, with no observable gating transitions, highlighting that gating is rate-limiting. Analysis of dynamics revealed rapid loss of crystallographic waters from the active site, but retention of a water cluster within a site formed by His141, Ser181, Ser185, and/or Gln189. Experimental interrogation of 14 engineered mutants revealed an essential role for at least Gln189 and Ser185 in catalysis with no effect on structural stability. Our studies indicate that spontaneous water supply to the intramembrane active site of rhomboid proteases is rare, but its availability for catalysis is ensured by an unanticipated active site element, the water-retention site.
Collapse
Affiliation(s)
- Yanzi Zhou
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
133
|
Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis. Proc Natl Acad Sci U S A 2012; 109:6253-8. [PMID: 22474366 DOI: 10.1073/pnas.1119894109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
WaaA is a key enzyme in the biosynthesis of LPS, a critical component of the outer envelope of Gram-negative bacteria. Embedded in the cytoplasmic face of the inner membrane, WaaA catalyzes the transfer of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) to the lipid A precursor of LPS. Here we present crystal structures of the free and CMP-bound forms of WaaA from Aquifex aeolicus, an ancient Gram-negative hyperthermophile. These structures reveal details of the CMP-binding site and implicate a unique sequence motif (GGS/TX(5)GXNXLE) in Kdo binding. In addition, a cluster of highly conserved amino acid residues was identified which represents the potential membrane-attachment and acceptor-substrate binding site of WaaA. A series of site-directed mutagenesis experiments revealed critical roles for glycine 30 and glutamate 31 in Kdo transfer. Our results provide the structural basis of a critical reaction in LPS biosynthesis and allowed the development of a detailed model of the catalytic mechanism of WaaA.
Collapse
|
134
|
Smitha Rao CV, Anné J. Bacterial type I signal peptidases as antibiotic targets. Future Microbiol 2012; 6:1279-96. [PMID: 22082289 DOI: 10.2217/fmb.11.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite an alarming increase in morbidity and mortality caused by multidrug-resistant bacteria, the number of antibiotics available to efficiently combat them is dwindling. Consequently, there is a pressing need for new drugs, preferably with novel modes of action to avert the problem of cross-resistance. Several new targets have been proposed, including proteins essential in the protein secretion pathway such as the type I signal peptidase (SPase), indispensable for the release of the signal peptide during secretion of Sec- and Tat-dependent proteins. The type I SPase is considered to be an attractive target because it is essential, substantially different from the eukaryotic counterpart, and its active site is located at the outer leaflet of the cytoplasmic membrane, permitting relatively easy access to potential inhibitors. A few SPase inhibitors have already been identified, but their suitability as drugs is yet to be confirmed. An overview is given on the currently known SPase inhibitors, how they can give valuable information on the structural, biochemical and target validation aspects of the SPases, the approaches to identify them, and their future potential as drugs.
Collapse
Affiliation(s)
- C V Smitha Rao
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | |
Collapse
|
135
|
Hsieh D, Davis A, Nanda V. A knowledge-based potential highlights unique features of membrane α-helical and β-barrel protein insertion and folding. Protein Sci 2011; 21:50-62. [PMID: 22031179 DOI: 10.1002/pro.758] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/06/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
Outer membrane β-barrel proteins differ from α-helical inner membrane proteins in lipid environment, secondary structure, and the proposed processes of folding and insertion. It is reasonable to expect that outer membrane proteins may contain primary sequence information specific for their folding and insertion behavior. In previous work, a depth-dependent insertion potential, E(z) , was derived for α-helical inner membrane proteins. We have generated an equivalent potential for TM β-barrel proteins. The similarities and differences between these two potentials provide insight into unique aspects of the folding and insertion of β-barrel membrane proteins. This potential can predict orientation within the membrane and identify functional residues involved in intermolecular interactions.
Collapse
Affiliation(s)
- Daniel Hsieh
- BioMaPS Institute and the Graduate Program in Computational Biology and Molecular Biophysics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
136
|
Barrera NP, Robinson CV. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem 2011; 80:247-71. [PMID: 21548785 DOI: 10.1146/annurev-biochem-062309-093307] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rapid advances in structural genomics and in large-scale proteomic projects have yielded vast amounts of data on soluble proteins and their complexes. Despite these advances, progress in studying membrane proteins using mass spectrometry (MS) has been slow. This is due in part to the inherent solubility and dynamic properties of these proteins, but also to their low abundance and the absence of polar side chains in amino acid residues. Considerable progress in overcoming these challenges is, however, now being made for all levels of structural characterization. This progress includes MS studies of the primary structure of membrane proteins, wherein sophisticated enrichment and trapping procedures are allowing multiple posttranslational modifications to be defined through to the secondary structure level in which proteins and peptides have been probed using hydrogen exchange, covalent, or radiolytic labeling methods. Exciting possibilities now exist to go beyond primary and secondary structure to reveal the tertiary and quaternary interactions of soluble and membrane subunits within intact assemblies of more than 700 kDa.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
| | | |
Collapse
|
137
|
Thévenin AF, Monillas ES, Winget JM, Czymmek K, Bahnson BJ. Trafficking of platelet-activating factor acetylhydrolase type II in response to oxidative stress. Biochemistry 2011; 50:8417-26. [PMID: 21882811 DOI: 10.1021/bi200802w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platelet-activating factor acetylhydrolase type II (PAFAH-II) is an intracellular phospholipase A(2) enzyme that hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. This N-terminally myristoylated protein becomes associated with cytoplasm-facing cell membranes under oxidative stress. The structural requirements for binding of PAFAH-II to membranes in response to oxidative stress are unknown. To begin elucidating the mechanism of trafficking and stress response, we constructed a homology model of PAFAH-II. From the predicted membrane orientation of PAFAH-II, the N-terminal myristoyl group and a hydrophobic patch are hypothesized to be involved in membrane binding. Localization studies of human PAFAH-II in HEK293 cells indicated that an unmyristoylated mutant remained cytoplasmic under stressed and unstressed conditions. The myristoylated wild-type enzyme was partially localized to the cytoplasmic membranes prior to stress and became more localized to these membranes upon stress. A triple mutation of three hydrophobic patch residues of the membrane binding region likewise did not localize to membranes following stress. These results indicate that both the myristoyl group and the hydrophobic patch are essential for proper trafficking of the enzyme to the membranes following oxidative stress. Additionally, colocalization studies using organelle-specific proteins demonstrate that PAFAH-II is transported to the membranes of both the endoplasmic reticulum and Golgi apparatus.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | | | | | | | | |
Collapse
|
138
|
Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model. J Comput Aided Mol Des 2011; 25:895-911. [PMID: 21904908 DOI: 10.1007/s10822-011-9470-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 08/25/2011] [Indexed: 12/23/2022]
Abstract
Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.
Collapse
|
139
|
Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 2011; 40:D370-6. [PMID: 21890895 PMCID: PMC3245162 DOI: 10.1093/nar/gkr703] [Citation(s) in RCA: 1496] [Impact Index Per Article: 106.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Orientations of Proteins in Membranes (OPM) database is a curated web resource that provides spatial positions of membrane-bound peptides and proteins of known three-dimensional structure in the lipid bilayer, together with their structural classification, topology and intracellular localization. OPM currently contains more than 1200 transmembrane and peripheral proteins and peptides from approximately 350 organisms that represent approximately 3800 Protein Data Bank entries. Proteins are classified into classes, superfamilies and families and assigned to 21 distinct membrane types. Spatial positions of proteins with respect to the lipid bilayer are optimized by the PPM 2.0 method that accounts for the hydrophobic, hydrogen bonding and electrostatic interactions of the proteins with the anisotropic water-lipid environment described by the dielectric constant and hydrogen-bonding profiles. The OPM database is freely accessible at http://opm.phar.umich.edu. Data can be sorted, searched or retrieved using the hierarchical classification, source organism, localization in different types of membranes. The database offers downloadable coordinates of proteins and peptides with membrane boundaries. A gallery of protein images and several visualization tools are provided. The database is supplemented by the PPM server (http://opm.phar.umich.edu/server.php) which can be used for calculating spatial positions in membranes of newly determined proteins structures or theoretical models.
Collapse
Affiliation(s)
- Mikhail A Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065 USA.
| | | | | | | | | |
Collapse
|
140
|
Fleming PJ, Freites JA, Moon CP, Tobias DJ, Fleming KG. Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:126-34. [PMID: 21816133 DOI: 10.1016/j.bbamem.2011.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/07/2011] [Accepted: 07/09/2011] [Indexed: 12/21/2022]
Abstract
Understanding the forces that stabilize membrane proteins in their native states is one of the contemporary challenges of biophysics. To date, estimates of side chain partitioning free energies from water to the lipid environment show disparate values between experimental and computational measures. Resolving the disparities is particularly important for understanding the energetic contributions of polar and charged side chains to membrane protein function because of the roles these residue types play in many cellular functions. In general, computational free energy estimates of charged side chain partitioning into bilayers are much larger than experimental measurements. However, the lack of a protein-based experimental system that uses bilayers against which to vet these computational predictions has traditionally been a significant drawback. Moon & Fleming recently published a novel hydrophobicity scale that was derived experimentally by using a host-guest strategy to measure the side chain energetic perturbation due to mutation in the context of a native membrane protein inserted into a phospholipid bilayer. These values are still approximately an order of magnitude smaller than computational estimates derived from molecular dynamics calculations from several independent groups. Here we address this discrepancy by showing that the free energy differences between experiment and computation become much smaller if the appropriate comparisons are drawn, which suggests that the two fields may in fact be converging. In addition, we present an initial computational characterization of the Moon & Fleming experimental system used for the hydrophobicity scale: OmpLA in DLPC bilayers. The hydrophobicity scale used OmpLA position 210 as the guest site, and our preliminary results demonstrate that this position is buried in the center of the DLPC membrane, validating its usage in the experimental studies. We further showed that the introduction of charged Arg at position 210 is well tolerated in OmpLA and that the DLPC bilayers accommodate this perturbation by creating a water dimple that allows the Arg side chain to remain hydrated. Lipid head groups visit the dimple and can hydrogen bond with Arg, but these interactions are transient. Overall, our study demonstrates the unique advantages of this molecular system because it can be interrogated by both computational and experimental practitioners, and it sets the stage for free energy calculations in a system for which there is unambiguous experimental data. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Patrick J Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
141
|
Senes A. Computational design of membrane proteins. Curr Opin Struct Biol 2011; 21:460-6. [PMID: 21763125 DOI: 10.1016/j.sbi.2011.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/06/2011] [Accepted: 06/15/2011] [Indexed: 11/28/2022]
Abstract
This article reviews the recent successes of computational protein design techniques applied to integral membrane proteins. This emerging area is still handicapped by significant difficulties in the experimental characterization of the stability and structure of the designed proteins. Nevertheless, by focusing on oligomeric complexes of single-span transmembrane (TM) peptides with detectable activity, the computational design of membrane proteins has already produced very exciting results. The 'take-home message' is that optimization of van der Waals packing and hydrogen bonding (both 'canonical' and weak Cα-H⋯O bonds) can produce functional structures of remarkable stability and specificity in the membrane.
Collapse
Affiliation(s)
- Alessandro Senes
- University of Wisconsin-Madison, Department of Biochemistry, 433 Babcock Dr., Madison, WI 53706, USA.
| |
Collapse
|
142
|
Berka K, Hendrychová T, Anzenbacher P, Otyepka M. Membrane position of ibuprofen agrees with suggested access path entrance to cytochrome P450 2C9 active site. J Phys Chem A 2011; 115:11248-55. [PMID: 21744854 PMCID: PMC3257864 DOI: 10.1021/jp204488j] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Cytochrome P450 2C9 (CYP2C9) is a membrane-anchored human microsomal protein involved in the drug metabolism in liver. CYP2C9 consists of an N-terminal transmembrane anchor and a catalytic cytoplasmic domain. While the structure of the catalytic domain is well-known from X-ray experiments, the complete structure and its incorporation into the membrane remains unsolved. We constructed an atomistic model of complete CYP2C9 in a dioleoylphosphatidylcholine membrane and evolved it by molecular dynamics simulations in explicit water on a 100+ ns time-scale. The model agrees well with known experimental data about membrane positioning of cytochromes P450. The entry to the substrate access channel is proposed to be facing the membrane interior while the exit of the product egress channel is situated above the interface pointing toward the water phase. The positions of openings of the substrate access and product egress channels correspond to free energy minima of CYP2C9 substrate ibuprofen and its metabolite in the membrane, respectively.
Collapse
Affiliation(s)
- Karel Berka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | | | | | | |
Collapse
|
143
|
Moon CP, Fleming KG. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proc Natl Acad Sci U S A 2011; 108:10174-7. [PMID: 21606332 PMCID: PMC3121867 DOI: 10.1073/pnas.1103979108] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transfer free energies of the twenty natural amino acid side chains from water to phospholipid bilayers make a major contribution to the assembly and function of membrane proteins. Measurements of those transfer free energies will facilitate the identification of membrane protein sequences and aid in the understanding of how proteins interact with membranes during key biological events. We report the first water-to-bilayer transfer free energy scale (i.e., a "hydrophobicity scale") for the twenty natural amino acid side chains measured in the context of a native transmembrane protein and a phospholipid bilayer. Our measurements reveal parity for apolar side-chain contributions between soluble and membrane proteins and further demonstrate that an arginine side-chain placed near the middle of a lipid bilayer is accommodated with much less energetic cost than predicted by molecular dynamics simulations.
Collapse
Affiliation(s)
- C. Preston Moon
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Karen G. Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| |
Collapse
|
144
|
Ellena JF, Lackowicz P, Mongomery H, Cafiso DS. Membrane thickness varies around the circumference of the transmembrane protein BtuB. Biophys J 2011; 100:1280-7. [PMID: 21354401 DOI: 10.1016/j.bpj.2011.01.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/07/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022] Open
Abstract
BtuB is a large outer-membrane β-barrel protein that belongs to a class of active transport proteins that are TonB-dependent. These TonB-dependent transporters are based upon a 22-stranded antiparallel β-barrel, which is notably asymmetric in its length. Here, site-directed spin labeling and simulated annealing were used to locate the membrane lipid interface surrounding BtuB when reconstituted into phosphatidylcholine bilayers. Positions on the outer facing surface of the β-barrel and the periplasmic turns were spin-labeled and distances from the label to the membrane interface estimated by progressive power saturation of the electron paramagnetic resonance spectra. These distances were then used as atom-to-plane distance restraints in a simulated annealing routine, to dock the protein to two independent planes and produce a model representing the average position of the lipid phosphorus atoms at each interface. The model is in good agreement with the experimental data; however, BtuB is mismatched to the bilayer thickness and the resulting planes representing the bilayer interface are not parallel. In the model, the membrane thickness varies by 11 Å around the circumference of the protein, indicating that BtuB distorts the bilayer interface so that it is thinnest on the short side of the protein β-barrel.
Collapse
Affiliation(s)
- Jeffrey F Ellena
- Department of Chemistry and Center for Membrane Biology at the University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
145
|
Membrane topology of the colicin E1 channel using genetically encoded fluorescence. Biochemistry 2011; 50:4830-42. [PMID: 21528912 DOI: 10.1021/bi101934e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The membrane topology of the colicin E1 channel domain was studied by fluorescence resonance energy transfer (FRET). The FRET involved a genetically encoded fluorescent amino acid (coumarin) as the donor and a selectively labeled cysteine residue tethered with DABMI (4-(dimethylamino)phenylazophenyl-4'-maleimide) as the FRET acceptor. The fluorescent coumarin residue was incorporated into the protein via an orthogonal tRNA/aminoacyl-tRNA synthetase pair that allowed selective incorporation into any site within the colicin channel domain. Each variant harbored a stop (TAG) mutation for coumarin incorporation and a cysteine (TGT) mutation for DABMI attachment. Six interhelical distances within helices 1-6 were determined using FRET analysis for both the soluble and membrane-bound states. The FRET data showed large changes in the interhelical distances among helices 3-6 upon membrane association providing new insight into the membrane-bound structure of the channel domain. In general, the coumarin-DABMI FRET interhelical efficiencies decreased upon membrane binding, building upon the umbrella model for the colicin channel. A tentative model for the closed state of the channel domain was developed based on current and previously published FRET data. The model suggests circular arrangement of helices 1-7 in a clockwise direction from the extracellular side and membrane interfacial association of helices 1, 6, 7, and 10 around the central transmembrane hairpin formed by helices 8 and 9.
Collapse
|
146
|
Lomize AL, Pogozheva I, Mosberg HI. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J Chem Inf Model 2011; 51:930-46. [PMID: 21438606 PMCID: PMC3091260 DOI: 10.1021/ci200020k] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new computational approach to calculating binding energies and spatial positions of small molecules, peptides, and proteins in the lipid bilayer has been developed. The method combines an anisotropic solvent representation of the lipid bilayer and universal solvation model, which predicts transfer energies of molecules from water to an arbitrary medium with defined polarity properties. The universal solvation model accounts for hydrophobic, van der Waals, hydrogen-bonding, and electrostatic solute-solvent interactions. The lipid bilayer is represented as a fluid anisotropic environment described by profiles of dielectric constant (ε), solvatochromic dipolarity parameter (π*), and hydrogen bonding acidity and basicity parameters (α and β). The polarity profiles were calculated using published distributions of quasi-molecular segments of lipids determined by neutron and X-ray scattering for DOPC bilayer and spin-labeling data that define concentration of water in the lipid acyl chain region. The model also accounts for the preferential solvation of charges and polar groups by water and includes the effect of the hydrophobic mismatch for transmembrane proteins. The method was tested on calculations of binding energies and preferential positions in membranes for small-molecules, peptides and peripheral membrane proteins that have been experimentally studied. The new theoretical approach was implemented in a new version (2.0) of our PPM program and applied for the large-scale calculations of spatial positions in membranes of more than 1000 peripheral and integral proteins. The results of calculations are deposited in the updated OPM database ( http://opm.phar.umich.edu ).
Collapse
Affiliation(s)
- Andrei L. Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Irina Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| |
Collapse
|
147
|
Lomize AL, Pogozheva I, Mosberg HI. Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects. J Chem Inf Model 2011; 51:918-29. [PMID: 21438609 PMCID: PMC3089899 DOI: 10.1021/ci2000192] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new implicit solvation model was developed for calculating free energies of transfer of molecules from water to any solvent with defined bulk properties. The transfer energy was calculated as a sum of the first solvation shell energy and the long-range electrostatic contribution. The first term was proportional to solvent accessible surface area and solvation parameters (σ(i)) for different atom types. The electrostatic term was computed as a product of group dipole moments and dipolar solvation parameter (η) for neutral molecules or using a modified Born equation for ions. The regression coefficients in linear dependencies of solvation parameters σ(i) and η on dielectric constant, solvatochromic polarizability parameter π*, and hydrogen-bonding donor and acceptor capacities of solvents were optimized using 1269 experimental transfer energies from 19 organic solvents to water. The root-mean-square errors for neutral compounds and ions were 0.82 and 1.61 kcal/mol, respectively. Quantification of energy components demonstrates the dominant roles of hydrophobic effect for nonpolar atoms and of hydrogen-bonding for polar atoms. The estimated first solvation shell energy outweighs the long-range electrostatics for most compounds including ions. The simplicity and computational efficiency of the model allows its application for modeling of macromolecules in anisotropic environments, such as biological membranes.
Collapse
Affiliation(s)
- Andrei L. Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Irina Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| |
Collapse
|
148
|
Sommer B, Dingersen T, Gamroth C, Schneider SE, Rubert S, Krüger J, Dietz KJ. CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape-based software approach to solve heterogeneous membrane packing problems. J Chem Inf Model 2011; 51:1165-82. [PMID: 21504163 DOI: 10.1021/ci1003619] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
New perspectives have been developed to understand the processes of modeling heterogeneous membranes. These are crucial steps prior to applying advanced techniques like molecular dynamic simulations of whole membrane systems. Lipid, protein, and membrane packing problems are addressed based on biochemical properties in combination with computational optimization techniques. The CELLmicrocosmos 2.2 MembraneEditor (CmME) is introduced as an appropriate framework to handle such problems by offering diverse algorithmic approaches. Its algorithm plug-in-interface enables modelers to generate problem-specific algorithms. Good solutions concerning runtime and lipid density are realized by focusing on the outer shapes of the PDB-based molecules. Application cases are presented like the publication-based modeling of inner and outer mitochondrial membrane-fragments, semiautomatic incorporation of proteins, and the assembly of rafts. Concerning geometrical aspects of the lipids, the achieved results are consistent with experimental observations related to lipid densities and distributions. Finally, two membranes simulated with GROMACS are analyzed and compared: the first is generated with conventional scripting techniques, the second with the CmME Distributor algorithm. The examples prove that CmME is a valuable and versatile tool for a broad set of applications in analysis and visualization of biomembranes.
Collapse
Affiliation(s)
- Björn Sommer
- Bio-/Medical Informatics Department, Bielefeld University , D-33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
149
|
Stansfeld PJ, Sansom MSP. From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations. J Chem Theory Comput 2011; 7:1157-66. [PMID: 26606363 DOI: 10.1021/ct100569y] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coarse-grained molecular dynamics provides a means for simulating the assembly and the interactions of membrane protein/lipid complexes at a reduced level of representation, allowing longer and larger simulations. We describe a fragment-based protocol for converting membrane simulation systems, comprising a membrane protein embedded in a phospholipid bilayer, from coarse-grained to atomistic resolution, for further refinement and analysis via atomistic simulations. Overall, this provides a method for generating an accurate and well equilibrated membrane protein/lipid complex. We exemplify the protocol using the acid-sensing/amiloride-sensitive ion channel protein (ASIC) channel protein, a trimeric integral membrane protein. The method is further evaluated using a test set of 10 different membrane proteins of differing size and complexity. Simulations are assessed in terms of protein conformational drift, lipid/protein interactions, and lipid dynamics.
Collapse
Affiliation(s)
- Phillip J Stansfeld
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
150
|
Sun X, Li Y, Li W, Xu Z, Tang Y. Computational investigation of interactions between human H2 receptor and its agonists. J Mol Graph Model 2011; 29:693-701. [DOI: 10.1016/j.jmgm.2010.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/23/2010] [Accepted: 12/04/2010] [Indexed: 11/16/2022]
|