101
|
Abstract
Two sets of evidence reviewed herein, one indicating that prenatal stress is associated with elevated behavioral and physiological dysregulation and the other that such phenotypic functioning is itself associated with heightened susceptibility to positive and negative environmental influences postnatally, raises the intriguing hypothesis first advanced by Pluess and Belsky (2011) that prenatal stress fosters, promotes, or "programs" postnatal developmental plasticity. Here we review further evidence consistent with this proposition, including new experimental research systematically manipulating both prenatal stress and postnatal rearing. Collectively this work would seem to explain why prenatal stress has so consistently been linked to problematic development: stresses encountered prenatally are likely to continue postnatally, thereby adversely affecting the development of children programmed (by prenatal stress) to be especially susceptible to environmental effects. Less investigated are the potential benefits prenatal stress may promote, due to increased plasticity, when the postnatal environment proves to be favorable. Future directions of research pertaining to potential mechanisms instantiating postnatal plasticity and moderators of such prenatal-programming effects are outlined.
Collapse
|
102
|
Placental FKBP51 mediates a link between second trimester maternal anxiety and birthweight in female infants. Sci Rep 2018; 8:15151. [PMID: 30310158 PMCID: PMC6181924 DOI: 10.1038/s41598-018-33357-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Prenatal distress is associated with adverse outcomes in affected offspring. Alterations in placental glucocorticoid signalling and subsequent foetal overexposure to glucocorticoids have been implicated as an underlying mechanism. Infant sex is emerging as an important factor in disease susceptibility. This study aimed to examine the effects of maternal distress across pregnancy on birth outcomes and placental glucocorticoid genes in a sex-dependent manner. Participants completed psychological distress questionnaires throughout pregnancy. Placental HSD11B2, NR3C1 and FKBP51 were analysed by real time PCR and cortisol was measured in new-born hair. Second trimester stress was negatively correlated with birthweight in males and positively correlated with placental NR3C1 mRNA in females. Second trimester anxiety was negatively correlated with birthweight and placental FKBP51 mRNA in females. In mediation analysis, placental FKBP51 mRNA expression was found to mediate the link between prenatal anxiety and birthweight. New-born cortisol was negatively correlated with second trimester anxiety and positively correlated with female placental FKBP51 mRNA levels. Again, FKBP51 mRNA was found to mediate the link between anxiety and new-born cortisol. These results highlight a role for FKBP51 in the placental response to prenatal distress in females. The precise role that placental FKBP51 has in foetal and infant development has not been extensively studied and warrants further investigations.
Collapse
|
103
|
Hartman S, Belsky J. Prenatal stress and enhanced developmental plasticity. J Neural Transm (Vienna) 2018; 125:1759-1779. [PMID: 30206701 DOI: 10.1007/s00702-018-1926-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/07/2018] [Indexed: 01/18/2023]
Abstract
Two separate lines of inquiry indicate (a) that prenatal stress is associated with heightened behavioral and physiological reactivity, and (b) that these postnatal phenotypes are associated with increased susceptibility to both positive and negative developmental experiences and environmental exposures. This research considered together raises the intriguing hypothesis first advanced by Pluess and Belsky (Dev Psychopathol 23:29-38, 2011) that prenatal-stress fosters, promotes or "programs" postnatal developmental plasticity. In this paper, we review further evidence consistent with this proposition, including a novel animal study which experimentally manipulated both prenatal stress and postnatal rearing. Directions for future work focused on mechanisms mediating the plasticity-inducing effects of prenatal stress and the moderators of such effects are outlined.
Collapse
Affiliation(s)
- Sarah Hartman
- Department of Human Development and Family Studies, University of California, One Shields Avenue, 3321 Hart Hall, Davis, CA, 95616, USA.
| | - Jay Belsky
- Department of Human Development and Family Studies, University of California, One Shields Avenue, 3321 Hart Hall, Davis, CA, 95616, USA
| |
Collapse
|
104
|
Watkeys OJ, Kremerskothen K, Quidé Y, Fullerton JM, Green MJ. Glucocorticoid receptor gene (NR3C1) DNA methylation in association with trauma, psychopathology, transcript expression, or genotypic variation: A systematic review. Neurosci Biobehav Rev 2018; 95:85-122. [PMID: 30176278 DOI: 10.1016/j.neubiorev.2018.08.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
The glucocorticoid receptor gene (NR3C1) is a critical component of the stress response system. Cytosine methylation of NR3C1 has been repeatedly associated with trauma and mental disorders, including major depression, post-traumatic stress disorder, anxiety, and personality disorders, suggesting that NR3C1 methylation may play a role in stress-related psychopathology. We systematically reviewed 55 studies examining NR3C1 DNA methylation in association with trauma exposure, psychopathology, gene expression, and/or common genetic variants. Overall, a number of NR3C1 CpG sites were significantly associated with trauma or psychopathology, but significant findings were often inconsistent across studies. This lack of consistency is likely influenced by significant methodological variability - experimentally and analytically - across studies. Selected common genetic variants show no significant effect on NR3C1 CpG methylation. In contrast, there was ample evidence linking increased methylation of NR3C1 to reduced expression of this gene. The inverse association between methylation and gene expression shown across eight out of ten studies supports the notion that methylation in the promoter region of NR3C1 is associated with transcriptional silencing.
Collapse
Affiliation(s)
- Oliver J Watkeys
- School of Psychiatry, University of New South Wales (UNSW), Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia; Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia
| | - Kyle Kremerskothen
- School of Psychiatry, University of New South Wales (UNSW), Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia; Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales (UNSW), Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia; Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia; School of Medical Sciences, University of New South Wales (UNSW), Wallace Wurth Building, 18 High Street, Kensington, NSW, 2052, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales (UNSW), Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia; Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia.
| |
Collapse
|
105
|
Brunst KJ, Tignor N, Just A, Liu Z, Lin X, Hacker MR, Bosquet Enlow M, Wright RO, Wang P, Baccarelli AA, Wright RJ. Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort. Epigenetics 2018; 13:665-681. [PMID: 30001177 DOI: 10.1080/15592294.2018.1497387] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolving evidence links maternal stress exposure to changes in placental DNA methylation of specific genes regulating placental function that may have implications for the programming of a host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112 CpGs. Additionally, we observed three clusters that exhibited differential methylation in response to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine degradation to be the most significant pathway associated with maternal lifetimes stress exposure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap statistic, were enriched for genes associated with endocytosis (i.e., SMAP1, ANKFY1), tight junctions (i.e., EPB41L4B), and metabolic pathways (i.e., INPP5E, EEF1B2). These pathways, also identified in the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles in multiple physiological functions necessary for proper fetal development. Further, two genes were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., ANKFY1, TM6SF1). The methylation status of the probes belonging to each cluster and/or genes exhibiting multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to mothers with increased lifetime stress exposure.
Collapse
Affiliation(s)
- Kelly J Brunst
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Nicole Tignor
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Allan Just
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Zhonghua Liu
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Xihong Lin
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Michele R Hacker
- e Department of Obstetrics and Gynecology , Beth Israel Deaconess Medical Center , Boston , MA , USA.,f Department of Obstetrics , Gynecology and Reproductive Biology, Harvard Medical School , Boston , MA , USA
| | - Michelle Bosquet Enlow
- g Department of Psychiatry, Program for Behavioral Science, Boston Children's Hospital and Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Robert O Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Pei Wang
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Andrea A Baccarelli
- h Department of Environmental Health Sciences , Mailman School of Public Health, Columbia University , New York , NY , USA
| | - Rosalind J Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA.,i Department of Pediatrics , Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
106
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
107
|
Criado-Marrero M, Rein T, Binder EB, Porter JT, Koren J, Blair LJ. Hsp90 and FKBP51: complex regulators of psychiatric diseases. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0532. [PMID: 29203717 DOI: 10.1098/rstb.2016.0532] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/11/2017] [Indexed: 01/30/2023] Open
Abstract
Mood disorders affect nearly a quarter of the world's population. Therefore, understanding the molecular mechanisms underlying these conditions is of great importance. FK-506 binding protein 5 (FKBP5) encodes the FKBP51 protein, a heat shock protein 90 kDa (Hsp90) co-chaperone, and is a risk factor for several affective disorders. FKBP51, in coordination with Hsp90, regulates glucocorticoid receptor (GR) activity via a short negative feedback loop. This signalling pathway rapidly restores homeostasis in the hypothalamic-pituitary-adrenal (HPA) axis following stress. Expression of FKBP5 increases with age through reduced DNA methylation. High levels of FKBP51 are linked to GR resistance and reduced stress coping behaviour. Moreover, common allelic variants in the FKBP5 gene are associated with increased risk of developing affective disorders like anxiety, depression and post-traumatic stress disorder (PTSD). This review highlights the current understanding of the Hsp90 co-chaperone, FKBP5, in disease from both human and animal studies. In addition, FKBP5 genetic implications in the clinic involving life stress exposure, gender differences and treatment outcomes are discussed.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Marangelie Criado-Marrero
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - James T Porter
- Department of Basic Sciences, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, Puerto Rico 00732, USA
| | - John Koren
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Laura J Blair
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
108
|
Frasch MG, Lobmaier SM, Stampalija T, Desplats P, Pallarés ME, Pastor V, Brocco MA, Wu HT, Schulkin J, Herry CL, Seely AJE, Metz GAS, Louzoun Y, Antonelli MC. Non-invasive biomarkers of fetal brain development reflecting prenatal stress: An integrative multi-scale multi-species perspective on data collection and analysis. Neurosci Biobehav Rev 2018; 117:165-183. [PMID: 29859198 DOI: 10.1016/j.neubiorev.2018.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Prenatal stress (PS) impacts early postnatal behavioural and cognitive development. This process of 'fetal programming' is mediated by the effects of the prenatal experience on the developing hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS). We derive a multi-scale multi-species approach to devising preclinical and clinical studies to identify early non-invasively available pre- and postnatal biomarkers of PS. The multiple scales include brain epigenome, metabolome, microbiome and the ANS activity gauged via an array of advanced non-invasively obtainable properties of fetal heart rate fluctuations. The proposed framework has the potential to reveal mechanistic links between maternal stress during pregnancy and changes across these physiological scales. Such biomarkers may hence be useful as early and non-invasive predictors of neurodevelopmental trajectories influenced by the PS as well as follow-up indicators of success of therapeutic interventions to correct such altered neurodevelopmental trajectories. PS studies must be conducted on multiple scales derived from concerted observations in multiple animal models and human cohorts performed in an interactive and iterative manner and deploying machine learning for data synthesis, identification and validation of the best non-invasive detection and follow-up biomarkers, a prerequisite for designing effective therapeutic interventions.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA.
| | - Silvia M Lobmaier
- Frauenklinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tamara Stampalija
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Mother and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Paula Desplats
- University of California, Departments of Neurosciences and Pathology, San Diego, USA
| | - María Eugenia Pallarés
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Hau-Tieng Wu
- Department of Mathematics and Department of Statistical Science, Duke University, Durham, NC, USA; Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Jay Schulkin
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | | | | | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yoram Louzoun
- Bar-Ilan University, Department of Applied Mathematics, Israel
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
109
|
Rudahindwa S, Mutesa L, Rutembesa E, Mutabaruka J, Qu A, Wildman DE, Jansen S, Uddin M. Transgenerational effects of the genocide against the Tutsi in Rwanda: A post-traumatic stress disorder symptom domain analysis. AAS Open Res 2018. [DOI: 10.12688/aasopenres.12848.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: A number of studies have investigated transgenerational effects of parental post-traumatic stress disorder (PTSD) and its repercussions for offspring. Few studies however, have looked at this issue in the African context. Methods: The present study addresses this gap, utilizing confirmatory factor analysis (CFA), to investigate symptom severity within the three Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) PTSD symptom domains in mothers exposed to the genocide against the Tutsi in Rwanda (n=25) and offspring (n=25), and an ethnically matched control group of mothers (n=25) and offspring (n=25) who were outside of Rwanda during the genocide. All mothers were pregnant during the time of the genocide with the offspring included in the study. Missing data were excluded from the analyses. Results: We found that among the three symptom domains of PTSD, the re-experiencing symptom domain loaded most strongly onto PTSD among mothers directly exposed to the genocide (Beta = 0.95). In offspring of exposed mothers, however, the three symptom domains of PTSD yielded almost equal loading values (Beta range = 0.84-0.86). Conversely, among non-exposed mothers and their offspring, the hyperarousal symptom domain of PTSD loaded most strongly onto PTSD (Beta = 1.00, Beta = 0.94, respectively). As a secondary analysis, we also explored the relation between DNA methylation in the glucocorticoid receptor (NR3C1) locus, an important stress modulating gene, and individual PTSD symptom domains, finding a strong association between DNA methylation and re-experiencing among genocide-exposed mothers that exceeded any other observed associations by approximately two-fold. Conclusions: This is the first report, to our knowledge, of a symptom-based analysis of transgenerational transmission of PTSD in Africa. These findings can be leveraged to inform further mechanistic and treatment research for PTSD.
Collapse
|
110
|
Koss KJ, Gunnar MR. Annual Research Review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. J Child Psychol Psychiatry 2018; 59:327-346. [PMID: 28714126 PMCID: PMC5771995 DOI: 10.1111/jcpp.12784] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Research on early adversity, stress biology, and child development has grown exponentially in recent years. FINDINGS We review the current evidence for the hypothalamic-pituitary-adrenocortical (HPA) axis as a stress-mediating mechanism between various forms of childhood adversity and psychopathology. We begin with a review of the neurobiology of the axis and evidence for relations between early adversity-HPA axis activity and HPA axis activity-psychopathology, as well as discuss the role of regulatory mechanisms and sensitive periods in development. CONCLUSIONS We call attention to critical gaps in the literature to highlight next steps in this research including focus on developmental timing, sex differences, stress buffering, and epigenetic regulation. A better understanding of individual differences in the adversity-HPA axis-psychopathology associations will require continued work addressing how multiple biological and behavioral systems work in concert to shape development.
Collapse
Affiliation(s)
- Kalsea J. Koss
- Center for Research on Child Wellbeing, Office of Population Research, Department of Molecular Biology, Princeton, Princeton University, NJ, USA
| | - Megan R. Gunnar
- Center for Research on Child Wellbeing, Office of Population Research, Department of Molecular Biology, Princeton, Princeton University, NJ, USA
| |
Collapse
|
111
|
Abstract
Purpose of Review Traumatic stress has profound impacts on many domains of life, yet the mechanisms that confer risk for or resilience to the development of traumatic stress-related psychopathologies are still very much under investigation. The current review highlights recent developments in the field of traumatic stress epigenetics in humans. Recent Findings Recent results reveal traumatic stress-related epigenetic dysregulation in neural, endocrine, and immune system genes and associated networks. Emerging work combining imaging with epigenetic measures holds promise for addressing the correspondence between peripheral and central effects of traumatic stress. A growing literature is also documenting the transgenerational effects of prenatal stress exposures in humans. Summary Moving forward, increasing focus on epigenetic marks of traumatic stress in CNS tissue will create a clearer picture of the relevance of peripheral measures; PTSD brain banks will help in this regard. Similarly, leveraging multigenerational birth cohort data will do much to clarify the extent of transgenerational epigenetic effects of traumatic stress. Greater efforts should be made towards developing prospective studies with longitudinal design.
Collapse
Affiliation(s)
- John R Pfeiffer
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine & Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Monica Uddin
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
112
|
Sosnowski DW, Booth C, York TP, Amstadter AB, Kliewer W. Maternal prenatal stress and infant DNA methylation: A systematic review. Dev Psychobiol 2018; 60:127-139. [PMID: 29344930 DOI: 10.1002/dev.21604] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
Maternal prenatal stress has been linked to a variety of infant postnatal outcomes, partially through alterations in fetal HPA axis functioning; yet the underlying pathobiology remains elusive. Current literature posits DNA methylation as a candidate mechanism through which maternal prenatal stress can influence fetal HPA axis functioning. The goal of this systematic review was to summarize the literature examining the associations among maternal prenatal stress, DNA methylation of commonly studied HPA axis candidate genes, and infant HPA axis functioning. Results from the review provided evidence for a link between various maternal prenatal stressors, NR3C1 methylation, and infant stress reactivity, but findings among other genes were limited, with mixed results. An original study quality review tool revealed that a majority of studies in the review are adequate, and emphasizes the need for future research to consider study quality when interpreting research findings.
Collapse
Affiliation(s)
- David W Sosnowski
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia
| | - Carolyn Booth
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia
| | - Timothy P York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - Wendy Kliewer
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
113
|
Bjorklund DF. A Metatheory for Cognitive Development (or “Piaget is Dead” Revisited). Child Dev 2018; 89:2288-2302. [DOI: 10.1111/cdev.13019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
114
|
Palma-Gudiel H, Cirera F, Crispi F, Eixarch E, Fañanás L. The impact of prenatal insults on the human placental epigenome: A systematic review. Neurotoxicol Teratol 2018; 66:80-93. [PMID: 29307795 DOI: 10.1016/j.ntt.2018.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/20/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023]
Abstract
The placenta is the first human organ to reach full development during pregnancy. It serves as a barrier but also as an interchange surface. Epigenetic changes observed in placental tissue may reflect intrauterine insults while also pointing to physiological pathways altered under exposure to such environmental threats. By means of a systematic search of the literature, 39 papers assessing human placental epigenetic signatures in association with either (i) psychosocial stress, (ii) maternal psychopathology, (iii) maternal smoking during pregnancy, and (iv) exposure to environmental pollutants, were identified. Their findings revealed placental tissue as a unique source of epigenetic variability that does not correlate with epigenetic patterns observed in maternal or newborn blood, tissues which are typically analyzed regarding prenatal stress. Studies regarding prenatal stress and psychopathology during pregnancy were scarce and exploratory in nature revealing inconsistent findings. Of note, there was a marked tendency towards placental hypomethylation in studies assessing either tobacco use during pregnancy or exposure to environmental pollutants suggesting the interaction between contaminant-derived metabolites and epigenetic machinery. This review highlights the need for further prospective longitudinal studies assessing long-term health effects of placental epigenetic signatures derived from exposure to several prenatal stressors.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Flors Cirera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Fátima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Lourdes Fañanás
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
115
|
Prenatal Stress, Methylation in Inflammation-Related Genes, and Adiposity Measures in Early Childhood: the Programming Research in Obesity, Growth Environment and Social Stress Cohort Study. Psychosom Med 2018; 80:34-41. [PMID: 28787364 PMCID: PMC5741481 DOI: 10.1097/psy.0000000000000517] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Maternal stress during pregnancy may influence childhood growth and adiposity, possibly through immune/inflammatory programming. We investigated whether exposure to prenatal stress and methylation in inflammation-related genes were associated with childhood adiposity in 424 mother-child pairs in Mexico City, Mexico. METHODS A stress index was created based on four prenatally administered stress-related scales (Exposure to Violence, Crisis in Family Systems, State-Trait Anxiety Inventory, and Edinburgh Postnatal Depression Scale). We measured weight, height, body fat mass (BFM), percentage body fat (PBF), and waist circumference in early childhood (age range, 4-6 years). Body mass index (BMI) z scores were calculated according to World Health Organization standards. DNA methylation in gene promoters of tumor necrosis factor α, interleukin 8, and interleukin 6 (IL6) in umbilical cord blood were determined by pyrosequencing. RESULTS An interquartile range increase in stress index (27.3) was associated with decreases of 0.14 unit in BMI z score (95% confidence interval [CI] = -0.28 to -0.005), 5.6% in BFM (95% CI = -9.7 to -1.4), 3.5% in PBF (95% CI = -6.3 to -0.5), and 1.2% in waist circumference (95% CI = -2.4 to -0.04) in multivariable-adjusted models. An interquartile range increase in IL6 methylation (3.9%) was associated with increases of 0.23 unit in BMI z score (95% CI = 0.06-0.40), 8.1% (95% CI = 2.3-14.3) in BFM, 5.5% (95% CI = 1.7-9.5) in PBF, and 1.7% (95% CI = 0.2-3.3) in waist circumference. CONCLUSIONS Prenatal stress was associated with decreased childhood adiposity, whereas cord blood IL6 methylation was associated with increased childhood adiposity in Mexican children.
Collapse
|
116
|
McGowan PO, Matthews SG. Prenatal Stress, Glucocorticoids, and Developmental Programming of the Stress Response. Endocrinology 2018; 159:69-82. [PMID: 29136116 DOI: 10.1210/en.2017-00896] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 01/06/2023]
Abstract
The early environment has a major impact on the developing embryo, fetus, and infant. Parental adversity (maternal and paternal) and glucocorticoid exposure before conception and during pregnancy have profound effects on the development and subsequent function of the hypothalamic-pituitary-adrenal axis and related behaviors. These effects are species-, sex-, and age-specific and depend on the timing and duration of exposure. The impact of these early exposures can extend across multiple generations, via both the maternal and paternal lineage, and recent studies have begun to determine the mechanisms by which this occurs. Improved knowledge of the mechanisms by which adversity and glucocorticoids program stress systems will allow development of strategies to ameliorate and/or reverse these long-term effects.
Collapse
Affiliation(s)
- Patrick O McGowan
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
- Center for Environmental Epigenetics and Development, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
117
|
Parent J, Parade SH, Laumann LE, Ridout KK, Yang BZ, Marsit CJ, Seifer R, Tyrka AR. Dynamic stress-related epigenetic regulation of the glucocorticoid receptor gene promoter during early development: The role of child maltreatment. Dev Psychopathol 2017; 29:1635-1648. [PMID: 29162170 PMCID: PMC5726533 DOI: 10.1017/s0954579417001298] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetics processes may play a vital role in the biological embedding of early environmental adversity and the development of psychopathology. Accumulating evidence suggests that maltreatment is linked to methylation of the glucocorticoid receptor gene, nuclear receptor subfamily 3, group C, member 1 (NR3C1), which is a key regulator of the hypothalamus-pituitary-adrenal axis. However, prior work has been exclusively cross-sectional, greatly constraining our understanding of stress-related epigenetic processes over time. In the current study, we examined the effect of maltreatment and other adversity on change in NR3C1 methylation among at-risk preschoolers to begin to characterize within-child epigenetic changes during this sensitive developmental period. Participants were 260 preschoolers (3-5 years old, 53.8% female), including 51.5% with moderate to severe maltreatment in the past 6 months. Child protection records, semistructured interviews, and parent reports were used to assess child stress exposure. Methylation of exons 1D and 1F of NR3C1 via saliva DNA were measured at two time points approximately 6 months apart. Results indicate that maltreated children evidence higher baseline levels of NR3C1 methylation, significant decreases in methylation over time, and then at follow-up, lower levels of methylation, relative to nonmaltreated preschoolers. Findings from the current study highlight the complex nature of stress-related epigenetic processes during early development.
Collapse
Affiliation(s)
- Justin Parent
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Bradley/Hasbro Children’s Research Center, E. P. Bradley Hospital
- Center for Children and Families, Department of Psychology, Florida International University
| | - Stephanie H. Parade
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Bradley/Hasbro Children’s Research Center, E. P. Bradley Hospital
| | - Laura E. Laumann
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital
| | - Kathryn K. Ridout
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University
| | - Ronald Seifer
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Bradley/Hasbro Children’s Research Center, E. P. Bradley Hospital
| | - Audrey R. Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital
| |
Collapse
|
118
|
Clukay CJ, Hughes DA, Rodney NC, Kertes DA, Mulligan CJ. DNA methylation of methylation complex genes in relation to stress and genome-wide methylation in mother-newborn dyads. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:173-182. [PMID: 29028111 DOI: 10.1002/ajpa.23341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/11/2017] [Accepted: 10/01/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Early life stress is known to have enduring biological effects, particularly with respect to health. Epigenetic modifications, such as DNA methylation, are a possible mechanism to mediate the biological effect of stress. We previously found correlations between maternal stress, newborn birthweight, and genome-wide measures of DNA methylation. Here we investigate ten genes related to the methylation/demethylation complex in order to better understand the impact of stress on health. MATERIALS AND METHODS DNA methylation and genetic variants at methylation/demethylation genes were assayed. Mean methylation measures were constructed for each gene and tested, in addition to genetic variants, for association with maternal stress measures based on interview and survey data (chronic stress and war trauma), maternal venous, and newborn cord genome-wide mean methylation (GMM), and birthweight. RESULTS After cell type correction, we found multiple pairwise associations between war trauma, maternal GMM, maternal methylation at DNMT1, DNMT3A, TET3, and MBD2, and birthweight. CONCLUSIONS The association of maternal GMM and maternal methylation at DNMT1, DNMT3A, TET3, and MBD2 is consistent with the role of these genes in establishing, maintaining and altering genome-wide methylation patterns, in some cases in response to stress. DNMT1 produces one of the primary enzymes that reproduces methylation patterns during DNA replication. DNMT3A and TET3 have been implicated in genome-wide hypomethylation in response to glucocorticoid hormones. Although we cannot determine the directionality of the genic and genome-wide changes in methylation, our results suggest that altered methylation of specific methylation genes may be part of the molecular mechanism underlying the human biological response to stress.
Collapse
|
119
|
Associations between maternal prenatal stress, methylation changes in IGF1 and IGF2, and birth weight. J Dev Orig Health Dis 2017; 9:215-222. [PMID: 29017633 DOI: 10.1017/s2040174417000800] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maternal stress has been linked to low birth weight in newborns. One potential pathway involves epigenetic changes at candidate genes that may mediate the effects of prenatal maternal stress on birth weight. This relationship has been documented in stress-related genes, such as NR3C1. There is less literature exploring the effect of stress on growth-related genes. IGF1 and IGF2 have been implicated in fetal growth and development, though via different mechanisms as IGF2 is under imprinting control. In this study, we tested for associations between prenatal stress, methylation of IGF1 and IGF2, and birth weight. A total of 24 mother-newborn dyads in the Democratic Republic of Congo were enrolled. Ethnographic interviews were conducted with mothers at delivery to gather culturally relevant war-related and chronic stressors. DNA methylation data were generated from maternal venous, cord blood and placental tissue samples. Multivariate regressions were used to test for associations between stress measures, DNA methylation and birth weight in each of the three tissue types. We found an association between IGF2 methylation in maternal blood and birth weight. Previous literature on the relationship between IGF2 methylation and birth weight has focused on methylation at known differentially methylated regions in cord blood or placental samples. Our findings indicate there may be links between the maternal epigenome and low birth weight that rely on mechanisms outside known imprinting pathways. It thus may be important to consider the effect of maternal exposures and epigenetic profiles on birth weight even in the setting of maternally imprinted genes such as IGF2.
Collapse
|
120
|
Vangeel EB, Pishva E, Hompes T, van den Hove D, Lambrechts D, Allegaert K, Freson K, Izzi B, Claes S. Newborn genome-wide DNA methylation in association with pregnancy anxiety reveals a potential role for GABBR1. Clin Epigenetics 2017; 9:107. [PMID: 29026448 PMCID: PMC5627482 DOI: 10.1186/s13148-017-0408-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/24/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is increasing evidence for the role of prenatal stress in shaping offspring DNA methylation and disease susceptibility. In the current study, we aimed to identify genes and pathways associated with pregnancy anxiety using a genome-wide DNA methylation approach. METHODS We selected 22 versus 23 newborns from our Prenatal Early Life Stress (PELS) cohort, exposed to the lowest or highest degree of maternal pregnancy anxiety, respectively. Cord blood genome-wide DNA methylation was assayed using the HumanMethylation450 BeadChip (HM450, n = 45) and candidate gene methylation using EpiTYPER (n = 80). Cortisol levels were measured at 2, 4, and 12 months of age to test infant stress system (re)activity. RESULTS Data showed ten differentially methylated regions (DMR) when comparing newborns exposed to low versus high pregnancy anxiety scores. We validated a top DMR in the GABA-B receptor subunit 1 gene (GABBR1) revealing the association with pregnancy anxiety particularly in male newborns (most significant CpG Pearson R = 0.517, p = 0.002; average methylation Pearson R = 0.332, p = 0.039). Cord blood GABBR1 methylation was associated with infant cortisol levels in response to a routine vaccination at 4 months old. CONCLUSIONS In conclusion, our results show that pregnancy anxiety is associated with differential DNA methylation patterns in newborns and that our candidate gene GABBR1 is associated with infant hypothalamic-pituitary-adrenal axis response to a stressor. Our findings reveal a potential role for GABBR1 methylation in association with stress and provide grounds for further research.
Collapse
Affiliation(s)
- Elise Beau Vangeel
- Department of Neurosciences, Genetic Research About Stress and Psychiatry (GRASP), KU Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (CMVB), KU Leuven, Leuven, Belgium
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Titia Hompes
- Department of Neurosciences, Genetic Research About Stress and Psychiatry (GRASP), KU Leuven, Leuven, Belgium
- University Psychiatric Center, Leuven, Belgium
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, Laboratory of Translational Neuroscience, University of Wuerzburg, Wuerzburg, Germany
| | - Diether Lambrechts
- Department of Oncology, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
- Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Intensive Care and Department of Pediatric Surgery, Erasmus MC—Sophia’s Children’s Hospital, Rotterdam, The Netherlands
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (CMVB), KU Leuven, Leuven, Belgium
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS Instituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Stephan Claes
- Department of Neurosciences, Genetic Research About Stress and Psychiatry (GRASP), KU Leuven, Leuven, Belgium
- University Psychiatric Center, Leuven, Belgium
| |
Collapse
|
121
|
Schmitz J, Kumsta R, Moser D, Güntürkün O, Ocklenburg S. DNA methylation in candidate genes for handedness predicts handedness direction. Laterality 2017; 23:441-461. [DOI: 10.1080/1357650x.2017.1377726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Judith Schmitz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Robert Kumsta
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| |
Collapse
|
122
|
Howland MA, Sandman CA, Glynn LM. Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Rev Endocrinol Metab 2017; 12:321-339. [PMID: 30058893 PMCID: PMC6334849 DOI: 10.1080/17446651.2017.1356222] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The developmental origins of disease or fetal programming model predicts that intrauterine exposures have life long consequences for physical and psychological health. Prenatal programming of the fetal hypothalamic-pituitary-adrenal (HPA) axis is proposed as a primary mechanism by which early experiences are linked to later disease risk. Areas covered: This review describes the development of the fetal HPA axis, which is determined by an intricately timed cascade of endocrine events during gestation and is regulated by an integrated maternal-placental-fetal steroidogenic unit. Mechanisms by which stress-induced elevations in hormones of maternal, fetal, or placental origin influence the structure and function of the emerging fetal HPA axis are discussed. Recent prospective studies documenting persisting associations between prenatal stress exposures and altered postnatal HPA axis function are summarized, with effects observed beginning in infancy into adulthood. Expert commentary: The results of these studies are synthesized, and potential moderating factors are discussed. Promising areas of further research highlighted include epigenetic mechanisms and interactions between pre and postnatal influences.
Collapse
Affiliation(s)
- Mariann A. Howland
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA
| | - Curt A. Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA
| | - Laura M. Glynn
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA
- Department of Psychology, Chapman University, Orange, CA, USA
| |
Collapse
|
123
|
Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study. Transl Psychiatry 2017; 7:e1202. [PMID: 28809857 PMCID: PMC5611722 DOI: 10.1038/tp.2017.153] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/30/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
Stress during pregnancy may impact subsequent generations, which is demonstrated by an increased susceptibility to childhood and adulthood health problems in the children and grandchildren. Although the importance of the prenatal environment is well reported with regards to future physical and emotional outcomes, little is known about the molecular mechanisms that mediate the long-term consequences of early stress across generations. Recent studies have identified DNA methylation as a possible mediator of the impact of prenatal stress in the offspring. Whether psychosocial stress during pregnancy also affects DNA methylation of the grandchildren is still not known. In the present study we examined the multigenerational hypothesis, that is, grandmaternal exposure to psychosocial stress during pregnancy affecting DNA methylation of the grandchildren. We determined the genome-wide DNA methylation profile in 121 children (65 females and 56 males) and tested for associations with exposure to grandmaternal interpersonal violence during pregnancy. We observed methylation variations of five CpG sites significantly (FDR<0.05) associated with the grandmother's report of exposure to violence while pregnant with the mothers of the children. The results revealed differential methylation of genes previously shown to be involved in circulatory system processes (FDR<0.05). This study provides support for DNA methylation as a biological mechanism involved in the transmission of stress across generations and motivates further investigations to examine prenatal-dependent DNA methylation as a potential biomarker for health problems.
Collapse
|
124
|
Nemoda Z, Szyf M. Epigenetic Alterations and Prenatal Maternal Depression. Birth Defects Res 2017; 109:888-897. [DOI: 10.1002/bdr2.1081] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Zsofia Nemoda
- Department of Pharmacology & Therapeutics; McGill University; Montreal Quebec Canada
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry; Semmelweis University; Budapest Hungary
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics; McGill University; Montreal Quebec Canada
- Sackler Program for Epigenetics and Psychobiology; McGill University; Montreal Quebec Canada
| |
Collapse
|
125
|
Eidem HR, McGary KL, Capra JA, Abbot P, Rokas A. The transformative potential of an integrative approach to pregnancy. Placenta 2017; 57:204-215. [PMID: 28864013 DOI: 10.1016/j.placenta.2017.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 07/08/2017] [Accepted: 07/15/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Complex traits typically involve diverse biological pathways and are shaped by numerous genetic and environmental factors. Pregnancy-associated traits and pathologies are further complicated by extensive communication across multiple tissues in two individuals, interactions between two genomes-maternal and fetal-that obscure causal variants and lead to genetic conflict, and rapid evolution of pregnancy-associated traits across mammals and in the human lineage. Given the multi-faceted complexity of human pregnancy, integrative approaches that synthesize diverse data types and analyses harbor tremendous promise to identify the genetic architecture and environmental influences underlying pregnancy-associated traits and pathologies. METHODS We review current research that addresses the extreme complexities of traits and pathologies associated with human pregnancy. RESULTS We find that successful efforts to address the many complexities of pregnancy-associated traits and pathologies often harness the power of many and diverse types of data, including genome-wide association studies, evolutionary analyses, multi-tissue transcriptomic profiles, and environmental conditions. CONCLUSION We propose that understanding of pregnancy and its pathologies will be accelerated by computational platforms that provide easy access to integrated data and analyses. By simplifying the integration of diverse data, such platforms will provide a comprehensive synthesis that transcends many of the inherent challenges present in studies of pregnancy.
Collapse
Affiliation(s)
- Haley R Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kriston L McGary
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
126
|
Kertes DA, Bhatt SS, Kamin HS, Hughes DA, Rodney NC, Mulligan CJ. BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma. Clin Epigenetics 2017; 9:68. [PMID: 28680507 PMCID: PMC5493129 DOI: 10.1186/s13148-017-0367-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/14/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The BDNF gene codes for brain-derived neurotrophic factor, a growth factor involved in neural development, cell differentiation, and synaptic plasticity. Present in both the brain and periphery, BDNF plays critical roles throughout the body and is essential for placental and fetal development. Rodent studies show that early life stress, including prenatal stress, broadly alters BDNF methylation, with presumed changes in gene expression. No studies have assessed prenatal exposure to maternal traumatic stress and BDNF methylation in humans. This study examined associations of prenatal exposure to maternal stress and BDNF methylation at CpG sites across the BDNF gene. RESULTS Among 24 mothers and newborns in the eastern Democratic Republic of Congo, a region with extreme conflict and violence to women, maternal experiences of war trauma and chronic stress were associated with BDNF methylation in umbilical cord blood, placental tissue, and maternal venous blood. Associations of maternal stress and BDNF methylation showed high tissue specificity. The majority of significant associations were observed in putative transcription factor binding regions. CONCLUSIONS This is the first study in humans to examine BDNF methylation in relation to prenatal exposure to maternal stress in three tissues simultaneously and the first in any mammalian species to report associations of prenatal stress and BDNF methylation in placental tissue. The findings add to the growing body of evidence highlighting the importance of considering epigenetic effects when examining the impacts of trauma and stress, not only for adults but also for offspring exposed via effects transmitted before birth.
Collapse
Affiliation(s)
- Darlene A Kertes
- Department of Psychology and University of Florida Genetics Institute, 945 Center Drive, Gainesville, FL 32611-2250 USA
| | - Samarth S Bhatt
- Department of Psychology, University of Florida, Gainesville, FL USA
| | - Hayley S Kamin
- Department of Psychology, University of Florida, Gainesville, FL USA
| | - David A Hughes
- Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Nicole C Rodney
- Department of Anthropology, University of Florida, Gainesville, FL USA
| | - Connie J Mulligan
- Department of Anthropology and University of Florida Genetics Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|
127
|
Clifton V, Cuffe J, Moritz K, Cole T, Fuller P, Lu N, Kumar S, Chong S, Saif Z. Review: The role of multiple placental glucocorticoid receptor isoforms in adapting to the maternal environment and regulating fetal growth. Placenta 2017; 54:24-29. [DOI: 10.1016/j.placenta.2016.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/28/2023]
|
128
|
Stonawski V, Frey S, Golub Y, Moll GH, Heinrich H, Eichler A. [Epigenetic modifications in children associated with maternal emotional stress during pregnancy]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2017; 46:155-167. [PMID: 28256157 DOI: 10.1024/1422-4917/a000515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Besides typical physical and hormonal changes during pregnancy, this life period is often associated with an increased emotional and mental stress for women. For the child, the time in utero is regarded as a critical developmental period since adverse stimuli during pregnancy can have lasting consequences for the fetal and postnatal health and development. Thus, prenatal depression, anxiety and stress are considered as risk factors for developmental delay, emotional and behavioral problems. Epigenetic modifications, especially modifications in DNA methylation, are discussed as a possible biological mechanism that could explain the association between prenatal emotional stress and altered developmental and health outcomes of the child. This review summarizes evidence for DNA methylation changes related to prenatal emotional stress from studies with a candidate-gene approach as well as epigenome-wide association studies. Problematic issues are discussed and recommendations for future research are presented.
Collapse
Affiliation(s)
- Valeska Stonawski
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.,2 Lehrstuhl für Gesundheitspsychologie, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Stefan Frey
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Yulia Golub
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.,3 Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters der Johann Wolfgang Goethe-Universität, Frankfurt a. M
| | - Gunther H Moll
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Hartmut Heinrich
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.,4 kbo-Heckscher-Klinikum, München
| | - Anna Eichler
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| |
Collapse
|
129
|
Tian FY, Hivert MF, Wen X, Xie C, Niu Z, Fan L, Gillman MW, Chen WQ. Tissue differences in DNA methylation changes at AHRR in full term low birth weight in maternal blood, placenta and cord blood in Chinese. Placenta 2017; 52:49-57. [PMID: 28454697 DOI: 10.1016/j.placenta.2017.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Very few study addressed the relationship between Aryl-hydrocarbon receptor repressor (AHRR) DNA methylation and low birth weight, especially in multiple tissues of mother-infant pairs. In this study, we aimed to investigate AHRR DNA methylation modification in cord blood, placenta and maternal blood between full term low birth weight (FT-LBW) and full term normal birth weight (FT-NBW) newborns. METHODS We enrolled 90 FT-LBW and 90 FT-NBW mother-infant pairs, of which all placenta and cord blood samples were collected while 45 maternal blood samples of each group were collected. We measured AHRR DNA methylation (Chr5: 373013-373606) using Sequenom MassARRAY, and assessed associations between AHRR DNA methylation and FT-LBW using logistic regression adjusting for maternal age, education, family income, delivery mode, and passive smoking. RESULTS FT-LBW babies had 3% lower methylation at Chr5: 373378 (CpG 13) in cord blood, and 4-9% higher methylation levels at Chr5: 373315, 373378, 373423, 373476 and 373490/373494 (CpG 10; 13; 15; 16; 17/18 respectively) in maternal blood, comparing with FT-NBW. The methylation of Chr5: 373378 (CpG 13) remained significant association with FT-LBW both in cord blood (OR = 0.90; 95% CI: 0.82, 0.98) and maternal blood (OR = 1.14; 95% CI: 1.04, 1.25) further adjusting for each other in the same model. We observed no significant difference at any CpG sites in placenta. DISCUSSION AHRR DNA methylation of cord and maternal blood might be independently associated with FT-LBW in different ways.
Collapse
Affiliation(s)
- Fu-Ying Tian
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401, Boston, MA, USA; Diabetes Center, Massachusetts General Hospital, 50 Staniford Street, Boston, MA, USA; Department of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, 3001 12th Avenue North, Wing 9, Door 6, Sherbrooke, Québec, Canada.
| | - Xiaozhong Wen
- Division of Behavioral Medicine, Department of Pediatrics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| | - Chuanbo Xie
- Department of Cancer Prevention Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Zhongzheng Niu
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Lijun Fan
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Matthew W Gillman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401, Boston, MA, USA.
| | - Wei-Qing Chen
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
130
|
Matosin N, Cruceanu C, Binder EB. Preclinical and Clinical Evidence of DNA Methylation Changes in Response to Trauma and Chronic Stress. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017710764. [PMID: 29503977 PMCID: PMC5831952 DOI: 10.1177/2470547017710764] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
Abstract
Exposure to chronic stress, either repeated severe acute or moderate sustained stress, is one of the strongest risk factors for the development of psychopathologies such as post-traumatic stress disorder and depression. Chronic stress is linked with several lasting biological consequences, particularly to the stress endocrine system but also affecting intermediate phenotypes such as brain structure and function, immune function, and behavior. Although genetic predisposition confers a proportion of the risk, the most relevant molecular mechanisms determining those susceptible and resilient to the effects of stress and trauma may be epigenetic. Epigenetics refers to the mechanisms that regulate genomic information by dynamically changing the patterns of transcription and translation of genes. Mounting evidence from preclinical rodent and clinical population studies strongly support that epigenetic modifications can occur in response to traumatic and chronic stress. Here, we discuss this literature examining stress-induced epigenetic changes in preclinical models and clinical cohorts of stress and trauma occurring early in life or in adulthood. We highlight that a complex relationship between the timing of environmental stressors and genetic predispositions likely mediate the response to chronic stress over time, and that a better understanding of epigenetic changes is needed by further investigations in longitudinal and postmortem brain clinical cohorts.
Collapse
Affiliation(s)
- Natalie Matosin
- Department of Translational Research in
Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- School of Psychiatry, Faculty of Medicine,
University of New South Wales, Sydney, Australia
| | - Cristiana Cruceanu
- Department of Translational Research in
Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B. Binder
- Department of Translational Research in
Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral
Sciences, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
131
|
Ryan J, Mansell T, Fransquet P, Saffery R. Does maternal mental well-being in pregnancy impact the early human epigenome? Epigenomics 2017; 9:313-332. [PMID: 28140666 DOI: 10.2217/epi-2016-0118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is considerable interest in the potential nongenetic transmission of a suite of mental health conditions across generations, with epigenetics emerging as a candidate mediator of such effects. This review summarizes findings from 22 studies measuring candidate gene DNA methylation and seven epigenome-wide association studies of offspring epigenetic profile in women with adverse mental wellbeing measures (stress, depression or anxiety) in pregnancy. Despite some compelling evidence to suggest an association, there is a lack of reproducible findings, potentially linked to a number of limitations to this research and the field more broadly. Large cohorts with well characterized exposures across pregnancy are now needed. There is exciting potential that epigenetics may help explain some of the link between maternal wellbeing and child health outcomes, thereby informing novel interventions, but future studies must address current limitations to advance translational knowledge in this area.
Collapse
Affiliation(s)
- Joanne Ryan
- Department of Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Royal Childrens Hospital, & Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Department of Epidemiology & Preventive Medicine, School of Public Health & Preventive Medicine, Monash University, Prahran, Victoria, Australia.,Inserm U1061, Hopital La Colombiere, University Montpellier, Montpellier, France
| | - Toby Mansell
- Department of Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Royal Childrens Hospital, & Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Fransquet
- Department of Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Royal Childrens Hospital, & Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard Saffery
- Department of Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Royal Childrens Hospital, & Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
132
|
Scheinost D, Sinha R, Cross SN, Kwon SH, Sze G, Constable RT, Ment LR. Does prenatal stress alter the developing connectome? Pediatr Res 2017; 81:214-226. [PMID: 27673421 PMCID: PMC5313513 DOI: 10.1038/pr.2016.197] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
Human neurodevelopment requires the organization of neural elements into complex structural and functional networks called the connectome. Emerging data suggest that prenatal exposure to maternal stress plays a role in the wiring, or miswiring, of the developing connectome. Stress-related symptoms are common in women during pregnancy and are risk factors for neurobehavioral disorders ranging from autism spectrum disorder, attention deficit hyperactivity disorder, and addiction, to major depression and schizophrenia. This review focuses on structural and functional connectivity imaging to assess the impact of changes in women's stress-based physiology on the dynamic development of the human connectome in the fetal brain.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut,Department of Child Study, Yale School of Medicine, New Haven, Connecticut,Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Sarah N. Cross
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Soo Hyun Kwon
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Gordon Sze
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Laura R. Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut,Department of Neurology, Yale School of Medicine, New Haven, Connecticut,()
| |
Collapse
|
133
|
Zhao Y, Liu P, Wang J, Xiao X, Meng X, Zhang Y. Umbilical cord blood PBDEs concentrations are associated with placental DNA methylation. ENVIRONMENT INTERNATIONAL 2016; 97:1-6. [PMID: 27768956 DOI: 10.1016/j.envint.2016.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND In utero polybrominated diphenyl ethers (PBDEs) exposure has been associated with adverse fetal growth. Alterations in placental DNA methylation might mediate those adverse effects. OBJECTIVES To examine the associations between in utero PBDEs exposure and DNA methylation in human placenta. METHODS Eighty apparently healthy mother-newborn pairs delivering at the Second Affiliated Hospital of Wenzhou Medical College were enrolled in this study. Placental DNA methylation of LINE1, NR3C1 and IGF2 was measured by quantitative polymerase chain reaction-pyrosequencing. In utero PBDEs exposure was assessed by measuring umbilical cord blood PBDEs concentrations. RESULTS For LINE-1, higher levels of BDE-66 exposure were associated with decreased DNA methylation (β=-0.9, 95% CI, -1.8 to -0.1); For NR3C1, BDE-153 concentrations was significantly inversely associated with DNA methylation (β=-2.0, 95% CI, -3.7 to -0.2); For IGF2, elevated concentrations of both BDE-153 (β=-1.7; 95% CI, -3.0 to -0.4) and BDE-209 (β=-1.0; 95% CI, -1. 9 to -0.1) were significantly associated with decreased DNA methylation. CONCLUSIONS We found that placental DNA methylation is associated with in utero PBDEs exposure. Changes in placental DNA methylation might be part of the underlying biological pathway between in utero PBDEs exposure and adverse fetal growth.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | | | - Junyong Wang
- Department of Health Management, Jiangxi University of Traditional Chinese Medicine, China
| | - Xirong Xiao
- Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiangzhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
134
|
Cunliffe VT. The epigenetic impacts of social stress: how does social adversity become biologically embedded? Epigenomics 2016; 8:1653-1669. [PMID: 27869483 PMCID: PMC5289034 DOI: 10.2217/epi-2016-0075] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/27/2016] [Indexed: 01/29/2023] Open
Abstract
Epigenetic mechanisms are implicated in the processes through which social stressors erode health in humans and other animals. Here I review progress in elucidating the biological pathways underlying the social gradient in health, with particular emphasis on how behavioral stresses influence epigenomic variation linked to health. The evidence that epigenetic changes are involved in embedding of social status-linked chronic stress is reviewed in the context of current knowledge about behavior within animal dominance hierarchies and the impacts of social position on behaviors that affect health. The roles of epigenetic mechanisms in responses to trauma and the evidence for their involvement in intergenerational transmission of the biological impacts of traumatic stress are also considered. Taken together, the emerging insights have important implications for development of strategies to improve societal health and well-being.
Collapse
Affiliation(s)
- Vincent T Cunliffe
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
135
|
Childhood adversity and epigenetic regulation of glucocorticoid signaling genes: Associations in children and adults. Dev Psychopathol 2016; 28:1319-1331. [PMID: 27691985 DOI: 10.1017/s0954579416000870] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Early childhood experiences have lasting effects on development, including the risk for psychiatric disorders. Research examining the biologic underpinnings of these associations has revealed the impact of childhood maltreatment on the physiologic stress response and activity of the hypothalamus-pituitary-adrenal axis. A growing body of literature supports the hypothesis that environmental exposures mediate their biological effects via epigenetic mechanisms. Methylation, which is thought to be the most stable form of epigenetic change, is a likely mechanism by which early life exposures have lasting effects. We present recent evidence related to epigenetic regulation of genes involved in hypothalamus-pituitary-adrenal axis regulation, namely, the glucocorticoid receptor gene (nuclear receptor subfamily 3, group C, member 1 [NR3C1]) and FK506 binding protein 51 gene (FKBP5), after childhood adversity and associations with risk for psychiatric disorders. Implications for the development of interventions and future research are discussed.
Collapse
|
136
|
Contextual adversity, telomere erosion, pubertal development, and health: Two models of accelerated aging, or one? Dev Psychopathol 2016; 28:1367-1383. [DOI: 10.1017/s0954579416000900] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractTwo independent lines of inquiry suggest that growing up under conditions of contextual adversity (e.g., poverty and household chaos) accelerates aging and undermines long-term health. Whereas work addressing the developmental origins of health and disease highlights accelerated-aging effects of contextual adversity on telomere erosion, that informed by an evolutionary analysis of reproductive strategies highlights such effects with regard to pubertal development (in females). That both shorter telomeres early in life and earlier age of menarche are associated with poor health later in life raises the prospect, consistent with evolutionary life-history theory, that these two bodies of theory and research are tapping into the same evolutionary–developmental process whereby longer term health costs are traded off for increased probability of reproducing before dying via a process of accelerated aging. Here we make the case for such a claim, while highlighting biological processes responsible for these effects, as well as unknowns in the epigenetic equation that might instantiate these contextually regulated developmental processes.
Collapse
|
137
|
Janssen AB, Kertes DA, McNamara GI, Braithwaite EC, Creeth HDJ, Glover VI, John RM. A Role for the Placenta in Programming Maternal Mood and Childhood Behavioural Disorders. J Neuroendocrinol 2016; 28. [PMID: 26836228 PMCID: PMC4988512 DOI: 10.1111/jne.12373] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/11/2016] [Accepted: 01/28/2016] [Indexed: 01/02/2023]
Abstract
Substantial data demonstrate that the early-life environment, including in utero, plays a key role in later life disease. In particular, maternal stress during pregnancy has been linked to adverse behavioural and emotional outcomes in children. Data from human cohort studies and experimental animal models suggest that modulation of the developing epigenome in the foetus by maternal stress may contribute to the foetal programming of disease. Here, we summarise insights gained from recent studies that may advance our understanding of the role of the placenta in mediating the association between maternal mood disorders and offspring outcomes. First, the placenta provides a record of exposures during pregnancy, as indicated by changes in the placental trancriptome and epigenome. Second, prenatal maternal mood may alter placental function to adversely impact foetal and child development. Finally, we discuss the less well established but interesting possibility that altered placental function, more specifically changes in placental hormones, may adversely affect maternal mood and later maternal behaviour, which can also have consequence for offspring well-being.
Collapse
Affiliation(s)
- A B Janssen
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - D A Kertes
- Department of Psychology and University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - G I McNamara
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - E C Braithwaite
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - H D J Creeth
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - V I Glover
- Faculty of Medicine, Imperial College London, London, UK
| | - R M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
138
|
Goodrich JM, Reddy P, Naidoo RN, Asharam K, Batterman S, Dolinoy DC. Prenatal exposures and DNA methylation in newborns: a pilot study in Durban, South Africa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:908-17. [PMID: 27359112 PMCID: PMC4945397 DOI: 10.1039/c6em00074f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The in utero environment has the potential to influence epigenetic programming and subsequently the health of offspring. Even though pregnant women living in urban Africa are exposed to multiple chemicals and infectious agents that may impact their developing children, the neonatal epigenome has not been studied in these regions. We assessed whether prenatal exposures to air pollution and maternal human immunodeficiency virus (HIV) are associated with changes to DNA methylation throughout the epigenome using a pilot sample from the Mother and Child Environmental (MACE) birth cohort, of which 36% of the mothers are HIV positive. Families living in a high air pollution region (south Durban, n = 11) and a low air pollution region (north Durban, n = 11) with comparable socioeconomic characteristics were selected for analysis. DNA methylation was quantified in cord blood plasma DNA at >430 000 CpG sites using the Infinium HumanMethylation450 BeadChip. Sites associated with living in south Durban or maternal HIV infection (p < 0.001) were more likely to be hypomethylated and located in CpG islands. Top differentially methylated sites by region of Durban were enriched in pathways related to xenobiotic metabolism, oxygen and gas transport, and sensory perception of chemical stimuli when performing gene set enrichment testing with LRpath. Differentially methylated sites by maternal HIV status were enriched in cytochrome P450s, pathways involved in detection of chemical stimuli, metabolic processes, and viral regulation and processing. Given the small sample size of the study, future work examining the impact of prenatal exposures to air pollution, maternal infection, and antiviral treatment on the epigenome and downstream health implications is merited in Sub-Saharan African populations.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Poovendhree Reddy
- Department of Community Health Studies, Durban University of Technology, Durban, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Kareshma Asharam
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA. and Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
139
|
Non AL, Hollister BM, Humphreys KL, Childebayeva A, Esteves K, Zeanah CH, Fox NA, Nelson CA, Drury SS. DNA methylation at stress-related genes is associated with exposure to early life institutionalization. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:84-93. [PMID: 27218411 DOI: 10.1002/ajpa.23010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Differences in DNA methylation have been associated with early life adversity, suggesting that alterations in methylation function as one pathway through which adverse early environments are biologically embedded. This study examined associations between exposure to institutional care, quantified as the proportion of time in institutional care at specified follow-up assessment ages, and DNA methylation status in two stress-related genes: FKBP5 and SLC6A4. MATERIALS AND METHODS We analyzed data from the Bucharest Early Intervention Project, which is a prospective study in which children reared in institutional settings were randomly assigned (mean age 22 months) to either newly created foster care or care as usual (to remain in their current placement) and prospectively followed. A group of children from the same geographic area, with no history of institutionalized caregiving, were also recruited. DNA methylation status was determined in DNA extracted from buccal epithelial cells of children at age 12. RESULTS An inverse association was identified such that more time spent in institutional care was associated with lower DNA methylation at specific CpG sites within both genes. DISCUSSION These results suggest a lasting impact of early severe social deprivation on methylation patterns in these genes, and contribute to a growing literature linking early adversity and epigenetic variation in children. Am J Phys Anthropol 161:84-93, 2016.. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amy L Non
- Department of Anthropology, University of California, San Diego, La Jolla, CA
| | | | | | | | - Kyle Esteves
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, LA
| | - Charles H Zeanah
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, LA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD
| | - Charles A Nelson
- Boston Children's Hospital, Boston, MA.,Harvard Graduate School of Education, Cambridge, MA
| | - Stacy S Drury
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
140
|
Watson IPB, Brüne M, Bradley AJ. The evolution of the molecular response to stress and its relevance to trauma and stressor-related disorders. Neurosci Biobehav Rev 2016; 68:134-147. [PMID: 27216210 DOI: 10.1016/j.neubiorev.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
The experience of "stress", in its broadest meaning, is an inevitable part of life. All living creatures have evolved multiple mechanisms to deal with such threats and challenges and to avoid damage to the organism that may be incurred from these stress responses. Trauma and stressor-related disorders are psychiatric conditions that are caused specifically by the experience of stress, though depression, anxiety and some other disorders may also be unleashed by stress. Stress, however, is not a mandatory criterion of these diagnoses. This article focuses on the evolution of the neurochemicals involved in the response to stress and the systems in which they function. This includes the skin and gut, and the immune system. Evidence suggests that responses to stress are evolutionarily highly conserved, have wider involvement than the hypothalamic pituitary adrenal stress axis alone, and that excessive stress responses can produce stressor-related disorders in both humans and animals.
Collapse
Affiliation(s)
- Ian P Burges Watson
- University of Tasmania, Department of Psychiatry, Hobart, Tasmania 7005, Australia
| | - Martin Brüne
- LWL University Hospital, Department of Psychiatry, Division of Cognitive Neuropsychiatry, Ruhr-University Bochum, Germany.
| | - Adrian J Bradley
- School of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
141
|
Maternal Prenatal Positive Affect, Depressive and Anxiety Symptoms and Birth Outcomes: The PREDO Study. PLoS One 2016; 11:e0150058. [PMID: 26919119 PMCID: PMC4769149 DOI: 10.1371/journal.pone.0150058] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/09/2016] [Indexed: 11/19/2022] Open
Abstract
Background We investigated whether maternal prenatal emotions are associated with gestational length and birth weight in the large PREDO Study with multiple measurement points of emotions during gestation. Methods Altogether 3376 pregnant women self-assessed their positive affect (PA, Positive and Negative Affect Schedule) and depressive (Center for Epidemiologic Studies Depression Scale, CES-D) and anxiety (Spielberger State Anxiety Scale, STAI) symptoms up to 14 times during gestation. Birth characteristics were derived from the National Birth Register and from medical records. Results One standard deviation (SD) unit higher PA during the third pregnancy trimester was associated with a 0.05 SD unit longer gestational length, whereas one SD unit higher CES-D and STAI scores during the third trimester were associated with 0.04–0.05 SD unit shorter gestational lengths (P-values ≤ 0.02), corresponding to only 0.1–0.2% of the variation in gestational length. Higher PA during the third trimester was associated with a significantly decreased risk for preterm (< 37 weeks) delivery (for each SD unit higher positive affect, odds ratio was 0.8-fold (P = 0.02). Mothers with preterm delivery showed a decline in PA and an increase in CES-D and STAI during eight weeks prior to delivery. Post-term birth (≥ 42 weeks), birth weight and fetal growth were not associated with maternal prenatal emotions. Conclusions This study with 14 measurements of maternal emotions during pregnancy show modest effects of prenatal emotions during the third pregnancy trimester, particularly in the weeks close to delivery, on gestational length. From the clinical perspective, the effects were negligible. No associations were detected between prenatal emotions and birth weight.
Collapse
|
142
|
Keating DP. Transformative Role of Epigenetics in Child Development Research: Commentary on the Special Section. Child Dev 2016; 87:135-42. [DOI: 10.1111/cdev.12488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
143
|
Abstract
Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow.
Collapse
Affiliation(s)
- Barry M Lester
- Alpert Medical School of Brown University and Women and Infants Hospital of Rhode Island
| | | | | |
Collapse
|