101
|
The radial glia antibody RC2 recognizes a protein encoded by Nestin. Biochem Biophys Res Commun 2009; 382:588-92. [DOI: 10.1016/j.bbrc.2009.03.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 03/12/2009] [Indexed: 12/20/2022]
|
102
|
Mizuuchi E, Semba S, Kodama Y, Yokozaki H. Down-modulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression. Int J Cancer 2009; 124:1802-10. [DOI: 10.1002/ijc.24111] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
103
|
Barberis L, Pasquali C, Bertschy-Meier D, Cuccurullo A, Costa C, Ambrogio C, Vilbois F, Chiarle R, Wymann M, Altruda F, Rommel C, Hirsch E. Leukocyte transmigration is modulated by chemokine-mediated PI3Kγ-dependent phosphorylation of vimentin. Eur J Immunol 2009; 39:1136-46. [DOI: 10.1002/eji.200838884] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
104
|
The molecular basis of human keratin disorders. Hum Genet 2009; 125:355-73. [DOI: 10.1007/s00439-009-0646-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/18/2009] [Indexed: 01/01/2023]
|
105
|
He ZL, Zhong DW, Zheng H, Miao XY, Hu JX, Wen Y, Chen Y. Expression of gene Plk1 and its relationship with prognosis of hepatocellular carcinoma: an analysis of 213 cases. Shijie Huaren Xiaohua Zazhi 2009; 17:146-150. [DOI: 10.11569/wcjd.v17.i2.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate expression of polo-like kinase1 (Plk1) in hepatocellular carcinoma (HCC) tissue and to explore relationship between Plk1 expression and prognosis of HCC.
METHODS: Protein expressions of Plk1 were detected using semi-quantitative RT-PCR and Western blot in 213 HCC cases at our hospital from Jan 2003 to May 2008. And clinicopathologic factors and prognosis were analyzed by the application of Kaplan-Meier method and multivariate Cox proportional hazards model.
RESULTS: The positive expression rate of Plk1 in HCC was 83.6%. 1, 3, 5-year survival rates were significantly lower in positive expression group than in negative group (P = 0.004). The prognosis of HCC was correlated with the positive expression of Plk1, Edmondson grade, macroscopic venous invasion, microscopic venous invasion and tumor number in HCC, but not with HbsAg, cirrhosis, AFP, tumor encapsulation or tumor size. In multivariate Cox regression analysis, Edmondson grade, the expression of Plk1, macroscopic venous invasion and tumor number were four important prognostic factors for HCC. The risk ratio of Edmondson grade, positive expression of Plk1, macroscopic tumor thrombosis and tumor number were 1.717, 1.938, 1.537, 2.355, respectively.
CONCLUSION: The expression of Plk1 would be helpful in selecting the high risk cases and providing reliable evidence for Plk1 gene targeted therapy.
Collapse
|
106
|
Zamoner A, Pierozan P, Vidal LF, Lacerda BA, Dos Santos NG, Vanzin CS, Pessoa-Pureur R. Vimentin phosphorylation as a target of cell signaling mechanisms induced by 1alpha,25-dihydroxyvitamin D3 in immature rat testes. Steroids 2008; 73:1400-8. [PMID: 18687349 DOI: 10.1016/j.steroids.2008.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/28/2008] [Accepted: 07/09/2008] [Indexed: 01/16/2023]
Abstract
The effects of 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] are mainly mediated by nuclear receptors modulating gene expression. However, there are increasing evidences of nongenomic mechanisms of this hormone associated with kinase- and calcium-activated signaling pathways. In this context, the aim of the present work was to investigate the signaling pathways involved in the mechanism of action of 1,25(OH)(2)D(3) on vimentin phosphorylation in 15-day-old rat testes. Results showed that 1,25(OH)(2)D(3) at concentrations ranging from 1 nM to 1 microM increased vimentin phosphorylation independent of protein synthesis. We also demonstrated that the mechanisms underlying the hormone action involve protein kinase C activation in a phospholipase C-independent manner. Moreover, we showed that the participation of protein kinase A, extracellular regulated protein kinase (ERK), and intra- and extracellular Ca(2+) mediating the effects of 1,25(OH)(2)D(3) on the cytoskeleton. In addition, we investigated the effect of different times of exposure to the hormone on total and phosphoERK1/2 or c-Jun N-terminal kinases 1/2 (JNK1/2) in immature rat testis. Results showed that the total levels of ERK1/2 and JNK1/2 were unaltered from 1 to 15 min exposure to 1,25(OH)(2)D(3). However, the phosphoERK1/2 levels significantly increased at 1 and 5 min 1,25(OH)(2)D(3) treatment. Furthermore, phosphoJNK1 levels were decreased at 10 and 15 min 1,25(OH)(2)D(3) exposure, while phosphoJNK 2 levels were diminished at 5, 10 and 15 min treatment with the hormone. These findings demonstrate that 1,25(OH)(2)D(3) may modulate vimentin phosphorylation through nongenomic Ca(2+)-dependent mechanisms in testis cells.
Collapse
Affiliation(s)
- Ariane Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo. CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
107
|
Sugimoto M, Inoko A, Shiromizu T, Nakayama M, Zou P, Yonemura S, Hayashi Y, Izawa I, Sasoh M, Uji Y, Kaibuchi K, Kiyono T, Inagaki M. The keratin-binding protein Albatross regulates polarization of epithelial cells. ACTA ACUST UNITED AC 2008; 183:19-28. [PMID: 18838552 PMCID: PMC2557036 DOI: 10.1083/jcb.200803133] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The keratin intermediate filament network is abundant in epithelial cells, but its function in the establishment and maintenance of cell polarity is unclear. Here, we show that Albatross complexes with Par3 to regulate formation of the apical junctional complex (AJC) and maintain lateral membrane identity. In nonpolarized epithelial cells, Albatross localizes with keratin filaments, whereas in polarized epithelial cells, Albatross is primarily localized in the vicinity of the AJC. Knockdown of Albatross in polarized cells causes a disappearance of key components of the AJC at cell-cell borders and keratin filament reorganization. Lateral proteins E-cadherin and desmoglein 2 were mislocalized even on the apical side. Although Albatross promotes localization of Par3 to the AJC, Par3 and ezrin are still retained at the apical surface in Albatross knockdown cells, which retain intact microvilli. Analysis of keratin-deficient epithelial cells revealed that keratins are required to stabilize the Albatross protein, thus promoting the formation of AJC. We propose that keratins and the keratin-binding protein Albatross are important for epithelial cell polarization.
Collapse
Affiliation(s)
- Masahiko Sugimoto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
The CPC (chromosomal passenger complex) performs essential roles in the regulation and co-ordination of chromosomal and cytoskeletal events during mitosis and meiosis. The first functional analyses showed evidence of a role of the CPC in the regulation of cytokinesis. In this review, I summarize what we have learned since then about the role of the CPC in the late stages of mitosis and cytokinesis.
Collapse
|
109
|
Brauksiepe B, Mujica AO, Herrmann H, Schmidt ER. The Serine/threonine kinase Stk33 exhibits autophosphorylation and phosphorylates the intermediate filament protein Vimentin. BMC BIOCHEMISTRY 2008; 9:25. [PMID: 18811945 PMCID: PMC2567967 DOI: 10.1186/1471-2091-9-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 09/23/2008] [Indexed: 02/02/2023]
Abstract
Background Colocalization of Stk33 with vimentin by double immunofluorescence in certain cells indicated that vimentin might be a target for phosphorylation by the novel kinase Stk33. We therefore tested in vitro the ability of Stk33 to phosphorylate recombinant full length vimentin and amino-terminal truncated versions thereof. In order to prove that Stk33 and vimentin are also in vivo associated proteins co-immunoprecipitation experiments were carried out. For testing the enzymatic activity of immunoprecipitated Stk33 we incubated precipitated Stk33 with recombinant vimentin proteins. To investigate whether Stk33 binds directly to vimentin, an in vitro co-sedimentation assay was performed. Results The results of the kinase assays demonstrate that Stk33 is able to specifically phosphorylate the non-α-helical amino-terminal domain of vimentin in vitro. Furthermore, co-immunoprecipitation experiments employing cultured cell extracts indicate that Stk33 and vimentin are associated in vivo. Immunoprecipitated Stk33 has enzymatic activity as shown by successful phosphorylation of recombinant vimentin proteins. The results of the co-sedimentation assay suggest that vimentin binds directly to Stk33 and that no additional protein mediates the association. Conclusion We hypothesize that Stk33 is involved in the in vivo dynamics of the intermediate filament cytoskeleton by phosphorylating vimentin.
Collapse
|
110
|
Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and α-smooth muscle actin: relevance for non-sprouting angiogenesis. Histochem Cell Biol 2008; 130:1027-40. [DOI: 10.1007/s00418-008-0478-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 01/14/2023]
|
111
|
Zamoner A, Heimfarth L, Oliveira Loureiro S, Royer C, Mena Barreto Silva FR, Pessoa-Pureur R. Nongenomic actions of thyroxine modulate intermediate filament phosphorylation in cerebral cortex of rats. Neuroscience 2008; 156:640-52. [PMID: 18760334 DOI: 10.1016/j.neuroscience.2008.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
The developmental effects of thyroid hormones (TH) in mammalian brain are mainly mediated by nuclear receptors regulating gene expression. However, there are increasing evidences of nongenomic mechanisms of these hormones associated with kinase- and calcium-activated signaling pathways. In this context, the aim of the present work was to investigate the signaling pathways involved in the mechanism of action of TH on cytoskeletal phosphorylation in cerebral cortex of 15-day-old male rats. Results showed that L-thyroxine (L-T4) increased the intermediate filament (IF) phosphorylation independently of protein synthesis, without altering the total immunocontent of these proteins. Otherwise, neither 3,5,3'-triiodo-L-thyronine (L-T3) nor neurotransmitters (GABA, ATP, L-glutamate or epinephrine) acted on the IF-associated phosphorylation level. We also demonstrated that the mechanisms underlying the L-T4 effect on the cytoskeleton involve membrane initiated actions through Gi protein-coupled receptor. This evidence was reinforced by the inhibition of cyclic adenosine 5'-monophosphate (cAMP) levels. Moreover, we showed the participation of phospholipase C, protein kinase C, mitogen-activated protein kinase, calcium/calmodulin-dependent protein kinase II, intra- and extracellular Ca2+ mediating the effects of L-T4 on the cytoskeleton. Stimulation of 45Ca2+ uptake by L-T4 was also demonstrated. These findings demonstrate that L-T4 has important physiological roles modulating the cytoskeleton of neural cells during development.
Collapse
Affiliation(s)
- A Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
112
|
Slawson C, Lakshmanan T, Knapp S, Hart GW. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol Biol Cell 2008; 19:4130-40. [PMID: 18653473 DOI: 10.1091/mbc.e07-11-1146] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
O-linked beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic intracellular protein modification responsive to stress, hormones, nutrients, and cell cycle stage. Alterations in O-GlcNAc addition or removal (cycling) impair cell cycle progression and cytokinesis, but the mechanisms are not well understood. Here, we demonstrate that the enzymes responsible for O-GlcNAc cycling, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) are in a transient complex at M phase with the mitotic kinase Aurora B and protein phosphatase 1. OGT colocalized to the midbody during telophase with Aurora B. Furthermore, these proteins coprecipitated with each other in a late mitotic extract. The complex was stable under Aurora inhibition; however, the total cellular levels of O-GlcNAc were increased and the localization of OGT was decreased at the midbody after Aurora inhibition. Vimentin, an intermediate filament protein, is an M phase substrate for both Aurora B and OGT. Overexpression of OGT or OGA led to defects in mitotic phosphorylation on multiple sites, whereas OGT overexpression increased mitotic GlcNAcylation of vimentin. OGA inhibition caused a decrease in vimentin late mitotic phosphorylation but increased GlcNAcylation. Together, these data demonstrate that the O-GlcNAc cycling enzymes associate with kinases and phosphatases at M phase to regulate the posttranslational status of vimentin.
Collapse
Affiliation(s)
- Chad Slawson
- Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
113
|
Wang Y, He QY, Tsao SW, Cheung YH, Wong A, Chiu JF. Cytokeratin 8 silencing in human nasopharyngeal carcinoma cells leads to cisplatin sensitization. Cancer Lett 2008; 265:188-96. [PMID: 18353540 DOI: 10.1016/j.canlet.2008.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 12/30/2022]
Abstract
By comparing protein profiles of nasopharyngeal carcinoma HONE1 cells to transformed nasopharyngeal epithelial NP 69 cells, several clusters of differentially expressed proteins were identified. The increased expression of cytokeratin 8 (CK8) and pyruvate kinase M2 was a common feature in four NPC cell lines compared to the two transformed epithelial cell lines. Suppression of CK8 was associated with the sensitivity to cisplatin in HONE1 cells; while overexpression of CK8 provided resistance to cisplatin-mediated apoptosis; and this protection occurred through an enhanced phosphorylation of c-Jun NH(2)-terminal kinase (JNK). Our findings implicate an underlying molecular mechanism in which CK8 is required for cisplatin resistance.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
114
|
Loureiro SO, Heimfarth L, Pelaez PDL, Vanzin CS, Viana L, Wyse ATS, Pessoa-Pureur R. Homocysteine activates calcium-mediated cell signaling mechanisms targeting the cytoskeleton in rat hippocampus. Int J Dev Neurosci 2008; 26:447-55. [PMID: 18406095 DOI: 10.1016/j.ijdevneu.2008.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 01/13/2023] Open
Abstract
Homocysteine is considered to be neurotoxic and a risk factor for neurodegenerative diseases. Despite the increasing evidences of excitotoxic mechanisms of homocysteine (Hcy), little is known about the action of Hcy on the cytoskeleton. In this context, the aim of the present work was to investigate the signaling pathways involved in the mechanism of action of Hcy on cytoskeletal phosphorylation in cerebral cortex and hippocampus of rats during development. Results showed that 100 microM Hcy increased the intermediate filament (IF) phosphorylation only in 17-day-old rat hippocampal slices without affecting the cerebral cortex from 9- to 29-day-old animals. Stimulation of (45)Ca(2+) uptake supported the involvement of NMDA receptors and voltage-dependent channels in extracellular Ca(2+) flux, as well as Ca(2+) release from intracellular stores through inositol-3-phosphate and ryanodine receptors. Moreover, the mechanisms underlying the Hcy effect on hippocampus cytoskeleton involved the participation of phospholipase C, protein kinase C, mitogen-activated protein kinase, phosphoinositol-3 kinase and calcium/calmodulin-dependent protein kinase II. The Hcy-induced IF hyperphosphorylation was also related to G(i) protein and inhibition of cAMP levels. These findings demonstrate that Hcy at a concentration described to induce neurotoxicity activates the IF-associated phosphorylating system during development in hippocampal slices of rats through different cell signaling mechanisms. These results probably suggest that hippocampal rather than cortical cytoskeleton is susceptible to neurotoxical concentrations of Hcy during development and this could be involved in the neural damage characteristic of mild homocystinuric patients.
Collapse
Affiliation(s)
- Samanta Oliveira Loureiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande so Sul, Rua Ramiro Barcelos 2600, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
115
|
Salehi F, Kovacs K, Cusimano MD, Horvath E, Bell CD, Rotondo F, Scheithauer BW. Immunohistochemical expression of nestin in adenohypophysial vessels during development of pituitary infarction. J Neurosurg 2008; 108:118-23. [PMID: 18173320 DOI: 10.3171/jns/2008/108/01/0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this work was to investigate the immunohistochemical expression of nestin, a member of the intermediate filament family, in adenohypophysial vasculature during development and progression of pituitary infarction. METHODS Forty-five nontumorous adenohypophyses and 34 pituitary adenomas of various types, all exhibiting acute or healing infarcts, were examined immunohistochemically using the streptavidin-biotin-peroxidase complex method. RESULTS In both adenohypophyses and pituitary adenomas without infarction, nestin was expressed in only a few capillaries and endothelial cells. In acute infarcts without a vascular response, no nestin was demonstrable within necrotic capillaries (50 cases). In organizing infarcts, newly formed vessels spreading into necrotic zones showed nestin expression in all capillaries and practically every endothelial cell (25 cases). In the hypocellular, fibrotic scar phase, only a few vessels (4) were apparent, and immunoreactivity was focal and mild. CONCLUSIONS Nestin is strongly expressed in newly formed capillaries and is downregulated when infarcts transform to fibrous tissue. Nestin expression may provide valuable insight into the process of pituitary angiogenesis.
Collapse
Affiliation(s)
- Fateme Salehi
- Department of Laboratory Medicine, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
116
|
Intermediate filament assembly: dynamics to disease. Trends Cell Biol 2008; 18:28-37. [PMID: 18083519 DOI: 10.1016/j.tcb.2007.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/31/2007] [Accepted: 11/01/2007] [Indexed: 11/21/2022]
Abstract
Intermediate filament (IF) proteins belong to a large and diverse gene family with broad representation in vertebrate tissues. Although considered the 'toughest' cytoskeletal fibers, studies in cultured cells have revealed that IF can be surprisingly dynamic and highly regulated. This review examines the diversity of IF assembly behaviors, and considers the ideas that IF proteins are co- or post-translationally assembled into oligomeric precursors, which can be delivered to different subcellular compartments by microtubules or actomyosin and associated motor proteins. Their interaction with other cellular elements via IF associated proteins (IFAPs) affects IF dynamics and also results in cellular networks with properties that transcend those of individual components. We end by discussing how mutations leading to defects in IF assembly, network formation or IF-IFAP association compromise in vivo functions of IF as protectors against environmental stress.
Collapse
|
117
|
Whiteman HJ, Weeks ME, Dowen SE, Barry S, Timms JF, Lemoine NR, Crnogorac-Jurcevic T. The role of S100P in the invasion of pancreatic cancer cells is mediated through cytoskeletal changes and regulation of cathepsin D. Cancer Res 2007; 67:8633-42. [PMID: 17875703 DOI: 10.1158/0008-5472.can-07-0545] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Up-regulation of S100P, a member of the S100 calcium-binding protein family, is an early molecular event in the development of pancreatic cancer and it is expressed at high levels in both precursor lesions and invasive cancer. To gain more insight into the molecular mechanisms underlying the functional roles of this protein, we stably overexpressed S100P in the Panc1 pancreatic cancer cell line and identified the consequent changes in global protein expression by two-dimensional difference in-gel electrophoresis. The observed changes in target proteins were confirmed by Western blot analysis and immunofluorescence, whereas their functional effect was investigated using motility and invasion assays. In this study, we have shown that overexpression of S100P led to changes in the expression levels of several cytoskeletal proteins, including cytokeratins 8, 18, and 19. We have also shown disorganization of the actin cytoskeleton network and changes in the phosphorylation status of the actin regulatory protein cofilin. Additionally, we have shown that overexpression of S100P leads to increased expression of another early pancreatic cancer marker, S100A6, as well as the aspartic protease cathepsin D, both of which are involved in cellular invasion. Functional studies showed that the increased invasive potential of S100P-overexpressing cells was at least partially due to the increase in cathepsin D expression. In summary, our data suggest that these changes could contribute to the metastatic spread of pancreatic cancer and may explain the devastating prognosis of this disease.
Collapse
|
118
|
An optimized immunohistochemical method for detection of phosphorylated mitogen-activated protein kinases. J Immunol Methods 2007; 330:34-43. [PMID: 18061203 DOI: 10.1016/j.jim.2007.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 10/24/2007] [Indexed: 11/22/2022]
Abstract
Study of the in vivo spatio-temporal localization of modified proteins is likely to become a major focus of proteomics research in the near future. In this study we optimized and tested an immunohistochemical procedure for detecting unstable phosphorylated mitogen-activated protein (MAP) kinases. Using our method, phosphorylated MAP kinases can be sensitively and reproducibly localized in the developing white matter of murine spinal cord on embryonic day 15. Our method is simple and effective, and so may be useful in future proteomics research.
Collapse
|
119
|
Kouloumenta A, Mavroidis M, Capetanaki Y. Proper perinuclear localization of the TRIM-like protein myospryn requires its binding partner desmin. J Biol Chem 2007; 282:35211-21. [PMID: 17872945 DOI: 10.1074/jbc.m704733200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Desmin, the muscle-specific intermediate filament protein, surrounds the Z disks and links the entire contractile apparatus to the sarcolemmal cytoskeleton, cytoplasmic organelles, and the nucleus. In an attempt to explore the molecular mechanisms of these associations, we performed a yeast two-hybrid screening of a cardiac cDNA library. We showed that the desmin amino-terminal domain (N-(1-103)) binds to a 413-kDa TRIM-like protein, myospryn, originally identified as the muscle-specific partner of dysbindin, a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Binding of desmin with myospryn was confirmed with glutathione S-transferase pulldown assays and coimmunoprecipitation experiments. Western blot analysis revealed that the complex immunoprecipitated by desmin antibodies, in addition to myospryn, contained the BLOC-1 components dysbindin and pallidin. Deletion analysis revealed that only the (N-(1-103)) fragment of desmin binds to myospryn carboxyl terminus and that this association takes place through the 24-amino acid-long carboxyl-terminal end of the SPRY domain of myospryn. Using an antibody against the COOH terminus of myospryn, we demonstrated that myospryn colocalizes with desmin at the periphery of the nucleus, in close proximity to the endoplasmic reticulum, of mouse neonatal cardiomyocytes. In adult heart muscle, the two proteins colocalize, predominantly at intercalated disks and costameres. We also showed that myospryn colocalizes with lysosomes. Using desmin null hearts, we determined that desmin is required for both the proper perinuclear localization of myospryn, as well as the proper positioning of lysosomes, thus suggesting a potential role of desmin intermediate filaments in lysosomes and lysosome-related organelle biogenesis and/or positioning.
Collapse
Affiliation(s)
- Asimina Kouloumenta
- Cell Biology Division, Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | | | | |
Collapse
|
120
|
Höllrigl A, Hofner M, Stary M, Weitzer G. Differentiation of cardiomyocytes requires functional serine residues within the amino-terminal domain of desmin. Differentiation 2007; 75:616-26. [PMID: 17381546 PMCID: PMC7615843 DOI: 10.1111/j.1432-0436.2007.00163.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Desmin contributes to the stability of the myocardium and its amino-terminal domain influences intermediate filament formation and interacts with a variety of proteins and DNAs. Specific serine residues located in this domain are reversibly phosphorylated in a cell cycle and developmental stage-dependent manner as has been demonstrated also for other cytoplasmic type III intermediate filament proteins. Although absence of desmin apparently does not affect cardiomyogenesis, homozygous deletion of the amino-terminal domain of desmin severely inhibited in vitro cardiomyogenesis. To demonstrate the significance of phosphorylation of this domain in cardiomyogenic commitment and differentiation, we inhibited phosphorylation of serine residues 6, 7, and 8 by mutation to alanine, and investigated early cardiomyogenesis in heterozygous embryoid bodies. As control, serine residues 31 and 32, which are not phosphorylated by kinases mutating serine residues 6, 7, and 8, were mutated to alanine in a second set. Desmin(S6,7,8A) interfered with cardiomyogenesis and myofibrillogenesis in a dominant negative fashion, whereas desmin(S31,32A) produced only a mild phenotype. Desmin(S6,7,8A) led to the down-regulation of the transcription factor genes brachyury, goosecoid, nkx2.5, and mef2C and increased apoptosis of presumptive mesoderm and differentiating cardiomyocytes. Surviving cardiomyocytes which were few in number had no myofibrils. Demonstration that some but not any mutant desmin interfered with the very beginning of cardiomyogenesis suggests an important function of temporarily phosphorylated serine residues 6, 7, and 8 in the amino-terminal domain of desmin in cardiomyogenic commitment and differentiation.
Collapse
Affiliation(s)
- Alexandra Höllrigl
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria
| | | | | | | |
Collapse
|
121
|
Kim S, Coulombe PA. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 2007; 21:1581-97. [PMID: 17606637 DOI: 10.1101/gad.1552107] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intermediate filaments (IFs) are cytoskeletal polymers whose protein constituents are encoded by a large family of differentially expressed genes. Owing in part to their properties and intracellular organization, IFs provide crucial structural support in the cytoplasm and nucleus, the perturbation of which causes cell and tissue fragility and accounts for a large number of genetic diseases in humans. A number of additional roles, nonmechanical in nature, have been recently uncovered for IF proteins. These include the regulation of key signaling pathways that control cell survival, cell growth, and vectorial processes including protein targeting in polarized cellular settings. As this discovery process continues to unfold, a rationale for the large size of this family and the context-dependent regulation of its members is finally emerging.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
122
|
Csortos C, Kolosova I, Verin AD. Regulation of vascular endothelial cell barrier function and cytoskeleton structure by protein phosphatases of the PPP family. Am J Physiol Lung Cell Mol Physiol 2007; 293:L843-54. [PMID: 17693486 DOI: 10.1152/ajplung.00120.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reversible phosphorylation of cytoskeletal and cytoskeleton-associated proteins is a significant element of endothelial barrier function regulation. Therefore, understanding the mechanisms of phosphorylation/dephosphorylation of endothelial cell cytoskeletal proteins is vital to the treatment of severe lung disorders such as high permeability pulmonary edema. In vivo, there is a controlled balance between the activities of protein kinases and phosphatases. Due to various external or internal signals, this balance may be shifted. The actual balances at a given time alter the phosphorylation level of certain proteins with appropriate physiological consequences. The latest information about the structure and regulation of different types of Ser/Thr protein phosphatases participating in the regulation of endothelial cytoskeletal organization and barrier function will be reviewed here.
Collapse
Affiliation(s)
- Csilla Csortos
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
123
|
Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U. Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 2007; 8:562-73. [PMID: 17551517 DOI: 10.1038/nrm2197] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intermediate filaments (IFs) constitute a major structural element of animal cells. They build two distinct systems, one in the nucleus and one in the cytoplasm. In both cases, their major function is assumed to be that of a mechanical stress absorber and an integrating device for the entire cytoskeleton. In line with this, recent disease mutations in human IF proteins indicate that the nanomechanical properties of cell-type-specific IFs are central to the pathogenesis of diseases as diverse as muscular dystrophy and premature ageing. However, the analysis of these various diseases suggests that IFs also have an important role in cell-type-specific physiological functions.
Collapse
Affiliation(s)
- Harald Herrmann
- B065 Functional Architecture of the Cell, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
124
|
Birkenkamp-Demtroder K, Mansilla F, Sørensen FB, Kruhøffer M, Cabezón T, Christensen LL, Aaltonen LA, Verspaget HW, Ørntoft TF. Phosphoprotein Keratin 23 accumulates in MSS but not MSI colon cancers in vivo and impacts viability and proliferation in vitro. Mol Oncol 2007; 1:181-95. [PMID: 19383294 DOI: 10.1016/j.molonc.2007.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 12/12/2022] Open
Abstract
Transcript profiling of 27 normal colon mucosas and 258 adenocarcinomas showed Keratin23 to be increased in 78% microsatellite-stable tumors, while microsatellite-instable tumors showed low transcript levels, comparable to normal mucosas. Immunohistochemical analyses demonstrated that 88% of microsatellite-instable tumors were negative for Keratin23 protein, while 70% of MSS tumors and metastases derived from MSS-tumors showed high Keratin23 levels. Immunofluorescence analysis localized Keratin23 in the Golgi-apparatus. Golgi accumulation was unique for gastrointestinal adenocarcinomas. Immunoprecipitation and 2D-blot analysis revealed Keratin23 to be a 46.8 kDa phosphoprotein. Keratin23 impaired the proliferation of human colon cancer cells significantly, leading to cell death in microsatellite-instable but not microsatellite-stable cell lines, while COS7 cells experienced multiple nuclei and apoptosis. Keratin23 expression correlated significantly with transcription factor CEBPB. In conclusion, Keratin23 expression is a novel and important difference between microsatellite-stable and microsatellite-instable colon cancers.
Collapse
Affiliation(s)
- Karin Birkenkamp-Demtroder
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital/Skejby, Brendstrupgaardsvej, DK-8200 Aarhus N, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Wöll S, Windoffer R, Leube RE. p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells. ACTA ACUST UNITED AC 2007; 177:795-807. [PMID: 17535969 PMCID: PMC2064280 DOI: 10.1083/jcb.200703174] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasticity of the resilient keratin intermediate filament cytoskeleton is an important prerequisite for epithelial tissue homeostasis. Here, the contribution of stress-activated p38 MAPK to keratin network organization was examined in cultured cells. It was observed that phosphorylated p38 colocalized with keratin granules that were rapidly formed in response to orthovanadate. The same p38p recruitment was noted during mitosis, in various stress situations and in cells producing mutant keratins. In all these situations keratin 8 became phosphorylated on S73, a well-known p38 target site. To demonstrate that p38-dependent keratin phosphorylation determines keratin organization, p38 activity was pharmacologically and genetically modulated: up-regulation induced keratin granule formation, whereas down-regulation prevented keratin filament network disassembly. Furthermore, transient p38 inhibition also inhibited keratin filament precursor formation and mutant keratin granule dissolution. Collectively, the rapid and reversible effects of p38 activity on keratin phosphorylation and organization in diverse physiological, stress, and pathological situations identify p38-dependent signalling as a major intermediate filament–regulating pathway.
Collapse
Affiliation(s)
- Stefan Wöll
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | |
Collapse
|
126
|
Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res 2007; 313:2021-32. [PMID: 17434482 DOI: 10.1016/j.yexcr.2007.03.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 12/11/2022]
Abstract
The diversity of epithelial functions is reflected by the expression of distinct keratin pairs that are responsible to protect epithelial cells against mechanical stress and to act as signaling platforms. The keratin cytoskeleton integrates these functions by forming a supracellular scaffold that connects at desmosomal cell-cell adhesions. Multiple human diseases and murine knockouts in which the integrity of this system is destroyed testify to its importance as a mechanical stabilizer in certain epithelia. Yet, surprisingly little is known about the precise mechanisms responsible for assembly and disease pathology. In addition to these structural aspects of keratin function, experimental evidence accumulating in recent years has led to a much more complex view of the keratin cytoskeleton. Distinct keratins emerge as highly dynamic scaffolds in different settings and contribute to cell size determination, translation control, proliferation, cell type-specific organelle transport, malignant transformation and various stress responses. All of these properties are controlled by highly complex patterns of phosphorylation and molecular associations.
Collapse
Affiliation(s)
- Thomas M Magin
- Institute for Physiological Chemistry, Division of Cell Biochemistry, Bonner Forum Biomedizin and LIMES, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| | | | | |
Collapse
|
127
|
Fowler PA, Tattum J, Bhattacharya S, Klonisch T, Hombach-Klonisch S, Gazvani R, Lea RG, Miller I, Simpson WG, Cash P. An investigation of the effects of endometriosis on the proteome of human eutopic endometrium: A heterogeneous tissue with a complex disease. Proteomics 2007; 7:130-42. [PMID: 17124717 DOI: 10.1002/pmic.200600469] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathogenesis of endometriosis includes the proliferation of heterogeneous endometrial cells and their invasion into ectopic sites within the peritoneal cavity. This may be due to abnormalities of the eutopic endometrium itself, predisposing the cells to survive and implant ectopically. We investigated the applicability of 2-DE gels and peptide mass mapping to identify candidate endometrial proteins with a role in endometriosis. Despite the heterogeneous nature of endometrium, our results show that combining the analysis of 2-DE gels and peptide mass mapping yields consistent data. We identified dysregulated proteins in women with endometriosis which included: (i) molecular chaperones including heat shock protein 90 and annexin A2, (ii) proteins involved in cellular redox state, such as peroxiredoxin 2, (iii) proteins involved in protein and DNA formation/breakdown, including ribonucleoside-diphosphate reductase, prohibitin and prolyl 4-hydroxylase, and (iv) secreted proteins, such as apolipoprotein A1. These proteins have functions which suggest that they could play a role in the pathogenesis of endometriosis. This study demonstrated that 2-DE gel analysis and mass spectroscopic protein identification are suitable for the identification of proteins with candidate associations with endometriosis. These techniques should be used on a larger scale to identify endometriosis-related proteins, thus improving the understanding of this complex disease.
Collapse
Affiliation(s)
- Paul A Fowler
- Department of Obstetrics & Gynaecology, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Xiao S, McLean J, Robertson J. Neuronal intermediate filaments and ALS: a new look at an old question. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1001-12. [PMID: 17045786 DOI: 10.1016/j.bbadis.2006.09.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/15/2023]
Abstract
One of the pathological hallmarks of ALS is the presence of axonal spheroids and perikaryal accumulations/aggregations comprised of the neuronal intermediate filament proteins, neurofilaments and peripherin. These abnormalities represent a point of convergence of both familial and sporadic forms of the disease and understanding their formation may reveal shared pathways in what is otherwise considered a highly heterogeneous disorder. Here we provide a review of the basic biology of neurofilaments and peripherin and the evidence linking them with ALS disease pathogenesis.
Collapse
Affiliation(s)
- Shangxi Xiao
- Department of Laboratory Medicine and Pathobiology, Centre for Research in Neurodegenerative Diseases, University of Toronto, Tanz Neuroscience Building, 6, Queen's Park Crescent West, Toronto, ON, Canada M5S 3H2
| | | | | |
Collapse
|
129
|
Omary MB, Ku NO, Tao GZ, Toivola DM, Liao J. "Heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci 2006; 31:383-94. [PMID: 16782342 DOI: 10.1016/j.tibs.2006.05.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/02/2006] [Accepted: 05/25/2006] [Indexed: 01/19/2023]
Abstract
Intermediate filaments (IFs) are major components of the mammalian cytoskeleton. They are among the most abundant cellular phosphoproteins; their phosphorylation typically involves multiple sites at repeat or unique motifs, preferentially within the "head" or "tail" domains. Phosphorylation and dephosphorylation are essential for the regulation of IF dynamics by modulating the intrinsic properties of IFs: solubility, conformation and filament organization, and, in addition, for the regulation of other IF post-translational modifications. These phosphorylation-regulated properties dictate generalized and context-dependent IF functions that reflect their tissue-specific expression. Most important among IF phosphorylation-mediated functions are the regulation of IF cellular or subcellular compartmentalization, levels and turnover, binding with associated proteins, susceptibility to cell stresses (including apoptosis), tissue-specific functions and IF-associated disease pathogenesis (where IF hyperphosphorylation also serves as a tissue-injury marker).
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Medicine, Palo Alto VA Medical Center and Stanford University School of Medicine, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|