101
|
Dell’Olmo E, Zaccardelli M, Onofaro Sanaja V, Basile B, Sigillo L. Surveillance of Landraces' Seed Health in South Italy and New Evidence on Crop Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:812. [PMID: 36840160 PMCID: PMC9959537 DOI: 10.3390/plants12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
During the last three years, more than 300 landraces belonging to different plant species have been the main focus of an Italian valorization research project (AgroBiodiversità Campana, ABC) aiming at analyzing, recovering, preserving, and collecting local biodiversity. In this context, phytosanitary investigation plays a key role in identifying potential threats to the preservation of healthy seeds in gene banks and the successful cultivation of landraces. The surveillance carried out in this study, in addition to highlighting the expected presence of common species-specific pathogens such as Ascochyta pisi in peas, Ascochyta fabae in broad beans, and Macrophomina phaseolina, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas fuscans subsp. fuscans in beans, pointed to the presence of novel microorganisms never detected before in the seeds of some hosts (Apiospora arundinis in common beans or Sclerotinia sclerotiorum and Stemphylium vesicarium in broad beans). These novel seedborne pathogens were fully characterized by (i) studying their morphology, (ii) identifying them by molecular methods, and (iii) studying their impact on adult crop plants. For the first time, this study provides key information about three novel seedborne pathogens that can be used to correctly diagnose their presence in seed lots, helping prevent the outbreaks of new diseases in the field.
Collapse
Affiliation(s)
- Eliana Dell’Olmo
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano, Italy
| | - Massimo Zaccardelli
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano, Italy
| | - Vincenzo Onofaro Sanaja
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano, Italy
| | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Loredana Sigillo
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano, Italy
| |
Collapse
|
102
|
Salotti I, Rossi V. A Mechanistic Model Accounting for the Effect of Soil Moisture, Weather, and Host Growth Stage on the Development of Sclerotinia sclerotiorum. PLANT DISEASE 2023; 107:514-533. [PMID: 35724314 DOI: 10.1094/pdis-12-21-2743-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fungus Sclerotinia sclerotiorum causes serious losses to several agricultural crops worldwide. By using systems analysis, we retrieved the available knowledge concerning S. sclerotiorum from the literature and then analyzed and synthesized the data to develop a mechanistic, dynamic, weather-driven model for the prediction of epidemics on different crops. The model accounts for i) the production and survival of apothecia; ii) the production, dispersal, and survival of ascospores; iii) infection by ascospores; and iv) lesion onset. The ability of the model to predict the occurrence of apothecia was evaluated for epidemics observed with different climates, soil types, and host crops (soybean, white bean, and carrot) using independent data obtained from trials conducted in Ontario (Canada) in 1981, 1982, and from 1999 to 2002; in Michigan (U.S.A.) in 2015 and 2016; and in Wisconsin (U.S.A.) in 2016. The model showed 0.82 accuracy and 0.73 specificity in predicting the presence of apothecia, with a posterior probability of correctly predicting apothecia to be present or absent of 0.804 and 0.876, respectively. The model was also validated for its ability to predict disease progress on soybean and sunflower in Ontario in 1981 and 1982, in Manitoba (Canada) in 2001 and 2002, and in Michigan in 2015 and 2016. Comparison of model output with observations showed a concordance correlation coefficient of 0.948, and a root mean square error of 0.122. The model represents an improvement of previous S. sclerotiorum models and could be useful for making decisions on disease control.
Collapse
Affiliation(s)
- Irene Salotti
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
103
|
Xiao K, Qiao K, Cui W, Xu X, Pan H, Wang F, Wang S, Yang F, Xuan Y, Li A, Han X, Song Z, Liu J. Comparative transcriptome profiling reveals the importance of GmSWEET15 in soybean susceptibility to Sclerotinia sclerotiorum. Front Microbiol 2023; 14:1119016. [PMID: 36778863 PMCID: PMC9909833 DOI: 10.3389/fmicb.2023.1119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Soybean sclerotinia stem rot (SSR) is a disease caused by Sclerotinia sclerotiorum that causes incalculable losses in soybean yield each year. Considering the lack of effective resistance resources and the elusive resistance mechanisms, we are urged to develop resistance genes and explore their molecular mechanisms. Here, we found that loss of GmSWEET15 enhanced the resistance to S. sclerotiorum, and we explored the molecular mechanisms by which gmsweet15 mutant exhibit enhanced resistance to S. sclerotiorum by comparing transcriptome. At the early stage of inoculation, the wild type (WT) showed moderate defense response, whereas gmsweet15 mutant exhibited more extensive and intense transcription reprogramming. The gmsweet15 mutant enriched more biological processes, including the secretory pathway and tetrapyrrole metabolism, and it showed stronger changes in defense response, protein ubiquitination, MAPK signaling pathway-plant, plant-pathogen interaction, phenylpropanoid biosynthesis, and photosynthesis. The more intense and abundant transcriptional reprogramming of gmsweet15 mutant may explain how it effectively delayed colonization by S. sclerotiorum. In addition, we identified common and specific differentially expressed genes between WT and gmsweet15 mutant after inoculation with S. sclerotiorum, and gene sets and genes related to gmsweet15_24 h were identified through Gene Set Enrichment Analysis. Moreover, we constructed the protein-protein interaction network and gene co-expression networks and identified several groups of regulatory networks of gmsweet15 mutant in response to S. sclerotiorum, which will be helpful for the discovery of candidate functional genes. Taken together, our results elucidate molecular mechanisms of delayed colonization by S. sclerotiorum after loss of GmSWEET15 in soybean, and we propose novel resources for improving resistance to SSR.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Kaibin Qiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wenjing Cui
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xun Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Fengting Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Feng Yang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xiao Han
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhuojian Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China,*Correspondence: Jinliang Liu,
| |
Collapse
|
104
|
Appressoria-Small but Incredibly Powerful Structures in Plant-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24032141. [PMID: 36768468 PMCID: PMC9917257 DOI: 10.3390/ijms24032141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Plant-pathogenic fungi are responsible for many of the most severe crop diseases in the world and remain very challenging to control. Improving current protection strategies or designating new measures based on an overall understanding of molecular host-pathogen interaction mechanisms could be helpful for disease management. The attachment and penetration of the plant surface are the most important events among diverse plant-fungi interactions. Fungi evolved as small but incredibly powerful infection structure appressoria to facilitate attachment and penetration. Appressoria are indispensable for many diseases, such as rusts, powdery mildews, and blast diseases, as well as devastating oomycete diseases. Investigation into the formation of plant-pathogen appressoria contributes to improving the understanding of the molecular mechanisms of plant-pathogen interactions. Fungal host attachment is a vital step of fungal pathogenesis. Here, we review recent advances in the molecular mechanisms regulating the formation of appressoria. Additionally, some biocontrol agents were revealed to act on appressorium. The regulation of fungal adhesion during the infective process by acting on appressoria formation is expected to prevent the occurrence of crop disease caused by some pathogenic fungi.
Collapse
|
105
|
Zhang X, Qin L, Lu J, Xia Y, Tang X, Lu X, Xia S. Genome-Wide Identification of GYF-Domain Encoding Genes in Three Brassica Species and Their Expression Responding to Sclerotinia sclerotiorum in Brassica napus. Genes (Basel) 2023; 14:224. [PMID: 36672966 PMCID: PMC9858701 DOI: 10.3390/genes14010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
GYF (glycine-tyrosine-phenylalanine)-domain-containing proteins, which were reported to participate in many aspects of biological processes in yeast and animals, are highly conserved adaptor proteins existing in almost all eukaryotes. Our previous study revealed that GYF protein MUSE11/EXA1 is involved in nucleotide-binding leucine-rich repeat (NLR) receptor-mediated defense in Arabidopsis thaliana. However, the GYF-domain encoding homologous genes are still not clear in other plants. Here, we performed genome-wide identification of GYF-domain encoding genes (GYFs) from Brassica napus and its parental species, Brassica rapa and Brassica oleracea. As a result, 26 GYFs of B. napus (BnaGYFs), 11 GYFs of B. rapa (BraGYFs), and 14 GYFs of B. oleracea (BolGYFs) together with 10 A. thaliana (AtGYFs) were identified, respectively. We, then, conducted gene structure, motif, cis-acting elements, duplication, chromosome localization, and phylogenetic analysis of these genes. Gene structure analysis indicated the diversity of the exon numbers of these genes. We found that the defense and stress responsiveness element existed in 23 genes and also identified 10 motifs in these GYF proteins. Chromosome localization exhibited a similar distribution of BnaGYFs with BraGYFs or BolGYFs in their respective genomes. The phylogenetic and gene collinearity analysis showed the evolutionary conservation of GYFs among B. napus and its parental species as well as Arabidopsis. These 61 identified GYF domain proteins can be classified into seven groups according to their sequence similarity. Expression of BnaGYFs induced by Sclerotinia sclerotiorum provided five highly upregulated genes and five highly downregulated genes, which might be candidates for further research of plant-fungal interaction in B. napus.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 400047, China
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xun Lu
- Agricultural Science Academy of Xiangxi Tujia and Miao Autonomous Prefecture, Xiangxi 416000, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
106
|
Bahri BA, Parvathaneni RK, Spratling WT, Saxena H, Sapkota S, Raymer PL, Martinez-Espinoza AD. Whole genome sequencing of Clarireedia aff. paspali reveals potential pathogenesis factors in Clarireedia species, causal agents of dollar spot in turfgrass. Front Genet 2023; 13:1033437. [PMID: 36685867 PMCID: PMC9849252 DOI: 10.3389/fgene.2022.1033437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Dollar spot is one of the most damaging diseases in turfgrass, reducing its quality and playability. Two species, Clarireedia monteithiana and C. jacksonii (formerly Sclerotinia homoeocarpa) have been reported so far in the United States To study the Clarireedia genome, two isolates H2 and H3, sampled from seashore paspalum in Hawaii in 2019 were sequenced via Illumina paired-end sequencing by synthesis technology and PacBio SMRT sequencing. Both isolates were identified as C. aff. paspali, a novel species in the United States Using short and long reads, C. aff. paspali H3 contained 193 contigs with 48.6 Mbp and presented the most completed assembly and annotation among Clarireedia species. Out of the 13,428 protein models from AUGUSTUS, 349 cytoplasmic effectors and 13 apoplastic effectors were identified by EffectorP. To further decipher Clarireedia pathogenicity, C. aff. paspali genomes (H2 and H3), as well as available C. jacksonii (LWC-10 and HRI11), C. monteithiana (DRR09 and RB-19) genomes were screened for fifty-four pathogenesis determinants, previously identified in S. sclerotiorum. Seventeen orthologs of pathogenicity genes have been identified in Clarireedia species involved in oxalic acid production (pac1, nox1), mitogen-activated protein kinase cascade (pka1, smk3, ste12), appressorium formation (caf1, pks13, ams2, rgb1, rhs1) and glycolytic pathway (gpd). Within these genes, 366 species-specific SNPs were recorded between Clarireedia species; twenty-eight were non-synonymous and non-conservative. The predicted protein structure of six of these genes showed superimposition of the models among Clarireedia spp. The genomic variations revealed here could potentially lead to differences in pathogenesis and other physiological functions among Clarireedia species.
Collapse
Affiliation(s)
- Bochra Amina Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,*Correspondence: Bochra Amina Bahri,
| | - Rajiv Krishna Parvathaneni
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | | | - Harshita Saxena
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | - Suraj Sapkota
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States
| | - Paul L. Raymer
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | | |
Collapse
|
107
|
Li M, Xia D, Wang Y, Cheng X, Gong J, Chen Y, Lü X. Design, Synthesis and Antifungal Bioactivity Evaluation of Thiazole Benzoate Derivatives. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
108
|
Hu J, Dong B, Wang D, Meng H, Li X, Zhou H. Genomic and metabolic features of Bacillus cereus, inhibiting the growth of Sclerotinia sclerotiorum by synthesizing secondary metabolites. Arch Microbiol 2023; 205:8. [PMID: 36454319 PMCID: PMC9715469 DOI: 10.1007/s00203-022-03351-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
We investigated the biocontrol mechanism of Bacillus cereus CF4-51 to find powerful microbes that effectively control Sclerotinia sclerotiorum. To assess its inhibitory effect on fungal growth, the plant pathogen (S. sclerotiorum) was co-cultured with Bacillus cereus. Scanning electron microscope (SEM) was used to study the morphology of S. sclerotiorum treated with CF4-51 biofumigant. The expression of sclerotium formation-related genes was analyzed by qRT-PCR. We performed whole genome sequencing of CF4-51 by PacBio Sequel platform. Lipopeptides were extracted from strain CF4-51 according to the method of hydrochloric acid precipitation and methanol dissolution. The volatiles CF4-51 were identified using gas chromatography-mass spectrometry (GC-MS). We found that the volatile organic compounds (VOCs) released by CF4-51 damaged the S. sclerotiorum hyphae and inhibited the formation of sclerotia. The qRT-PCR data revealed the down-regulated expression of the genes involved in sclerotial formation. Moreover, we analyzed the B. cereus CF4-51 genome and metabolites. The genome consisted of 5.35 Mb, with a GC content of 35.74%. An examination of the genome revealed the presence of several gene clusters for the biosynthesis of antibiotics, siderophores, and various other bioactive compounds, including those belonging to the NRPS-like, LAP, RIPP-like, NRPS, betalactone, CDPS, terpene, ladderane, ranthipeptide, and lanthipeptide (class II) categories. A gas chromatography-tandem mass spectrometry analysis identified 45 VOCs produced by strain CF4-51. Among these, technical grade formulations of five were chosen for further study: 2-Pentadecanone, 6,10,14-trimethyl-,1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester, Dibutyl phthalate, Cyclododecane, Heptadecane. the five major constituents play important roles in the antifungal activity of the VOCs CF4-51 on the growth of S. sclerotiorum. The secondary metabolites produced by strain CF4-51are critical for the inhibition of S. sclerotiorum hyphal growth and sclerotial formation.
Collapse
Affiliation(s)
- Jinghan Hu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
| | - Baozhu Dong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
- Inner Mongolia Cold and Arid Region Crop Protection Engineering Technology Center, Hohhot, 010020 Inner Mongolia China
| | - Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
- Inner Mongolia Cold and Arid Region Crop Protection Engineering Technology Center, Hohhot, 010020 Inner Mongolia China
| | - Huanwen Meng
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
- Inner Mongolia Cold and Arid Region Crop Protection Engineering Technology Center, Hohhot, 010020 Inner Mongolia China
| | - Xiaojuan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
- Inner Mongolia Cold and Arid Region Crop Protection Engineering Technology Center, Hohhot, 010020 Inner Mongolia China
| |
Collapse
|
109
|
Sarwar R, Li L, Yu J, Zhang Y, Geng R, Meng Q, Zhu K, Tan XL. Functional Characterization of the Cystine-Rich-Receptor-like Kinases ( CRKs) and Their Expression Response to Sclerotinia sclerotiorum and Abiotic Stresses in Brassica napus. Int J Mol Sci 2022; 24:ijms24010511. [PMID: 36613954 PMCID: PMC9820174 DOI: 10.3390/ijms24010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that bind to the calcium ion to regulate stress-signaling and plant development-related pathways, as indicated by several pieces of evidence. However, the CRK gene family hasn’t been inadequately examined in Brassica napus. In our study, 27 members of the CRK gene family were identified in Brassica napus, which are categorized into three phylogenetic groups and display synteny relationship to the Arabidopsis thaliana orthologs. All the CRK genes contain highly conserved N-terminal PKINASE domain; however, the distribution of motifs and gene structure were variable conserved. The functional divergence analysis between BnaCRK groups indicates a shift in evolutionary rate after duplication events, demonstrating that BnaCRKs might direct a specific function. RNA-Seq datasets and quantitative real-time PCR (qRT-PCR) exhibit the complex expression profile of the BnaCRKs in plant tissues under multiple stresses. Nevertheless, BnaA06CRK6-1 and BnaA08CRK8 from group B were perceived to play a predominant role in the Brassica napus stress signaling pathway in response to drought, salinity, and Sclerotinia sclerotiorum infection. Insights gained from this study improve our knowledge about the Brassica napus CRK gene family and provide a basis for enhancing the quality of rapeseed.
Collapse
Affiliation(s)
- Rehman Sarwar
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiang Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yijie Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rui Geng
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qingfeng Meng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keming Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
110
|
Sinha T, Malakar C, Talukdar NC. Mustard seed–associated endophytes suppress Sclerotinia sclerotiorum causing Sclerotinia rot in mustard crop. Int Microbiol 2022:10.1007/s10123-022-00314-0. [PMID: 36542232 DOI: 10.1007/s10123-022-00314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Mustard-rapeseed cultivation is affected by Sclerotinia sclerotiorum resulting in loss of oil yield and degradation of crop quality. This study adopted an environment friendly biocontrol approach of screening mustard endophytes against the pathogen. Two bacterial isolates, Bacillus safensis (TS46 bac4) and Bacillus australimaris (SM2) showed potential biocontrol activity under both in vitro and in vivo conditions. Dual culture assay reported 90% inhibition of fungal growth. The bacterial cell free supernatant of isolate SM2 showed 52.89% inhibition and the other isolate TS46 bac4 showed 57.97% inhibition. The crude (10 mg/ml) and purified (10 mg/ml) metabolite extract of SM2 showed 100% and 97% inhibition respectively. Both crude (10 mg/ml) and purified (7.5 mg/ml) metabolite extract of TS46 bac4 exhibited 99% inhibition of the pathogen. Antifungal lipopeptides: surfactin, iturin and fengycin were identified in bacterial metabolite extract of the isolates. Both strains promoted healthy germination and prevented the formation of any disease symptoms in seedling. The selected Bacillus strains applied by spray method showed better results against fungal infection on mustard leaf and stem. Microscopic studies revealed degradation of fungal mycelial growth by both isolates. These findings support the employment of the bacterial strains as potential biocontrol agents to reduce the effects of S. sclerotiorum in mustard-rapeseed.
Collapse
|
111
|
The SsAtg1 Activating Autophagy Is Required for Sclerotia Formation and Pathogenicity in Sclerotinia sclerotiorum. J Fungi (Basel) 2022; 8:jof8121314. [PMID: 36547647 PMCID: PMC9787769 DOI: 10.3390/jof8121314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sclerotinia sclerotiorum is a necrotrophic phytopathogenic fungus that produces sclerotia. Sclerotia are essential components of the survival and disease cycle of this devastating pathogen. In this study, we analyzed comparative transcriptomics of hyphae and sclerotia. A total of 1959 differentially expressed genes, 919 down-regulated and 1040 up-regulated, were identified. Transcriptomes data provide the possibility to precisely comprehend the sclerotia development. We further analyzed the differentially expressed genes (DEGs) in sclerotia to explore the molecular mechanism of sclerotia development, which include ribosome biogenesis and translation, melanin biosynthesis, autophagy and reactivate oxygen metabolism. Among these, the autophagy-related gene SsAtg1 was up-regulated in sclerotia. Atg1 homologs play critical roles in autophagy, a ubiquitous and evolutionarily highly conserved cellular mechanism for turnover of intracellular materials in eukaryotes. Therefore, we investigated the function of SsAtg1 to explore the function of the autophagy pathway in S. sclerotiorum. Deficiency of SsAtg1 inhibited autophagosome accumulation in the vacuoles of nitrogen-starved cells. Notably, ΔSsAtg1 was unable to form sclerotia and displayed defects in vegetative growth under conditions of nutrient restriction. Furthermore, the development and penetration of the compound appressoria in ΔSsAtg1 was abnormal. Pathogenicity analysis showed that SsAtg1 was required for full virulence of S. sclerotiorum. Taken together, these results indicate that SsAtg1 is a core autophagy-related gene that has vital functions in nutrient utilization, sclerotia development and pathogenicity in S. sclerotiorum.
Collapse
|
112
|
Xu X, Li J, Yang X, Zhang L, Wang S, Shen G, Hui B, Xiao J, Zhou C, Wang X, Zhao J, Xiang W. Epicoccum spp. Causing Maize Leaf Spot in Heilongjiang Province, China. PLANT DISEASE 2022; 106:3050-3060. [PMID: 35612576 DOI: 10.1094/pdis-09-21-1948-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maize leaf spot occurs worldwide and affects maize production. Maize can be infected by several pathogens causing leaf spot, such as Bipolaris zeicola, Bipolaris maydis, Curvularia species, Alternaria species, etc. In the current study, 30 Epicoccum isolates recovered from symptomatic maize leaves were identified based on morphological characteristics, pathogenicity, and multilocus sequence analyses of nuLSU, ITS, tub2, and rpb2. These maize isolates were grouped into five Epicoccum species, including E. nigrum, E. layuense, E. sorghinum, E. latusicollum, and E. pneumoniae. Pathogenicity tests showed that all five Epicoccum species could produce small ellipse- and spindle-shaped spots on maize leaves. The lesion center was grayish yellow to dark gray and surrounded by a chlorotic area. Furthermore, the Epicoccum isolates exhibited high pathogenicity to 20 main maize varieties of Heilongjiang Province but showed different sensitivities to the commonly used fungicides carbendazim and tebuconazole. In addition, these Epicoccum isolates showed different production capacity of pectinase, cellulase, protease, amylase, laccase, and gelatinase, but all showed high lipase activity. This is the first report globally of E. layuense, E. latusicollum, and E. pneumoniae as causal agents of maize leaf spot. E. pneumoniae was first reported as a plant pathogen.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jingjing Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Li Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Guijin Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Bing Hui
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Changjian Zhou
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
113
|
Tesser ME, Guilger M, Bilesky-José N, Risso WE, de Lima R, Martinez CBDR. Biogenic metallic nanoparticles (Ag, TiO 2, Fe) as potential fungicides for agriculture: are they safe for the freshwater mussel Anodontites trapesialis? CHEMOSPHERE 2022; 309:136664. [PMID: 36195123 DOI: 10.1016/j.chemosphere.2022.136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Silver (Ag), titanium dioxide (TiO2), and iron (Fe) nanoparticles (NPs) synthesized using the fungus Trichoderma harzianum are effective against the agriculture pathogen Sclerotinia sclerotiorum. However, their effects should be evaluated in aquatic organisms, as agriculture practices can contaminate the aquatic environment. Thus, this work evaluated sublethal effects of acute exposure (24 h) to AgNP, TiO2NP and FeNP, synthesized with T. harzianum, on the Neotropical freshwater bivalve Anodontites trapesialis, considering the hypothesis that suspension-feeding bivalves are susceptible to NPs toxicity. Individuals of A. trapesialis were divided into four groups (n = 8/group): a control group, kept in water only; a group exposed to AgNP; a group exposed to TiO2NP; and a group exposed to FeNP. The bioaccumulation of Ag, Ti, and Fe was evaluated in the gills, hemolymph, mantle, digestive gland, and muscle (foot). Lipoperoxidation, activities of the glutathione S-transferase, catalase, and superoxide dismutase, and glycogen concentration were quantified in the gills, mantle, and digestive gland. Ions (Na+, K+, Cl-, Ca2+, and Mg+2) and glucose concentrations were quantified in the hemolymph. Na+/K+-ATPase, H+-ATPase, Ca2+-ATPase, and carbonic anhydrase activities were assessed in the gills and mantle. Acetylcholinesterase activity was determined in the foot and adductor muscle. The mussels exposed to AgNP accumulated Ag in the gills, hemolymph, and foot, and showed a decrease in hemolymph concentrations of Na+ and Cl-, which was associated with the action of Ag ion (Ag+). The exposures to TiO2NP and FeNP led to the accumulation of Ti and Fe in the hemolymph, respectively, but did not promote additional effects. Accordingly, A. trapesialis showed bioaccumulation potential and susceptibility to AgNP, but was not susceptible to TiO2NP and FeNP. Thus, the preferential agricultural use of TiO2NP and FeNP over AgNP is highlighted.
Collapse
Affiliation(s)
- Maria Eduarda Tesser
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Mariana Guilger
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, São Paulo, Brazil; Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Natália Bilesky-José
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, São Paulo, Brazil; Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Wagner Ezequiel Risso
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Renata de Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil.
| |
Collapse
|
114
|
Zhu Q, Lin Y, Lyu X, Qu Z, Lu Z, Fu Y, Cheng J, Xie J, Chen T, Li B, Cheng H, Chen W, Jiang D. Fungal Strains with Identical Genomes Were Found at a Distance of 2000 Kilometers after 40 Years. J Fungi (Basel) 2022; 8:1212. [PMID: 36422033 PMCID: PMC9697809 DOI: 10.3390/jof8111212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2023] Open
Abstract
Heredity and variation are inherent characteristics of species and are mainly reflected in the stability and variation of the genome; the former is relative, while the latter is continuous. However, whether life has both stable genomes and extremely diverse genomes at the same time is unknown. In this study, we isolated Sclerotinia sclerotiorum strains from sclerotium samples in Quincy, Washington State, USA, and found that four single-sclerotium-isolation strains (PB4, PB273, PB615, and PB623) had almost identical genomes to the reference strain 1980 isolated in the west of Nebraska 40 years ago. The genome of strain PB4 sequenced by the next-generation sequencing (NGS) and Pacific Biosciences (PacBio) sequencing carried only 135 single nucleotide polymorphisms (SNPs) and 18 structural variations (SVs) compared with the genome of strain 1980 and 48 SNPs were distributed on Contig_20. Based on data generated by NGS, three other strains, PB273, PB615, and PB623, had 256, 275, and 262 SNPs, respectively, against strain 1980, which were much less than in strain PB4 (532 SNPs) and none of them occurred on Contig_20, suggesting much closer genomes to strain 1980 than to strain PB4. All other strains from America and China are rich in SNPs with a range of 34,391-77,618 when compared with strain 1980. We also found that there were 39-79 SNPs between strain PB4 and its sexual offspring, 53.1% of which also occurred on Contig_20. Our discoveries show that there are two types of genomes in S. sclerotiorum, one is very stable and the other tends to change constantly. Investigating the mechanism of such genome stability will enhance our understanding of heredity and variation.
Collapse
Affiliation(s)
- Qili Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyang Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Cheng
- Xinyang Academy of Agricultural Sciences, Xinyang 464000, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
115
|
Zhang X, Li X, Li H, Wang Z, Xia R, Hu J, Wang P, Zhou X, Wan L, Hong D, Yang G. Quantitative trait locus mapping and improved resistance to sclerotinia stem rot in a backbone parent of rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1056206. [PMID: 36438142 PMCID: PMC9684713 DOI: 10.3389/fpls.2022.1056206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
There are three main challenges to improving sclerotinia stem rot (SSR) resistance in rapeseed (Brassica napus L.). First, breeding materials such as the backbone parents have not been extensively investigated, making the findings of previous studies difficult to directly implement. Second, SSR resistance and flowering time (FT) loci are typically linked; thus, use of these loci requires sacrifice of the rapeseed growth period. Third, the SSR resistance loci in susceptible materials are often neglected, thereby reducing the richness of resistant resources. This study was conducted to investigate the stem resistance, disease index, and FT of a doubled haploid population consisting of 151 lines constructed from the backbone parent 19514A and conventional rapeseed cultivar ZY50 within multiple environments. Quantitative trait locus (QTL) mapping revealed 13 stem resistance QTLs, 9 disease index QTLs, and 20 FT QTLs. QTL meta-analysis showed that uqA04, uqC03.1, and uqC03.2 were repeatable SSR resistance QTLs derived from different parents but not affected by the FT. Based on these three QTLs, we proposed a strategy for improving the SSR resistance of 19514A and ZY50. This study improves the understanding of the resistance to rapeseed SSR and genetic basis of FT and demonstrates that SSR resistance QTLs can be mined from parents with a minimal resistance level difference, thereby supporting the application of backbone parents in related research and resistance improvement.
Collapse
Affiliation(s)
- Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Huining Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Rui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jin Hu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xianming Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
116
|
Effect of Homo-Fermentative Lactic Acid Bacteria Inoculants on Fermentation Characteristics and Bacterial and Fungal Communities in Alfalfa Silage. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We evaluated the effects of a homo-fermentative lactic acid bacteria (homo-LAB) inoculant on the fermentation and microbial communities of alfalfa ensiled at two dry matter (DM) contents of 38 and 46% DM. At both DMs, alfalfa was treated or not with an inoculant containing Pediococcus acidilactici, Enterococcus faecium and Lactobacillus plantarum at a targeted application rate of 165,000 cfu/g of fresh weight and stored for 3, 30 and 60 days. Treatment with the inoculant resulted in a lower drop in pH and, in general, higher lactic acid and lower acetic acid when applied to medium DM silage. For the four most abundant microbial genera, increased abundances of Bacteroides and Lactobacillus (p < 0.05), as well as decreased abundances of Muribaculaceae were observed in high DM and inoculated silages. The abundance of Prevotellaceae-UCG-001 was lower in medium DM control silages than in high DM control silages. Inoculation and DM affected abundances of Vishniacozyma (p < 0.05). Increased abundances of Vishniacozyma, as well as decreased abundances of Leucosporidium were observed in medium DM-inoculated silages. Changes in the relative abundance (RA) of the main populations of bacteria and yeasts did explain the fermentation and nutrition differences among treatments.
Collapse
|
117
|
Gan Q, Luan M, Hu M, Liu Z, Zhang Z. Functional study of CYP90A1 and ALDH3F1 gene obtained by transcriptome sequencing analysis of Brassica napus seedlings treated with brassinolide. FRONTIERS IN PLANT SCIENCE 2022; 13:1040511. [PMID: 36407633 PMCID: PMC9669335 DOI: 10.3389/fpls.2022.1040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Sclerotinia disease and weeds of Brassica napus greatly reduce crop yields. However, brassinolides can improve the resistance of plants to sclerotinia diseases and herbicides. In this study, we investigated the effects of brassinolide on the occurrence, physiological indices, yield, and gene expression of Fanming No. 1 seeds under sclerotinia and glufosinate stress. The results showed that soaking of the seeds in 0.015% brassinolide for 6 h reduced the incidence of sclerotinia by 10%. Additionally, in response to glufosinate stress at the seedling stage, the enzyme activities of catalase and superoxide dismutase increased by 9.6 and 19.0 U/gFW/min, respectively, and the soluble sugar content increased by 9.4 mg/g, increasing the stress resistance of plants and yield by 2.4%. LHCB1, fabF, psbW, CYP90A1, ALDH3F1, ACOX1, petF, and ACSL were screened by transcriptome analysis. ALDH3F1 and CYP90A1 were identified as key genes. Following glufosinate treatment, transgenic plants overexpressing ALDH3F1 and CYP90A1 were found to be resistant to glufosinate, and the expression levels of the ALDH3F1 and CYP90A1 were 1.03-2.37-fold as high as those in the control. The expression level of ATG3, which is an antibacterial gene related to sclerotinia disease, in transgenic plants was 2.40-2.37-fold as high as that in the control. Our results indicate that these two key genes promote plant resistance to sclerotinia and glufosinate. Our study provides a foundation for further studies on the molecular mechanisms of rapeseed resistance breeding and selection of new resistant varieties.
Collapse
Affiliation(s)
- Qingqin Gan
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, China
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Zhongsong Liu
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Zhenqian Zhang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
118
|
Hai D, Li J, Lan S, Wu T, Li Y, Cheng J, Fu Y, Lin Y, Jiang D, Wang M, Xie J. Discovery and Evolution of Six Positive-Sense RNA Viruses Co-infecting the Hypovirulent Strain SCH733 of Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2022; 112:2449-2461. [PMID: 35793152 DOI: 10.1094/phyto-05-22-0148-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sclerotinia sclerotiorum is a well-known phytopathogenic fungus with a wide host range. Identifying novel mycoviruses in phytopathogenic fungi is necessary to develop novel strategies for plant health protection and contribute to understanding the origin of viruses. Six new mycoviruses with positive single-stranded RNA genomes co-infecting the hypovirulent strain SCH733 of S. sclerotiorum were identified using a metatranscriptomic approach, and their complete genome sequences were molecularly determined. These mycoviruses belong to the following five families: Narnaviridae, Mitoviridae, Deltaflexviridae, Botourmiaviridae, and Ambiguiviridae. Three of these mycoviruses belong to existing International Committee on Taxonomy of Viruses (ICTV)-recognized species. Two of these newly identified mycoviruses have unique genomic features that are significantly different from those of all known mycoviruses. Phylogenetic analysis revealed that these six mycoviruses included close as well as distant relatives of known mycoviruses, thereby providing new insight into virus evolution and classification. Mycovirus horizontal transmission and elimination experiments revealed that Sclerotinia sclerotiorum narnavirus 5 is associated with hypovirulence of S. sclerotiorum, although we have not shown that it is independently responsible for the hypovirulence phenotype. This study broadens the diversity of known mycoviruses infecting S. sclerotiorum and provides a clue toward limiting hypovirulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jincang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shangsong Lan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Tun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Minghong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, College of Forestry and Horticulture, Hubei Minzu University, Enshi, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
119
|
Cheng X, Zhao C, Gao L, Zeng L, Xu Y, Liu F, Huang J, Liu L, Liu S, Zhang X. Alternative splicing reprogramming in fungal pathogen Sclerotinia sclerotiorum at different infection stages on Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1008665. [PMID: 36311105 PMCID: PMC9597501 DOI: 10.3389/fpls.2022.1008665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism promoting the diversity of transcripts and proteins to regulate various life processes in eukaryotes. Sclerotinia stem rot is a major disease of Brassica napus caused by Sclerotinia sclerotiorum, which causes severe yield loss in B. napus production worldwide. Although many transcriptome studies have been carried out on the growth, development, and infection of S. sclerotiorum, the genome-wide AS events of S. sclerotiorum remain poorly understood, particularly at the infection stage. In this study, transcriptome sequencing was performed to systematically explore the genome-scale AS events of S. sclerotiorum at five important infection stages on a susceptible oilseed rape cultivar. A total of 130 genes were predicted to be involved in AS from the S. sclerotiorum genome, among which 98 genes were differentially expressed and may be responsible for AS reprogramming for its successful infection. In addition, 641 differential alternative splicing genes (DASGs) were identified during S. sclerotiorum infection, accounting for 5.76% of all annotated S. sclerotiorum genes, and 71 DASGs were commonly found at all the five infection stages. The most dominant AS type of S. sclerotiorum was found to be retained introns or alternative 3' splice sites. Furthermore, the resultant AS isoforms of 21 DASGs became pseudogenes, and 60 DASGs encoded different putative proteins with different domains. More importantly, 16 DASGs of S. sclerotiorum were found to have signal peptides and possibly encode putative effectors to facilitate the infection of S. sclerotiorum. Finally, about 69.27% of DASGs were found to be non-differentially expressed genes, indicating that AS serves as another important way to regulate the infection of S. sclerotiorum on plants besides the gene expression level. Taken together, this study provides a genome-wide landscape for the AS of S. sclerotiorum during infection as well as an important resource for further elucidating the pathogenic mechanisms of S. sclerotiorum.
Collapse
Affiliation(s)
- Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lixia Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lingyi Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yu Xu
- Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang, China
| | - Fan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
120
|
Bai R, Bai C, Han X, Liu Y, Yong JWH. The significance of calcium-sensing receptor in sustaining photosynthesis and ameliorating stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1019505. [PMID: 36304398 PMCID: PMC9594963 DOI: 10.3389/fpls.2022.1019505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium ions (Ca2+) regulate plant growth and development during exposure to multiple biotic and abiotic stresses as the second signaling messenger in cells. The extracellular calcium-sensing receptor (CAS) is a specific protein spatially located on the thylakoid membrane. It regulates the intracellular Ca2+ responses by sensing changes in extracellular Ca2+ concentration, thereby affecting a series of downstream signal transduction processes and making plants more resilient to respond to stresses. Here, we summarized the discovery process, structure, and location of CAS in plants and the effects of Ca2+ and CAS on stomatal functionality, photosynthesis, and various environmental adaptations. Under changing environmental conditions and global climate, our study enhances the mechanistic understanding of calcium-sensing receptors in sustaining photosynthesis and mediating abiotic stress responses in plants. A better understanding of the fundamental mechanisms of Ca2+ and CAS in regulating stress responses in plants may provide novel mitigation strategies for improving crop yield in a world facing more extreme climate-changed linked weather events with multiple stresses during cultivation.
Collapse
Affiliation(s)
- Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
121
|
Wang Z, Wang Z, Lu B, Quan X, Zhao G, Zhang Z, Liu W, Tian Y. Antagonistic potential of Trichoderma as a biocontrol agent against Sclerotinia asari. Front Microbiol 2022; 13:997050. [PMID: 36267168 PMCID: PMC9578005 DOI: 10.3389/fmicb.2022.997050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
In the present study, the inhibitory potential of 14 Trichoderma strains (isolated from Asarum rhizosphere) was investigated against Sclerotinia asari using the plate dilution method. The activity of antioxidant enzymes viz; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and malondialdehyde (MDA) in S. asari treated with the two Trichoderma strains was also evaluated. Untargeted metabolomic analysis by using LC/MS analysis was carried out to determine differential metabolites in T. hamatum (A26) and T. koningiopsis (B30) groups. Moreover, transcriptome analysis of S. asari during the inhibition of S. asari by B30, and A26 compared with the control (CK) was performed. Results indicated that inhibition rates of T. koningiopsis B30, and T. hamatum A26 were highest compared to other strains. Similarly, non-volatile metabolites extracted from the B30 strain showed a 100% inhibition of S. asari. The activity of CAT, SOD, and POD decreased after treatment with A26 and B30 strains while increasing MDA content of S. asari. Antifungal activity of differential metabolites like abamectin, eplerenone, behenic acid, lauric acid, josamycin, erythromycin, and minocycline exhibited the highest inhibition of S. asari. Transcriptome analysis showed that differentially expressed genes were involved in many metabolic pathways which subsequently contributed toward antifungal activity of Trichoderma. These findings suggested that both Trichoderma strains (B30 and A26) could be effectively used as biocontrol agents against Sclerotinia disease of Asarum.
Collapse
Affiliation(s)
- Zhiqing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Zhiqing Wang,
| | - Ziqing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Baohui Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Xingzhou Quan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Guangyuan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Ze Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanliang Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yixin Tian
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
122
|
Proteomics analysis of the phytopathogenic fungus Sclerotinia sclerotiorum: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
123
|
Qiao Y, Zhang M, Cao Y, Mi Q, Liang S, Feng J, Wang Y. Postharvest sclerotinia rot control in carrot by the natural product hinokitiol and the potential mechanisms involved. Int J Food Microbiol 2022; 383:109939. [PMID: 36166914 DOI: 10.1016/j.ijfoodmicro.2022.109939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Sclerotinia rot infected by cosmopolitan fungi Sclerotinia sclerotiorum is a serious and destructive disease in carrot production, especially during their postharvest storage. Natural products with the advantages of environmentally friendly and safety have been widely concerned. This research estimated the impact of hinokitiol against S. sclerotiorum and on the quality of carrots. In vitro and in vivo tests demonstrated that hinokitiol had promising antifungal activities against both carbendazim-susceptible and -resistant isolates of S. sclerotiorum. Importantly, it effectively kept the quality and prolonged the shelf life of carrot by declining the loss of weight, ascorbic acid, carotenoid, and total phenolics content, preventing the formation of malondialdehyde, and enhancing the activities of antioxidant enzymes. Further study found that hinokitiol inhibited the formation of sclerotia by destroying the morphology and the integrality of cell membrane, reduced the pathogenicity by suppressing the synthesis of oxalic acid and exopolysaccharide, declined the activities of enzymes and the gene expression related to sclerotia development in S. sclerotiorum. These information evidenced the great potential of hinokitiol as a natural fresh-keeping agent for the management of postharvest decay infected by S. sclerotiorum.
Collapse
Affiliation(s)
- Yonghui Qiao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengwei Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Cao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianqian Mi
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi'an 710000, Shaanxi, China.
| |
Collapse
|
124
|
Li W, Lu J, Yang C, Arildsen K, Li X, Xia S. An Amidase Contributes to Full Virulence of Sclerotinia sclerotiorum. Int J Mol Sci 2022; 23:11207. [PMID: 36232508 PMCID: PMC9570306 DOI: 10.3390/ijms231911207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Sclerotinia sclerotiorum is one of the most notorious and ubiquitous soilborne plant pathogens, causing serious economic losses to a large number of hosts worldwide. Although virulence factors have been identified in this filamentous fungus, including various cell-wall-degrading enzymes, toxins, oxalic acids and effectors, our understanding of its virulence strategies is far from complete. To explore novel factors contributing to disease, a new pipeline combining forward genetic screening and next-generation sequencing was utilized in this study. Analysis of a hypovirulent mutant revealed that a mutation in an amidase-encoding gene, Sscle_10g079050, resulted in reduced virulence. This is a first report on the contribution of an amidase to fungal virulence, likely through affecting oxalic acid homeostasis.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Kate Arildsen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
125
|
Yin M, Wang R, Li S, Luo M, Wei W, Wang M, Jiang J, Lin Y, Zhao Y. High Sclerotinia sclerotiorum resistance in rapeseed plant has been achieved by OsPGIP6. FRONTIERS IN PLANT SCIENCE 2022; 13:970716. [PMID: 36186033 PMCID: PMC9524022 DOI: 10.3389/fpls.2022.970716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Sclerotinia sclerotiorum, a worldwide distributed fungal pathogen, causes serious adverse effects on the yield and seed quality of rapeseed. Polygalacturonase-inhibiting proteins (PGIPs) can protect the cell wall from degradation by pathogen-secreted polygalacturonases (PGs). The present study found several PGIPs from Oryza sativa, especially OsPGIP6 and 3 have much higher inhibitory activities to SsPGs than BnPGIP2 from Brassica napus. Among them, OsPGIP1, 4, 6 can significantly elevate the resistance of transgenic Arabidopsis to S. sclerotiorum. Subsequently, OsPGIP1, 3, 4, 6 were subjected to SSR resistance assay in transgenic rapeseed plants. Among which, OsPGIP6 showed the highest resistance to S. sclerotiorum. At 48 h after detached leaves inoculation, the lesion area of OE-OsPGIP6 rapeseed plants is only 17.93% of the non-transgenic line, and 22.17, 21.32, 52.78, 56.47%, compared to OE-BnPGIP2, OE-OsPGIP1, OE-OsPGIP2, OE-OsPGIP4, respectively. Furthermore, the lesion area of OE-OsPGIP6 reached 10.11% compared to WT at 72 hpi. Also, the lesion length on the stem of OE-OsPGIP6 plants was reduced by 36.83% compared to WT. These results reveal that OsPGIP family, especially OsPGIP6, has a great potential in rapeseed S. sclerotiorum-resistance breeding.
Collapse
Affiliation(s)
- Meng Yin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shi Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mei Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wei Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jun Jiang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
126
|
Taboada G, Abán CL, Mercado Cárdenas G, Spedaletti Y, Aparicio González M, Maita E, Ortega-Baes P, Galván M. Characterization of fungal pathogens and germplasm screening for disease resistance in the main production area of the common bean in Argentina. FRONTIERS IN PLANT SCIENCE 2022; 13:986247. [PMID: 36161011 PMCID: PMC9490223 DOI: 10.3389/fpls.2022.986247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The common bean (Phaseolus vulgaris L.) is the most important grain legume in the human diet, mainly in Africa and Latin America. Argentina is one of the five major producers of the common bean in the world, and the main cultivation areas are concentrated in the northwestern provinces of this country. Crop production of the common bean is often affected by biotic factors like some endemic fungal diseases, which exert a major economic impact on the region. The most important fungal diseases affecting the common bean in Argentina are white mold caused by Sclerotinia sclerotiorum, angular leaf spot caused by Pseudocercospora griseola, web blight and root rot caused by Rhizoctonia solani, which can cause production losses of up to 100% in the region. At the present, the most effective strategy for controlling these diseases is the use of genetic resistance. In this sense, population study and characterization of fungal pathogens are essential for developing cultivars with durable resistance. In this review we report diversity studies carried out on these three fungal pathogens affecting the common bean in northwestern Argentina, analyzing more than 200 isolates by means of molecular, morphological and pathogenic approaches. Also, the screening of physiological resistance in several common bean commercial lines and wild native germplasm is reviewed. This review contributes to the development of sustainable management strategies and cultural practices in bean production aimed to minimize yield losses due to fungal diseases in the common bean.
Collapse
Affiliation(s)
- Gisel Taboada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Carla L. Abán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | | | - Yamila Spedaletti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Mónica Aparicio González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Efrain Maita
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Pablo Ortega-Baes
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Marta Galván
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| |
Collapse
|
127
|
Ding Y, Chen Y, Wu Z, Yang N, Rana K, Meng X, Liu B, Wan H, Qian W. SsCox17, a copper chaperone, is required for pathogenic process and oxidative stress tolerance of Sclerotinia sclerotiorum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111345. [PMID: 35691151 DOI: 10.1016/j.plantsci.2022.111345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Stem rot, caused by Sclerotinia sclerotiorum has emerged as one of the major fungal pathogens of oilseed Brassica across the world. The pathogenic development is exquisitely dependent on reactive oxygen species (ROS) modulation. Cox17 is a crucial factor that shuttles copper ions from the cytosol to the mitochondria for the cytochrome c oxidase (CCO) assembly. Currently, no data is available regarding the impact of Cox17 in fungal pathogenesis. The present research was carried out to functionally characterize the role of Cox17 in S. sclerotiorum pathogenesis. SsCox17 transcripts showed high expression levels during inoculation on rapeseed. Intramitochondrial copper content and CCO activity were decreased in SsCox17 gene-silenced strains. The SsCox17 gene expression was up-regulated in the hyphae under oxidative stress and a deficiency response to oxidative stress was detected in SsCox17 gene-silenced strains. Compared to the S. sclerotiorum wild-type strain, there was a concomitant reduction in the virulence of SsCox17 gene-silenced strains. The SsCox17 overexpression strain was further found to increase copper content, CCO activity, tolerance to oxidative stress and virulence. We also observed a certain correlation of appressoria formation and SsCox17. These results provide evidence that SsCox17 is positively associated with fungal virulence and oxidative detoxification.
Collapse
Affiliation(s)
- Yijuan Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yangui Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Zhaohui Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nan Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kusum Rana
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Xiao Meng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Bangyan Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huafang Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
128
|
Shi L, Liang Q, Zang Q, Lv Z, Meng X, Feng J. Construction of Prochloraz-Loaded Hollow Mesoporous Silica Nanoparticles Coated with Metal-Phenolic Networks for Precise Release and Improved Biosafety of Pesticides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162885. [PMID: 36014750 PMCID: PMC9414849 DOI: 10.3390/nano12162885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 05/03/2023]
Abstract
Currently, environmental-responsive pesticide delivery systems have become an essential way to improve the effective utilization of pesticides. In this paper, by using hollow mesoporous silica (HMS) as a nanocarrier and TA-Cu metal-phenolic networks as a capping agent, a pH-responsive controlled release nano-formulation loaded with prochloraz (Pro@HMS-TA-Cu) was constructed. The structure and properties of Pro@HMS-TA-Cu were adequately characterised and analysed. The results showed that the loading content of Pro@HMS-TA-Cu nanoparticles was about 17.7% and the Pro@HMS-TA-Cu nanoparticles exhibited significant pH-responsive properties. After a coating of the TA-Cu metal-phenolic network, the contact angle and adhesion work of Pro@HMS-TA-Cu nanoparticles on the surface of oilseed rape leaves after 360 s were 59.6° and 107.2 mJ·m-2, respectively, indicating that the prepared nanoparticles possessed excellent adhesion. In addition, the Pro@HMS-TA-Cu nanoparticles demonstrated better antifungal activity against Sclerotinia sclerotiorum and lower toxicity to zebrafish compared to prochloraz technical. Hence, the pH-responsive nanoparticles prepared with a TA-Cu metal-phenolic network as a capping agent are highly efficient and environmentally friendly, providing a new approach for the development of new pesticide delivery systems.
Collapse
|
129
|
Nascimento VC, Rodrigues-Santos KC, Carvalho-Alencar KL, Castro MB, Kruger RH, Lopes FAC. Trichoderma: biological control efficiency and perspectives for the Brazilian Midwest states and Tocantins. BRAZ J BIOL 2022; 82:e260161. [PMID: 35946640 DOI: 10.1590/1519-6984.260161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Brazil is one of the world leaders in the agribusiness sector tending to directly influence a growing dependence on imported inputs, specifically synthetic agrochemicals. At the state level, in 2013, Tocantins stood out in first place in the ranking of agrochemical consumers, however, these products can cause several problems, such as poisoning to humans, environmental contamination, and increased resistance to phytopathogens. Biological control is an alternative to the use of agrochemicals towards eliminating pests naturally by using living organisms called Biological Control Agents (BCA). Currently, fungi of the Trichoderma genus are some of the most used organisms in biological pest control for their relevant characteristics that favor them in terms of survival in the environment, such as high capacity to adapt to ecological conditions, potential to colonize the rhizosphere of plants, mycoparasitism, production of volatile and non-volatile metabolites. In addition, it works on plant growth and productivity. In general, the use of Trichoderma favors the control of soil pathogens, such as Rhizoctonia, Pythium, Sclerotinia, and nematodes. Thus, this review aims to demonstrate the importance of using Trichoderma in biological control, as well as to present an overview and perspectives of research developed by respondents in the Brazilian Midwest region and Tocantins state.
Collapse
Affiliation(s)
- V C Nascimento
- Universidade Federal do Tocantins - UFT, Laboratório de Microbiologia, Porto Nacional, TO, Brasil
| | - K C Rodrigues-Santos
- Universidade Federal do Tocantins - UFT, Laboratório de Microbiologia, Porto Nacional, TO, Brasil
| | - K L Carvalho-Alencar
- Universidade Federal do Tocantins - UFT, Laboratório de Microbiologia, Porto Nacional, TO, Brasil
| | - M B Castro
- Universidade Federal do Tocantins - UFT, Laboratório de Microbiologia, Porto Nacional, TO, Brasil
| | - R H Kruger
- Universidade de Brasília - UnB, Laboratório de Enzimologia, Campus Universitário Darcy Ribeiro, Brasília, DF, Brasil
| | - F A C Lopes
- Universidade Federal do Tocantins - UFT, Laboratório de Microbiologia, Porto Nacional, TO, Brasil
| |
Collapse
|
130
|
Gao X, Dang X, Yan F, Li Y, Xu J, Tian S, Li Y, Huang K, Lin W, Lin D, Wang Z, Wang A. ANGUSTIFOLIA negatively regulates resistance to Sclerotinia sclerotiorum via modulation of PTI and JA signalling pathways in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2022; 23:1091-1106. [PMID: 35426480 PMCID: PMC9276947 DOI: 10.1111/mpp.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia sclerotiorum is a devastating pathogen that infects a broad range of host plants. The mechanism underlying plant defence against fungal invasion is still not well characterized. Here, we report that ANGUSTIFOLIA (AN), a CtBP family member, plays a role in the defence against S. sclerotiorum attack. Arabidopsis an mutants exhibited stronger resistance to S. sclerotiorum at the early stage of infection than wild-type plants. Accordingly, an mutants exhibited stronger activation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, including mitogen-activated protein kinase activation, reactive oxygen species accumulation, callose deposition, and the expression of PTI-responsive genes, upon treatment with PAMPs/microbe-associated molecular patterns. Moreover, Arabidopsis lines overexpressing AN were more susceptible to S. sclerotiorum and showed defective PTI responses. Our luminometry, bimolecular fluorescence complementation, coimmunoprecipitation, and in vitro pull-down assays indicate that AN interacts with allene oxide cyclases (AOC), essential enzymes involved in jasmonic acid (JA) biosynthesis, negatively regulating JA biosynthesis in response to S. sclerotiorum infection. This work reveals AN is a negative regulator of the AOC-mediated JA signalling pathway and PTI activation.
Collapse
Affiliation(s)
- Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xie Dang
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fengting Yan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuhua Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jing Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shifu Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yaling Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Kun Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenwei Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Deshu Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Marine and Agricultural Biotechnology CenterInstitute of OceanographyMinjiang UniversityFuzhouChina
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
131
|
Analysis of Tissue-Specific Defense Responses to Sclerotinia sclerotiorum in Brassica napus. PLANTS 2022; 11:plants11152001. [PMID: 35956479 PMCID: PMC9370628 DOI: 10.3390/plants11152001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum (S. sclerotiorum) is the main disease threat of oilseed rape (Brassica napus), resulting in huge economic losses every year. SSR resistance manifests as quantitative disease resistance (QDR), and no gene with complete SSR resistance has been cloned or reported so far. Transcriptome analysis has revealed a large number of defense-related genes and response processes. However, the similarities and differences in the defense responses of different tissues are rarely reported. In this study, we analyzed the similarities and differences of different tissues in response to S. sclerotiorum at 24 h post inoculation (hpi) by using the published transcriptome data for respective leaf and stem inoculation. At 24 hpi, large differences in gene expression exist in leaf and stem, and there are more differentially expressed genes and larger expression differences in leaf. The leaf is more sensitive to S. sclerotiorum and shows a stronger response than stem. Different defense responses appear in the leaf and stem, and the biosynthesis of lignin, callose, lectin, chitinase, PGIP, and PR protein is activated in leaf. In the stem, lipid metabolism-mediated defense responses are obviously enhanced. For the common defense responses in both leaf and stem, the chain reactions resulting from signal transduction and biological process take the primary responsibility. This research will be beneficial to exploit the potential of different tissues in plant defense and find higher resistance levels of genotypic variability in different environments. Our results are significant in the identification of resistance genes and analysis of defense mechanisms.
Collapse
|
132
|
Morpho-Cultural and Pathogenic Variability of Sclerotinia sclerotiorum Causing White Mold of Common Beans in Temperate Climate. J Fungi (Basel) 2022; 8:jof8070755. [PMID: 35887510 PMCID: PMC9316490 DOI: 10.3390/jof8070755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
The present systematic research on cultural, morphological, and pathogenic variability was carried out on eighty isolates of Sclerotinia sclerotiorum collected from major common bean production belts of North Kashmir. The isolates were found to vary in both cultural and morphological characteristics such as colony color and type, colony diameter, number of days for sclerotia initiation, sclerotia number per plate, sclerotial weight, and size. The colony color ranged between white and off-white with the majority. The colony was of three types, in majority smooth, some fluffy, and a few fluffy-at-center-only. Colony diameter ranged between 15.33 mm and 29 mm after 24 h of incubation. The isolates took 4 to 7 days for initiation of sclerotia and varied in size, weight, and number per plate ranging between 14 and 51.3. The sclerotial arrangement pattern on plates was peripheral, sub peripheral, peripheral, and subperipheral, arranged at the rim and scattered. A total of 22 Mycelial compatibility groups (MCGs) were formed with seven groups constituted by a single isolate. The isolates within MCGs were mostly at par with each other. The six isolates representing six MCGs showed variability in pathogenicity with isolate G04 as the most and B01 as the least virulent. The colony diameter and disease scores were positively correlated. Sclerotia were observed to germinate both myceliogenically and carpogenically under natural temperate conditions of Kashmir. Germplasm screening revealed a single resistant line and eleven partially resistant lines against most virulent isolates.
Collapse
|
133
|
Liu L, Lyu X, Pan Z, Wang Q, Mu W, Benny U, Rollins JA, Pan H. The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2022; 112:1476-1485. [PMID: 35021860 DOI: 10.1094/phyto-09-21-0378-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sclerotinia sclerotiorum is a notorious phytopathogenic Ascomycota fungus with a host range of >600 plant species worldwide. This homothallic Leotiomycetes species reproduces sexually through a multicellular apothecium that produces and releases ascospores. These ascospores serve as the primary inoculum source for disease initiation in the majority of S. sclerotiorum disease cycles. The regulation of apothecium development for this pathogen and other apothecium-producing fungi remains largely unknown. Here, we report that a C2H2 transcription factor, SsZFH1 (zinc finger homologous protein), is necessary for the proper development and maturation of sclerotia and apothecia in S. sclerotiorum and is required for the normal growth rate of hyphae. Furthermore, ΔSszfh1 strains exhibit decreased H2O2 accumulation in hyphae, increased melanin deposition, and enhanced tolerance to H2O2 in the process of vegetative growth and sclerotia formation. Infection assays on common bean leaves, with thin cuticles, and soybean and tomato leaves, with thick cuticles, suggest that the deletion of Sszfh1 slows the mycelial growth rate, which in turn affects the expansion of leaf lesions. Collectively, our results provide novel insights into a major fungal factor mediating maturation of apothecia with additional effects on hyphae and sclerotia development.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xingming Lyu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Zequn Pan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Wenhui Mu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Ulla Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
134
|
Yang M, Han X, Xie J, Zhang S, Lv Z, Li B, Shi L, Zhang K, Ge B. Field Application of Wuyiencin Against Sclerotinia Stem Rot in Soybean. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.930079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is a devastating disease of soybean. Biological control is a potential alternative to chemical fungicides for disease management, and provides broad benefits to the environment, farmers and consumers. Herein, we established a field application technique for biocontrol of Sclerotinia stem rot in soybean using wuyiencin, expanding on a previous study showing biocontrol potential. We used wuyiencin to reduce sclerotia in soybean seed, and disease incidence analysis by seed bioassay revealed an optimal wuyiencin seed soaking concentration of 12.5 μg/mL. We found that different application methods had different effects on soybean plant growth. Soybean pot experiments showed that 100 μg/mL wuyiencin was obtained a significant disease protection effect and promote soybean growth through root irrigation, and the optimal concentration for wuyiencin spraying was 100–200 μg/mL. We tested the efficacy of applying wuyiencin under field conditions, and the protection effect of 200 μg/mL wuyiencin sprayed three times was the best (64.0%), but this was slightly inferior to the protection effect of 200 μg/mL dimethachlon (77.6%).
Collapse
|
135
|
Zhang J, Xiao K, Li M, Hu H, Zhang X, Liu J, Pan H, Zhang Y. SsAGM1-Mediated Uridine Diphosphate-N-Acetylglucosamine Synthesis Is Essential for Development, Stress Response, and Pathogenicity of Sclerotinia sclerotiorum. Front Microbiol 2022; 13:938784. [PMID: 35814696 PMCID: PMC9260252 DOI: 10.3389/fmicb.2022.938784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen. S. sclerotiorum can cause Sclerotinia stem rot in more than 600 species of plants, which results in serious economic losses every year. Chitin is one of the most important polysaccharides in fungal cell walls. Chitin and β-Glucan form a scaffold that wraps around the cell and determines the vegetative growth and pathogenicity of pathogens. UDP-GlcNAc is a direct precursor of chitin synthesis. During the synthesis of UDP-GlcNAc, the conversion of GlcNAc-6P to GlcNAc-1P that is catalyzed by AGM1 (N-acetylglucosamine-phosphate mutase) is a key step. However, the significance and role of AGM1 in phytopathogenic fungus are unclear. We identified a cytoplasm-localized SsAGM1 in S. sclerotiorum, which is homologous to AGM1 of Saccharomyces cerevisiae. We utilized RNA interference (RNAi) and overexpression to characterize the function of SsAGM1 in S. sclerotiorum. After reducing the expression of SsAGM1, the contents of chitin and UDP-GlcNAc decreased significantly. Concomitantly, the gene-silenced transformants of SsAGM1 slowed vegetative growth and, importantly, lost the ability to produce sclerotia and infection cushion; it also lost virulence, even on wounded leaves. In addition, SsAGM1 was also involved in the response to osmotic stress and inhibitors of cell wall synthesis. Our results revealed the function of SsAGM1 in the growth, development, stress response, and pathogenicity in S. sclerotiorum.
Collapse
|
136
|
Mycoviromic Analysis Unveils Complex Virus Composition in a Hypovirulent Strain of Sclerotinia sclerotiorum. J Fungi (Basel) 2022; 8:jof8070649. [PMID: 35887405 PMCID: PMC9317179 DOI: 10.3390/jof8070649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoviruses are ubiquitous in pathogenic fungi including Sclerotinia sclerotiorum. Using RNA sequencing, more mycoviruses have been identified in individual strains, which were previously reported to be infected by a single mycovirus. A hypovirulent strain of S. sclerotiorum, HC025, was previously thought to harbor a single mitovirus, Sclerotinia sclerotiorum mitovirus 1 (SsMV1), based on the analysis of the conventional dsRNA extraction method. We found HC025 to be co-infected by five mycoviruses. In addition to SsMV1, four mycoviruses were identified: Sclerotinia sclerotiorum narnavirus 4 (SsNV4), Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV1), Sclerotinia sclerotiorum ourmia-like virus 14 (SsOLV14), and SsOLV22. Three mycoviruses including SsNV4, SsNSRV1, and SsOLV14 share high replicase identities (more than 95%) with the previously reported corresponding mycoviruses, and SsOLV22 shows lower identity to the known viruses. The complete genome of SsOLV22 is 3987 nt long and contains a single ORF-encoded RdRp, which shares 24.84% identity with the RNA-dependent RNA polymerase (RdRp) of Hubei narna-like virus 10 (query coverage: 26%; e-value: 8 × 10−19). The phylogenetic tree of RdRp suggests that SsOLV22 is a new member within the family Botourmiaviridae. All of the mycoviruses except for SsNSRV1 could horizontally co-transfer from HC025 to the virulent strain Ep-1PNA367 with hypovirulent phenotypes, and converted a later strain into a hypovirulent strain. In summary, we molecularly characterized the hypovirulent strain HC025 and identified five RNA mycoviruses including a new member within Botourmiaviridae.
Collapse
|
137
|
Wang Q, Mao Y, Li S, Li T, Wang J, Zhou M, Duan Y. Molecular Mechanism of Sclerotinia sclerotiorum Resistance to Succinate Dehydrogenase Inhibitor Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7039-7048. [PMID: 35666187 DOI: 10.1021/acs.jafc.2c02056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides have a wide spectrum of fungicidal effects on a variety of fungi causing plant diseases, including Sclerotinia stem rot caused by Sclerotinia sclerotiorum. However, the consistent use of site-specific SDHI fungicides can result in the development of resistant isolates with mutations in the SDHB, SDHC, or SDHD subunit thereby leading to a rapid decline of fungicide performance. In this study, we found that SDHC was genetically evolved into two isotypes SDHC1 and SDHC2 in S. sclerotiorum but not involved in the sensitivity to SDHI fungicides. In addition, we demonstrated that the A11V substitution in SDHB was not involved in the resistance of S. sclerotiorum to boscalid, and this substitution widely emerged in the field populations. Meanwhile, the P226L substitution in SDHB was demonstrated to confer boscalid resistance in S. sclerotiorum. The result of cross-resistance showed that the SDHB-P226L substitution exhibited a positive cross-resistance between boscalid and carboxin, fluopyram, pydiflumetofen, flubeneteram, pyraziflumid, fluindapyr, or penthiopyrad. Taken together, our results indicated that the P226L substitution in SDHB resulted in the resistance of S. sclerotiorum to SDHI fungicides but suffered from fitness penalty, especially the homozygous mutants conferring the P226L substitution in SDHB.
Collapse
Affiliation(s)
- Qiao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengxue Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
138
|
Polyphasic Characterization of Four Aspergillus Species as Potential Biocontrol Agents for White Mold Disease of Bean. J Fungi (Basel) 2022; 8:jof8060626. [PMID: 35736109 PMCID: PMC9224856 DOI: 10.3390/jof8060626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Aspergillus comprises several species that play pivotal roles in agriculture. Herein, we morphologically and physiologically characterized four genetically distinct Aspergillus spp., namely A. japonicus, A. niger, A. flavus, and A. pseudoelegans, and examined their ability to suppress the white mold disease of bean caused by Sclerotinia sclerotiorum in vitro and under greenhouse conditions. Seriation type of Aspergillus spp. correlates with conidiospores discharge as detected on the Petri glass lid. Members of Nigri section cover their conidial heads with hard shells after prolonged incubation. In addition, sporulation of the tested Aspergillus isolates is temperature sensitive as it becomes inhibited at low temperatures and the colonies become white. Examined Aspergillus spp. were neither infectious to legumes nor aflatoxigenic as confirmed by HPLC except for A. flavus and A. pseudoelegans which, secreted 5 and 1 ppm of aflatoxin B1, respectively. Co-inoculations of Sclerotinia’s mycelium or sclerotia with a spore suspension of Aspergillus spp. inhibited their germination on PDA at 18 °C and 28 °C, and halted disease onset on detached common bean and soybean leaves. Similarly, plants treated with A. japonicus and A. niger showed the highest survival rates compared to untreated plants. In conclusion, black Aspergillus spp. are efficient biocides and safe alternatives for the management of plant diseases, particularly in organic farms.
Collapse
|
139
|
Combining Desirable Traits for a Good Biocontrol Strategy against Sclerotinia sclerotiorum. Microorganisms 2022; 10:microorganisms10061189. [PMID: 35744707 PMCID: PMC9228387 DOI: 10.3390/microorganisms10061189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The fungal pathogen Sclerotinia sclerotiorum (Helotiales: Sclerotiniaceae) causes white mold, a disease that leads to substantial losses on a wide variety of hosts throughout the world. This economically important fungus affects yield and seed quality, and its control mostly relies on the use of environmentally damaging fungicides. This review aimed to present the latest discoveries on microorganisms and the biocontrol mechanisms used against white mold. A special focus is put on the identification of biocontrol desirable traits required for efficient disease control. A better understanding of the mechanisms involved and the conditions required for their action is also essential to ensure a successful implementation of biocontrol under commercial field conditions. In this review, a brief introduction on the pathogen, its disease cycle, and its main pathogenicity factors is presented, followed by a thorough description of the microorganisms that have so far demonstrated biocontrol potential against white mold and the mechanisms they use to achieve control. Antibiosis, induced systemic resistance, mycoparasitism, and hypovirulence are discussed. Finally, based on our actual knowledge, the best control strategies against S. sclerotiorum that are likely to succeed commercially are discussed, including combining biocontrol desirable traits of particular interest.
Collapse
|
140
|
Genetic structure of Sclerotinia sclerotiorum populations from sunflower and cabbage in West Azarbaijan province of Iran. Sci Rep 2022; 12:9263. [PMID: 35662267 PMCID: PMC9166751 DOI: 10.1038/s41598-022-13350-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/11/2022] [Indexed: 11/08/2022] Open
Abstract
Sclerotinia sclerotiorum is one of the most destructive fungal pathogens infecting a wide array of plant species worldwide. Management of this pathogen relies on the coordinated use of fungicides and resistant host cultivars with other control measures, but the effectiveness of these methods requires knowledge of the genetic variability and structure of the fungal populations. To provide insight into the genetic diversity and structure of this pathogen in West Azarbaijan province of Iran, a total of 136 isolates were collected from symptomatic sunflower and cabbage plants within fields in three regions and analysed using inter-simple sequence repeat (ISSR) markers and intergenic spacer (IGS) region of the rRNA gene sequences. A total of 83 ISSR multilocus genotypes (MLGs) were identified, some of which were shared among at least two regional or host populations but in a low frequency. High genotypic diversity, low levels of clonal fraction, and random association of ISSR loci in a region indicated a low level of clonal reproduction, and possibly a high level of sexually recombining life cycle for the pathogen in the province. Marker analyses revealed that the pathogen was spatially homogeneous among fields, and thus similar control measures, such as the choice of resistant cultivars and fungicides, may effectively manage S. sclerotiorum within the region. Four IGS haplotypes (IGS1-IGS4) were detected within populations with IGS3 being the most prevalent haplotype. The low IGS haplotype diversity, the absence of spatial structure, and shared MLGs among populations may suggest a single introduction and subsequent dispersal of S. sclerotiorum within West Azarbaijan province.
Collapse
|
141
|
Roy J, Del Río Mendoza LE, Bandillo N, McClean PE, Rahman M. Genetic mapping and genomic prediction of sclerotinia stem rot resistance to rapeseed/canola (Brassica napus L.) at seedling stage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2167-2184. [PMID: 35522263 DOI: 10.1007/s00122-022-04104-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
GWAS detected ninety-eight significant SNPs associated with Sclerotinia sclerotiorum resistance. Six statistical models resulted in medium to high predictive ability, depending on trait, indicating potential of genomic prediction for disease resistance breeding. The lack of complete host resistance and a complex resistance inheritance nature between rapeseed/canola and Sclerotinia sclerotiorum often limits the development of functional molecular markers that enable breeding for sclerotinia stem rot (SSR) resistance. However, genomics-assisted selection has the potential to accelerate the breeding for SSR resistance. Therefore, genome-wide association (GWA) mapping and genomic prediction (GP) were performed using a diverse panel of 337 rapeseed/canola genotypes. Three-week-old seedlings were screened using the petiole inoculation technique (PIT). Days to wilt (DW) up to 2 weeks and lesion phenotypes (LP) at 3, 4, and 7 days post-inoculation (dpi) were recorded. A strong correlation (r = - 0.90) between DW and LP_4dpi implied that a single time point scoring at four days could be used as a proxy trait. GWA analyses using single-locus (SL) and multi-locus (ML) models identified a total of 41, and 208 significantly associated SNPs, respectively. Out of these, ninety-eight SNPs were identified by a combination of the SL model and any of the ML models, at least two ML models, or two traits. These SNPs explained 1.25-12.22% of the phenotypic variance and considered as significant, could be associated with SSR resistance. Eighty-three candidate genes with a function in disease resistance were associated with the significant SNPs. Six GP models resulted in moderate to high (0.42-0.67) predictive ability depending on SSR resistance traits. The resistant genotypes and significant SNPs will serve as valuable resources for future SSR resistance breeding. Our results also highlight the potential of genomic selection to improve rapeseed/canola breeding for SSR resistance.
Collapse
Affiliation(s)
- Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Nonoy Bandillo
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108, USA
| | - Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
142
|
Jahan R, Siddique SS, Jannat R, Hossain MM. Cosmos white rot: First characterization, physiology, host range, disease resistance, and chemical control. J Basic Microbiol 2022; 62:911-929. [PMID: 35642304 DOI: 10.1002/jobm.202200098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 11/08/2022]
Abstract
A new disease of Cosmos sulphureus Cav. causing external and internal stem discoloration, premature death, and wilting was observed in 27.8% of plants with an average disease severity rating of 4.4 in Gazipur, Bangladesh. Morphological, pathological, and molecular analyses identified the isolated fungus as Sclerotinia sclerotiorum (Lib) de Bary, the causative agent of white rot disease. The optimum growth and sclerotium formation of S. sclerotiorum occurred at 20°C and pH 5.0, while glucose, peptone, yeast extract, casein, and ascorbic acid were the appropriate nutrient sources. Furthermore, mycelial growth and sclerotial development were favored in media containing potassium, magnesium, calcium, and sodium. As many as 20 plant species of 10 families; Calendula officinalisi, Chrysanthemum indicum, Catharanthus roseus, Solanum tuberosum, S. lycopersicum, S. melongena, Capsicum annum, Lablab purpureus, Phaseolus vulgari, Lens culinaris, Vigna radiata, Vigna mungo, Daucus carota, Raphanus sativus, Brassica juncea, Punica granatum, Spinacia oleracea, Ipomoea batatas, Ipomoea aquatica, and Elaeocarpus serratus were identified as the new hosts of the pathogen in Bangladesh. None of the C. sulphureus and Cosmos bipinnatus germplasms screened were genetically resistant to the pathogen. Among the tested fungicides, Autostin 50 WDG (carbendazim) and Rovral (Dicarboxamide) were most inhibitory to the fungus, while Autostin 50 WDG provided an efficient control of the pathogen in vivo up to 15 days after spray. The acquired results on characterization, physiology, host range, resistance, and fungicidal control of the pathogen could be valuable for effectively managing cosmos white rot in the field.
Collapse
Affiliation(s)
- Rebeka Jahan
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Shaikh S Siddique
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Rayhanur Jannat
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Motaher Hossain
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
143
|
Sclerotinia sclerotiorum SsCut1 Modulates Virulence and Cutinase Activity. J Fungi (Basel) 2022; 8:jof8050526. [PMID: 35628781 PMCID: PMC9143608 DOI: 10.3390/jof8050526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
The plant cuticle is one of the protective layers of the external surface of plant tissues. Plants use the cuticle layer to reduce water loss and resist pathogen infection. Fungi release cell wall-degrading enzymes to destroy the epidermis of plants to achieve the purpose of infection. Sclerotinia sclerotiorum secretes a large amount of cutinase to disrupt the cuticle layer of plants during the infection process. In order to further understand the role of cutinase in the pathogenic process of S. sclerotiorum, the S. sclerotiorum cutinsae 1 (SsCut1) gene was cloned and analyzed. The protein SsCut1 contains the conserved cutinase domain and a fungal cellulose-binding domain. RT-qPCR results showed that the expression of SsCut1 was significantly upregulated during infection. Split-Marker recombination was utilized for the deletion of the SsCut1 gene, ΔSsCut1 mutants showed reduced cutinase activity and virulence, but the deletion of the SsCut1 gene had no effect on the growth rate, colony morphology, oxalic acid production, infection cushion formation and sclerotial development. Complementation with the wild-type SsCut1 allele restored the cutinase activity and virulence to the wild-type level. Interestingly, expression of SsCut1 in plants can trigger defense responses, but it also enhanced plant susceptibility to SsCut1 gene knock-out mutants. Taken together, our finding demonstrated that the SsCut1 gene promotes the virulence of S. sclerotiorum by enhancing its cutinase activity.
Collapse
|
144
|
Talukder ZI, Underwood W, Misar CG, Seiler GJ, Cai X, Li X, Qi L. Genomic Insights Into Sclerotinia Basal Stalk Rot Resistance Introgressed From Wild Helianthus praecox Into Cultivated Sunflower ( Helianthus annuus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:840954. [PMID: 35665155 PMCID: PMC9158519 DOI: 10.3389/fpls.2022.840954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Crop wild relatives of the cultivated sunflower (Helianthus annuus L.) are a valuable resource for its sustainable production. Helianthus praecox ssp. runyonii is a wild sunflower known for its resistance against diseases caused by the fungus, Sclerotinia sclerotiorum (Lib.) de Bary, which infects over 400 broadleaf hosts including many important food crops. The objective of this research was to dissect the Sclerotinia basal stalk rot (BSR) resistance introgressed from H. praecox ssp. runyonii into cultivated sunflower. An advanced backcross quantitative trait loci (AB-QTL) mapping population was developed from the cross of a H. praecox accession with cultivated sunflower lines. The AB-QTL population was evaluated for BSR resistance in the field during the summers of 2017-2018 and in the greenhouse in the spring of 2018. Highly significant genetic variations (p < 0.001) were observed for the BSR disease in the field and greenhouse with a moderately high broad-sense heritability (H 2) ranging from 0.66 to 0.73. Genotyping-by-sequencing approach was used to genotype the parents and the progeny lines of the AB-QTL population. A genetic linkage map spanning 1,802.95 cM was constructed using 1,755 single nucleotide polymorphism (SNP) markers mapped on 17 sunflower chromosomes. A total of 19 BSR resistance QTL were detected on nine sunflower chromosomes, each explaining 2.21%-16.99% of the phenotypic variance for resistance in the AB-QTL population. Sixteen of the 19 QTL had alleles conferring increased BSR resistance derived from the H. praecox parent. SNP markers flanking the identified QTL will facilitate marker-assisted breeding to combat the disease in sunflower.
Collapse
Affiliation(s)
- Zahirul I. Talukder
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - William Underwood
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Christopher G. Misar
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gerald J. Seiler
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
145
|
Cong J, Xiao K, Jiao W, Zhang C, Zhang X, Liu J, Zhang Y, Pan H. The Coupling Between Cell Wall Integrity Mediated by MAPK Kinases and SsFkh1 Is Involved in Sclerotia Formation and Pathogenicity of Sclerotinia sclerotiorum. Front Microbiol 2022; 13:816091. [PMID: 35547112 PMCID: PMC9081980 DOI: 10.3389/fmicb.2022.816091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
The plant pathogenic fungus Sclerotinia sclerotiorum can survive on a wide range of hosts and cause significant losses on crop yields. FKH, a forkhead box (FOX)-containing protein, functions to regulate transcription and signal transduction. As a transcription factor (TF) with multiple biological functions in eukaryotic organisms, little research has been done on the role of FKH protein in pathogenic fungi. SsFkh1 encodes a protein which has been predicted to contain FOX domain in S. sclerotiorum. In this study, the deletion mutant of SsFkh1 resulted in severe defects in hyphal development, virulence, and sclerotia formation. Moreover, knockout of SsFkh1 lead to gene functional enrichment in mitogen-activated protein kinase (MAPK) signaling pathway in transcriptome analysis and SsFkh1 was found to be involved in the maintenance of the cell wall integrity (CWI) and the MAPK signaling pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SsFkh1 interacts with SsMkk1. In addition, we explored the conserved MAPK signaling pathway components, including Bck1, Mkk1, Pkc1, and Smk3 in S. sclerotiorum. ΔSsmkk1, ΔSspkc1, ΔSsbck1, and ΔSssmk3knockout mutant strains together with ΔSsmkk1com, ΔSspkc1com, ΔSsbck1com, and ΔSssmk3com complementation mutant strains were obtained. The results indicated that ΔSsmkk1, ΔSspkc1, ΔSsbck1, and ΔSssmk3 displayed similar phenotypes to ΔSsfkh1 in sclerotia formation, compound appressorium development, and pathogenicity. Taken together, SsFkh1 may be the downstream substrate of SsMkk1 and involved in sclerotia formation, compound appressorium development, and pathogenicity in S. sclerotiorum.
Collapse
Affiliation(s)
- Jie Cong
- College of Plant Sciences, Jilin University, Changchun, China
| | - Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wenli Jiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Cheng Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
146
|
Underwood W, Gilley M, Misar CG, Gulya TJ, Seiler GJ, Markell SG. Multiple Species of Asteraceae Plants Are Susceptible to Root Infection by the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum. PLANT DISEASE 2022; 106:1366-1373. [PMID: 34874175 DOI: 10.1094/pdis-06-21-1314-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The necrotrophic fungal pathogen Sclerotinia sclerotiorum can cause disease on numerous plant species, including many important crops. Most S. sclerotiorum-incited diseases of crop plants are initiated by airborne ascospores produced when fungal sclerotia germinate to form spore-bearing apothecia. However, basal stalk rot of sunflower occurs when S. sclerotiorum sclerotia germinate to form mycelia within the soil, which subsequently invade sunflower roots. To determine whether other plant species in the Asteraceae family are susceptible to root infection by S. sclerotiorum, cultivated sunflower (Helianthus annuus L.) and seven other Asteraceae species were evaluated for S. sclerotiorum root infection by inoculation with either sclerotia or mycelial inoculum. Additionally, root susceptibility of sunflower was compared with that of dry edible bean and canola, two plant species susceptible to S. sclerotiorum but not known to display root-initiated infections. Results indicated that multiple Asteraceae family plants are susceptible to S. sclerotiorum root infection after inoculation with either sclerotia or mycelium. These observations expand the range of plant hosts susceptible to S. sclerotiorum root infection, elucidate differences in root inoculation methodology, and emphasize the importance of soilborne infection to Asteraceae crop and weed species.
Collapse
Affiliation(s)
- William Underwood
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Sunflower & Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Michelle Gilley
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Christopher G Misar
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Sunflower & Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Thomas J Gulya
- USDA-ARS Sunflower & Plant Biology Research Unit (retired), Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Gerald J Seiler
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Sunflower & Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Samuel G Markell
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| |
Collapse
|
147
|
Wei W, Xu L, Peng H, Zhu W, Tanaka K, Cheng J, Sanguinet KA, Vandemark G, Chen W. A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat Commun 2022; 13:2213. [PMID: 35468894 PMCID: PMC9038911 DOI: 10.1038/s41467-022-29788-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/22/2022] [Indexed: 01/16/2023] Open
Abstract
Plant pathogens degrade cell wall through secreted polygalacturonases (PGs) during infection. Plants counteract the PGs by producing PG-inhibiting proteins (PGIPs) for protection, reversibly binding fungal PGs, and mitigating their hydrolytic activities. To date, how fungal pathogens specifically overcome PGIP inhibition is unknown. Here, we report an effector, Sclerotinia sclerotiorum PGIP-INactivating Effector 1 (SsPINE1), which directly interacts with and functionally inactivates PGIP. S. sclerotiorum is a necrotrophic fungus that causes stem rot diseases on more than 600 plant species with tissue maceration being the most prominent symptom. SsPINE1 enhances S. sclerotiorum necrotrophic virulence by specifically interacting with host PGIPs to negate their polygalacturonase-inhibiting function via enhanced dissociation of PGIPs from PGs. Targeted deletion of SsPINE1 reduces the fungal virulence. Ectopic expression of SsPINE1 in plant reduces its resistance against S. sclerotiorum. Functional and genomic analyses reveal a conserved virulence mechanism of cognate PINE1 proteins in broad host range necrotrophic fungal pathogens. Plants produce polygalacuturonase-inhibiting proteins (PGIPs) to counteract cell wall degradation by pathogenic microbes. Here the authors show that Sclerotinia sclerotiorum, a fungal pathogen that causes stem rot disease, secretes a PGIP-inactivating effector to diminish plant resistance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Peng
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Karen A Sanguinet
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA.,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA
| | - George Vandemark
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,USDA Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164, USA
| | - Weidong Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA. .,Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA. .,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA. .,USDA Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164, USA.
| |
Collapse
|
148
|
Abstract
RNA viruses usually have linear genomes and are encapsidated by their own capsids. Here, we newly identified four mycoviruses and two previously reported mycoviruses (a fungal reovirus and a botybirnavirus) in the hypovirulent strain SCH941 of Sclerotinia sclerotiorum. One of the newly discovered mycoviruses, Sclerotinia sclerotiorum yadokarivirus 1 (SsYkV1), with a nonsegmented positive-sense single-stranded RNA (+ssRNA) genome, was molecularly characterized. SsYkV1 is 5,256 nucleotides (nt) in length, excluding the poly(A) structure, and has a large open reading frame that putatively encodes a polyprotein with the RNA-dependent RNA polymerase (RdRp) domain and a 2A-like motif. SsYkV1 was phylogenetically positioned into the family Yadokariviridae and was most closely related to Rosellinia necatrix yadokarivirus 2 (RnYkV2), with 40.55% identity (78% coverage). Although SsYkV1 does not encode its own capsid protein, the RNA and RdRp of SsYkV1 are trans-encapsidated in virions of Sclerotinia sclerotiorum botybirnavirus 3 (SsBV3), a bisegmented double-stranded RNA (dsRNA) mycovirus within the genus Botybirnavirus. In this way, SsYkV1 likely replicates inside the heterocapsid comprised of the SsBV3 capsid protein, like a dsRNA virus. SsYkV1 has a limited impact on the biological features of S. sclerotiorum. This study represents an example of a yadokarivirus trans-encapsidated by an unrelated dsRNA virus, which greatly deepens our knowledge and understanding of the unique life cycles of RNA viruses. IMPORTANCE RNA viruses typically encase their linear genomes in their own capsids. However, a capsidless +ssRNA virus (RnYkV1) highjacks the capsid of a nonsegmented dsRNA virus for the trans-encapsidation of its own RNA and RdRp. RnYkV1 belongs to the family Yadokariviridae, which already contains more than a dozen mycoviruses. However, it is unknown whether other yadokariviruses except RnYkV1 are also hosted by a heterocapsid, although dsRNA viruses with capsid proteins were detected in fungi harboring yadokarivirus. It is noteworthy that almost all presumed partner dsRNA viruses of yadokariviruses belong to the order Ghabrivirales (most probably a totivirus or toti-like virus). Here, we found a capsidless +ssRNA mycovirus, SsYkV1, from hypovirulent strain SCH941 of S. sclerotiorum, and the RNA and RdRp of this mycovirus are trans-encapsidated in virions of a bisegmented dsRNA virus within the free-floating genus Botybirnavirus. Our results greatly expand our knowledge of the unique life cycles of RNA viruses.
Collapse
|
149
|
Yang X, Huang X, Zhang L, Du L, Liu Y. The
NDT80
‐like transcription factor
CmNdt80a
affects the conidial formation and germination, mycoparasitism, and cell wall integrity of
Coniothyrium minitans. J Appl Microbiol 2022; 133:808-818. [DOI: 10.1111/jam.15575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoxiang Yang
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
| | - Xiaoqin Huang
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
| | - Lei Zhang
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
| | - Lei Du
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
| | - Yong Liu
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd Chengdu Sichuan P.R. China
| |
Collapse
|
150
|
Wang L, Liu F, Ju L, Xue B, Wang Y, Wang D, Hou D. Genome Structures and Evolution Analysis of Hsp90 Gene Family in Brassica napus Reveal the Possible Roles of Members in Response to Salt Stress and the Infection of Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2022; 13:854034. [PMID: 35463405 PMCID: PMC9022010 DOI: 10.3389/fpls.2022.854034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Heat shock proteins 90 (Hsp90s) are conserved proteins participating in the responses to heat stress and are found to be involved in different kinds of abiotic and biotic stresses. Brassica napus (B. napus) is an important heteropolyploid crop, producing edible oil. Salt stress is one of the most important hazards to the growth of rape in the world, while Sclerotinia stem rot is one of the most serious diseases, caused by Sclerotinia sclerotiorum (S. sclerotiorum). In this study, the evolution of Hsp90 genes and their responses to these two stresses were elucidated. Bioinformatic analysis through the whole genome of B. napus identified 35 Hsp90 gene family members. Five groups were obtained via phylogenetic analysis with the 35 Hsp genes, Hsps from its two ancestor species Brassica rapa, Brassica oleracea, and AtHsps. Gene structure and conservative motif analysis of these 35 Hsps indicated that the Hsps were relatively conservative in each group. Strong collinearity was also detected between the genomes of Brassica rapa, Brassica oleracea and B. napus, along with identifying syntenic gene pairs of Hsps among the three genomes. In addition, whole genome duplication was discovered as the main reason for the generation of BnHsp gene family. The analysis of cis-acting elements indicated that BnHsp90 might be involved in a variety of abiotic and biotic stress responses. Analysis of the expression pattern indicated that BnHsp90 participates in the responses of B. napus to salt stress and the infection of S. sclerotiorum. Fourteen and nine BnHsp90s were validated to be involved in the defense responses of B. napus against salt stress and S. sclerotiorum, respectively. Our results provide new insights for the roles of BnHsp90s in the responses of B. napus to salt stress and S. sclerotiorum.
Collapse
Affiliation(s)
- Long Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fei Liu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Lingyue Ju
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Bing Xue
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yongfeng Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Daojie Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Agriculture, Henan University, Kaifeng, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|