101
|
Ioku T, Inoue T, Kuki I, Imai K, Yamamoto A, Cho M. [A case of febrile infection-related epilepsy syndrome requiring prolonged intensive care management: a trial of intravenous ketamine and intrathecal dexamethasone therapy]. Rinsho Shinkeigaku 2022; 62:123-129. [PMID: 35095046 DOI: 10.5692/clinicalneurol.cn-001624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 16-year-old male was brought to the emergency room with fever and status epilepticus, and was diagnosed with febrile infection-related epilepsy syndrome (FIRES). Seizure control was not achieved and the patient developed multiple complications. Ketamine infusion therapy and intrathecal dexamethasone therapy were administered, in addition to other anti-seizure treatment and immunotherapy for super-refractory status epilepticus (SRSE). The patient was weaned from the ventilator on day 170 and was able to live at home, although he continued to experience monthly focal motor seizures and moderate motor impairment. This case suggests that more aggressive treatment might be an option in FIRES with prolonged SRSE.
Collapse
Affiliation(s)
- Tetsuya Ioku
- Department of Neurology and Stroke Treatment, Kyoto First Red Cross Hospital
| | - Takeshi Inoue
- Child and Adolescent Epilepsy Center, Department of Pediatric Neurology, Osaka City General Hospital
| | - Ichiro Kuki
- Child and Adolescent Epilepsy Center, Department of Pediatric Neurology, Osaka City General Hospital
| | - Keisuke Imai
- Department of Neurology and Stroke Treatment, Kyoto First Red Cross Hospital
| | - Atsushi Yamamoto
- Department of Neurology and Stroke Treatment, Kyoto First Red Cross Hospital
| | - Masanori Cho
- Department of Neurology and Stroke Treatment, Kyoto First Red Cross Hospital
| |
Collapse
|
102
|
Mu X, Zhang X, Gao H, Gao L, Li Q, Zhao C. Crosstalk between peripheral and the brain-resident immune components in epilepsy. J Integr Neurosci 2022; 21:9. [PMID: 35164445 DOI: 10.31083/j.jin2101009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is one of the most common neurology diseases. It is characterized by recurrent, spontaneous seizures and accompanied by various comorbidities which can significantly affect a person's life. Accumulating evidence indicates an essential pathophysiological role for neuroinflammation in epilepsy, which involves activation of microglia and astrocytes, recruitment of peripheral leukocytes into the central nervous system, and release of some inflammatory mediators, including pro-inflammatory factors and anti-inflammatory cytokines. There is complex crosstalk between the central nervous system and peripheral immune responses associated with the progression of epilepsy. This review provides an update of current knowledge about the contribution of this crosstalk associated with epilepsy. Additionally, how gut microbiota is involved in epilepsy and its possible influence on crosstalk is also discussed. Such recent advances in understanding suggest innovative methods for targeting the molecules correlated with the crosstalk and may provide a better prognosis for patients diagnosed with epilepsy.
Collapse
Affiliation(s)
- Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Honghua Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Lianbo Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Stroke Center, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| |
Collapse
|
103
|
Chyra M, Roczniak W, Świętochowska E, Dudzińska M, Oświęcimska J. The Effect of the Ketogenic Diet on Adiponectin, Omentin and Vaspin in Children with Drug-Resistant Epilepsy. Nutrients 2022; 14:nu14030479. [PMID: 35276837 PMCID: PMC8839826 DOI: 10.3390/nu14030479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Changes in adipokine secretion may be involved in the anti-epileptic effect of a ketogenic diet (KD) in drug-resistant epilepsy (DRE). Objectives: The assessment of the influence of KD on serum adiponectin, omentin-1, and vaspin in children with DRE. Methods: Anthropometric measurements (weight, height, BMI, and waist-to-hip circumference ratio) were performed in 72 children aged 3–9 years, divided into 3 groups: 24 children with DRE treated with KD, 26—treated with valproic acid (VPA), and a control group of 22 children. Biochemical tests included fasting glucose, insulin, beta-hydroxybutyric acid, lipid profile, aminotransferases activities, and blood gasometry. Serum levels of adiponectin, omentin-1 and vaspin were assayed using commercially available ELISA tests. Results: Serum levels of adiponectin and omentin-1 in the KD group were significantly higher and vaspin—lower in comparison to patients receiving VPA and the control group. In all examined children, serum adiponectin and omentin-1 correlated negatively with WHR and serum triglycerides, insulin, fasting glucose, and HOMA-IR. Vaspin levels correlated negatively with serum triglycerides and positively with body weight, BMI, fasting glucose, insulin, and HOMA-IR. Conclusion: One of the potential mechanisms of KD in children with drug-resistant epilepsy may be a modulation of metabolically beneficial and anti-inflammatory adipokine levels.
Collapse
Affiliation(s)
- Marcin Chyra
- Department of Paediatric Neurology, Independent Public Healthcare Centre—Municipal Hospital Complex, ul. Władysława Truchana 7, 41-500 Chorzow, Poland;
- Correspondence: ; Tel.: +48-32-349-00-85; Fax: +48-32-349-01-50
| | - Wojciech Roczniak
- Institute of Medicine, Jan Grodek State University in Sanok, ul. Mickiewicza 21, 38-500 Sanok, Poland; (W.R.); (J.O.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland;
| | - Magdalena Dudzińska
- Department of Paediatric Neurology, Independent Public Healthcare Centre—Municipal Hospital Complex, ul. Władysława Truchana 7, 41-500 Chorzow, Poland;
| | - Joanna Oświęcimska
- Institute of Medicine, Jan Grodek State University in Sanok, ul. Mickiewicza 21, 38-500 Sanok, Poland; (W.R.); (J.O.)
| |
Collapse
|
104
|
The Interconnected Mechanisms of Oxidative Stress and Neuroinflammation in Epilepsy. Antioxidants (Basel) 2022; 11:antiox11010157. [PMID: 35052661 PMCID: PMC8772850 DOI: 10.3390/antiox11010157] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
One of the most important characteristics of the brain compared to other organs is its elevated metabolic demand. Consequently, neurons consume high quantities of oxygen, generating significant amounts of reactive oxygen species (ROS) as a by-product. These potentially toxic molecules cause oxidative stress (OS) and are associated with many disorders of the nervous system, where pathological processes such as aberrant protein oxidation can ultimately lead to cellular dysfunction and death. Epilepsy, characterized by a long-term predisposition to epileptic seizures, is one of the most common of the neurological disorders associated with OS. Evidence shows that increased neuronal excitability—the hallmark of epilepsy—is accompanied by neuroinflammation and an excessive production of ROS; together, these factors are likely key features of seizure initiation and propagation. This review discusses the role of OS in epilepsy, its connection to neuroinflammation and the impact on synaptic function. Considering that the pharmacological treatment options for epilepsy are limited by the heterogeneity of these disorders, we also introduce the latest advances in anti-epileptic drugs (AEDs) and how they interact with OS. We conclude that OS is intertwined with numerous physiological and molecular mechanisms in epilepsy, although a causal relationship is yet to be established.
Collapse
|
105
|
Alvi AM, Shah FA, Muhammad AJ, Feng J, Li S. 1,3,4, Oxadiazole Compound A3 Provides Robust Protection Against PTZ-Induced Neuroinflammation and Oxidative Stress by Regulating Nrf2-Pathway. J Inflamm Res 2022; 14:7393-7409. [PMID: 35002275 PMCID: PMC8721032 DOI: 10.2147/jir.s333451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Epilepsy is a common neurological disorder that is characterized by recurrent episodes of seizures. Various studies have demonstrated a direct association between oxidative stress and inflammation in several neurological disorders including epilepsy. This study aimed to investigate the neuroprotective effects of a synthetic 1,3,4, oxadiazole compound A3 against pentylenetetrazole (PTZ)-induced kindling and seizure model. Methodology PTZ was administered in a sub-convulsive dose of 40 mg/kg for 15 days, at 48-hour intervals to male Swiss-Albino mice until animals were fully kindled. Two different doses of A3 (10 mg/kg and 30 mg/kg) were administered to find out the effective dose of A3 and to further demonstrate the relative role of nuclear factor E2-related factor (Nrf2) in the PTZ-induced kindled model. Results Our results demonstrated a compromised antioxidant capacity associated with a low level of catalase (CAT), superoxide dismutase (SOD), glutathione (GST), and glutathione S-transferase (GSH) in the kindled group. However, the PTZ-induced group demonstrated an elevated level of lipid peroxidation (LPO) level parallel to pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), mediators as cyclooxygenase (COX-2), and nuclear factor kappa B (NFκB). Furthermore, the A3 treatment reversed these changes and overexpressed the antioxidant Nrf2 gene and its downstream HO-1. To further investigate the involvement of Nrf2, we employed an Nrf2-inhibitor, ie, all-trans retinoic acid (ATRA), that further aggravated the PTZ toxicity. Moreover, vascular endothelial growth factor (VEGF) expression was evaluated to assess the extent of BBB disruption. Conclusion The findings of this study suggest that A3 could mediate neuroprotection possibly by activating Nrf2 dependent downregulation of inflammatory cascades.
Collapse
Affiliation(s)
- Arooj Mohsin Alvi
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Asmaa Jan Muhammad
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|
106
|
Aulická S, Česká K, Šána J, Siegl F, Brichtová E, Ošlejšková H, Hermanová M, Hendrych M, Michu EP, Brázdil M, Slabý O, Nestrašil I. Cytokine-chemokine profiles in the hippocampus of patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Epilepsy Res 2022; 180:106858. [PMID: 35026708 DOI: 10.1016/j.eplepsyres.2022.106858] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is the most common drug-resistant epilepsy. Despite major advances in epilepsy research, the epileptogenesis of the MTLE-HS is not well understood. The altered neuroimmune response is one of the pathomechanisms linked to progressive epileptogenesis in MTLE-HS, and understanding its role may help design future cures for pharmaco-resistant MTLE-HS. Here, the neuroimmune function was evaluated by the assessment of cytokine-chemokine profiles in brain samples from the hippocampus of patients with MTLE-HS. METHODS Brain samples from patients with MTLE-HS collected during epileptosurgical resection (n = 21) were compared to those obtained from autopsy controls (n = 13). The typing of HS was performed according to ILAE consensus classification, and patients were additionally sorted into subgroups based on the severity of neuronal depletion (Wyler grading system). Differences between patients with MTLE-HS with and without a history of febrile seizures were also assessed. RNA was isolated from native samples, and real-time gene expression analysis of cytokine-chemokine profiles, i.e., levels of IL-1β, IL-6, IL-10, IL-18, CCL2, CCL3, CCL4, and STAT3, was carried out by qRT-PCR methodology. RESULTS Upregulation of IL-1β (p = 0.001), IL-18 (p = 0.0018), CCL2 (p = 0,0377), CCL3 (p < 0.001), and CCL4 (p < 0.001) in MTLE-HS patients was detected when compared to the post-mortem hippocampal samples collected from autopsy controls. The STAT3 expression was higher in more severe neuronal loss and glial scaring determined by different Wyler grades in HS patients. Furthermore, cytokine-chemokine profiles were not different in MTLE-HS patients with or without febrile seizures. CONCLUSION The upregulation of specific cytokines and chemokines in MTLE-HS provides evidence that the neuroinflammatory process contributes to MTLE epileptogenesis. History of febrile seizures did not alter the immune profiles. Specific immune mediators and related immune pathways represent potential therapeutic targets for seizure control and pharmacoresistancy prevention in MTLE associated with hippocampal sclerosis.
Collapse
Affiliation(s)
- Stefania Aulická
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic; Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Katarina Česká
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Šána
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - František Siegl
- Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Eva Brichtová
- Department of Neurosurgery, St Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Ošlejšková
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Markéta Hermanová
- Department of Pathology, St Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Hendrych
- Department of Pathology, St Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Elleni Ponechal Michu
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Ondřej Slabý
- Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
107
|
Boeri L, Donnaloja F, Campanile M, Sardelli L, Tunesi M, Fusco F, Giordano C, Albani D. Using integrated meta-omics to appreciate the role of the gut microbiota in epilepsy. Neurobiol Dis 2022; 164:105614. [PMID: 35017031 DOI: 10.1016/j.nbd.2022.105614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
The way the human microbiota may modulate neurological pathologies is a fascinating matter of research. Epilepsy is a common neurological disorder, which has been largely investigated in correlation with microbiota health and function. However, the mechanisms that regulate this apparent connection are scarcely defined, and extensive effort has been conducted to understand the role of microbiota in preventing and reducing epileptic seizures. Intestinal bacteria seem to modulate the seizure frequency mainly by releasing neurotransmitters and inflammatory mediators. In order to elucidate the complex microbial contribution to epilepsy pathophysiology, integrated meta-omics could be pivotal. In fact, the combination of two or more meta-omics approaches allows a multifactorial study of microbial activity within the frame of disease or drug treatments. In this review, we provide information depicting and supporting the use of multi-omics to study the microbiota-epilepsy connection. We described different meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics), focusing on current technical challenges in stool collection procedures, sample extraction methods and data processing. We further discussed the current advantages and limitations of using the integrative approach of multi-omics in epilepsy investigations.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Marzia Campanile
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Federica Fusco
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milan, Italy.
| |
Collapse
|
108
|
Ismail FS, Corvace F, Faustmann PM, Faustmann TJ. Pharmacological Investigations in Glia Culture Model of Inflammation. Front Cell Neurosci 2022; 15:805755. [PMID: 34975415 PMCID: PMC8716582 DOI: 10.3389/fncel.2021.805755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes and microglia are the main cell population besides neurons in the central nervous system (CNS). Astrocytes support the neuronal network via maintenance of transmitter and ion homeostasis. They are part of the tripartite synapse, composed of pre- and postsynaptic neurons and perisynaptic astrocytic processes as a functional unit. There is an increasing evidence that astroglia are involved in the pathophysiology of CNS disorders such as epilepsy, autoimmune CNS diseases or neuropsychiatric disorders, especially with regard to glia-mediated inflammation. In addition to astrocytes, investigations on microglial cells, the main immune cells of the CNS, offer a whole network approach leading to better understanding of non-neuronal cells and their pathological role in CNS diseases and treatment. An in vitro astrocyte-microglia co-culture model of inflammation was developed by Faustmann et al. (2003), which allows to study the endogenous inflammatory reaction and the cytokine expression under drugs in a differentiated manner. Commonly used antiepileptic drugs (e.g., levetiracetam, valproic acid, carbamazepine, phenytoin, and gabapentin), immunomodulatory drugs (e.g., dexamethasone and interferon-beta), hormones and psychotropic drugs (e.g., venlafaxine) were already investigated, contributing to better understanding mechanisms of actions of CNS drugs and their pro- or anti-inflammatory properties concerning glial cells. Furthermore, the effects of drugs on glial cell viability, proliferation and astrocytic network were demonstrated. The in vitro astrocyte-microglia co-culture model of inflammation proved to be suitable as unique in vitro model for pharmacological investigations on astrocytes and microglia with future potential (e.g., cancer drugs, antidementia drugs, and toxicologic studies).
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
109
|
Bergantin LB. Neuroinflammation, Diabetes and COVID-19: Perspectives Coming from Ca 2+/cAMP Signalling. Curr Drug Res Rev 2022; 14:6-10. [PMID: 34970961 DOI: 10.2174/2589977514666211231141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/15/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
A link between inflammatory diseases, e.g., epilepsy, dementia, diabetes, and COVID-19, has been established. For instance, observational studies involving several individuals reported that people with epilepsy show an enhanced incidence of manifesting dysfunctions related to cognition, e.g., dementia, while people with dementia have a higher incidence of manifesting epilepsy, thus an evident bidirectional relationship between epilepsy and dementia might occur. In addition, epilepsy commonly cooccurs in patients with diabetes, indicating an association between these two disorders. Intriguingly, some reports have also observed a poor prognosis of people with both diabetes and COVID-19. It is recognized that a dyshomeostasis of both Ca2+ and cAMP signalling pathways could be a molecular connection for these disorders. Therefore, clarifying this clinical relationship among epilepsy, dementia, diabetes, and COVID-19 may outcome in novel hypotheses for identifying the etiology of these disorders.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo - Rua Pedro de Toledo, 669 - Vila Clementino, São Paulo - SP 04039-032, Brazil
| |
Collapse
|
110
|
Yang D, Na JH, Kim SH, Kim HD, Lee JS, Kang HC. Efficacy and prognosis of long-term, high-dose steroid therapy for Lennox-Gastaut syndrome. Epilepsy Res 2022; 179:106847. [PMID: 34979339 DOI: 10.1016/j.eplepsyres.2021.106847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is a severe form of developmental and epileptic encephalopathy that is highly resistant to treatment with conventional anti-epileptic drugs and non-pharmacological therapies. In the present study, we aimed to investigate the efficacy of long-term, high-dose steroid therapy and its effect on prognosis in children with LGS. METHODS This prospective study included patients with LGS who received long-term, high-dose steroid therapy beginning in November 2016. Prednisolone (60 mg per day) was administered for 2 weeks, following which the dosage was reduced to 60 mg on alternate days for 12 weeks. The drug was then slowly tapered over the next 3 months. The primary outcome was a reduction in seizure frequency relative to baseline at 14 weeks. The secondary outcome was whether patients had become seizure-free at 1 year. RESULTS Among 44 patients, 30 (68.2%) experienced a reduction in seizure frequency of more than 50%, including 26 (59.1%) with complete seizure control who were classified as the responder group. The remaining 14 (31.8%) were classified as the non-responder group after 14 weeks of treatment. Twenty patients (45.5%, 20/44) remained seizure-free after 1 year of treatment. However, 10 patients (33.3%, 10/30) in the responder group relapsed within a year. Improvements in electroencephalography (EEG) findings tended to be consistent with seizure outcomes. All patients had side effects of weight gain and Cushing's face, but most adverse effects were mild and transient. CONCLUSION Long-term, high-dose steroid therapy can be considered an effective treatment option for children with intractable LGS.
Collapse
Affiliation(s)
- Donghwa Yang
- Divison of Pediatric Neurology, Department of Pediatrics, National Health Insurance Service Ilsan Hospital, Goyang-si, Gyunggi-do, Republic of Korea; Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Republic of Korea
| | - Ji-Hoon Na
- Divison of Pediatric Neurology, Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hee Kim
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Republic of Korea
| | - Heung Dong Kim
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Republic of Korea
| | - Joon Soo Lee
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Republic of Korea
| | - Hoon-Chul Kang
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
111
|
Zaniani NR, Roohbakhsh A, Moghimi A, Mehri S. Protective effect of Toll-like receptor 4 antagonist on inflammation, EEG, and memory changes following febrile seizure in Wistar rats. Behav Brain Res 2021; 420:113723. [PMID: 34923024 DOI: 10.1016/j.bbr.2021.113723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Neuroinflammation and fever are the main triggers in febrile seizures (FS). Focusing on inflammatory pathways and anti-inflammatory drugs could compensate for the limitations of existing medications. The aim of this study is to evaluate the neuroprotective effect of specific antagonizing Toll-like receptor 4 (TLR4), as a prominent inflammatory axis, on the consequences of FS and adulthood using animal models. Complex FS was induced on 9-11 day old male rat pups using a heated chamber. TAK-242, as a specific TLR4 inhibitor, was injected intraperitoneally before seizure induction. Seizure threshold, duration, and spike number were measured by electrocorticography. The levels of inflammatory cytokines, TLR4 protein expression, and oxidative stress markers were detected by enzyme-linked immunosorbent assay, western blotting, malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) assessments in the cortex and hippocampus. Also, spatial and non-spatial memory were evaluated using the novel object recognition test (NORT) and double Y-maze test during adulthood. The results revealed that provoked inflammatory responses in neonate rats, after FS, were associated with the increase of the tumor necrosis factor alpha, interleukin-1β, and enhanced TLR4 protein expression. Meanwhile, based on performed behavioral tests, the inflammatory process was also involved in adulthood memory deficit. Pretreatment with TAK-242 reduced the inflammatory cytokines and TLR4 protein expression in the cortex and hippocampus of neonate rats and improvement in memory deficit in NORT and double Y-maze tasks. Also, pretreatment with TAK-242 elevated seizure threshold, SOD, and CAT activities, and decreased seizure duration and MDA level with no significant change in spike number. TAK-242 possibly controlled FS via inhibiting inflammation.
Collapse
Affiliation(s)
- Nosaibeh Riahi Zaniani
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Moghimi
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran.
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
112
|
Lamotrigine effects on immune gene expression in larval zebrafish. Epilepsy Res 2021; 178:106823. [PMID: 34844088 DOI: 10.1016/j.eplepsyres.2021.106823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE Despite growing evidence that neuroinflammation and pro-inflammatory cytokines are involved in the pathogenesis of seizures and epilepsy, this knowledge has not been incorporated in the proposed mechanism of action of any of the current antiseizure medications (ASMs). Here, we tested the hypothesis by assessing inflammation markers in larval zebrafish (Danio rerio) exposed to lamotrigine (LTG). METHODS In order to establish the most appropriate LTG concentrations for the transcriptome analysis (RNAseq), we initially assessed for teratogenic (spinal cord deformation, heart oedema, failed inflation of the swim bladder) and behavioural effects (distance moved, time spent active, and average swimming speed during a light/dark test) in zebrafish larvae exposed to 0, 50, 100, 300, 500, 750, and 1000 μM LTG continuously between 5 and 120 h post fertilisation. Subsequently, we repeated the experiment with 0, 50, 100, or 300 μM LTG for transcriptomic analyses. Two databases (Kyoto Encyclopedia of Genes and Genomes; Gene Ontology) were used to interpret changes in gene expression between groups. RESULTS Major teratogenic effects were observed at concentrations of ≥ 500 μM LTG, whereas behavioural changes were observed at ≥ 300 μM LTG. Transcriptome analysis revealed a non-linear response to LTG. From the suite of differentially expressed genes (DEG), 85% (n = 80 DEGs) were upregulated following exposure to 50 μM LTG, whereas 58% (n = 12 DEGs) and 91% (n = 210 DEGs) were downregulated in response to 100 and 300 μM LTG. The metabolic pathways affected following exposure to 50 and 300 μM LTG were associated with responses to inflammation and pathogens as well development and regulation of the immune system in both groups. Notable genes within the lists of DEGs included component complement 3 (C3.a), which was significantly upregulated in response to 50 μM LTG, whereas interleukin 1β (IL-1β) was significantly downregulated in the 300 μM LTG group. The lowest exposure of 50 μM LTG is regarded as clinically relevant to therapeutic exposure. CONCLUSION We demonstrated that LTG had an impact on the immune system, with a non-monotonic response curve. This dose-dependent relation could indicate that LTG can affect inflammatory responses and also at clinically relevant concentration. Further studies are needed to establish this method as a tool for screening the effects of ASMs on the immune system.
Collapse
|
113
|
Vyas P, Tulsawani R, Vohora D. Dual Targeting by Inhibition of Phosphoinositide-3-Kinase and Mammalian Target of Rapamycin Attenuates the Neuroinflammatory Responses in Murine Hippocampal Cells and Seizures in C57BL/6 Mice. Front Immunol 2021; 12:739452. [PMID: 34887852 PMCID: PMC8650161 DOI: 10.3389/fimmu.2021.739452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence suggests the association of seizures and inflammation; however, underlying cell signaling mechanisms are still not fully understood. Overactivation of phosphoinositide-3-kinases is associated with both neuroinflammation and seizures. Herein, we speculate the PI3K/Akt/mTOR pathway as a promising therapeutic target for neuroinflammation-mediated seizures and associated neurodegeneration. Firstly, we cultured HT22 cells for detection of the downstream cell signaling events activated in a lipopolysaccharide (LPS)-primed pilocarpine (PILO) model. We then evaluated the effects of 7-day treatment of buparlisib (PI3K inhibitor, 25 mg/kg p.o.), dactolisib (PI3K/mTOR inhibitor, 25 mg/kg p.o.), and rapamycin (mTORC1 inhibitor, 10 mg/kg p.o.) in an LPS-primed PILO model of seizures in C57BL/6 mice. LPS priming resulted in enhanced seizure severity and reduced latency. Buparlisib and dactolisib, but not rapamycin, prolonged latency to seizures and reduced neuronal loss, while all drugs attenuated seizure severity. Buparlisib and dactolisib further reduced cellular redox, mitochondrial membrane potential, cleaved caspase-3 and p53, nuclear integrity, and attenuated NF-κB, IL-1β, IL-6, TNF-α, and TGF-β1 and TGF-β2 signaling both in vitro and in vivo post-PILO and LPS+PILO inductions; however, rapamycin mitigated the same only in the PILO model. Both drugs protected against neuronal cell death demonstrating the contribution of this pathway in the seizure-induced neuronal pyknosis; however, rapamycin showed resistance in a combination model. Furthermore, LPS and PILO exposure enhanced pAkt/Akt and phospho-p70S6/total-p70S6 kinase activity, while buparlisib and dactolisib, but not rapamycin, could reduce it in a combination model. Partial rapamycin resistance was observed possibly due to the reactivation of the pathway by a functionally different complex of mTOR, i.e., mTORC2. Our study substantiated the plausible involvement of PI3K-mediated apoptotic and inflammatory pathways in LPS-primed PILO-induced seizures and provides evidence that its modulation constitutes an anti-inflammatory mechanism by which seizure inhibitory effects are observed. We showed dual inhibition by dactolisib as a promising approach. Targeting this pathway at two nodes at a time may provide new avenues for antiseizure therapies.
Collapse
Affiliation(s)
- Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rajkumar Tulsawani
- Defense Institute of Physiology & Allied Science, Defense Research and Development Organization, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
114
|
Bonilla-Jaime H, Zeleke H, Rojas A, Espinosa-Garcia C. Sleep Disruption Worsens Seizures: Neuroinflammation as a Potential Mechanistic Link. Int J Mol Sci 2021; 22:12531. [PMID: 34830412 PMCID: PMC8617844 DOI: 10.3390/ijms222212531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances, such as insomnia, obstructive sleep apnea, and daytime sleepiness, are common in people diagnosed with epilepsy. These disturbances can be attributed to nocturnal seizures, psychosocial factors, and/or the use of anti-epileptic drugs with sleep-modifying side effects. Epilepsy patients with poor sleep quality have intensified seizure frequency and disease progression compared to their well-rested counterparts. A better understanding of the complex relationship between sleep and epilepsy is needed, since approximately 20% of seizures and more than 90% of sudden unexpected deaths in epilepsy occur during sleep. Emerging studies suggest that neuroinflammation, (e.g., the CNS immune response characterized by the change in expression of inflammatory mediators and glial activation) may be a potential link between sleep deprivation and seizures. Here, we review the mechanisms by which sleep deprivation induces neuroinflammation and propose that neuroinflammation synergizes with seizure activity to worsen neurodegeneration in the epileptic brain. Additionally, we highlight the relevance of sleep interventions, often overlooked by physicians, to manage seizures, prevent epilepsy-related mortality, and improve quality of life.
Collapse
Affiliation(s)
- Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Área de Biología Conductual y Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico CP 09340, Mexico;
| | - Helena Zeleke
- Neuroscience and Behavioral Biology Program, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia Espinosa-Garcia
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
115
|
Faustmann TJ, Corvace F, Faustmann PM, Ismail FS. Effects of Lamotrigine and Topiramate on Glial Properties in an Astrocyte-Microglia Co-Culture Model of Inflammation. Int J Neuropsychopharmacol 2021; 25:185-196. [PMID: 34791253 PMCID: PMC8929754 DOI: 10.1093/ijnp/pyab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Astrocytes and microglia are involved in the pathophysiology of epilepsy and bipolar disorder with a link to inflammation. We aimed to investigate the effects of the antiepileptic and mood-stabilizing drugs lamotrigine (LTG) and topiramate (TPM) on glial viability, microglial activation, cytokine release, and expression of gap-junctional protein connexin 43 (Cx43) in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation. METHODS Primary rat co-cultures of astrocytes containing 5% (M5, representing "physiological" conditions) or 30% (M30, representing "pathological, inflammatory" conditions) of microglia were treated with different concentrations of LTG and TPM for 24 hours. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure the glial cell viability. The microglial activation state was analyzed by immunocytochemistry. The pro-inflammatory tumor necrosis factor-α (TNF-α) and anti-inflammatory transforming growth factor-ß1 (TGF-ß1) cytokine levels were measured by enzyme-linked immunosorbent assay. The astroglial Cx43 expression was quantified by western blot. RESULTS A significant reduction of the glial cell viability after incubation with LTG or TPM was observed in a concentration-dependent manner under all conditions. LTG caused no significant alterations of the microglial phenotypes. Under pathological conditions, TPM led to a significant concentration-dependent reduction of microglial activation. This correlated with increased astroglial Cx43 expression. TNF-α levels were not affected by LTG and TPM. Treatment with higher concentrations of LTG, but not with TPM, led to a significant increase in TGF-ß1 levels in M5 and M30 co-cultures. CONCLUSIONS Despite the possible glial toxicity of LTG and TPM, both drugs reduced inflammatory activity, suggesting potential positive effects on the neuroinflammatory components of the pathogenesis of epilepsy and bipolar disorder.
Collapse
Affiliation(s)
- Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany,Correspondence: Fatme Seval Ismail, MD, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, In der Schornau 23–25, 44892 Bochum (; )
| |
Collapse
|
116
|
French JA, Cole AJ, Faught E, Theodore WH, Vezzani A, Liow K, Halford JJ, Armstrong R, Szaflarski JP, Hubbard S, Patel J, Chen K, Feng W, Rizzo M, Elkins J, Knafler G, Parkerson KA. Safety and Efficacy of Natalizumab as Adjunctive Therapy for People With Drug-Resistant Epilepsy: A Phase 2 Study. Neurology 2021; 97:e1757-e1767. [PMID: 34521687 DOI: 10.1212/wnl.0000000000012766] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To explore efficacy/safety of natalizumab, a humanized monoclonal anti-α4-integrin antibody, as adjunctive therapy in adults with drug-resistant focal epilepsy. METHODS Participants with ≥6 seizures during the 6-week baseline period were randomized 1:1 to receive natalizumab 300 mg IV or placebo every 4 weeks for 24 weeks. Primary efficacy outcome was change from baseline in log-transformed seizure frequency, with a predefined threshold for therapeutic success of 31% relative reduction in seizure frequency over the placebo group. Countable seizure types were focal aware with motor signs, focal impaired awareness, and focal to bilateral tonic-clonic. Secondary efficacy endpoints/safety were also assessed. RESULTS Of 32 and 34 participants dosed in the natalizumab 300 mg and placebo groups, 30 (94%) and 31 (91%) completed the placebo-controlled treatment period, respectively (one participant was randomized to receive natalizumab but not dosed due to IV complications). Estimated relative change in seizure frequency of natalizumab over placebo was -14.4% (95% confidence interval [CI] -46.1%-36.1%; p = 0.51). The proportion of participants with ≥50% reduction from baseline in seizure frequency was 31.3% for natalizumab and 17.6% for placebo (odds ratio 2.09, 95% CI 0.64-6.85; p = 0.22). Adverse events were reported in 24 (75%) and 22 (65%) participants receiving natalizumab vs placebo. DISCUSSION Although the threshold to demonstrate efficacy was not met, there were no unexpected safety findings and further exploration of possible anti-inflammatory therapies for drug-resistant epilepsy is warranted. TRIAL REGISTRATION INFORMATION The ClinicalTrials.gov registration number is NCT03283371. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that IV natalizumab every 4 weeks, compared to placebo, did not significantly change seizure frequency in adults with drug-resistant epilepsy. The study lacked the precision to exclude an important effect of natalizumab.
Collapse
Affiliation(s)
- Jacqueline A French
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Andrew J Cole
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Edward Faught
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - William H Theodore
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Annamaria Vezzani
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Kore Liow
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Jonathan J Halford
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Robert Armstrong
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Jerzy P Szaflarski
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Sarah Hubbard
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Jagdish Patel
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Kun Chen
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Wei Feng
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Marco Rizzo
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study.
| | - Jacob Elkins
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Gabrielle Knafler
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | - Kimberly A Parkerson
- From the NYU Grossman School of Medicine (J.A.F.), New York, NY; Massachusetts General Hospital (A.J.C.), Boston; Emory University School of Medicine (E.F.), Atlanta, GA; National Institutes of Health (W.H.T.), Bethesda, MD; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri (A.V.), Milan, Italy; Hawaii Pacific Neuroscience (K.L.), Honolulu; Medical University of South Carolina (J.J.H.), Charleston; Asheville Neurology Specialists (R.A.), NC; University of Alabama at Birmingham (J.P.S.); Biogen (S.H., J.P., W.F., M.R.), Cambridge; Alexion (K.C.), Boston; Sarepta (J.E.), Cambridge; Envision Pharma Group (G.K.), Fairfield, CT; and Stoke Therapeutics (K.A.P.), Bedford, MA. K.C., J.E., and K.A.P. were affiliated with Biogen, Cambridge, MA, at the time of the study
| | | |
Collapse
|
117
|
Rayatpour A, Farhangi S, Verdaguer E, Olloquequi J, Ureña J, Auladell C, Javan M. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel) 2021; 14:ph14101031. [PMID: 34681255 PMCID: PMC8541630 DOI: 10.3390/ph14101031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Biomedical Sciences Institute, Health Sciences Faculty, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Jesus Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (C.A.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Cell Science Research Center, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (C.A.); (M.J.)
| |
Collapse
|
118
|
Li J, Shui X, Sun R, Wan L, Zhang B, Xiao B, Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front Cell Neurosci 2021; 15:736310. [PMID: 34594188 PMCID: PMC8476879 DOI: 10.3389/fncel.2021.736310] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are macrophages that reside in the central nervous system (CNS) and belong to the innate immune system. Moreover, they are crucially involved in CNS development, maturation, and aging; further, they are closely associated with neurons. In normal conditions, microglia remain in a static state. Upon trauma or lesion occurrence, microglia can be activated and subsequently polarized into the pro-inflammatory or anti-inflammatory phenotype. The phenotypic transition is regulated by numerous modulators. This review focus on the literature regarding the modulators and signaling pathways involved in regulating the microglial phenotypic transition, which are rarely mentioned in other reviews. Hence, this review provides molecular insights into the microglial phenotypic transition, which could be a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyu Shui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruizheng Sun
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Boxin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
119
|
Petrisko TJ, Konat GW. Peripheral viral challenge increases c-fos level in cerebral neurons. Metab Brain Dis 2021; 36:1995-2002. [PMID: 34406561 DOI: 10.1007/s11011-021-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022]
Abstract
Peripheral viral infection can substantially alter brain function. We have previously shown that intraperitoneal (i.p.) injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC), engenders hyperexcitability of cerebral neurons. Because neuronal activity is invariably associated with their expression of the Cfos gene, the present study was undertaken to determine whether PIC challenge also increases neuronal c-fos protein level. Female C57BL/6 mice were i.p. injected with PIC, and neuronal c-fos was analyzed in the motor cortex by immunohistochemistry. PIC challenge instigated a robust increase in the number of c-fos-positive neurons. This increase reached approximately tenfold over control at 24 h. Also, the c-fos staining intensity of individual neurons increased. AMG-487, a specific inhibitor of the chemokine receptor CXCR3, profoundly attenuated the accumulation of neuronal c-fos, indicating the activation of CXCL10/CXCR3 axis as the trigger of the process. Together, these results show that the accumulation of c-fos is a viable readout to assess the response of cerebral neurons to peripheral PIC challenge, and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Tiffany J Petrisko
- Department of Biochemistry, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Gregory W Konat
- Department of Biochemistry, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Department of Biochemistry, West Virginia University School of Medicine, 4052 HSCN, P.O. Box 9128, Morgantown, WV, 26506-9128, USA.
| |
Collapse
|
120
|
Zhu Y, Huang D, Zhao Z, Lu C. Bioinformatic analysis identifies potential key genes of epilepsy. PLoS One 2021; 16:e0254326. [PMID: 34555062 PMCID: PMC8459949 DOI: 10.1371/journal.pone.0254326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Epilepsy is one of the most common brain disorders worldwide. It is usually hard to be identified properly, and a third of patients are drug-resistant. Genes related to the progression and prognosis of epilepsy are particularly needed to be identified. Methods In our study, we downloaded the Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE143272. Differentially expressed genes (DEGs) with a fold change (FC) >1.2 and a P-value <0.05 were identified by GEO2R and grouped in male, female and overlapping DEGs. Functional enrichment analysis and Protein-Protein Interaction (PPI) network analysis were performed. Results In total, 183 DEGs overlapped (77 ups and 106 downs), 302 DEGs (185 ups and 117 downs) in the male dataset, and 750 DEGs (464 ups and 286 downs) in the female dataset were obtained from the GSE143272 dataset. These DEGs were markedly enriched under various Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. 16 following hub genes were identified based on PPI network analysis: ADCY7, C3AR1, DEGS1, CXCL1 in male-specific DEGs, TOLLIP, ORM1, ELANE, QPCT in female-specific DEGs and FCAR, CD3G, CLEC12A, MOSPD2, CD3D, ALDH3B1, GPR97, PLAUR in overlapping DEGs. Conclusion This discovery-driven study may be useful to provide a novel insight into the diagnosis and treatment of epilepsy. However, more experiments are needed in the future to study the functional roles of these genes in epilepsy.
Collapse
Affiliation(s)
- Yike Zhu
- Department of Respiratory Medicine, Hainan General Hospital, Haikou, China
| | - Dan Huang
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Zhongyan Zhao
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Chuansen Lu
- Department of Neurology, Hainan General Hospital, Haikou, China
- * E-mail:
| |
Collapse
|
121
|
Abstract
AbstractThe ketogenic diet (KD) is a high-fat, low-carbohydrate diet, in which fat is used as the primary energy source through the production of ketone bodies (KBs) in place of glucose. The KD was formally introduced in 1921 to mimic the biochemical changes associated with fasting and gained recognition as a potent treatment for pediatric epilepsy in the mid-1990s. The clinical and basic scientific knowledge that supports the anti-seizure efficacy, safety, and feasibility of using the KD in patients with epilepsy is huge. Additionally, the International Ketogenic Diet Study Group’s consensus guidelines provide practical information in 2009 and 2018. The KD is a broad-spectrum therapy for drug resistant epilepsy and is gaining attention as a potential therapy for other neurological disorders. This article will review recent aspects on the use of the KD, including its mechanisms of action, KD alternatives, expanding its use across different age groups and regions, its use as a treatment for other neurologic disorders, and future research subjects.
Collapse
|
122
|
Tchekalarova J, Stoyanova T, Tzoneva R, Angelova V, Andreeva-Gateva P. The Anticonvulsant Effect of a Novel Indole-Related Compound in the Kainate-Induced Status Epilepticus in Mice: The Role of the Antioxidant and Anti-inflammatory Mechanism. Neurochem Res 2021; 47:327-334. [PMID: 34510375 DOI: 10.1007/s11064-021-03447-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
We synthesized a series of novel indole compounds containing aroylhydrazone moieties and evaluated them in mice to check their anticonvulsant activity. In the present study the most potent C3-modified derivative 3e, containing 2-furyl fragment was evaluated in kainate (KA)-induced status epilepticus (SE) and the consequences on oxidative stress and inflammation in the hippocampus in mice were explored. Melatonin was used as positive control while the melatonin receptor antagonist Luzindol was studied alone or in combination with melatonin or 3e, respectively. After intraperitoneal (i.p.) pre-treatment with melatonin 3e, Luzindol + melatonin and Luzindol + 3e for 7 days (melatonin and 3e-30 mg kg-1 or 60 mg kg-1, Luzindol 10 mg kg-1) the animals were i.p. injected with KA (30 mg kg-1, i.p.). The 3e decreased the SE-induced seizure intensity while melatonin suppressed seizures at the higher dose of 60 mg kg-1. Luzindol blocked the anticonvulsant effect of both Mel and 3e. The dose-dependent antioxidant effect of 3e measured by reduced glutathione (GSH) and total GSH in the hippocampus, was comparable to the effect of melatonin. Luzindol fully blocked the effect of melatonin but affected partially the antioxidant activity of 3e. The KA-induced increased amplifier of neuroinflammation high-mobility group box protein 1 (HMGB1) was neither alleviated by melatonin, nor by 3e. The activation by this DNA-binding protein receptor for advanced glycation end products (RAGE) was not affected by SE, melatonin and 3e pre-treatment. Our results suggest that the novel indole derivate 3e, containing 2-furyl fragment, might be clinically useful as an adjunct therapy against SE and concomitant oxidative stress.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | - Tsveta Stoyanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, BAS, Sofia, Bulgaria
| | - Violina Angelova
- Department of Chemistry, Faculty Pharmacy, Medical University-Sofia (MU-Sofia), Sofia, Bulgaria
| | - Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
123
|
Reseco L, Atienza M, Fernandez-Alvarez M, Carro E, Cantero JL. Salivary lactoferrin is associated with cortical amyloid-beta load, cortical integrity, and memory in aging. ALZHEIMERS RESEARCH & THERAPY 2021; 13:150. [PMID: 34488875 PMCID: PMC8422723 DOI: 10.1186/s13195-021-00891-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aging is associated with declining protective immunity and persistent low-grade inflammatory responses, which significantly contribute to Alzheimer's disease (AD) pathogenesis. Detecting aging-related cerebral vulnerability associated with deterioration of the immune system requires from non-invasive biomarkers able to detect failures in the brain-immunity connection. Reduced levels of salivary lactoferrin (sLF), an iron-binding protein with immunomodulatory activity, have been related to AD diagnosis. However, it remains unknown whether decreased sLF is associated with increased cortical amyloid-beta (Aβ) load and/or with loss of cortical integrity in normal aging. METHODS Seventy-four cognitively normal older adults (51 females) participated in the study. We applied multiple linear regression analyses to assess (i) whether sLF is associated with cortical Aβ load measured by 18F-Florbetaben (FBB)-positron emission tomography (PET), (ii) whether sLF-related variations in cortical thickness and cortical glucose metabolism depend on global Aβ burden, and (iii) whether such sLF-related cortical abnormalities moderate the relationship between sLF and cognition. RESULTS sLF was negatively associated with Aβ load in parieto-temporal regions. Moreover, sLF was related to thickening of the middle temporal cortex, increased FDG uptake in the posterior cingulate cortex, and poorer memory. These associations were stronger in individuals showing the highest Aβ burden. CONCLUSIONS sLF levels are sensitive to variations in cortical Aβ load, structural and metabolic cortical abnormalities, and subclinical memory impairment in asymptomatic older adults. These findings provide support for the use of sLF as a non-invasive biomarker of cerebral vulnerability in the general aging population.
Collapse
Affiliation(s)
- Lucia Reseco
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Eva Carro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain. .,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
| |
Collapse
|
124
|
Luo X, Xiang T, Huang H, Ye L, Huang Y, Wu Y. Identification of significant immune-related genes for epilepsy via bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1161. [PMID: 34430602 PMCID: PMC8350633 DOI: 10.21037/atm-21-2792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/22/2021] [Indexed: 01/21/2023]
Abstract
Background Epilepsy is one of the most common neurological disorders, but its underlying mechanism has remained obscure, and the role of immune-related genes (IRGs) in epilepsy have not yet been investigated. Therefore, in this study, we explored the association between IRGs and epilepsy. Methods An IRG list was collected from the ImmPort database. The gene expression profiles of GSE143272 were collected from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Differentially expressed genes (DEGs) between epilepsy and normal samples were analyzed, and the intersections between IRGs and DEGs were identified using the VennDiagram package, with the intersected genes subjected to further analysis. Enrichment function for intersected genes were performed, constructed a protein-protein interaction (PPI) network via the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the hub genes (top 10) of the PPI network were calculated by the cytoHubba plug-in in Cytoscape. The top correlated genes were selected to perform correlation analysis with immune cells infiltration and expression levels. Finally, we performed validation of the top correlated genes transcriptional expression levels using an animal model. Results There were a total of 245 DEGs detected in GSE143272, among which 143 were upregulated and 102 downregulated genes in epilepsy. A total of 44 differential IRGs were obtained via intersection of DEGs and IRGs. Enrichment function analysis of DEGs showed that they played a significant role in immune response. The gene CXCL1 was the most correlated with other differentially expressed IRGs via the PPI network. The results of immune cell infiltration analysis indicated that epilepsy patients had higher activated mast cells infiltration (P=0.021), but lower activated CD4 memory T cells (P=0.001), resting CD4 memory T cells (P=0.011), and gamma delta T cells (P=0.038) infiltration. It was revealed that CXCL1 and activated mast cells (R=0.25, P=0.019) and neutrophils (R=0.3, P=0.0043), and a negative correlation with T cells gamma delta (R=−0.25, P=0.018). The levels of CXCL1 expression were significantly lower in epilepsy patients than those in normal samples. Conclusions In this study, the results showed that IRGs such as CXCL1 have a significant influence on epilepsy via regulation of immune cells infiltration.
Collapse
Affiliation(s)
- Xiaodan Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Xiang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yifei Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
125
|
Carveol Attenuates Seizure Severity and Neuroinflammation in Pentylenetetrazole-Kindled Epileptic Rats by Regulating the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9966663. [PMID: 34422216 PMCID: PMC8376446 DOI: 10.1155/2021/9966663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Epilepsy is a neurodegenerative brain disorder characterized by recurrent seizure attacks. Numerous studies have suggested a strong correlation between oxidative stress and neuroinflammation in several neurodegenerative disorders including epilepsy. This study is aimed at investigating the neuroprotective effects of the natural compound carveol against pentylenetetrazole- (PTZ-) induced kindling and seizure model. Two different doses of carveol (10 mg/kg and 20 mg/kg) were administered to male rats to determine the effects and the effective dose of carveol and to further demonstrate the mechanism of action of nuclear factor E2-related factor (Nrf2) in PTZ-induced kindling model. Our results demonstrated reduced levels of innate antioxidants such as superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione (GSH), associated with elevated lipid peroxidation (LPO) and inflammatory cytokines level such as tumor necrosis factor-alpha (TNF-α), and mediators like cyclooxygenase (COX-2) and nuclear factor kappa B (NFκB). These detrimental effects exacerbated oxidative stress and provoked a marked neuronal alteration in the cortex and hippocampus of PTZ-intoxicated animals that were associated with upregulated Nrf2 gene expression. Furthermore, carveol treatment positively modulated the antioxidant gene Nrf2 and its downstream target HO-1. To further investigate the role of Nrf2, an inhibitor of Nrf2 called all-trans retinoic acid (ATRA) was used, which further exacerbated PTZ toxicity. Moreover, carveol treatment induced cholinergic system activation by mitigating acetylcholinesterase level which is further linked to attenuated neuroinflammatory cascade. The extent of blood-brain barrier disruption was evaluated based on vascular endothelial growth factor (VEGF) expression. Taken together, our findings suggest that carveol acts as an Nrf2 activator and therefore induces downstream antioxidants and mitigates inflammatory insults through multiple pathways. This eventually alleviates PTZ-induced neuroinflammation and neurodegeneration.
Collapse
|
126
|
Cavalcante BRR, Improta-Caria AC, Melo VHD, De Sousa RAL. Exercise-linked consequences on epilepsy. Epilepsy Behav 2021; 121:108079. [PMID: 34058490 DOI: 10.1016/j.yebeh.2021.108079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Epilepsy is a brain disorder that leads to seizures and neurobiological, cognitive, psychological, and social consequences. Physical inactivity can contribute to worse epilepsy pathophysiology. Here, we review how physical exercise affects epilepsy physiopathology. METHODS An extensive literature search was performed and the mechanisms of physical exercise on epilepsy were discussed. The search was conducted in Scopus and PubMed. Articles with relevant information were included. Only studies written in English were considered. RESULTS The regular practice of physical exercise can be beneficial for individuals with neurodegenerative diseases, such as epilepsy by decreasing the production of pro-inflammatory and stress biomarkers, increasing socialization, and reducing the incidence of epileptic seizures. Physical exercise is also capable of reducing the symptoms of depression and anxiety in epilepsy. Physical exercise can also improve cognitive function in epilepsy. The regular practice of physical exercise enhances the levels of brain-derived neuro factor (BDNF) in the hippocampi, induces neurogenesis, inhibits oxidative stress and reactive gliosis, avoids cognitive impairment, and stimulates the production of dopamine in the epileptic brain. CONCLUSION Physical exercise is an excellent non-pharmacological tool that can be used in the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia, Brazil
| | | | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleyś Jequitinhonha and Mucuri, Minas Gerais, Brazil; Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.
| |
Collapse
|
127
|
Kyriatzis G, Bernard A, Bôle A, Pflieger G, Chalas P, Masse M, Lécorché P, Jacquot G, Ferhat L, Khrestchatisky M. Neurotensin receptor 2 is induced in astrocytes and brain endothelial cells in relation to neuroinflammation following pilocarpine-induced seizures in rats. Glia 2021; 69:2618-2643. [PMID: 34310753 DOI: 10.1002/glia.24062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Neurotensin (NT) acts as a primary neurotransmitter and neuromodulator in the CNS and has been involved in a number of CNS pathologies including epilepsy. NT mediates its central and peripheral effects by interacting with the NTSR1, NTSR2, and Sort1/NTSR3 receptor subtypes. To date, little is known about the precise expression of the NT receptors in brain neural cells and their regulation in pathology. In the present work, we studied the cellular distribution of the NTSR2 protein in the rat hippocampus and questioned whether its expression was modulated in conditions of neuroinflammation using a model of temporal lobe epilepsy induced by pilocarpine. This model is characterized by a rapid and intense inflammatory reaction with reactive gliosis in the hippocampus. We show that NTSR2 protein is expressed in hippocampal astrocytes and its expression increases together with astrocyte reactivity following induction of status epilepticus. NTSR2 immunoreactivity is also increased in astrocytes proximal to blood vessels and their end-feet, and in endothelial cells. Proinflammatory factors such as IL1β and LPS induced NTSR2 mRNA and protein in cultured astroglial cells. Antagonizing NTSR2 with SR142948A decreased NTSR2 expression as well as astroglial reactivity. Together, our results suggest that NTSR2 is implicated in astroglial and gliovascular inflammation and that targeting the NTSR2 receptor may open new avenues in the regulation of neuroinflammation in CNS diseases.
Collapse
Affiliation(s)
- Grigorios Kyriatzis
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Anne Bernard
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Angélique Bôle
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Guillaume Pflieger
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Petros Chalas
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Maxime Masse
- VECT-HORUS, Faculté de Médecine, Marseille Cedex, France
| | | | | | - Lotfi Ferhat
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Michel Khrestchatisky
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| |
Collapse
|
128
|
Khatoon S, Agarwal NB, Samim M, Alam O. Neuroprotective Effect of Fisetin Through Suppression of IL-1R/TLR Axis and Apoptosis in Pentylenetetrazole-Induced Kindling in Mice. Front Neurol 2021; 12:689069. [PMID: 34354662 PMCID: PMC8333701 DOI: 10.3389/fneur.2021.689069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Epilepsy is a complex neurological disorder, characterized by frequent electrical activity in brain regions. Inflammation and apoptosis cascade activation are serious neurological sequelae during seizures. Fisetin (3, 3',4',7-tetrahydroxyflavone), a flavonoid molecule, is considered for its effective anti-inflammatory and anti-apoptotic properties. This study investigated the neuroprotective effect of fisetin on experimental epilepsy. For acute studies, increasing current electroshock (ICES) and pentylenetetrazole (PTZ)-induced seizure tests were performed to evaluate the antiseizure activity of fisetin. For the chronic study, the kindling model was established by the administration of PTZ in subconvulsive dose (25 mg/kg, i.p.). Mice were treated with fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable antiseizure mechanism. The kindled mice were evaluated for seizure scores. Their hippocampus and cortex were assessed for neuronal damage, inflammation, and apoptosis. Histological alterations were observed in the hippocampus of the experimental mice. Levels of high mobility group box 1 (HMGB1), Toll-like receptor-4 (TLR-4), interleukin-1 receptor 1 (IL-1R1), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed in the hippocampus and cortex by ELISA. The immunoreactivity and mRNA expressions of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), cytochrome C, and caspase-3 were quantified by immunohistochemical analysis and real-time PCR. Phosphorylation ELISA was performed to evaluate AkT/mTOR (mammalian target of rapamycin) activation in the hippocampus and cortex of the kindled mice. The results showed that fisetin administration increased the seizure threshold current (STC) in the ICES test. In PTZ-induced seizures, fisetin administration increased the latency for myoclonic jerks (MJs) and generalized seizures (GSs). In the PTZ-induced kindling model, fisetin administration dose-dependently suppressed the development of kindling and the associated neuronal damage in the experimental mice. Further, fisetin administration ameliorated kindling-induced neuroinflammation as evident from decreased levels of HMGB1, TLR-4, IL-1R1, IL-1β, IL-6, and TNF-α in the hippocampus and cortex of the kindled mice. Also, the immunoreactivity and mRNA expressions of inflammatory molecules, NF-κB, and COX-2 were decreased with fisetin administration in the kindled animals. Decreased phosphorylation of the AkT/mTOR pathway was reported with fisetin administration in the hippocampus and cortex of the kindled mice. The immunoreactivity and mRNA expressions of apoptotic molecules, cytochrome C, and caspase-3 were attenuated upon fisetin administration. The findings suggest that fisetin shows a neuroprotective effect by suppressing the release of inflammatory and apoptosis molecules and attenuating histological alterations during experimental epilepsy.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi Bharal Agarwal
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
129
|
Vieira ÉLM, Martins FMA, Bellozi PMQ, Gonçalves AP, Siqueira JM, Gianetti A, Teixeira AL, de Oliveira ACP. PI3K, mTOR and GSK3 modulate cytokines' production in peripheral leukocyte in temporal lobe epilepsy. Neurosci Lett 2021; 756:135948. [PMID: 33979699 DOI: 10.1016/j.neulet.2021.135948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epilepsy is a common pathological condition that predisposes individuals to seizures, as well as cognitive and emotional dysfunctions. Different studies have demonstrated that inflammation contributes to the pathophysiology of epilepsy. Indeed, seizures change the peripheral inflammatory pattern, which, in turn, could contribute to seizures. However, the cause of the altered production of peripheral inflammatory mediators is not known. The PI3K/mTOR/GSK3β pathway is important for different physiological and pharmacological phenomena. Therefore, in the present study, we tested the hypothesis that the PI3K/mTOR/GSK3β pathway is deregulated in immune cells from patients with epilepsy and contributes to the abnormal production of inflammatory mediators. METHODS Patients with temporal lobe epilepsy presenting hippocampal sclerosis and controls aged between 18 and 65 years-old were selected for this study. Peripheral blood was collected for the isolation of peripheral mononuclear blood cells (PBMC). Cells were pre-incubated with different PI3K, mTOR and GSK-3 inhibitors for 30 min and further stimulated with phytohaemaglutinin (PHA) or vehicle for 24 h. The supernatant was used to evaluate the production of IL-1β, IL-6, IL-10, TNF e IL-12p70. RESULTS Non-selective inhibition of PI3K, as well as inhibition of PI3Kγ and GSK-3, reduced the levels of TNF and IL-10 in PHA-stimulated cells from TLE individuals. This stimulus increased the production of IL-12p70 only in cells from TLE individuals, while the inhibition of PI3K and mTOR enhanced the production of this cytokine. On the other hand, inhibition of GSK3 reduced the PHA-induced production of IL-12p70. CONCLUSIONS Herein we demonstrated that the production of cytokines by immune cells from patients with TLE differs from non-epileptic patients. This differential regulation may be associated with the altered activity and responsiveness of intracellular molecules, such as PI3K, mTOR and GSK-3, which, in turn, might contribute to the inflammatory state that exists in epilepsy and its pathogenesis.
Collapse
Affiliation(s)
- Érica Leandro Marciano Vieira
- Centre for Addiction and Mental Health - CAMH, Toronto, Canada; Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Mendes Amaral Martins
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Maria Quaglio Bellozi
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Molecular Biology Program, Universidade de Brasília, Brasília, DF, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - José Maurício Siqueira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Alexandre Gianetti
- Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States; Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
130
|
Lang JD, Olmes DG, Proske M, Hagge M, Dogan Onugoren M, Rothhammer V, Schwab S, Hamer HM. Pre- and Postictal Changes in the Innate Immune System: Cause or Effect? Eur Neurol 2021; 84:380-388. [PMID: 34139710 DOI: 10.1159/000516556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Recent studies have shown that inflammatory processes might play a role in epileptogenesis. Their role in ictogenesis is much less clear. The aim of this study was to investigate peri-ictal changes of the innate immune system by analyzing changes of immune cells, as well as pro- and anti-inflammatory cytokines. METHODS Patients with active epilepsy admitted for video-EEG monitoring for presurgical evaluation were included. Blood was sampled every 20 min for 5 h on 3 consecutive days until a seizure occurred. After a seizure, additional samples were drawn immediately, as well as 1 and 24 h later. To analyze the different populations of peripheral blood mononuclear cells, all samples underwent FACS for CD3, CD4, CD8, CD56, CD14, CD16, and CD19. For cytokine analysis, we used a custom bead-based multiplex immunoassay for IFN-γ, IL-1β, IL-1RA, IL-4, IL-6, IL-10, IL-12, IL-17, MCP-1, MIP-1α, and TNFα. RESULTS Fourteen patients with focal seizures during the sampling period were included. Natural killer (NK) cells showed a negative correlation (ρ = -0.3362, p = 0.0195) before seizure onset and an immediate increase to 1.95-fold afterward. T helper (TH) and B cells decreased by 2 and 8%, respectively, in the immediate postictal interval. Nonclassical and intermediate monocytes decreased not until 1 day after the seizures, and cytotoxic T (TC) cells showed a long-lasting postictal increase by 4%. IL-10 and MCP-1 increased significantly after seizures, and IL-12 decreased in the postictal phase. DISCUSSION/CONCLUSION Our study argues for a role of the innate immune system in the pre- and postictal phases. NK cells might be involved in preictal changes or be altered as an epiphenomenon in the immediate preictal interval.
Collapse
Affiliation(s)
- Johannes D Lang
- Department of Neurology, Epilepsy Centre, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David G Olmes
- Department of Neurology, Epilepsy Centre, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Manuel Proske
- Department of Neurology, Epilepsy Centre, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mareike Hagge
- Department of Neurology, Epilepsy Centre, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurology and Neurorehabilitation, Klinikum am Europakanal, Erlangen, Germany
| | - Müjgan Dogan Onugoren
- Department of Neurology, Epilepsy Centre, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Epilepsy Centre, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Schwab
- Department of Neurology, Epilepsy Centre, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hajo M Hamer
- Department of Neurology, Epilepsy Centre, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
131
|
Yu L, Yang J, Yu W, Cao J, Li X. Rhein attenuates PTZ‑induced epilepsy and exerts neuroprotective activity via inhibition of the TLR4-NFκB signaling pathway. Neurosci Lett 2021; 758:136002. [PMID: 34090938 DOI: 10.1016/j.neulet.2021.136002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Epilepsy is a common neurological disease that cannot be well controlled by existing antiepileptic drugs. Studies have implicated oxidative stress and inflammation in the pathophysiology of epilepsy. Rhein has a comprehensive pharmacological function in reducing inflammation and can play a neuroprotective role in many neurological diseases, however little is known about its effects on epilepsy. METHODS A model of acute epilepsy in mice was established using the Pentylenetetrazol (PTZ) ignition method to evaluate the effects of Rhein on the duration and latency of convulsions, and the number and severity of seizures. Modified Neurological Severity Score (mNSS), Rotarod and open-field behavioral task tests were performed to evaluate the neuroprotective effect of Rhein. TUNEL staining was used to assess neuronal damage, and western blot, qPCR and ELISA kits were utilized to determine the expression of inflammatory signaling protein molecules and levels of inflammatory cytokines. RESULTS In this study, we demonstrate that Rhein delayed the onset of seizures, decreased their severity, and reduced the duration and frequency of seizures in PTZ-induced epileptic mice. Furthermore, we found that Rhein blocked neurological deficits induced by PTZ. In addition, our results show that Rhein inhibited the activation of the TLR4-NFκB signaling pathway and decreased the secretion of the inflammatory cytokines TNF-α, IL-6, IL-1β, and IL-18. CONCLUSION Our results suggest that the anticonvulsant and neuroprotective effects of Rhein are achieved by disrupting the processes involved in PTZ acquisition of epilepsy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jiping Yang
- Institute of Basic Medical Sciences, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Wei Yu
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jian Cao
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xueping Li
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
132
|
Librizzi L, Vila Verde D, Colciaghi F, Deleo F, Regondi MC, Costanza M, Cipelletti B, de Curtis M. Peripheral blood mononuclear cell activation sustains seizure activity. Epilepsia 2021; 62:1715-1728. [PMID: 34061984 DOI: 10.1111/epi.16935] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The influx of immune cells and serum proteins from the periphery into the brain due to a dysfunctional blood-brain barrier (BBB) has been proposed to contribute to the pathogenesis of seizures in various forms of epilepsy and encephalitis. We evaluated the pathophysiological impact of activated peripheral blood mononuclear cells (PBMCs) and serum albumin on neuronal excitability in an in vitro brain preparation. METHODS A condition of mild endothelial activation induced by arterial perfusion of lipopolysaccharide (LPS) was induced in the whole brain preparation of guinea pigs maintained in vitro by arterial perfusion. We analyzed the effects of co-perfusion of human recombinant serum albumin with human PBMCs activated with concanavalin A on neuronal excitability, BBB permeability (measured by FITC-albumin extravasation), and microglial activation. RESULTS Bioplex analysis in supernatants of concanavalin A-stimulated PBMCs revealed increased levels of several inflammatory mediators, in particular interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (INF)-γ, IL-6, IL-10, IL-17A, and MIP3α. LPS and human albumin arterially co-perfused with either concanavalin A-activated PBMCs or the cytokine-enriched supernatant of activated PBMCs (1) modulated calcium-calmodulin-dependent protein kinase II at excitatory synapses, (2) enhanced BBB permeability, (3) induced microglial activation, and (4) promoted seizure-like events. Separate perfusions of either nonactivated PBMCs or concanavalin A-activated PBMCs without LPS/human albumin (hALB) failed to induce inflammatory and excitability changes. SIGNIFICANCE Activated peripheral immune cells, such as PBMCs, and the extravasation of serum proteins in a condition of BBB impairment contribute to seizure generation.
Collapse
Affiliation(s)
- Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Diogo Vila Verde
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesca Colciaghi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Deleo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Barbara Cipelletti
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
133
|
Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E, Costa C. An Unbalanced Synaptic Transmission: Cause or Consequence of the Amyloid Oligomers Neurotoxicity? Int J Mol Sci 2021; 22:ijms22115991. [PMID: 34206089 PMCID: PMC8199544 DOI: 10.3390/ijms22115991] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) 1-40 and 1-42 peptides are key mediators of synaptic and cognitive dysfunction in Alzheimer's disease (AD). Whereas in AD, Aβ is found to act as a pro-epileptogenic factor even before plaque formation, amyloid pathology has been detected among patients with epilepsy with increased risk of developing AD. Among Aβ aggregated species, soluble oligomers are suggested to be responsible for most of Aβ's toxic effects. Aβ oligomers exert extracellular and intracellular toxicity through different mechanisms, including interaction with membrane receptors and the formation of ion-permeable channels in cellular membranes. These damages, linked to an unbalance between excitatory and inhibitory neurotransmission, often result in neuronal hyperexcitability and neural circuit dysfunction, which in turn increase Aβ deposition and facilitate neurodegeneration, resulting in an Aβ-driven vicious loop. In this review, we summarize the most representative literature on the effects that oligomeric Aβ induces on synaptic dysfunction and network disorganization.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| | - Alfredo Megaro
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Giovanni Bellomo
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Michele Romoli
- Neurology Unit, Rimini “Infermi” Hospital—AUSL Romagna, 47923 Rimini, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| |
Collapse
|
134
|
Choudhary A, Varshney R, Kumar A, Kaushik K. A Prospective Study of Novel Therapeutic Targets Interleukin 6, Tumor Necrosis Factor α, and Interferon γ as Predictive Biomarkers for the Development of Posttraumatic Epilepsy. World Neurosurg X 2021; 12:100107. [PMID: 34195601 PMCID: PMC8233159 DOI: 10.1016/j.wnsx.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Posttraumatic epilepsy (PTE) is a serious and debilitating consequence of traumatic brain injury (TBI). Sometimes, the management of PTE becomes a challenging task on account of its resistance to existing antiepileptic drugs and often contributes to poor functional and psychosocial outcomes after TBI. We investigated the role of inflammatory markers interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interferon γ (INF-γ) in predicting the development of PTE. Methods A prospective analysis was performed of 254 patients who were admitted with head injury to our hospital, 35 of whom had posttraumatic epilepsy (32 males and 3 females); 30 adults (28 men, 2 women) with a similar demographic profile were selected randomly as control individuals. Blood levels of TNF-α, IL-6, and INF-γ were evaluated in all participants. Results IL-6 levels were significantly higher in the PTE group (121.36 pg/mL; standard deviation [SD], 89.23) than in the nonseizure group (65.30 pg/mL; SD, 74.75; P = 0.01), whereas there was no significant difference between the seizure group (11.42 pg/mL; SD, 7.84) and the nonseizure groups (10.58 pg/mL; SD, 7.84) in terms of TNF-α level (P = 0.343). The level of INF-γ in the seizure group tended to be higher (mean, 1.88 pg/mL, SD, 2.13 in seizure group vs. 1.10 pg/mL, SD, 1.45 in the nonseizure group); however, no statistically significant difference was detected among the 2 groups (P = 0.09). Conculsions Posttraumatic epilepsy has a strong association with an increased level of IL-6 in the blood. INF-γ may or may not be associated with PTE. However, TNF-α was not associated with PTE.
Collapse
Key Words
- CI, Confidence interval
- CNS, Central nervous system
- CSF, Cerebrospinal fluid
- Cytokines
- Epileptogenesis
- GCS, Glasgow Coma Scale
- IL-6, Interleukin 6
- INF-γ, Interferon γ
- Immunomodulators
- NMDA, N-methyl-d-aspartate
- Neuroplasticity
- PTE, Posttraumatic epilepsy
- PTS, Posttraumatic seizures
- ROC, Receiver operating characteristic
- Seizures
- TBI, Traumatic brain injury
- TNF-α, Tumor necrosis factor α
Collapse
Affiliation(s)
| | - Rahul Varshney
- To whom correspondence should be addressed: Rahul Varshney, M.Ch.
| | | | | |
Collapse
|
135
|
Blood-brain barrier dysfunction as a potential therapeutic target for neurodegenerative disorders. Arch Pharm Res 2021; 44:487-498. [PMID: 34028650 DOI: 10.1007/s12272-021-01332-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is composed of specific tight junction proteins and transporters expressed on the lining of endothelial cells of the vasculature in the brain. The structural and functional integrity of the BBB is one of the most critical factors for maintaining brain homeostasis and is mainly regulated by complex interactions between various cell types, such as endothelial cells, pericytes, and astrocytes, which are shaped by their differential responses to changes in microenvironments. Alterations in these cellular components have been implicated in neurodegenerative disorders. Although it has long been considered that BBB dysfunction is a mere ramification of pathological phenomena, emerging evidence supports its critical role in the pathogenesis of various disorders. In epilepsy, heightened BBB permeability has been found to be associated with increased occurrence of spontaneous seizures. Additionally, exaggerated inflammatory responses significantly correlate with increased BBB permeability during healthy aging. Furthermore, it has been previously reported that BBB disruption can be an early marker for predicting cognitive impairment in the progression of Alzheimer's disease. We herein review a potential role of the major cellular components of the BBB, with a focus on the contribution of BBB disruption, in neurodegenerative disease progression.
Collapse
|
136
|
Andrew PM, Lein PJ. Neuroinflammation as a Therapeutic Target for Mitigating the Long-Term Consequences of Acute Organophosphate Intoxication. Front Pharmacol 2021; 12:674325. [PMID: 34054549 PMCID: PMC8153682 DOI: 10.3389/fphar.2021.674325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Acute intoxication with organophosphates (OPs) can cause a potentially fatal cholinergic crisis characterized by peripheral parasympathomimetic symptoms and seizures that rapidly progress to status epilepticus (SE). While current therapeutic countermeasures for acute OP intoxication significantly improve the chances of survival when administered promptly, they are insufficient for protecting individuals from chronic neurologic outcomes such as cognitive deficits, affective disorders, and acquired epilepsy. Neuroinflammation is posited to contribute to the pathogenesis of these long-term neurologic sequelae. In this review, we summarize what is currently known regarding the progression of neuroinflammatory responses after acute OP intoxication, drawing parallels to other models of SE. We also discuss studies in which neuroinflammation was targeted following OP-induced SE, and explain possible reasons why such therapeutic interventions have inconsistently and only partially improved long-term outcomes. Finally, we suggest future directions for the development of therapeutic strategies that target neuroinflammation to mitigate the neurologic sequelae of acute OP intoxication.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
137
|
El-Sayed SS, El-Yamany MF, Salem HA, El-Sahar AE. New insights into the effects of vinpocetine against neurobehavioral comorbidities in a rat model of temporal lobe epilepsy via the downregulation of the hippocampal PI3K/mTOR signalling pathway. J Pharm Pharmacol 2021; 73:626-640. [PMID: 33772295 DOI: 10.1093/jpp/rgab011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES As one of the most frequent worldwide neurological disorders, epilepsy is an alteration of the central nervous system (CNS) characterized by abnormal increases in neuronal electrical activity. The mammalian target of rapamycin (mTOR) signalling pathway has been investigated as an interesting objective in epilepsy research. Vinpocetine (VNP), a synthesized derivative of the apovincamine alkaloid, has been used in different cerebrovascular disorders. This study aimed to examine the modulatory effects of VNP on neurobehavioral comorbidities via the mTOR signalling pathway in a lithium-pilocarpine (Li-Pil) rat model of seizures. METHODS In male Wistar rats, seizures were induced with a single administration of pilocarpine (60 mg/kg; i.p.) 20 hours after the delivery of a single dose of lithium (3 mEq/kg; i.p.). VNP (10 mg/kg; i.p.) was administered daily for 14 consecutive days before Li-Pil administration. KEY FINDINGS VNP had a protective effect against Li-Pil-induced seizures. VNP improved both the locomotor and cognitive abilities, moreover, VNP exerted a neuroprotective action, as verified histologically and by its inhibitory effects on hippocampal glutamate excitotoxicity, mTOR pathway, and inflammatory and apoptotic parameters. CONCLUSIONS VNP is a valuable candidate for epilepsy therapy via its modulation of the mechanisms underlying epileptogenesis with emphasis on its modulatory effect on mTOR signalling pathway.
Collapse
Affiliation(s)
- Sarah S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| | - Hesham A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| |
Collapse
|
138
|
Chatterjee A, Mundlamuri RC, Kenchaiah R, Asranna A, Nagappa M, Bindu PS, Seshagiri DV, Viswanathan LG, Shreedhar AS, Duble S, Rangarajan A, Khilari M, Bharath RD, Saini J, Thennarasu K, Taly AB, Sinha S. Role of pulse methylprednisolone in epileptic encephalopathy: A retrospective observational analysis. Epilepsy Res 2021; 173:106611. [PMID: 33740698 DOI: 10.1016/j.eplepsyres.2021.106611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To study the effect of monthly pulses of intravenous methylprednisolone (IVMP) on seizure and global outcomes in children with epileptic encephalopathy (EE). METHODS This retrospective study was undertaken in a tertiary care epilepsy center in India. Consecutive patients with EE who had received IVMP as adjunctive therapy for a minimum of 3 months and had at least one pre-and post-steroid EEG each, were identified and a structured questionnaire was used to collect information including outcomes at 3 months post-steroid course completion and beyond, as available. RESULTS Ninety-seven patients (M:F=71:26) fulfilling the inclusion criteria with a mean age at onset of seizures being 20.52 ± 25.69 months were included. Commonest seizure types were myoclonic (66%); Lennaux-Gastaut and West Syndromes accounted for 57 % and 24 % patients respectively. The etiology was unknown in 52 %. All children were on a combination of standard anti-seizure drugs. The duration of IVMP pulse therapy was 7.72 ± 6.25 months. One-fourth (26 %) patients experienced minor adverse events. Greater than 50 % seizure burden reduction was seen in 66 % patients at 3 months with seizure-freedom in 25 %. A total of 45 (46 %) patients became seizure-free in the cohort eventually with continuation of steroids beyond 3 months. Children with idiopathic EEs, normal neuroimaging, myoclonic jerks, and West syndrome showed the best response. The presence of burst-suppression and generalized paroxysmal fast activity (GPFA) predicted inadequate response. CONCLUSIONS Adjunct pulse doses of IVMP are safe, well-tolerated, and effective in reducing seizures and improving global outcomes in children with idiopathic EEs, West syndrome, normal neuroimaging, and myoclonic jerks. Seizure freedom might be delayed in a subset of these patients, hence duration of therapy beyond 3 months may be warranted.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | | | - Raghavendra Kenchaiah
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - Ajay Asranna
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - M Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - P S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - D V Seshagiri
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | | | - A S Shreedhar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - Sisir Duble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - Anush Rangarajan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - Madhuri Khilari
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - K Thennarasu
- Department of Biostatistics, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, 560011, India.
| |
Collapse
|
139
|
Paudel YN, Othman I, Shaikh MF. Anti-High Mobility Group Box-1 Monoclonal Antibody Attenuates Seizure-Induced Cognitive Decline by Suppressing Neuroinflammation in an Adult Zebrafish Model. Front Pharmacol 2021; 11:613009. [PMID: 33732146 PMCID: PMC7957017 DOI: 10.3389/fphar.2020.613009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a chronic brain disease afflicting around 70 million global population and is characterized by persisting predisposition to generate epileptic seizures. The precise understanding of the etiopathology of seizure generation is still elusive, however, brain inflammation is considered as a major contributor to epileptogenesis. HMGB1 protein being an initiator and crucial contributor of inflammation is known to contribute significantly to seizure generation via activating its principal receptors namely RAGE and TLR4 reflecting a potential therapeutic target. Herein, we evaluated an anti-seizure and memory ameliorating potential of an anti-HMGB1 monoclonal antibody (mAb) (1, 2.5 and 5 mg/kg, I.P.) in a second hit Pentylenetetrazol (PTZ) (80 mg/kg, I.P.) induced seizure model earlier stimulated with Pilocarpine (400 mg/kg, I.P.) in adult zebrafish. Pre-treatment with anti-HMGB1 mAb dose-dependently lowered the second hit PTZ-induced seizure but does not alter the disease progression. Moreover, anti-HMGB1 mAb also attenuated the second hit Pentylenetetrazol induced memory impairment in adult zebrafish as evidenced by an increased inflection ration at 3 and 24 h trail in T-maze test. Besides, decreased level of GABA and an upregulated Glutamate level was observed in the second hit PTZ induced group, which was modulated by pre-treatment with anti-HMGB1 mAb. Inflammatory responses occurred during the progression of seizures as evidenced by upregulated mRNA expression of HMGB1, TLR4, NF-κB, and TNF-α, in a second hit PTZ group, which was in-turn downregulated upon pre-treatment with anti-HMGB1 mAb reflecting its anti-inflammatory potential. Anti-HMGB1 mAb modulates second hit PTZ induced changes in mRNA expression of CREB-1 and NPY. Our findings indicates anti-HMGB1 mAb attenuates second hit PTZ-induced seizures, ameliorates related memory impairment, and downregulates the seizure induced upregulation of inflammatory markers to possibly protect the zebrafish from the incidence of further seizures through via modulation of neuroinflammatory pathway.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Liquid Chromatography-Mass Spectrometry Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
140
|
Horino A, Kuki I, Inoue T, Nukui M, Okazaki S, Kawawaki H, Togawa M, Amo K, Ishikawa J, Ujiro A, Shiomi M, Sakuma H. Intrathecal dexamethasone therapy for febrile infection-related epilepsy syndrome. Ann Clin Transl Neurol 2021; 8:645-655. [PMID: 33547757 PMCID: PMC7951105 DOI: 10.1002/acn3.51308] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Increasing reports suggest a role for immunological mechanisms in febrile infection-related epilepsy syndrome (FIRES). The objective of this study was to elucidate the efficacy and safety of intrathecal dexamethasone therapy (IT-DEX). METHODS We assessed six pediatric patients with FIRES who were administered add-on IT-DEX in the acute (n = 5) and chronic (n = 1) phases. We evaluated clinical courses and prognosis. We measured cytokines/chemokines in cerebrospinal fluid (CSF) from FIRES patients at several points, including pre- and post-IT-DEX, and compared them with control patients with chronic epilepsy (n = 12, for cytokines/chemokines) or with noninflammatory neurological disease (NIND, n = 13, for neopterin). RESULTS Anesthesia was weaned after a median of 5.5 days from IT-DEX initiation (n = 6). There was a positive correlation between the duration from the disease onset to the introduction of IT-DEX and the length of ICU stay and the duration of mechanical ventilation. No patient experienced severe adverse events. Seizure spreading and background activities on electroencephalography were improved after IT-DEX in all patients. The levels of CXCL10, CXCL9, IFN-γ, and neopterin at pre-IT-DEX were significantly elevated compared to levels in epilepsy controls, and CXCL10 and neopterin were significantly decreased post-IT-DEX, but were still higher compared to patients with chronic epilepsy. IL-6, IL-8, and IL-1β were significantly elevated before IT-DEX compared to epilepsy controls, though there was no significant decrease post-treatment. INTERPRETATION IT-DEX represents a therapeutic option for patients with FIRES that could shorten the duration of the critical stage of the disease. The effect of IT-DEX on FIRES might include cytokine-independent mechanisms.
Collapse
Affiliation(s)
- Asako Horino
- Department of Pediatric NeurologyChildren's Medical CenterOsaka City General HospitalOsakaJapan
- Department of Brain and NeuroscienceTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Ichiro Kuki
- Department of Pediatric NeurologyChildren's Medical CenterOsaka City General HospitalOsakaJapan
| | - Takeshi Inoue
- Department of Pediatric NeurologyChildren's Medical CenterOsaka City General HospitalOsakaJapan
| | - Megumi Nukui
- Department of Pediatric NeurologyChildren's Medical CenterOsaka City General HospitalOsakaJapan
| | - Shin Okazaki
- Department of Pediatric NeurologyChildren's Medical CenterOsaka City General HospitalOsakaJapan
| | - Hisashi Kawawaki
- Department of Pediatric NeurologyChildren's Medical CenterOsaka City General HospitalOsakaJapan
| | - Masao Togawa
- Department of Pediatric Emergency MedicineChildren's Medical CenterOsaka City General HospitalOsakaJapan
| | - Kiyoko Amo
- Department of Pediatric Emergency MedicineChildren's Medical CenterOsaka City General HospitalOsakaJapan
| | - Junichi Ishikawa
- Department of Pediatric Emergency MedicineChildren's Medical CenterOsaka City General HospitalOsakaJapan
| | - Atsushi Ujiro
- Department of Intensive Care MedicineOsaka City General HospitalOsakaJapan
| | | | - Hiroshi Sakuma
- Department of Brain and NeuroscienceTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| |
Collapse
|
141
|
Weninger J, Meseke M, Rana S, Förster E. Heat-Shock Induces Granule Cell Dispersion and Microgliosis in Hippocampal Slice Cultures. Front Cell Dev Biol 2021; 9:626704. [PMID: 33693000 PMCID: PMC7937632 DOI: 10.3389/fcell.2021.626704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Granule cell dispersion (GCD) has been found in the dentate gyrus (dg) of patients with temporal lobe epilepsy (TLE) and a history of febrile seizures but was also recently observed in pediatric patients that did not suffer from epilepsy. This indicates that GCD might not always be disease related, but instead could reflect normal morphological variation. Thus, distribution of newborn granule cells within the hilar region is part of normal dg development at early stages but could be misinterpreted as pathological GCD. In turn, pathological GCD may be caused, for example, by genetic mutations, such as the reeler mutation. GCD in the reeler mutant goes along with an increased susceptibility to epileptiform activity. Pathological GCD in combination with epilepsy is caused by experimental administration of the glutamate receptor agonist kainic acid in rodents. In consequence, the interpretation of GCD and the role of febrile seizures remain controversial. Here, we asked whether febrile temperatures alone might be sufficient to trigger GCD and used hippocampal slice cultures as in vitro model to analyze the effect of a transient temperature increase on the dg morphology. We found that a heat-shock of 41°C for 6 h was sufficient to induce GCD and degeneration of a fraction of granule cells. Both of these factors, broadening of the granule cell layer (gcl) and increased neuronal cell death within the gcl, contributed to the development of a significantly reduced packaging density of granule cells. In contrast, Reelin expressing Cajal–Retzius (CR) cells in the molecular layer were heat-shock resistant. Thus, their number was not reduced, and we did not detect degenerating CR cells after heat-shock, implying that GCD was not caused by the loss of CR cells. Importantly, the heat-shock-induced deterioration of dg morphology was accompanied by a massive microgliosis, reflecting a robust heat-shock-induced immune response. In contrast, in the study that reported on GCD as a non-specific finding in pediatric patients, no microglia reaction was observed. Thus, our findings underpin the importance of microglia as a marker to distinguish pathological GCD from normal morphological variation.
Collapse
Affiliation(s)
- Jasmin Weninger
- Institute of Anatomy, Department of Neuroanatomy and Molecular Brain Research, Ruhr-Universität Bochum, Bochum, Germany
| | - Maurice Meseke
- Institute of Anatomy, Department of Neuroanatomy and Molecular Brain Research, Ruhr-Universität Bochum, Bochum, Germany
| | - Shaleen Rana
- Institute of Anatomy, Department of Neuroanatomy and Molecular Brain Research, Ruhr-Universität Bochum, Bochum, Germany
| | - Eckart Förster
- Institute of Anatomy, Department of Neuroanatomy and Molecular Brain Research, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
142
|
Pahuja M, Mehla J, Gupta YK. Status analysis of herbal drug therapies in epilepsy: advancements in the use of medicinal plants with anti-inflammatory properties. Comb Chem High Throughput Screen 2021; 25:1601-1618. [PMID: 33605852 DOI: 10.2174/1386207324666210219103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/03/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Use of plants and plant products in health care has shown exponential increase in past two decades. INTRODUCTION In-spite of the availability of well-established pharmacotherapy for epilepsy, a large no of population still explores alternative treatments due to refractory seizures, adverse effects of drugs, chronic treatment, inaccessibility of standard therapies in rural areas and the social stigma attached to the disease. Various studies on medicinal plants showed the protective effect of herbals in animal models of epilepsy. METHOD In the present review, a status analysis of the traditional use of various medicinal plants in epilepsy with a special focus on plats having anti-inflammatory potential is recorded. RESULT AND CONCLUSION The shortcomings of research on medicinal plants which needs to be explored further in order to tackle the growing need of safer and effective drugs for epilepsy are discussed. Overall, there is a huge scope of herbal drugs in CNS disorders especially epilepsy, either as an adjunct by reducing the dose and thus side effects of standard anti-epileptic drugs or as standalone agent . Although, there is still an urgent need of well planned randomized controlled clinical trials to validate their efficacy and safety.
Collapse
Affiliation(s)
- Monika Pahuja
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi - 110 029. India
| | - Jogender Mehla
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis-63110, Missouri. United States
| | - Yogendra Kumar Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi - 110 029. India
| |
Collapse
|
143
|
Khamse S, Haftcheshmeh SM, Sadr SS, Roghani M, Kamalinejad M, Moghaddam PM, Golchoobian R, Ebrahimi F. The potential neuroprotective roles of olive leaf extract in an epilepsy rat model induced by kainic acid. Res Pharm Sci 2021; 16:48-57. [PMID: 33953774 PMCID: PMC8074804 DOI: 10.4103/1735-5362.305188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/05/2020] [Accepted: 12/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Epilepsy is recognized as a chronic neurologic disease. Increasing evidence has addressed the antioxidant and anti-inflammatory roles of olive leaf extract (OLE) in neurodegenerative diseases. So, the current study aimed to investigate the neuroprotective roles of OLE in epilepsy. EXPERIMENTAL APPROACH Forty rats were divided into 4 groups including a control group, sham group, kainic acid (KA) group, and KA + OLE group. KA (4 μg/rat) was injected intrahippocampal, and OLE (300 mg/kg) was orally administrated for 4 weeks. Animals were sacrificed, and their hippocampi were isolated. KA- induced seizure activity was recorded. Oxidative stress index was assessed by measuring its indicators including malondialdehyde (MDA), nitrite, nitrate, and glutathione (GSH) as well as the catalase (CAT) activity. The supernatant concentration of tumor necrosis factor-α (TNF-α) and the apoptosis rate in neurons were measured. FINDINGS/RESULTS Treatment with OLE significantly reduced the seizure score. OLE decreased oxidative stress index by reducing the concentration of MDA, nitrite, and nitrate as well as increasing the level of GSH. OLE had a significant anti-apoptotic effect on neurons. However, CAT activity and the level of TNF-α were not affected. CONCLUSION AND IMPLICATIONS Our findings indicated neuroprotective properties of OLE, which is mainly mediated by its antioxidant and anti-apoptotic effects, therefore, could be considered as a valuable therapeutic supplement for epilepsy.
Collapse
Affiliation(s)
- Safoura Khamse
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | | | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, I.R. Iran
| | - Mohammad Kamalinejad
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Parvane Mohseni Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Ravieh Golchoobian
- Cellular and Molecular Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Fatemeh Ebrahimi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
144
|
Vila Verde D, Zimmer T, Cattalini A, Pereira MF, van Vliet EA, Testa G, Gnatkovsky V, Aronica E, de Curtis M. Seizure activity and brain damage in a model of focal non-convulsive status epilepticus. Neuropathol Appl Neurobiol 2021; 47:679-693. [PMID: 33421166 DOI: 10.1111/nan.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
AIMS Focal non-convulsive status epilepticus (FncSE) is a common emergency condition that may present as the first epileptic manifestation. In recent years, it has become increasingly clear that de novo FncSE should be promptly treated to improve post-status outcome. Whether seizure activity occurring during the course of the FncSE contributes to ensuing brain damage has not been demonstrated unequivocally and is here addressed. METHODS We used continuous video-EEG monitoring to characterise an acute experimental FncSE model induced by unilateral intrahippocampal injection of kainic acid (KA) in guinea pigs. Immunohistochemistry and mRNA expression analysis were utilised to detect and quantify brain injury, 3-days and 1-month after FncSE. RESULTS Seizure activity occurring during the course of FncSE involved both hippocampi equally. Neuronal loss, blood-brain barrier permeability changes, gliosis and up-regulation of inflammation, activity-induced and astrocyte-specific genes were observed in the KA-injected hippocampus. Diazepam treatment reduced FncSE duration and KA-induced neuropathological damage. In the contralateral hippocampus, transient and possibly reversible gliosis with increase of aquaporin-4 and Kir4.1 genes were observed 3 days post-KA. No tissue injury and gene expression changes were found 1-month after FncSE. CONCLUSIONS In our model, focal seizures occurring during FncSE worsen ipsilateral KA-induced tissue damage. FncSE only transiently activated glia in regions remote from KA-injection, suggesting that seizure activity during FncSE without local pathogenic co-factors does not promote long-lasting detrimental changes in the brain. These findings demonstrate that in our experimental model, brain damage remains circumscribed to the area where the primary cause (KA) of the FncSE acts. Our study emphasises the need to use antiepileptic drugs to contain local damage induced by focal seizures that occur during FncSE.
Collapse
Affiliation(s)
- Diogo Vila Verde
- Epilepsy Unit, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Till Zimmer
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Marlene F Pereira
- Department of Oncology and Hematooncology, University of Milan, Milan, Italy.,Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Giuseppe Testa
- Department of Oncology and Hematooncology, University of Milan, Milan, Italy.,Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Vadym Gnatkovsky
- Epilepsy Unit, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Marco de Curtis
- Epilepsy Unit, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
145
|
Vila Verde D, de Curtis M, Librizzi L. Seizure-Induced Acute Glial Activation in the in vitro Isolated Guinea Pig Brain. Front Neurol 2021; 12:607603. [PMID: 33574794 PMCID: PMC7870799 DOI: 10.3389/fneur.2021.607603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: It has been proposed that seizures induce IL-1β biosynthesis in astrocytes and increase blood brain barrier (BBB) permeability, even without the presence of blood borne inflammatory molecules and leukocytes. In the present study we investigate if seizures induce morphological changes typically observed in activated glial cells. Moreover, we will test if serum albumin extravasation into the brain parenchyma exacerbates neuronal hyperexcitability by inducing astrocytic and microglial activation. Methods: Epileptiform seizure-like events (SLEs) were induced in limbic regions by arterial perfusion of bicuculline methiodide (BMI; 50 μM) in the in vitro isolated guinea pig brain preparation. Field potentials were recorded in both the hippocampal CA1 region and the medial entorhinal cortex. BBB permeability changes were assessed by analyzing extravasation of arterially perfused fluorescein isothiocyanate (FITC)–albumin. Morphological changes in astrocytes and microglia were evaluated with tridimensional reconstruction and Sholl analysis in the ventral CA1 area of the hippocampus following application of BMI with or without co-perfusion of human serum albumin. Results: BMI-induced SLE promoted morphological changes of both astrocytes and microglia cells into an activated phenotype, confirmed by the quantification of the number and length of their processes. Human-recombinant albumin extravasation, due to SLE-induced BBB impairment, worsened both SLE duration and the activated glia phenotype. Discussion: Our study provides the first direct evidence that SLE activity per se is able to promote the activation of astro- and microglial cells, as observed by their changes in phenotype, in brain regions involved in seizure generation; we also hypothesize that gliosis, significantly intensified by h-recombinant albumin extravasation from the bloodstream to the brain parenchyma due to SLE-induced BBB disruption, is responsible for seizure activity reinforcement.
Collapse
Affiliation(s)
- Diogo Vila Verde
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
146
|
Tesfaye BA, Hailu HG, Zewdie KA, Ayza MA, Berhe DF. Montelukast: The New Therapeutic Option for the Treatment of Epilepsy. J Exp Pharmacol 2021; 13:23-31. [PMID: 33505173 PMCID: PMC7829127 DOI: 10.2147/jep.s277720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no definitive cure for epilepsy. The available medications relieve symptoms and reduce seizure attacks. The major challenge with the available antiepileptic medication is safety and affordability. The repurposing of montelukast for epilepsy can be an alternative medication with a better safety profile. Montelukast is a leukotriene receptor antagonist that binds to the cysteinyl leukotrienes (CysLT) receptors used in the treatment of bronchial asthma and seasonal allergies. Emerging evidence suggests that montelukast's anti-inflammatory effect can help to maintain BBB integrity. The drug has also neuroprotective and anti-oxidative activities to reduce seizure incidence and epilepsy. The present review summarizes the neuropharmacological actions of montelukast in epilepsy with an emphasis on the recent findings associated with CysLT and cell-specific effects.
Collapse
Affiliation(s)
- Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Haftom Gebregergs Hailu
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
147
|
Shi Z, Lei Z, Wu F, Xia L, Ruan Y, Xu ZC. Increased Sestrin3 Contributes to Post-ischemic Seizures in the Diabetic Condition. Front Neurosci 2021; 14:591207. [PMID: 33519354 PMCID: PMC7843462 DOI: 10.3389/fnins.2020.591207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Seizures are among the most common neurological sequelae of stroke, and diabetes notably increases the incidence of post-ischemic seizures. Recent studies have indicated that Sestrin3 (SESN3) is a regulator of a proconvulsant gene network in human epileptic hippocampus. But the association of SESN3 and post-ischemic seizures in diabetes remains unclear. The present study aimed to reveal the involvement of SESN3 in seizures following transient cerebral ischemia in diabetes. Diabetes was induced in adult male mice and rats via intraperitoneal injection of streptozotocin (STZ). Forebrain ischemia (15 min) was induced by bilateral common carotid artery occlusion, the 2-vessel occlusion (2VO) in mice and 4-vessel occlusion (4VO) in rats. Our results showed that 59% of the diabetic wild-type mice developed seizures after ischemia while no seizures were observed in non-diabetic mice. Although no apparent cell death was detected in the hippocampus of seizure mice within 24 h after the ischemic insult, the expression of SESN3 was significantly increased in seizure diabetic mice after ischemia. The post-ischemic seizure incidence significantly decreased in SESN3 knockout mice. Furthermore, all diabetic rats suffered from post-ischemic seizures and non-diabetic rats have no seizures. Electrophysiological recording showed an increased excitatory synaptic transmission and intrinsic membrane excitability in dentate granule cells of the rat hippocampus, together with decreased I A currents and Kv4.2 expression levels. The above results suggest that SESN3 up-regulation may contribute to neuronal hyperexcitability and seizure generation in diabetic animals after ischemia. Further studies are needed to explore the molecular mechanism of SESN3 in seizure generation after ischemia in diabetic conditions.
Collapse
Affiliation(s)
- Zhongshan Shi
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Guangdong-Hongkong-Macau Institute for CNS Regeneration, Jinan University, Guangzhou, China.,Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Lei
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fan Wu
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luoxing Xia
- Guangdong-Hongkong-Macau Institute for CNS Regeneration, Jinan University, Guangzhou, China
| | - Yiwen Ruan
- Guangdong-Hongkong-Macau Institute for CNS Regeneration, Jinan University, Guangzhou, China.,Jiangsu Province Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zao C Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
148
|
de Lima Rosa G, Muller Guzzo E, Muliterno Domingues A, Bremm Padilha R, Dias de Oliveira Amaral V, Simon Coitinho A. Effects of prednisolone on behavioral and inflammatory profile in animal model of PTZ-induced seizure. Neurosci Lett 2020; 743:135560. [PMID: 33359047 DOI: 10.1016/j.neulet.2020.135560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
Epilepsy is a chronic neurological condition that affects 1%-2% of the world population. Although research about the disease is advancing and a wide variety of drugs is available, about 30 % of patients have refractory epilepsy which cannot be controlled with the most common drugs. This highlights the need for a better understanding of the disorder and new types of treatment for it. Against this backdrop, a growing body of evidence has reported that inflammation may play a role both in the origin and in the progression of seizures. It has shown a tendency to be both the root and the result of epilepsy. This investigation aimed to assess the impact of prednisolone, a steroidal anti-inflammatory drug, in an animal model of pentylenetetrazole (PTZ)-induced seizures, at 1 mg/kg and 5 mg/kg doses. We also examined the degree of seizure severity and the modulation of pro-inflammatory cytokines in the treated animals. Four treatment groups were used (saline, diazepam, prednisolone 1 mg/kg, and prednisolone 5 mg/kg) and, in addition to their own daily treatments, subconvulsant doses of pentylenetetrazole (25 mg/kg) were administered every other day during a test protocol that lasted 14 days. After treatment, the cytokines interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) were measured in the animals' sera, hippocampi, and prefrontal cortices. Animals treated with prednisolone presented less severe seizures than the animals in the saline group, and there was a decrease in pro-inflammatory cytokine levels in central structures, but not peripheral ones. In short, an animal model of chemically-induced epileptic seizures was used, in which the animals were treated with doses of prednisolone, and these animals presented less severe seizures than the negative control group (saline), in addition to showing decreased levels of pro-inflammatory cytokines IL-6, IL-1β and TNF-α, in the hippocampi and prefrontal cortices, but not the sera.
Collapse
Affiliation(s)
- Gabriel de Lima Rosa
- Postgraduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Edson Muller Guzzo
- Postgraduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Amanda Muliterno Domingues
- Postgraduate Program in Agricultural and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Vitória Dias de Oliveira Amaral
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Postgraduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Postgraduate Program in Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil.
| |
Collapse
|
149
|
Mosini AC, Calió ML, Foresti ML, Valeriano RPS, Garzon E, Mello LE. Modeling of post-traumatic epilepsy and experimental research aimed at its prevention. ACTA ACUST UNITED AC 2020; 54:e10656. [PMID: 33331416 PMCID: PMC7747873 DOI: 10.1590/1414-431x202010656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Research on the prevention of post-traumatic epilepsy (PTE) has seen remarkable advances regarding its physiopathology in recent years. From the search for biomarkers that might be used to indicate individual susceptibility to the development of new animal models and the investigation of new drugs, a great deal of knowledge has been amassed. Various groups have concentrated efforts in generating new animal models of traumatic brain injury (TBI) in an attempt to provide the means to further produce knowledge on the subject. Here we forward the hypothesis that restricting the search of biomarkers and of new drugs to prevent PTE by using only a limited set of TBI models might hamper the understanding of this relevant and yet not preventable medical condition.
Collapse
Affiliation(s)
- A C Mosini
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Associação Brasileira de Epilepsia, São Paulo, SP, Brasil
| | - M L Calió
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - M L Foresti
- Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, RJ, Brasil
| | - R P S Valeriano
- Divisão de Clínica Neurológica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E Garzon
- Divisão de Clínica Neurológica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L E Mello
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
150
|
Abdelsalam M, Abd Elmagid DS, Magdy H, El-Sabbagh AM, Mostafa M. The association between toll-like receptor 4 (TLR4) genotyping and the risk of epilepsy in children. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Epilepsy is one of the most widely recognized neurological disorders; unfortunately, twenty to thirty percent of patients do not get cured from epilepsy, despite many trials of antiepileptic drug (AED) therapy. Immunotherapy may be a viable treatment strategy in a subset of epileptic patients. The association between Toll-like receptor polymorphisms and epilepsy clarifies the role of the immune system in epilepsy and its response to the drug. Thus, this study will focus on the relation between TLR4 rs1927914, rs11536858, rs1927911SNPs, and epilepsy in an Egyptian case-control study to assess their link to antiepileptic drug response.
Results
According to TLR4 rs1927914, there is a significant association between the SNP and the development of epilepsy, as CC genotype is 15.3 times more at risk for developing epilepsy than TT genotype, and CT is 11.1 times more at risk for developing epilepsy than TT. Also, patients with CC genotypes are 6.3 times more at risk for developing primary epilepsy than TT genotype.
According to rs11536858, there is a significant association between cases and control groups, as AA genotypes are found to be more at risk for developing epilepsy than GG genotypes. Also, there is a statistically significant association between clonazepam resistance and rs11536858, as p value < 0.001* with the highest frequency of TT genotypes at 4.3%.
According to rs1927911, there are no significant results between the cases and the control groups or between drug-responsive and drug resistance.
Conclusion
Possible involvement of the Toll-like receptor clarifies the importance of innate immunity in initiating seizures and making neuronal hyperexcitability. In this work, multiple significant associations between TLR SNPs and epilepsy, epileptic phenotype, and drug-resistant epilepsy have been found. More studies with bigger sample sizes and different techniques with different SNPs are recommended to find the proper immunotherapy for epilepsy instead of the treatment by antiepileptic drugs.
Collapse
|