101
|
Zhao C, Ma F, Chen H, Wan F, Guo J, Zhou Z. Heritability and Evolutionary Potential Drive Cold Hardiness in the Overwintering Ophraella communa Beetles. Front Physiol 2018; 9:666. [PMID: 29922172 PMCID: PMC5996086 DOI: 10.3389/fphys.2018.00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Chill tolerance plays a crucial role that allows insect species to adapt to cold environments. Two Chinese geographical populations (Laibin and Yangzhou populations) were selected to understand the chill resistance and evolutionary potential in the Ophraella communa, a biological control agent of the invasive common ragweed, Ambrosia artemisiifolia. Super-cooling point assays, knockdown tests under static low-temperature conditions and determination of glycerol content were studied. ANOVAs indicated significant differences regarding chill coma recovery time, super-cooling point, and glycerol content across populations and sexes. The narrow-sense heritability (h2) estimates of cold resistance based on a parental half-sibling breeding design ranged from 0.39 to 0.53, and the h2 value was significantly higher in the Yangzhou population than in the Laibin population. Additive genetic variances were significantly different from zero for cold tolerance. The Yangzhou population of O. communa has a strong capability to quickly gain resistance to cold. We conclude that the O. communa beetle has a plasticity that can provide cold resistance in the changing climate conditions.
Collapse
Affiliation(s)
- Chenchen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangzhou Ma
- Key Laboratory of Biosafety, Ministry of Environmental Protection, Nanjing, China.,Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| | - Hongsong Chen
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
102
|
Effects of cold acclimation and dsRNA injections on Gs1l gene splicing in Drosophila montana. Sci Rep 2018; 8:7577. [PMID: 29765071 PMCID: PMC5953924 DOI: 10.1038/s41598-018-25872-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/26/2018] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing, in which one gene produce multiple transcripts, may influence how adaptive genes respond to specific environments. A newly produced transcriptome of Drosophila montana shows the Gs1-like (Gs1l) gene to express multiple splice variants and to be down regulated in cold acclimated flies with increased cold tolerance. Gs1l’s effect on cold tolerance was further tested by injecting cold acclimated and non-acclimated flies from two distantly located northern and southern fly populations with double stranded RNA (dsRNA) targeting Gs1l. While both populations had similar cold acclimation responses, dsRNA injections only effected the northern population. The nature of splicing expression was then investigated in the northern population by confirming which Gs1l variants are present, by comparing the expression of different gene regions and by predicting the protein structures of splices using homology modelling. We find different splices of Gs1l not only appear to have independent impacts on cold acclimation but also elicit different effects in populations originating from two very different environments. Also, at the protein level, Gs1l appears homologous to the human HDHD1A protein and some splices might produce functionally different proteins though this needs to be verified in future studies by measuring the particular protein levels. Taken together, Gs1l appears to be an interesting new candidate to test how splicing influences adaptations.
Collapse
|
103
|
Culumber ZW, Tobler M. Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes. J Evol Biol 2018; 31:722-734. [DOI: 10.1111/jeb.13260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/13/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
104
|
Tavares WC, Abi-Rezik P, Seuánez HN. Historical and ecological influence in the evolutionary diversification of external morphology of neotropical spiny rats (Echimyidae, Rodentia). J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- William Corrêa Tavares
- Laboratório de Mastozoologia; Departamento de Zoologia; CCS; Rio de Janeiro Brazil
- Departamento de Genética; CCS; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
- Programa de Genética; Instituto Nacional de Câncer; Rio de Janeiro Brazil
| | - Pedro Abi-Rezik
- Laboratório de Mastozoologia; Departamento de Zoologia; CCS; Rio de Janeiro Brazil
| | - Hector N. Seuánez
- Departamento de Genética; CCS; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
- Programa de Genética; Instituto Nacional de Câncer; Rio de Janeiro Brazil
| |
Collapse
|
105
|
Maclean HJ, Kristensen TN, Sørensen JG, Overgaard J. Laboratory maintenance does not alter ecological and physiological patterns among species: a Drosophila case study. J Evol Biol 2018; 31:530-542. [PMID: 29446196 DOI: 10.1111/jeb.13241] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 11/29/2022]
Abstract
Large comparative studies in animal ecology, physiology and evolution often use animals reared in the laboratory for many generations; however, the relevance of these studies hinges on the assumption that laboratory populations are still representative for their wild living conspecifics. In this study, we investigate whether laboratory-maintained and freshly collected animal populations are fundamentally different and whether data from laboratory-maintained animals are valid to use in large comparative investigations of ecological and physiological patterns. Here, we obtained nine species of Drosophila with paired populations of laboratory-maintained and freshly collected flies. These species, representing a range of ecotypes, were assayed for four stress-tolerance, two body-size traits and six life-history traits. For all of these traits, we observed small differences in species-specific comparisons between field and laboratory populations; however, these differences were unsystematic and laboratory maintenance did not eclipse fundamental species characteristics. To investigate whether laboratory maintenance influence the general patterns in comparative studies, we correlated stress tolerance and life-history traits with environmental traits for the laboratory-maintained and freshly collected populations. Based on this analysis, we found that the comparative physiological and ecological trait correlations are similar irrespective of provenience. This finding is important for comparative biology in general because it validates comparative meta-analyses based on laboratory-maintained populations.
Collapse
Affiliation(s)
- H J Maclean
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - T N Kristensen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark
| | - J G Sørensen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - J Overgaard
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
106
|
Teets NM, Hahn DA. Genetic variation in the shape of cold‐survival curves in a single fly population suggests potential for selection from climate variability. J Evol Biol 2018; 31:543-555. [DOI: 10.1111/jeb.13244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/27/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023]
Affiliation(s)
- N. M. Teets
- Department of Entomology and Nematology University of Florida Gainesville FL USA
| | - D. A. Hahn
- Department of Entomology and Nematology University of Florida Gainesville FL USA
| |
Collapse
|
107
|
Andersen MK, Jensen NJS, Robertson RM, Overgaard J. Central nervous shutdown underlies acute cold tolerance in tropical and temperate Drosophila species. J Exp Biol 2018; 221:jeb.179598. [DOI: 10.1242/jeb.179598] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/01/2018] [Indexed: 01/14/2023]
Abstract
When cooled, insects first lose their ability to perform coordinated movements (CTmin) after which they enter chill coma (chill coma onset, CCO). Both these behaviours are popular measures of cold tolerance that correlate remarkably well with species distribution. To identify and understand the neuromuscular impairment that causes CTmin and CCO we used inter- and intraspecific model systems of Drosophila species that have varying cold tolerance as a consequence of adaptation or cold acclimation. Our results demonstrate that CTmin and CCO correlate strongly with a spreading depolarization (SD) within the central nervous system (CNS). We show that this SD is associated with a rapid increase in extracellular [K+] within the CNS causing neuronal depolarization that silences the CNS. The CNS shutdown is likely caused by a mismatch between passive and active ion transport within the CNS and in a different set of experiments we examine inter- and intraspecific differences in sensitivity to SD events during anoxic exposure. These experiments show that cold adapted or acclimated flies are better able to maintain ionoregulatory balance when active transport is compromised within the CNS. Combined, we demonstrate that a key mechanism underlying chill coma entry of Drosophila is CNS shutdown, and the ability to prevent this CNS shutdown is therefore an important component of acute cold tolerance, thermal adaptation and cold acclimation in insects.
Collapse
Affiliation(s)
| | | | | | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
108
|
Koch MA, Michling F, Walther A, Huang XC, Tewes L, Müller C. Early-Mid Pleistocene genetic differentiation and range expansions as exemplified by invasive Eurasian Bunias orientalis (Brassicaceae) indicates the Caucasus as key region. Sci Rep 2017; 7:16764. [PMID: 29196646 PMCID: PMC5711908 DOI: 10.1038/s41598-017-17085-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 11/12/2022] Open
Abstract
Turkish Warty cabbage, Bunias orientalis L. (Brassicaceae) is a perennial herb known for its 250 years of invasion history into Europe and worldwide temperate regions. Putative centers of origin were debated to be located in Turkey, the Caucasus or Eastern Europe. Based on the genetic variation from the nuclear and plastid genomes, we identified two major gene pools in the Caucasian-Irano-Turanian region and close to the Northern Caucasus, respectively. These gene pools are old and started to diverge and expand approximately 930 kya in the Caucasus. Pleistocene glaciation and deglaciation cycles favoured later expansion of a European gene pool 230 kya, which was effectively separated from the Caucasian-Irano-Turanian gene pool. Although the European gene pool is genetically less diverse, it has largely served as source for colonization of Western and Northern Europe in modern times with rare observations of genetic contributions from the Caucasian-Irano-Turanian gene pool such as in North-East America. This study largely utilized herbarium material to take advantage of a biodiversity treasure trove providing biological material and also giving access to detailed collection information.
Collapse
Affiliation(s)
- Marcus A Koch
- Heidelberg University, Centre for Organismal Studies, Heidelberg, 69120, Germany.
| | - Florian Michling
- Heidelberg University, Centre for Organismal Studies, Heidelberg, 69120, Germany
| | - Andrea Walther
- Heidelberg University, Centre for Organismal Studies, Heidelberg, 69120, Germany
| | - Xiao-Chen Huang
- Heidelberg University, Centre for Organismal Studies, Heidelberg, 69120, Germany
| | - Lisa Tewes
- Bielefeld University, Chemical Ecology, Bielefeld, 33615, Germany
| | - Caroline Müller
- Bielefeld University, Chemical Ecology, Bielefeld, 33615, Germany
| |
Collapse
|
109
|
Gotcha N, Terblanche JS, Nyamukondiwa C. Plasticity and cross-tolerance to heterogeneous environments: divergent stress responses co-evolved in an African fruit fly. J Evol Biol 2017; 31:98-110. [PMID: 29080375 DOI: 10.1111/jeb.13201] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023]
Abstract
Plastic adjustments of physiological tolerance to a particular stressor can result in fitness benefits for resistance that might manifest not only in that same environment but also be advantageous when faced with alternative environmental stressors, a phenomenon termed 'cross-tolerance'. The nature and magnitude of cross-tolerance responses can provide important insights into the underlying genetic architecture, potential constraints on or versatility of an organism's stress responses. In this study, we tested for cross-tolerance to a suite of abiotic factors that likely contribute to setting insect population dynamics and geographic range limits: heat, cold, desiccation and starvation resistance in adult Ceratitis rosa following acclimation to all these isolated individual conditions prior to stress assays. Traits of stress resistance scored included critical thermal (activity) limits, chill coma recovery time (CCRT), heat knockdown time (HKDT), desiccation and starvation resistance. In agreement with other studies, we found that acclimation to one stress typically increased resistance for that same stress experienced later in life. A more novel outcome, however, is that here we also found substantial evidence for cross-tolerance. For example, we found an improvement in heat tolerance (critical thermal maxima, CTmax ) following starvation or desiccation hardening and improved desiccation resistance following cold acclimation, indicating pronounced cross-tolerance to these environmental stressors for the traits examined. We also found that two different traits of the same stress resistance differed in their responsiveness to the same stress conditions (e.g. HKDT was less cross-resistant than CTmax ). The results of this study have two major implications that are of broader importance: (i) that these traits likely co-evolved to cope with diverse or simultaneous stressors, and (ii) that a set of common underlying physiological mechanisms might exist between apparently divergent stress responses in this species. This species may prove to be a valuable model for future work on the evolutionary and mechanistic basis of cross-tolerance.
Collapse
Affiliation(s)
- N Gotcha
- Department of Biological Sciences and Biotechnology Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - J S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - C Nyamukondiwa
- Department of Biological Sciences and Biotechnology Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| |
Collapse
|
110
|
MacMillan HA, Yerushalmi GY, Jonusaite S, Kelly SP, Donini A. Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut. Sci Rep 2017; 7:8807. [PMID: 28821771 PMCID: PMC5562827 DOI: 10.1038/s41598-017-08926-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022] Open
Abstract
Chill susceptible insects suffer tissue damage and die at low temperatures. The mechanisms that cause chilling injury are not well understood but a growing body of evidence suggests that a cold-induced loss of ion and water homeostasis leads to hemolymph hyperkalemia that depolarizes cells, leading to cell death. The apparent root of this cascade is the net leak of osmolytes down their concentration gradients in the cold. Many insects, however, are capable of adjusting their thermal physiology, and cold-acclimated Drosophila can maintain homeostasis and avoid injury better than warm-acclimated flies. Here, we test whether chilling causes a loss of epithelial barrier function in female adult Drosophila, and provide the first evidence of cold-induced epithelial barrier failure in an invertebrate. Flies had increased rates of paracellular leak through the gut epithelia at 0 °C, but cold acclimation reduced paracellular permeability and improved cold tolerance. Improved barrier function was associated with changes in the abundance of select septate junction proteins and the appearance of a tortuous ultrastructure in subapical intercellular regions of contact between adjacent midgut epithelial cells. Thus, cold causes paracellular leak in a chill susceptible insect and cold acclimation can mitigate this effect through changes in the composition and structure of transepithelial barriers.
Collapse
Affiliation(s)
- Heath A MacMillan
- Department of Biology, York University, Toronto, M3J 1P3, Canada. .,Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada.
| | - Gil Y Yerushalmi
- Department of Biology, York University, Toronto, M3J 1P3, Canada
| | - Sima Jonusaite
- Department of Biology, York University, Toronto, M3J 1P3, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, M3J 1P3, Canada
| |
Collapse
|
111
|
Jezovit JA, Levine JD, Schneider J. Phylogeny, environment and sexual communication across the Drosophila genus. ACTA ACUST UNITED AC 2017; 220:42-52. [PMID: 28057827 DOI: 10.1242/jeb.143008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Social behaviour emerges from the local environment but is constrained by the animal's life history and its evolutionary lineage. In this perspective, we consider the genus Drosophila and provide an overview of how these constraints can shape how individuals interact. Our focus is restricted to visual and chemical signals and how their use varies across species during courtship - currently the only social behaviour well-studied across many Drosophila species. We broadly categorize species into four climatic groups - cosmopolitan, tropical, temperate and arid - which serve as discussion points as we review comparative behavioural and physiological studies and relate them to the abiotic conditions of a species environment. We discuss how the physiological and behavioural differences among many fly species may reflect life history differences as much as, or even more than, differences in phylogeny. This perspective serves not only to summarize what has been studied across drosophilids, but also to identify questions and outline gaps in the literature worth pursuing for progressing the understanding of behavioural evolution in Drosophila.
Collapse
Affiliation(s)
- Jacob A Jezovit
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L1C6
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L1C6
| | - Jonathan Schneider
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L1C6
| |
Collapse
|
112
|
Boratyński Z, Brito JC, Campos JC, Cunha JL, Granjon L, Mappes T, Ndiaye A, Rzebik-Kowalska B, Serén N. Repeated evolution of camouflage in speciose desert rodents. Sci Rep 2017; 7:3522. [PMID: 28615685 PMCID: PMC5471182 DOI: 10.1038/s41598-017-03444-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/05/2017] [Indexed: 11/09/2022] Open
Abstract
There are two main factors explaining variation among species and the evolution of characters along phylogeny: adaptive change, including phenotypic and genetic responses to selective pressures, and phylogenetic inertia, or the resemblance between species due to shared phylogenetic history. Phenotype-habitat colour match, a classic Darwinian example of the evolution of camouflage (crypsis), offers the opportunity to test the importance of historical versus ecological mechanisms in shaping phenotypes among phylogenetically closely related taxa. To assess it, we investigated fur (phenotypic data) and habitat (remote sensing data) colourations, along with phylogenetic information, in the species-rich Gerbillus genus. Overall, we found a strong phenotype-habitat match, once the phylogenetic signal is taken into account. We found that camouflage has been acquired and lost repeatedly in the course of the evolutionary history of Gerbillus. Our results suggest that fur colouration and its covariation with habitat is a relatively labile character in mammals, potentially responding quickly to selection. Relatively unconstrained and substantial genetic basis, as well as structural and functional independence from other fitness traits of mammalian colouration might be responsible for that observation.
Collapse
Affiliation(s)
- Zbyszek Boratyński
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal.
| | - José C Brito
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal.,Department of Biology, Faculty of Science, University of Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
| | - João C Campos
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal.,Department of Biology, Faculty of Science, University of Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
| | - José L Cunha
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal
| | - Laurent Granjon
- IRD, UMR CBGP, Campus International de Baillarguet, CS 30016, 34988, Montferrier-sur-Lez cedex, France
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, P.O. Box 35, 40014, Finland
| | - Arame Ndiaye
- Department of Animal Biology, Faculty of Sciences and Technologies, University Cheikh Anta Diop, BP 5005, Dakar, Senegal
| | - Barbara Rzebik-Kowalska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Nina Serén
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal
| |
Collapse
|
113
|
Faria SC, Faleiros RO, Brayner FA, Alves LC, Bianchini A, Romero C, Buranelli RC, Mantelatto FL, McNamara JC. Macroevolution of thermal tolerance in intertidal crabs from Neotropical provinces: A phylogenetic comparative evaluation of critical limits. Ecol Evol 2017; 7:3167-3176. [PMID: 28480016 PMCID: PMC5415543 DOI: 10.1002/ece3.2741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 11/08/2022] Open
Abstract
Thermal tolerance underpins most biogeographical patterns in ectothermic animals. Macroevolutionary patterns of thermal limits have been historically evaluated, but a role for the phylogenetic component in physiological variation has been neglected. Three marine zoogeographical provinces are recognized throughout the Neotropical region based on mean seawater temperature (Tm): the Brazilian (Tm = 26 °C), Argentinian (Tm = 15 °C), and Magellanic (Tm = 9 °C) provinces. Microhabitat temperature (MHT) was measured, and the upper (UL 50) and lower (LL 50) critical thermal limits were established for 12 eubrachyuran crab species from intertidal zones within these three provinces. A molecular phylogenetic analysis was performed by maximum likelihood using the 16S mitochondrial gene, also considering other representative species to enable comparative evaluations. We tested for: (1) phylogenetic pattern of MHT, UL 50, and LL 50; (2) effect of zoogeographical province on the evolution of both limits; and (3) evolutionary correlation between MHT and thermal limits. MHT and UL 50 showed strong phylogenetic signal at the species level while LL 50 was unrelated to phylogeny, suggesting a more plastic evolution. Province seems to have affected the evolution of thermal tolerance, and only UL 50 was dependent on MHT. UL 50 was similar between the two northern provinces compared to the southernmost while LL 50 differed markedly among provinces. Apparently, critical limits are subject to different environmental pressures and thus manifest unique evolutionary histories. An asymmetrical macroevolutionary scenario for eubrachyuran thermal tolerance seems likely, as the critical thermal limits are differentially inherited and environmentally driven.
Collapse
Affiliation(s)
- Samuel C. Faria
- Departamento de BiologiaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
- Present address: Instituto de Ciências BiológicasUniversidade Federal do Rio GrandeRio GrandeBrazil
| | - Rogério O. Faleiros
- Departamento de BiologiaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
| | - Fábio A. Brayner
- Centro de Pesquisas Aggeu MagalhãesFiocruzRecifeBrazil
- Laboratório de Imunopatologia Keizo AsamiLIKA/UFPERecifeBrazil
| | - Luiz C. Alves
- Centro de Pesquisas Aggeu MagalhãesFiocruzRecifeBrazil
- Laboratório de Imunopatologia Keizo AsamiLIKA/UFPERecifeBrazil
| | - Adalto Bianchini
- Instituto de Ciências BiológicasUniversidade Federal do Rio GrandeRio GrandeBrazil
| | - Carolina Romero
- Centro Austral de Investigaciones CientíficasCADIC‐CONICETUshuaiaArgentina
| | - Raquel C. Buranelli
- Departamento de BiologiaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
| | - Fernando L. Mantelatto
- Departamento de BiologiaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
| | - John C. McNamara
- Departamento de BiologiaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
- Centro de Biologia MarinhaUniversidade de São PauloSão SebastiãoBrazil
| |
Collapse
|
114
|
von May R, Catenazzi A, Corl A, Santa-Cruz R, Carnaval AC, Moritz C. Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient. Ecol Evol 2017; 7:3257-3267. [PMID: 28480023 PMCID: PMC5415528 DOI: 10.1002/ece3.2929] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/06/2017] [Accepted: 01/28/2017] [Indexed: 01/10/2023] Open
Abstract
Critical thermal limits are thought to be correlated with the elevational distribution of species living in tropical montane regions, but with upper limits being relatively invariant compared to lower limits. To test this hypothesis, we examined the variation of thermal physiological traits in a group of terrestrial breeding frogs (Craugastoridae) distributed along a tropical elevational gradient. We measured the critical thermal maximum (CTmax; n = 22 species) and critical thermal minimum (CTmin; n = 14 species) of frogs captured between the Amazon floodplain (250 m asl) and the high Andes (3,800 m asl). After inferring a multilocus species tree, we conducted a phylogenetically informed test of whether body size, body mass, and elevation contributed to the observed variation in CTmax and CTmin along the gradient. We also tested whether CTmax and CTmin exhibit different rates of change given that critical thermal limits (and their plasticity) may have evolved differently in response to different temperature constraints along the gradient. Variation of critical thermal traits was significantly correlated with species’ elevational midpoint, their maximum and minimum elevations, as well as the maximum air temperature and the maximum operative temperature as measured across this gradient. Both thermal limits showed substantial variation, but CTmin exhibited relatively faster rates of change than CTmax, as observed in other taxa. Nonetheless, our findings call for caution in assuming inflexibility of upper thermal limits and underscore the value of collecting additional empirical data on species’ thermal physiology across elevational gradients.
Collapse
Affiliation(s)
- Rudolf von May
- Department of Ecology and Evolutionary Biology Museum of Zoology University of Michigan Ann Arbor MI USA.,Museum of Vertebrate Zoology University of California, Berkeley Berkeley CA USA
| | | | - Ammon Corl
- Museum of Vertebrate Zoology University of California, Berkeley Berkeley CA USA
| | - Roy Santa-Cruz
- Área de Herpetología Museo de Historia Natural de la Universidad Nacional de San Agustín (MUSA) Arequipa Perú
| | | | - Craig Moritz
- Museum of Vertebrate Zoology University of California, Berkeley Berkeley CA USA.,Centre for Biodiversity Analysis and Research School of Biology The Australian National University Canberra ACT Australia
| |
Collapse
|
115
|
Messamah B, Kellermann V, Malte H, Loeschcke V, Overgaard J. Metabolic cold adaptation contributes little to the interspecific variation in metabolic rates of 65 species of Drosophilidae. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:309-316. [PMID: 28193478 DOI: 10.1016/j.jinsphys.2017.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Metabolic cold adaptation (MCA) is a controversial hypothesis suggesting that cold adapted species display an elevated metabolic rate (MR) compared to their warm climate relatives. Here we test for the presence of MCA in 65 species of drosophilid flies reared under common garden conditions. MR was measured at both 10 and 20°C for both sexes and data were analyzed in relation to the natural thermal environment of these species. We found considerable interspecific variation in MR ranging from 1.34 to 8.99µWmg-1 at 10°C. As predicted by Bergmann's rule body mass of fly species correlated negatively with annual mean temperature (AMT), such that larger species were found in colder environments. Because larger flies have a higher total MR we found MR to vary with AMT, however, after inclusion of mass as a co-variate we found no significant effect of AMT. Furthermore, we did not find that thermal sensitivity of MR (Q10) varied with AMT. Based on this broad collection of species we therefore conclude that there is no adaptive pattern of metabolic cold adaptation within drosophilid species ranging from sub-arctic to tropical environments.
Collapse
Affiliation(s)
- Branwen Messamah
- Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark; Faculty of Life Sciences, Manchester University, 46 Grafton Street, M13 9NT Manchester, England, United Kingdom
| | - Vanessa Kellermann
- Department of Biological Sciences, Monash University, Clayton 3800, Australia
| | - Hans Malte
- Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Volker Loeschcke
- Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | | |
Collapse
|
116
|
Hjelmen CE, Johnston JS. The mode and tempo of genome size evolution in the subgenus Sophophora. PLoS One 2017; 12:e0173505. [PMID: 28267812 PMCID: PMC5340367 DOI: 10.1371/journal.pone.0173505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/21/2017] [Indexed: 01/05/2023] Open
Abstract
Genome size varies widely across organisms, with no apparent tie to organismal complexity. While genome size is inherited, there is no established evolutionary model for this trait. Hypotheses have been postulated for the observed variation in genome sizes across species, most notably the effective population size hypothesis, the mutational equilibrium hypothesis, and the adaptive hypothesis. While much data has been collected on genome size, the above hypotheses have largely ignored impacts from phylogenetic relationships. In order to test these competing hypotheses, genome sizes of 87 Sophophora species were analyzed in a comparative phylogenetic approach using Pagel’s parameters of evolution, Blomberg’s K, Abouheif’s Cmean and Moran’s I. In addition to testing the mode and rate of genome size evolution in Sophophora species, the effect of number of taxa on detection of phylogenetic signal was analyzed for each of these comparative phylogenetic methods. Sophophora genome size was found to be dependent on the phylogeny, indicating that evolutionary time was important for predicting the variation among species. Genome size was found to evolve gradually on branches of the tree, with a rapid burst of change early in the phylogeny. These results suggest that Sophophora genome size has experienced gradual changes, which support the largely theoretical mutational equilibrium hypothesis. While some methods (Abouheif’s Cmean and Moran’s I) were found to be affected by increasing taxa numbers, more commonly used methods (λ and Blomberg’s K) were found to have increasing reliability with increasing taxa number, with significantly more support with fifteen or more taxa. Our results suggest that these comparative phylogenetic methods, with adequate taxon sampling, can be a powerful way to uncover the enigma that is genome size variation through incorporation of phylogenetic relationships.
Collapse
Affiliation(s)
- Carl E. Hjelmen
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
117
|
Affiliation(s)
- Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark;
| | - Heath A. MacMillan
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
118
|
Prinzing A, Ozinga WA, Brändle M, Courty PE, Hennion F, Labandeira C, Parisod C, Pihain M, Bartish IV. Benefits from living together? Clades whose species use similar habitats may persist as a result of eco-evolutionary feedbacks. THE NEW PHYTOLOGIST 2017; 213:66-82. [PMID: 27880007 DOI: 10.1111/nph.14341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Contents 66 I. 67 II. 68 III. 69 IV. 70 V. 73 VI. 75 VII. 77 78 References 78 SUMMARY: Recent decades have seen declines of entire plant clades while other clades persist despite changing environments. We suggest that one reason why some clades persist is that species within these clades use similar habitats, because such similarity may increase the degree of co-occurrence of species within clades. Traditionally, co-occurrence among clade members has been suggested to be disadvantageous because of increased competition and enemy pressure. Here, we hypothesize that increased co-occurrence among clade members promotes mutualist exchange, niche expansion or hybridization, thereby helping species avoid population decline from environmental change. We review the literature and analyse published data for hundreds of plant clades (genera) within a well-studied region and find major differences in the degree to which species within clades occupy similar habitats. We tentatively show that, in clades for which species occupy similar habitats, species tend to exhibit increased co-occurrence, mutualism, niche expansion, and hybridization - and rarely decline. Consistently, throughout the geological past, clades whose species occupied similar habitats often persisted through long time-spans. Overall, for many plant species, the occupation of similar habitats among fellow clade members apparently reduced their vulnerability to environmental change. Future research should identify when and how this previously unrecognized eco-evolutionary feedback operates.
Collapse
Affiliation(s)
- Andreas Prinzing
- University Rennes 1/Centre National de la Recherche Scientifique, Research Unit 'Ecobio - Ecosystèmes, Biodiversité, Evolution', Campus Beaulieu, Bâtiment 14 A, 35042, Rennes, France
| | - Wim A Ozinga
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
- Alterra, Wageningen University & Research, PO Box 47, NL-6700, AA Wageningen, the Netherlands
| | - Martin Brändle
- Department of Ecology - Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Strasse 8, D-35032, Marburg, Germany
| | - Pierre-Emmanuel Courty
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Françoise Hennion
- University Rennes 1/Centre National de la Recherche Scientifique, Research Unit 'Ecobio - Ecosystèmes, Biodiversité, Evolution', Campus Beaulieu, Bâtiment 14 A, 35042, Rennes, France
| | - Conrad Labandeira
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
- Department of Entomology and BEES Program, University of Maryland, College Park, MD, 20742, USA
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Christian Parisod
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, 2000, Neuchatel, Switzerland
| | - Mickael Pihain
- University Rennes 1/Centre National de la Recherche Scientifique, Research Unit 'Ecobio - Ecosystèmes, Biodiversité, Evolution', Campus Beaulieu, Bâtiment 14 A, 35042, Rennes, France
| | - Igor V Bartish
- Institute of Botany, Academy of Sciences of Czech Republic, Zamek 1, Pruhonice, 25243, Czech Republic
| |
Collapse
|
119
|
Andersen MK, MacMillan HA, Donini A, Overgaard J. Cold tolerance of Drosophila species is tightly linked to epithelial K+ transport capacity of the Malpighian tubules and rectal pads. J Exp Biol 2017; 220:4261-4269. [DOI: 10.1242/jeb.168518] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 01/13/2023]
Abstract
Insect chill tolerance is strongly associated with the ability to maintain ion and water homeostasis during cold exposure. Maintenance of K+ balance is particularly important due to its role in setting the cell membrane potential that is involved in many aspects of cellular function and viability. In most insects, K+ balance is maintained through secretion at the Malpighian tubules balancing reabsorption from the hindgut and passive leak arising from the gut lumen. Here, we used a scanning ion-selective electrode technique (SIET) system at benign (23°C) and low (6°C) temperature to examine K+ flux across the Malpighian tubules and the rectal pads in the hindgut in five Drosophila species that differ in cold tolerance. We found that chill tolerant species were better at maintaining K+ secretion and supressing reabsorption during cold exposure. In contrast, chill susceptible species exhibited large reductions in secretion with no change, or a paradoxical increase, in K+ reabsorption. Using an assay to measure paracellular leak we found that chill susceptible species experience a large increase in leak during cold exposure, which could explain the increased K+ reabsorption found in these species. Our data therefore strongly support the hypothesis that cold tolerant Drosophila species are better at maintaining K+ homeostasis through an increased ability to maintain K+ secretion rates and through reduced leakage of K+ towards the hemolymph. These adaptations are manifested both at the Malpighian tubule and at the rectal pads in the hindgut and ensure that cold tolerant species experience less perturbation of K+ homeostasis during cold stress.
Collapse
Affiliation(s)
| | | | - Andrew Donini
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
120
|
Yerushalmi GY, Misyura L, Donini A, MacMillan HA. Chronic dietary salt stress mitigates hyperkalemia and facilitates chill coma recovery in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:89-97. [PMID: 27642001 DOI: 10.1016/j.jinsphys.2016.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Chill susceptible insects like Drosophila lose the ability to regulate water and ion homeostasis at low temperatures. This loss of hemolymph ion and water balance drives a hyperkalemic state that depolarizes cells, causing cellular injury and death. The ability to maintain ion homeostasis at low temperatures and/or recover ion homeostasis upon rewarming is closely related to insect cold tolerance. We thus hypothesized that changes to organismal ion balance, which can be achieved in Drosophila through dietary salt loading, could alter whole animal cold tolerance phenotypes. We put Drosophila melanogaster in the presence of diets highly enriched in NaCl, KCl, xylitol (an osmotic control) or sucrose (a dietary supplement known to impact cold tolerance) for 24h and confirmed that they consumed the novel food. Independently of their osmotic effects, NaCl, KCl, and sucrose supplementation all improved the ability of flies to maintain K+ balance in the cold, which allowed for faster recovery from chill coma after 6h at 0°C. These supplements, however, also slightly increased the CTmin and had little impact on survival rates following chronic cold stress (24h at 0°C), suggesting that the effect of diet on cold tolerance depends on the measure of cold tolerance assessed. In contrast to prolonged salt stress, brief feeding (1.5h) on diets high in salt slowed coma recovery, suggesting that the long-term effects of NaCl and KCl on chilling tolerance result from phenotypic plasticity, induced in response to a salty diet, rather than simply the presence of the diet in the gut lumen.
Collapse
Affiliation(s)
- Gil Y Yerushalmi
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Lidiya Misyura
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Heath A MacMillan
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada.
| |
Collapse
|
121
|
Vigoder FM, Parker DJ, Cook N, Tournière O, Sneddon T, Ritchie MG. Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi. PLoS One 2016; 11:e0165724. [PMID: 27832122 PMCID: PMC5104470 DOI: 10.1371/journal.pone.0165724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos), in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters as an adult in northern latitudes with extreme cold. We assessed cold tolerance of dsRNA knock-down flies using two metrics: chill-coma recovery time (CCRT) and mortality rate after cold acclimation. Injection of dsRNAInos did not alter CCRT, either overall or in interaction with the cold treatment, however it did induced cold-specific mortality, with high levels of mortality observed in injected flies acclimated at 5°C but not at 19°C. Overall, injection with dsRNAInos induced a temperature-sensitive mortality rate of over 60% in this normally cold-tolerant species. qPCR analysis confirmed that dsRNA injection successfully reduced gene expression of Inos. Thus, our results demonstrate the involvement of Inos in increasing cold tolerance in D. montana. The potential mechanisms involved by which Inos increases cold tolerance are also discussed.
Collapse
Affiliation(s)
- Felipe M. Vigoder
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Darren J. Parker
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Nicola Cook
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| | - Océane Tournière
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt, Bergen, Norway
| | - Tanya Sneddon
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| | - Michael G. Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| |
Collapse
|
122
|
Schou MF, Mouridsen MB, Sørensen JG, Loeschcke V. Linear reaction norms of thermal limits in
Drosophila
: predictable plasticity in cold but not in heat tolerance. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12782] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mads Fristrup Schou
- Department of Bioscience Aarhus University Ny Munkegade 116 8000 Aarhus C Denmark
| | | | | | - Volker Loeschcke
- Department of Bioscience Aarhus University Ny Munkegade 116 8000 Aarhus C Denmark
| |
Collapse
|
123
|
Llewelyn J, Macdonald S, Hatcher A, Moritz C, Phillips BL. Thermoregulatory behaviour explains countergradient variation in the upper thermal limit of a rainforest skink. OIKOS 2016. [DOI: 10.1111/oik.03933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change, James Cook University Townsville Queensland 4811 Australia
- Land and Water Flagship, CSIRO Townsville Queensland Australia
| | - Stewart Macdonald
- Centre for Tropical Biodiversity and Climate Change, James Cook University Townsville Queensland 4811 Australia
- Land and Water Flagship, CSIRO Townsville Queensland Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change, James Cook University Townsville Queensland 4811 Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis, Australian National University Canberra Australia
| | - Ben L. Phillips
- School of BioSciences, University of Melbourne Melbourne Australia
| |
Collapse
|
124
|
Kaunisto S, Ferguson LV, Sinclair BJ. Can we predict the effects of multiple stressors on insects in a changing climate? CURRENT OPINION IN INSECT SCIENCE 2016; 17:55-61. [PMID: 27720074 DOI: 10.1016/j.cois.2016.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
The responses of insects to climate change will depend on their responses to abiotic and biotic stressors in combination. We surveyed the literature, and although synergistic stressor interactions appear common among insects, the thin taxonomic spread of existing data means that more multi-stressor studies and new approaches are needed. We need to move beyond descriptions of the effects of multiple stressors to a mechanistic, predictive understanding. Further, we must identify which stressor interactions, and species' responses to them, are sufficiently generalizable (i.e. most or all species respond similarly to the same stressor combination), and thus predictable (for new combinations of stressors, or stressors acting via known mechanisms). We discuss experimental approaches that could facilitate this shift toward predictive understanding.
Collapse
Affiliation(s)
- Sirpa Kaunisto
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada; Department of Environmental and Biological Sciences, The University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - Laura V Ferguson
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Brent J Sinclair
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
125
|
Maino JL, Kong JD, Hoffmann AA, Barton MG, Kearney MR. Mechanistic models for predicting insect responses to climate change. CURRENT OPINION IN INSECT SCIENCE 2016; 17:81-86. [PMID: 27720078 DOI: 10.1016/j.cois.2016.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Mechanistic models of the impacts of climate change on insects can be seen as very specific hypotheses about the connections between microclimate, ecophysiology and vital rates. These models must adequately capture stage-specific responses, carry-over effects between successive stages, and the evolutionary potential of the functional traits involved in complex insect life-cycles. Here we highlight key considerations for current approaches to mechanistic modelling of insect responses to climate change. We illustrate these considerations within a general mechanistic framework incorporating the thermodynamic linkages between microclimate and heat, water and nutrient exchange throughout the life-cycle under different climate scenarios. We emphasise how such a holistic perspective will provide increasingly robust insights into how insects adapt and respond to changing climates.
Collapse
Affiliation(s)
- James L Maino
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Jacinta D Kong
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Madeleine G Barton
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Stellenbosch, Matieland 7602, South Africa
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
126
|
Muñoz MM, Langham GM, Brandley MC, Rosauer DF, Williams SE, Moritz C. Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards. Evolution 2016; 70:2537-2549. [DOI: 10.1111/evo.13064] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 08/15/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Martha M. Muñoz
- Department of Biology Duke University Durham North Carolina 27708
| | | | - Matthew C. Brandley
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Dan F. Rosauer
- Centre for Biodiversity Analysis Australian National University Canberra Australian Capital Territory Australia
- Research School of Biology Australian National University Canberra Australian Capital Territory Australia
| | - Stephen E. Williams
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Queensland Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis Australian National University Canberra Australian Capital Territory Australia
- Research School of Biology Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
127
|
Merenciano M, Ullastres A, de Cara MAR, Barrón MG, González J. Multiple Independent Retroelement Insertions in the Promoter of a Stress Response Gene Have Variable Molecular and Functional Effects in Drosophila. PLoS Genet 2016; 12:e1006249. [PMID: 27517860 PMCID: PMC4982627 DOI: 10.1371/journal.pgen.1006249] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
Promoters are structurally and functionally diverse gene regulatory regions. The presence or absence of sequence motifs and the spacing between the motifs defines the properties of promoters. Recent alternative promoter usage analyses in Drosophila melanogaster revealed that transposable elements significantly contribute to promote diversity. In this work, we analyzed in detail one of the transposable element insertions, named FBti0019985, that has been co-opted to drive expression of CG18446, a candidate stress response gene. We analyzed strains from different natural populations and we found that besides FBti0019985, there are another eight independent transposable elements inserted in the proximal promoter region of CG18446. All nine insertions are solo-LTRs that belong to the roo family. We analyzed the sequence of the nine roo insertions and we investigated whether the different insertions were functionally equivalent by performing 5'-RACE, gene expression, and cold-stress survival experiments. We found that different insertions have different molecular and functional consequences. The exact position where the transposable elements are inserted matters, as they all showed highly conserved sequences but only two of the analyzed insertions provided alternative transcription start sites, and only the FBti0019985 insertion consistently affects CG18446 expression. The phenotypic consequences of the different insertions also vary: only FBti0019985 was associated with cold-stress tolerance. Interestingly, the only previous report of transposable elements inserting repeatedly and independently in a promoter region in D. melanogaster, were also located upstream of a stress response gene. Our results suggest that functional validation of individual structural variants is needed to resolve the complexity of insertion clusters.
Collapse
Affiliation(s)
- Miriam Merenciano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona. Spain
| | - Anna Ullastres
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona. Spain
| | - M. A. R. de Cara
- Laboratoire d’Eco-anthropologie et Ethnobiologie, UMR 7206, CNRS/MNHN/Universite Paris 7, Museum National d’Histoire Naturelle, F-75116 Paris, France
| | - Maite G. Barrón
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona. Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona. Spain
- * E-mail:
| |
Collapse
|
128
|
MacMillan HA, Baatrup E, Overgaard J. Concurrent effects of cold and hyperkalaemia cause insect chilling injury. Proc Biol Sci 2016; 282:20151483. [PMID: 26468241 DOI: 10.1098/rspb.2015.1483] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chilling injury and death are the ultimate consequence of low temperature exposure for chill susceptible insects, and low temperature tolerance is considered one of the most important factors determining insect distribution patterns. The physiological mechanisms that cause chilling injury are unknown, but chronic cold exposure that causes injury is consistently associated with elevated extracellular [K(+)], and cold tolerant insects possess a greater capacity to maintain ion balance at low temperatures. Here, we use the muscle tissue of the migratory locust (Locusta migratoria) to examine whether chill injury occurs during cold exposure or following return to benign temperature and we specifically examine if elevated extracellular [K(+)], low temperature, or a combination thereof causes cell death. We find that in vivo chill injury occurs during the cold exposure (when extracellular [K(+)] is high) and that there is limited capacity for repair immediately following the cold stress. Further, we demonstrate that that high extracellular [K(+)] causes cell death in situ, but only when experienced at low temperatures. These findings strongly suggest that that the ability to maintain ion (particularly K(+)) balance is critical to insect low temperature survival, and highlight novel routes of study in the mechanisms regulating cell death in insects in the cold.
Collapse
Affiliation(s)
- Heath A MacMillan
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Erik Baatrup
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
129
|
Llewelyn J, Macdonald SL, Hatcher A, Moritz C, Phillips BL. Intraspecific variation in climate‐relevant traits in a tropical rainforest lizard. DIVERS DISTRIB 2016. [DOI: 10.1111/ddi.12466] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
- Land and Water Flagship CSIRO Townsville Qld 4811 Australia
| | - Stewart L. Macdonald
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
- Land and Water Flagship CSIRO Townsville Qld 4811 Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis Australian National University Canberra ACT 0200 Australia
| | - Ben L. Phillips
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
- School of Biosciences University of Melbourne Melbourne Vic. 3010 Australia
| |
Collapse
|
130
|
Andrew SC, Kemp DJ. Stress tolerance in a novel system: Genetic and environmental sources of (co)variation for cold tolerance in the butterfly
Eurema smilax. AUSTRAL ECOL 2016. [DOI: 10.1111/aec.12341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel C. Andrew
- Department of Biological Sciences Macquarie University Sydney New South Wales 2109 Australia
| | - Darrell J. Kemp
- Department of Biological Sciences Macquarie University Sydney New South Wales 2109 Australia
| |
Collapse
|
131
|
MacMillan HA, Knee JM, Dennis AB, Udaka H, Marshall KE, Merritt TJS, Sinclair BJ. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci Rep 2016; 6:28999. [PMID: 27357258 PMCID: PMC4928047 DOI: 10.1038/srep28999] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/07/2016] [Indexed: 01/05/2023] Open
Abstract
Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance.
Collapse
Affiliation(s)
- Heath A MacMillan
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Jose M Knee
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Alice B Dennis
- Landcare Research, Auckland, New Zealand.,Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | - Hiroko Udaka
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Katie E Marshall
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Thomas J S Merritt
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
132
|
Ecological determinants of mean family age of angiosperm trees in forest communities in China. Sci Rep 2016; 6:28662. [PMID: 27354109 PMCID: PMC4926104 DOI: 10.1038/srep28662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/01/2016] [Indexed: 12/02/2022] Open
Abstract
Species assemblage in a local community is determined by the interplay of evolutionary and ecological processes. The Tropical Niche Conservatism hypothesis proposes mechanisms underlying patterns of biodiversity in biological communities along environmental gradients. This hypothesis predicts that, among other things, clades in areas with warm or wet environments are, on average, older than those in areas with cold or dry environments. Focusing on angiosperm trees in forests, this study tested the age-related prediction of the Tropical Niche Conservatism hypothesis. We related the mean family age of angiosperm trees in 57 local forests from across China with 23 current and paleo-environmental variables, which included all major temperature- and precipitation-related variables. Our study shows that the mean family age of angiosperm trees in local forests was positively correlated with temperature and precipitation. This finding is consistent with the age-related prediction of the Tropical Niche Conservatism hypothesis. Approximately 85% of the variance in the mean family age of angiosperm trees was explained by temperature-related variables, and 81% of the variance in the mean family age of angiosperm trees was explained by precipitation-related variables. Climatic conditions at the Last Glacial Maximum did not explain additional variation in mean family age after accounting for current environmental conditions.
Collapse
|
133
|
Slatyer RA, Schoville SD. Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles. PLoS One 2016; 11:e0151959. [PMID: 27043311 PMCID: PMC4820226 DOI: 10.1371/journal.pone.0151959] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/06/2016] [Indexed: 11/19/2022] Open
Abstract
A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species' elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system.
Collapse
Affiliation(s)
- Rachel A. Slatyer
- School of Biosciences, University of Melbourne, Parkville, Australia
- Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
134
|
Range expansion and increasing impact of the introduced wasp Aphidius matricariae Haliday on sub-Antarctic Marion Island. Biol Invasions 2016. [DOI: 10.1007/s10530-015-0967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
135
|
Abstract
The Antarctic region comprises the continent, the Maritime Antarctic, the sub-Antarctic islands, and the southern cold temperate islands. Continental Antarctica is devoid of insects, but elsewhere diversity varies from 2 to more than 200 species, of which flies and beetles constitute the majority. Much is known about the drivers of this diversity at local and regional scales; current climate and glacial history play important roles. Investigations of responses to low temperatures, dry conditions, and varying salinity have spanned the ecological to the genomic, revealing new insights into how insects respond to stressful conditions. Biological invasions are common across much of the region and are expected to increase as climates become warmer. The drivers of invasion are reasonably well understood, although less is known about the impacts of invasion. Antarctic entomology has advanced considerably over the past 50 years, but key areas, such as interspecific interactions, remain underexplored.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia;
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom;
| |
Collapse
|
136
|
Andersen MK, Folkersen R, MacMillan HA, Overgaard J. Cold-acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential. J Exp Biol 2016; 220:487-496. [DOI: 10.1242/jeb.150813] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Most insects have the ability to alter their cold tolerance in response to temporal temperature fluctuations, and recent studies have shown that insect cold tolerance is closely tied to the ability to maintain transmembrane ion-gradients that are important for the maintenance of cell membrane potential (Vm). Accordingly, several studies have suggested a link between preservation of Vm and cellular survival after cold stress, but none have measured Vm in this context. We tested this hypothesis by acclimating locusts (Locusta migratoria) to high (31°C) and low temperature (11°C) for four days before exposing them to cold stress (0°C) for up to 48 hours and subsequently measuring ion balance, cell survival, muscle Vm, and whole animal performance. Cold stress caused gradual muscle cell death which coincided with a loss of ion balance and depolarisation of muscle Vm. The loss of ion-balance and cell polarisation were, however, dampened markedly in cold-acclimated locusts such that the development of chill injury was reduced. To further examine the association between cellular injury and Vm we exposed in vitro muscle preparations to cold buffers with low, intermediate, or high [K+]. These experiments revealed that cellular injury during cold exposure occurs when Vm becomes severely depolarised. Interestingly we found that cellular sensitivity to hypothermic hyperkalaemia was lower in cold-acclimated locusts that were better able to defend Vm whilst exposed to high extracellular [K+]. Together these results demonstrate a mechanism of cold-acclimation in locusts that improves survival after cold stress: Increased cold tolerance is accomplished by preservation of Vm through maintenance of ion homeostasis and decreased K+-sensitivity.
Collapse
Affiliation(s)
| | - Rasmus Folkersen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | | | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
137
|
The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci Rep 2015; 5:18607. [PMID: 26678786 PMCID: PMC4683515 DOI: 10.1038/srep18607] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 02/02/2023] Open
Abstract
Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. The Malpighian tubules (MT), of chill susceptible Drosophila species lost [Na(+)] and [K(+)] selectivity at low temperatures, which contributed to a loss of Na(+) and water balance and a deleterious increase in extracellular [K(+)]. By contrast, the tubules of chill tolerant Drosophila species maintained their MT ion selectivity, maintained stable extracellular ion concentrations, and thereby avoided injury. The most tolerant species were able to modulate ion balance while in a cold-induced coma and this ongoing physiological acclimation process allowed some individuals of the tolerant species to recover from chill coma during low temperature exposure. Accordingly, differences in the ability to maintain homeostatic control of water and ion balance at low temperature may explain large parts of the wide intra- and interspecific variation in insect chilling tolerance.
Collapse
|
138
|
Machado S, Gottschalk MS, Robe LJ. Historical patterns of niche dynamics in Neotropical species of the Drosophila subgenus (Drosophilidae, Diptera). Evol Ecol 2015. [DOI: 10.1007/s10682-015-9805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
139
|
Verberk WCEP, Overgaard J, Ern R, Bayley M, Wang T, Boardman L, Terblanche JS. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp Biochem Physiol A Mol Integr Physiol 2015; 192:64-78. [PMID: 26506130 PMCID: PMC4717866 DOI: 10.1016/j.cbpa.2015.10.020] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 11/26/2022]
Abstract
Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope decreases near critical temperatures, a key feature of the OCLTT hypothesis. In air-breathers, only severe hypoxia (< 2 kPa) affected heat tolerance. The discrepancies for heat tolerance between aquatic and terrestrial organisms can to some extent be reconciled by differences in the capacity to increase oxygen transport. As air-breathing arthropods are unlikely to become oxygen limited under normoxia (especially at rest), the oxygen limitation component in OCLTT does not seem to provide sufficient information to explain lethal temperatures. Nevertheless, many animals may simultaneously face hypoxia and thermal extremes and the combination of these potential stressors is particularly relevant for aquatic organisms where hypoxia (and hyperoxia) is more prevalent. In conclusion, whether taxa show oxygen limitation at thermal extremes may be contingent on their capacity to regulate oxygen uptake, which in turn is linked to their respiratory medium (air vs. water). Fruitful directions for future research include testing multiple predictions of OCLTT in the same species. Additionally, we call for greater research efforts towards studying the role of oxygen in thermal limitation of animal performance at less extreme, sub-lethal temperatures, necessitating studies over longer timescales and evaluating whether oxygen becomes limiting for animals to meet energetic demands associated with feeding, digestion and locomotion.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, Building 1131, DK-8000 Aarhus, Denmark
| | - Rasmus Ern
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, Building 1131, DK-8000 Aarhus, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, Building 1131, DK-8000 Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, Building 1131, DK-8000 Aarhus, Denmark
| | - Leigh Boardman
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, South Africa
| |
Collapse
|
140
|
Diamond SE, Dunn RR, Frank SD, Haddad NM, Martin RA. Shared and unique responses of insects to the interaction of urbanization and background climate. CURRENT OPINION IN INSECT SCIENCE 2015; 11:71-77. [PMID: 28285761 DOI: 10.1016/j.cois.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 06/06/2023]
Abstract
Urbanization profoundly alters biological systems; yet the predictability of responses to urbanization based on key biological traits, the repeatability of these patterns among cities, and how the impact of urbanization on biological systems varies as a function of background climatic conditions remain unknown. We use insects as a focal system to review the major patterns of responses to urbanization, and develop a framework for exploring the shared and unique features that characterize insect responses to urbanization and how responses to urbanization might systematically vary along background environmental gradients in climate. We then illustrate this framework using established patterns in insect macrophysiology.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Steven D Frank
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - Nick M Haddad
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
141
|
Slotsbo S, Sørensen JG, Holmstrup M, Kostal V, Kellermann V, Overgaard J. Tropical to subpolar gradient in phospholipid composition suggests adaptive tuning of biological membrane function in drosophilids. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Stine Slotsbo
- Department of Bioscience Aarhus University Aarhus Denmark
- Department of Bioscience Aarhus University Silkeborg Denmark
| | | | | | - Vladimir Kostal
- Institute of Entomology Biology Centre of the Academy of Science of the Czech Republic České Budějovice Czech Republic
| | | | | |
Collapse
|
142
|
Kellermann V, Hoffmann AA, Kristensen TN, Moghadam NN, Loeschcke V. Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster. Am Nat 2015; 186:582-93. [PMID: 26655772 DOI: 10.1086/683252] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Experimental evolution can be a useful tool for testing the impact of environmental factors on adaptive changes in populations, and this approach is being increasingly used to understand the potential for evolutionary responses in populations under changing climates. However, selective factors will often be more complex in natural populations than in laboratory environments and produce different patterns of adaptive differentiation. Here we test the ability of laboratory experimental evolution under different temperature cycles to reproduce well-known patterns of clinal variation in Drosophila melanogaster. Six fluctuating thermal regimes mimicking the natural temperature conditions along the east coast of Australia were initiated. Contrary to expectations, on the basis of field patterns there was no evidence for adaptation to thermal regimes as reflected by changes in cold and heat resistance after 1-3 years of laboratory natural selection. While laboratory evolution led to changes in starvation resistance, development time, and body size, patterns were not consistent with those seen in natural populations. These findings highlight the complexity of factors affecting trait evolution in natural populations and indicate that caution is required when inferring likely evolutionary responses from the outcome of experimental evolution studies.
Collapse
Affiliation(s)
- Vanessa Kellermann
- Department of Bioscience, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
143
|
Wit J, Loeschcke V, Kellermann V. Life span variation in 13 Drosophila
species: a comparative study on life span, environmental variables and stress resistance. J Evol Biol 2015. [DOI: 10.1111/jeb.12706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- J. Wit
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
| | - V. Loeschcke
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
| | - V. Kellermann
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
- Department of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
144
|
Affiliation(s)
- Steven L. Chown
- School of Biological Sciences Monash University Melbourne Vic.3800 Australia
| | - Kevin J. Gaston
- Environment and Sustainability Institute University of Exeter Penryn Cornwall TR10 9FE UK
| |
Collapse
|
145
|
Lundgren MR, Besnard G, Ripley BS, Lehmann CER, Chatelet DS, Kynast RG, Namaganda M, Vorontsova MS, Hall RC, Elia J, Osborne CP, Christin PA. Photosynthetic innovation broadens the niche within a single species. Ecol Lett 2015; 18:1021-9. [DOI: 10.1111/ele.12484] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Marjorie R. Lundgren
- Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield S10 2TN UK
| | - Guillaume Besnard
- CNRS; Université Toulouse III - Paul Sabatier; ENFA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique); 118 route de Narbonne 31062 Toulouse France
| | - Brad S. Ripley
- Department of Botany; Rhodes University; Grahamstown 6139 South Africa
| | - Caroline E. R. Lehmann
- School of GeoSciences; University of Edinburgh; Crew Building The King's Buildings Alexander Crum Brown Road Edinburgh EH9 3FF UK
| | - David S. Chatelet
- Department of Ecology and Evolutionary Biology; Brown University; Providence RI USA
| | | | - Mary Namaganda
- Department of Biological Sciences; Makerere University; PO Box 7062 Kampala Uganda
| | | | - Russell C. Hall
- Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield S10 2TN UK
| | - John Elia
- National Herbarium of Tanzania; Arusha Tanzania
| | - Colin P. Osborne
- Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield S10 2TN UK
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield S10 2TN UK
| |
Collapse
|
146
|
Jakobs R, Gariepy TD, Sinclair BJ. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:1-9. [PMID: 25982520 DOI: 10.1016/j.jinsphys.2015.05.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a worldwide emerging pest of soft fruits, but its cold tolerance has not been thoroughly explored. We determined the cold tolerance strategy, low temperature thermal limits, and plasticity of cold tolerance in both male and female adult D. suzukii. We reared flies under common conditions (long days, 21°C; control) and induced plasticity by rapid cold-hardening (RCH, 1h at 0°C followed by 1h recovery), cold acclimation (CA, 5 days at 6°C) or acclimation under fluctuating temperatures (FA). D. suzukii had supercooling points (SCPs) between -16 and -23°C, and were chill-susceptible. 80% of control flies were killed after 1h at -7.2°C (males) or -7.5°C (females); CA and FA improved survival of this temperature in both sexes, but RCH did not. 80% of control flies were killed after 70 h (male) or 92 h (female) at 0°C, and FA shifted this to 112 h (males) and 165 h (females). FA flies entered chill coma (CTmin) at approximately -1.7°C, which was ca. 0.5°C colder than control flies; RCH and CA increased the CTmin compared to controls. Control and RCH flies exposed to 0°C for 8h took 30-40 min to recover movement, but this was reduced to <10 min in CA and FA. Flies placed outside in a field cage in London, Ontario, were all killed by a transient cold snap in December. We conclude that adult phenotypic plasticity is not sufficient to allow D. suzukii to overwinter in temperate habitats, and suggest that flies could overwinter in association with built structures, or that there may be additional cold tolerance imparted by developmental plasticity.
Collapse
Affiliation(s)
- Ruth Jakobs
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tara D Gariepy
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
147
|
Andersen JL, MacMillan HA, Overgaard J. Muscle membrane potential and insect chill coma. ACTA ACUST UNITED AC 2015; 218:2492-5. [PMID: 26089529 DOI: 10.1242/jeb.123760] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/11/2015] [Indexed: 01/20/2023]
Abstract
Chill-susceptible insects enter a reversible paralytic state, termed chill coma, at mild low temperatures. Chill coma is caused by neuromuscular impairment, allegedly triggered by cold-induced depolarization of muscle resting membrane potential (Vm). We used five Drosophila species that vary in cold tolerance (chill coma temperature spanning ∼11°C) and repeatedly measured muscle Vm during a downward temperature ramp (20 to -3°C). Cold-tolerant species were able to defend their Vm down to lower temperatures, which is not explained by species-specific differences in initial Vm at 20°C, but by cold-tolerant drosophilids defending Vm across a broad range of temperatures. We found support for a previously suggested 'critical threshold' of Vm, related to chill coma, in three of the five species. Interestingly, the cold-tolerant Drosophila species may enter coma as a result of processes unrelated to muscle depolarization as their Vm was not significantly depolarized at their chill coma temperatures.
Collapse
Affiliation(s)
- Jonas L Andersen
- Department of Zoophysiology, Faculty of Science and Technology, Aarhus University, Aarhus DK-8000, Denmark
| | - Heath A MacMillan
- Department of Zoophysiology, Faculty of Science and Technology, Aarhus University, Aarhus DK-8000, Denmark
| | - Johannes Overgaard
- Department of Zoophysiology, Faculty of Science and Technology, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
148
|
Schou MF, Loeschcke V, Kristensen TN. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster. PLoS One 2015; 10:e0130307. [PMID: 26075607 PMCID: PMC4468168 DOI: 10.1371/journal.pone.0130307] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.
Collapse
|
149
|
Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock. PLoS One 2015; 10:e0129992. [PMID: 26065704 PMCID: PMC4466231 DOI: 10.1371/journal.pone.0129992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/16/2015] [Indexed: 12/02/2022] Open
Abstract
Background Ability to resist temperature shock is an important component of fitness of insects and other ectotherms. Increased resistance to temperature shock is known to affect life-history traits. Temperature shock is also known to affect reproductive traits such as mating ability and viability of gametes. Therefore selection for increased temperature shock resistance can affect the evolution of reproductive traits. Methods We selected replicate populations of Drosophila melanogaster for resistance to cold shock. We then investigated the evolution of reproductive behavior along with other components of fitness- larval survivorship, adult mortality, fecundity, egg viability in these populations. Results We found that larval survivorship, adult mortality and fecundity post cold shock were not significantly different between selected and control populations. However, compared to the control populations, the selected populations laid significantly higher percentage of fertile eggs (egg viability) 24 hours post cold shock. The selected populations had higher mating frequency both with and without cold shock. After being subjected to cold shock, males from the selected populations successfully mated with significantly more non-virgin females and sired significantly more progeny compared to control males. Conclusions A number of studies have reported the evolution of survivorship in response to selection for temperature shock resistance. Our results clearly indicate that adaptation to cold shock can involve changes in components of reproductive fitness. Our results have important implications for our understanding of how reproductive behavior can evolve in response to thermal stress.
Collapse
|
150
|
Salminen TS, Vesala L, Laiho A, Merisalo M, Hoikkala A, Kankare M. Seasonal gene expression kinetics between diapause phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Sci Rep 2015; 5:11197. [PMID: 26063442 PMCID: PMC4463020 DOI: 10.1038/srep11197] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/07/2015] [Indexed: 11/08/2022] Open
Abstract
Most northern insect species experience a period of developmental arrest, diapause, which enables them to survive over the winter and postpone reproduction until favorable conditions. We studied the timing of reproductive diapause and its long-term effects on the cold tolerance of Drosophila montana, D. littoralis and D. ezoana females in seasonally varying environmental conditions. At the same time we traced expression levels of 219 genes in D. montana using a custom-made microarray. We show that the seasonal switch to reproductive diapause occurs over a short time period, and that overwintering in reproductive diapause has long-lasting effects on cold tolerance. Some genes, such as Hsc70, Jon25Bi and period, were upregulated throughout the diapause, while others, including regucalcin, couch potato and Thor, were upregulated only at its specific phases. Some of the expression patterns induced during the sensitive stage, when the females either enter diapause or not, remained induced regardless of the later conditions. qPCR analyses confirmed the findings of the microarray analysis in D. montana and revealed similar gene expression changes in D. littoralis and D. ezoana. The present study helps to achieve a better understanding of the genetic regulation of diapause and of the plasticity of seasonal responses in general.
Collapse
Affiliation(s)
- Tiina S. Salminen
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
- BioMediTech, University of Tampere, Biokatu 6, F1-33014 Finland
| | - Laura Vesala
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
- BioMediTech, University of Tampere, Biokatu 6, F1-33014 Finland
| | - Asta Laiho
- Finnish DNA Microarray Centre, Bioinformatics team, Turku Centre for Biotechnology, Tykistökatu 6, FI-20521 Turku, Finland
| | - Mikko Merisalo
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| | - Anneli Hoikkala
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| | - Maaria Kankare
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| |
Collapse
|