101
|
Cattoir V, Isnard C, Cosquer T, Odhiambo A, Bucquet F, Guérin F, Giard JC. Genomic analysis of reduced susceptibility to tigecycline in Enterococcus faecium. Antimicrob Agents Chemother 2015; 59:239-44. [PMID: 25348531 PMCID: PMC4291356 DOI: 10.1128/aac.04174-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022] Open
Abstract
Tigecycline (TIG) is approved for use for the treatment of complicated intra-abdominal infections, skin and skin structure infections, as well as pneumonia. Acquired resistance or reduced susceptibility to TIG has been observed in Gram-negative rods, has seldom been reported in Gram-positive organisms, and has not yet been reported in Enterococcus faecium. Using the serial passage method, in vitro mutant AusTig and in vitro mutants HMtig1 and HMtig2 with decreased TIG susceptibility (MICs, 0.25 μg/ml) were obtained from strains E. faecium Aus0004 and HM1070 (MICs, 0.03 μg/ml), respectively. In addition, two vancomycin-resistant E. faecium clinical isolates (EF16 and EF22) with reduced susceptibility to TIG (MICs, 0.5 and 0.25 μg/ml, respectively) were studied. Compared to the wild-type strains, the in vitro mutants also showed an increase in the MICs of other tetracyclines. An efflux mechanism did not seem to be involved in the reduced TIG susceptibility, since the presence of efflux pump inhibitors (reserpine or pantoprazole) did not affect the MICs of TIG. Whole-genome sequencing of AusTig was carried out, and genomic comparison with the Aus0004 genome was performed. Four modifications leading to an amino acid substitution were found. These mutations affected the rpsJ gene (efau004_00094, coding for the S10 protein of the 30S ribosomal subunit), efau004_01228 (encoding a cation transporter), efau004_01636 (coding for a hypothetical protein), and efau004_02455 (encoding the l-lactate oxidase). The four other strains exhibiting reduced TIG susceptibility were screened for the candidate mutations. This analysis revealed that three of them showed an amino acid substitution in the same region of the RpsJ protein. In this study, we characterized for the first time genetic determinants linked to reduced TIG susceptibility in enterococci.
Collapse
Affiliation(s)
- Vincent Cattoir
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France CHU de Caen, Service de Microbiologie, Caen, France CNR de la Résistance aux Antibiotiques, Laboratoire Associé Entérocoques, Caen, France
| | - Christophe Isnard
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France CHU de Caen, Service de Microbiologie, Caen, France
| | - Thibaud Cosquer
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France
| | - Arlène Odhiambo
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France
| | - Fiona Bucquet
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France
| | - François Guérin
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France CHU de Caen, Service de Microbiologie, Caen, France CNR de la Résistance aux Antibiotiques, Laboratoire Associé Entérocoques, Caen, France
| | - Jean-Christophe Giard
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France
| |
Collapse
|
102
|
Wide distribution of virulence genes among Enterococcus faecium and Enterococcus faecalis clinical isolates. ScientificWorldJournal 2014; 2014:623174. [PMID: 25147855 PMCID: PMC4124215 DOI: 10.1155/2014/623174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 12/02/2022] Open
Abstract
Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5°C and 65°C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.
Collapse
|
103
|
Gomes LVP, Morey AT, Santos JP, Cardoso JD, Oliveira CF, Perugini MRE, Yamauchi LM, Ogatta SFY. Commensal and environmental vancomycin-resistant Enterococcus faecium isolated in hospital settings: genotypic diversity, antimicrobial resistance and virulence traits. Indian J Med Microbiol 2014; 32:345-7. [PMID: 25008838 DOI: 10.4103/0255-0857.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | | | | | | | | | | | - S F Y Ogatta
- Departamento de Microbiologia, Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, PR, Brazil
| |
Collapse
|
104
|
Vancomycin-resistant enterococci: Troublemaker of the 21st century. J Glob Antimicrob Resist 2014; 2:205-212. [PMID: 27873678 DOI: 10.1016/j.jgar.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 11/22/2022] Open
Abstract
The emergence of multidrug-resistant and vancomycin-resistant enterococci during the last decade has made it difficult to treat nosocomial infections. Although various enterococcal species have been identified, only two (Enterococcus faecalis and Enterococcus faecium) are responsible for the majority of human infections. Vancomycin is an important therapeutic alternative against multidrug-resistant enterococci but is associated with a poor prognosis. Resistance to vancomycin dramatically reduces the therapeutic options for enterococcal infections. The bacterium develops resistance by modifying the C-terminal d-alanine of peptidoglycan to d-lactate, creating a d-Ala-d-Lac sequence that effectively reduces the affinity of vancomycin for the peptidoglycan by 1000-fold. Moreover, the resistance genes can be transferred from enterococci to Staphylococcus aureus, thereby posing a threat to patient safety and also a challenge for treating physicians. Judicious use of vancomycin and broad-spectrum antibiotics must be implemented, but strict infection control measures must also be followed to prevent nosocomial transmission of these organisms. Furthermore, improvements in clinical practice, rotation of antibiotics, herbal drugs, nanoantibiotics and the development of newer antibiotics based on a pharmacogenomic approach may prove helpful to overcome dreadful vancomycin-resistant enterococcal infections.
Collapse
|
105
|
vanA-containing E. faecium isolates of clonal complex CC17 in clinical and environmental samples in a Tunisian hospital. Diagn Microbiol Infect Dis 2014; 79:60-3. [DOI: 10.1016/j.diagmicrobio.2014.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022]
|
106
|
Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J Microbiol Methods 2014; 100:58-69. [DOI: 10.1016/j.mimet.2014.02.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 12/15/2022]
|
107
|
Furlaneto-Maia L, Rocha KR, Siqueira VLD, Furlaneto MC. Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus spp. Rev Inst Med Trop Sao Paulo 2014; 56:97-103. [PMID: 24626409 PMCID: PMC4085851 DOI: 10.1590/s0036-46652014000200002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 09/05/2013] [Indexed: 11/22/2022] Open
Abstract
Enterococci are increasingly responsible for nosocomial infections
worldwide. This study was undertaken to compare the identification and
susceptibility profile using an automated MicrosScan system, PCR-based assay and
disk diffusion assay of Enterococcus spp. We evaluated 30
clinical isolates of Enterococcus spp. Isolates were identified
by MicrosScan system and PCR-based assay. The detection of antibiotic resistance
genes (vancomycin, gentamicin, tetracycline and erythromycin) was also
determined by PCR. Antimicrobial susceptibilities to vancomycin (30 µg),
gentamicin (120 µg), tetracycline (30 µg) and erythromycin (15 µg) were tested
by the automated system and disk diffusion method, and were interpreted
according to the criteria recommended in CLSI guidelines. Concerning
Enterococcus identification the general agreement between
data obtained by the PCR method and by the automatic system was 90.0% (27/30).
For all isolates of E. faecium and E. faecalis
we observed 100% agreement. Resistance frequencies were higher in E.
faecium than E. faecalis. The resistance rates
obtained were higher for erythromycin (86.7%), vancomycin (80.0%), tetracycline
(43.35) and gentamicin (33.3%). The correlation between disk diffusion and
automation revealed an agreement for the majority of the antibiotics with
category agreement rates of > 80%. The PCR-based assay, the
van(A) gene was detected in 100% of vancomycin resistant
enterococci. This assay is simple to conduct and reliable in the identification
of clinically relevant enterococci. The data obtained reinforced the need for an
improvement of the automated system to identify some enterococci.
Collapse
Affiliation(s)
- Luciana Furlaneto-Maia
- Technological Federal University of Paraná, Brazil, Technological Federal University of Paraná, Brazil
| | - Kátia Real Rocha
- Department of Microbiology, State University at Londrina, Paraná, Brazil, Department of Microbiology, State University at Londrina, Paraná, Brazil
| | - Vera Lúcia Dias Siqueira
- Department of Clinical Analysis, State University at Maringa, Paraná, Brazil, Department of Clinical Analysis, State University at Maringa, Paraná, Brazil
| | - Márcia Cristina Furlaneto
- Department of Microbiology, State University at Londrina, Paraná, Brazil, Department of Microbiology, State University at Londrina, Paraná, Brazil
| |
Collapse
|
108
|
Sadowy E, Luczkiewicz A. Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin. BMC Microbiol 2014; 14:66. [PMID: 24629030 PMCID: PMC4004213 DOI: 10.1186/1471-2180-14-66] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/27/2014] [Indexed: 12/28/2022] Open
Abstract
Background Enterococci, ubiquitous colonizers of humans and other animals, play an increasingly important role in health-care associated infections (HAIs). It is believed that the recent evolution of two clinically relevant species, Enterococcus faecalis and Enterococcus faecium occurred in a big part in a hospital environment, leading to formation of high-risk enterococcal clonal complexes (HiRECCs), which combine multidrug resistance with increased pathogenicity and epidemicity. The aim of this study was to establish the species composition in wastewater, its marine recipient as well as a river estuary and to investigate the antimicrobial susceptibility of collected isolates. Molecular methods were additionally applied to test the presence of HiRRECC-related E. faecium. Results Two wastewater treatment plants (WWTPs), their marine outfalls and Vistula river that influence significantly the quality of waters in Gulf of Gdansk were sampled to investigate the presence of Enterococcus spp. Four-hundred-twenty-eight isolates were obtained, including E. faecium (244 isolates, 57.0%), E. hirae (113 isolates, 26.4%) and E. faecalis (63 isolates, 14.7%); other species (E. gallinarum/casseliflavus, E. durans and E. avium) accounted for 1.9%. Antimicrobial susceptibility testing revealed the presence of isolates resistant to erythromycin, tetracycline, amipicillin, fluoroquinolones and aminoglycosides (high-level resistance), especially among E. faecium, where such isolates were usually characterized by multilocus sequence types associated with nosocomial lineages 17, 18 and 78 of this species representing HiRECC, formerly called CC17. These isolates not only carried several resistance determinants but were also enriched in genes encoding pathogenicity factors (Esp, pili) and genes associated with mobile genetic elements (MGE), a feature also typical for nosocomial HiRECC. Conclusions Our data show that WWTPs constitute an important source of enterococcal strains carrying antimicrobial resistance determinants, often associated with the presence of MGE, for the recipient water environment, thus increasing a pool of such genes for other organisms. The presence of HiRECCs in wastewaters and marine/river environment may indicate that adaptations gained in hospitals may be also beneficial for survival of such clones in other settings. There is an obvious need to monitor the release and spread of such strains in order to elucidate better ways to curb their dissemination.
Collapse
Affiliation(s)
| | - Aneta Luczkiewicz
- Gdansk University of Technology, ul, G, Narutowicza 11/12, Gdansk 80-952, Poland.
| |
Collapse
|
109
|
Sidhu JPS, Skelly E, Hodgers L, Ahmed W, Li Y, Toze S. Prevalence of enterococcus species and their virulence genes in fresh water prior to and after storm events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2979-2988. [PMID: 24494806 DOI: 10.1021/es4050083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enterococcus spp. isolates (n = 286) collected from six surface water bodies in subtropical Brisbane, Australia, prior to and after storm events, were identified to species level and tested for the presence of seven clinically important virulence genes (VGs). Enterococcus faecalis (48%), Enterococcus faecium (14%), Enterococcus mundtii (13%), and Enterococcus casseliflavus (13%) were frequently detected at all sites. The frequency of E. faecium occurrence increased from 6% in the dry period to 18% after the wet period. The endocarditis antigen (efaA), gelatinase (gelE), collagen-binding protein (ace), and aggregation substance (asa1) were detected in 61%, 43%, 43%, and 23% of Enterococcus isolates, respectively. The chances of occurrence of ace, gelE, efaA, and asa1 genes in E. faecalis were found to be much higher compared to the other Enterococcus spp. The observed odds ratio of occurrence of ace and gelE genes in E. faecalis was much higher at 7.96 and 6.40 times, respectively. The hyl gene was 3.84 times more likely to be detected in E. casseliflavus. The presence of multiple VGs in most of the E. faecalis isolates underscores the importance of E. faecalis as a reservoir of VGs in the fresh water aquatic environment. Consequently, if contaminated surface water is to be used for production of potable and nonpotable water some degree of treatment depending upon intended use such as detention in basins prior to use or chlorination is required.
Collapse
Affiliation(s)
- J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane 4102, Australia
| | | | | | | | | | | |
Collapse
|
110
|
Hatoum-Aslan A, Marraffini LA. Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Curr Opin Microbiol 2014; 17:82-90. [PMID: 24581697 PMCID: PMC3942673 DOI: 10.1016/j.mib.2013.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 02/08/2023]
Abstract
CRISPR-Cas systems protect prokaryotes from viruses and plasmids and function primarily as an adaptive immune system in these organisms. Recent discoveries, however, revealed unexpected roles for CRISPR loci as barriers to horizontal gene transfer and as modulators of gene expression. We review how both of these functions of CRISPR-Cas systems can affect the emergence and virulence of human bacterial pathogens.
Collapse
Affiliation(s)
- Asma Hatoum-Aslan
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
111
|
Sánchez-Díaz AM, Cuartero C, Lozano S, Rodríguez JD, Alonso JM, Quiles-Melero I, López J, Cantón R, Ruiz-Garbajosa P. Emergence and Long-Lasting Persistence of Linezolid-ResistantEnterococcus faecium-ST117 in an Oncohematologic Patient After a Nine-Day Course of Linezolid. Microb Drug Resist 2014; 20:17-21. [DOI: 10.1089/mdr.2013.0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana María Sánchez-Díaz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Claudio Cuartero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sara Lozano
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Juan Manuel Alonso
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Inmaculada Quiles-Melero
- Servicio de Microbiología, Hospital Universitario La Paz and Instituto de Investigación La Paz (IdiPAZ), Madrid, Spain
| | - Javier López
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
112
|
Arias CA, Murray BE. Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther 2014; 6:637-55. [DOI: 10.1586/14787210.6.5.637] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
113
|
Cattoir V, Giard JC. Antibiotic resistance inEnterococcus faeciumclinical isolates. Expert Rev Anti Infect Ther 2014; 12:239-48. [DOI: 10.1586/14787210.2014.870886] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
114
|
Abstract
Enterococci are a major cause of health care-associated infections and account for approximately 10% of all bacteremias globally. The aim of this study was to determine the proportion of enterococcal bacteremia isolates in Australia that are antimicrobial resistant, with particular emphasis on susceptibility to ampicillin and the glycopeptides, and to characterize the molecular epidemiology of the Enterococcus faecalis and Enterococcus faecium isolates. From 1 January to 31 December 2011, 1,079 unique episodes of bacteremia were investigated, of which 95.8% were caused by either E. faecalis (61.0%) or E. faecium (34.8%). The majority of bacteremias were health care associated, and approximately one-third were polymicrobial. Ampicillin resistance was detected in 90.4% of E. faecium isolates but was not detected in E. faecalis isolates. Vancomycin nonsusceptibility was reported in 0.6% and 36.5% of E. faecalis and E. faecium isolates, respectively. Unlike Europe and the United States, where vancomycin resistance in E. faecium is predominately due to the acquisition of the vanA operon, 98.4% of E. faecium isolates harboring van genes carried the vanB operon, and 16.1% of the vanB E. faecium isolates had vancomycin MICs at or below the susceptible breakpoint of the CLSI. Although molecular typing identified 126 E. faecalis pulsed-field gel electrophoresis pulsotypes, >50% belonged to two pulsotypes that were isolated across Australia. E. faecium consisted of 73 pulsotypes from which 43 multilocus sequence types were identified. Almost 90% of the E. faecium isolates were identified as CC17 clones, of which approximately half were characterized as ST203, which was isolated Australia-wide. In conclusion, the Australian Enterococcal Sepsis Outcome Programme (AESOP) study has shown that although they are polyclonal, enterococcal bacteremias in Australia are frequently caused by ampicillin-resistant vanB E. faecium.
Collapse
|
115
|
Molecular analysis and distribution of multidrug-resistant Enterococcus faecium isolates belonging to clonal complex 17 in a tertiary care center in Mexico City. BMC Microbiol 2013; 13:291. [PMID: 24330424 PMCID: PMC4029522 DOI: 10.1186/1471-2180-13-291] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/02/2013] [Indexed: 11/13/2022] Open
Abstract
Background Enterococcus faecium has recently emerged as a multidrug-resistant nosocomial pathogen involved in outbreaks worldwide. A high rate of resistance to different antibiotics has been associated with virulent clonal complex 17 isolates carrying the esp and hyl genes and the purK1 allele. Results Twelve clinical vancomycin-resistant Enterococcus faecium (VREF) isolates were obtained from pediatric patients at the Hospital Infantil de México Federico Gómez (HIMFG). Among these VREF isolates, 58.3% (7/12) were recovered from urine, while 41.7% (5/12) were recovered from the bloodstream. The VREF isolates showed a 100% rate of resistance to ampicillin, amoxicillin-clavulanate, ciprofloxacin, clindamycin, chloramphenicol, streptomycin, gentamicin, rifampicin, erythromycin and teicoplanin. In addition, 16.7% (2/12) of the isolates were resistant to linezolid, and 66.7% (8/12) were resistant to tetracycline and doxycycline. PCR analysis revealed the presence of the vanA gene in all 12 VREF isolates, esp in 83.3% (10/12) of the isolates and hyl in 50% (6/12) of the isolates. Phylogenetic analysis via molecular typing was performed using pulsed-field gel electrophoresis (PFGE) and demonstrated 44% similarity among the VREF isolates. MLST analysis identified four different sequence types (ST412, ST757, ST203 and ST612). Conclusion This study provides the first report of multidrug-resistant VREF isolates belonging to clonal complex 17 from a tertiary care center in Mexico City. Multidrug resistance and genetic determinants of virulence confer advantages among VREF in the colonization of their host. Therefore, the prevention and control of the spread of nosocomial infections caused by VREF is crucial for identifying new emergent subclones that could be challenging to treat in subsequent years.
Collapse
|
116
|
Vignaroli C, Luna GM, Pasquaroli S, Di Cesare A, Petruzzella R, Paroncini P, Biavasco F. Epidemic Escherichia coli ST131 and Enterococcus faecium ST17 in coastal marine sediments from an Italian beach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13772-13780. [PMID: 24195439 DOI: 10.1021/es4019139] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fecal indicator bacteria (FIB) are used worldwide to assess water quality in coastal environments, but little is known about their genetic diversity and pathogenicity. This study examines the prevalence, antimicrobial resistance, virulence, and genetic diversity of FIB isolated from marine sediments from a central Adriatic seaside resort. FIB, recovered from 6 out of 7 sites, were significantly more abundant at sampling stations 300 m offshore than close to the shore. Escherichia coli accounted for 34.5% of fecal coliforms, and Enterococcus faecalis accounted for 32% of enterococci. Most isolates (27% of E. coli and 22% of enterococci) were recovered from the sediments that had the highest organic content. Multidrug-resistant E. coli (31%) and enterococci (22%) were found at nearly all sites, whereas 34.5% of E. coli and 28% of enterococci harboring multiple virulence factors were recovered from just two sites. Pulsed-field gel electrophoresis typing showed wide genetic diversity among isolates. Human epidemic clones ( E. coli ST131 and Enterococcus faecium ST17) were identified for the first time by multilocus sequence typing in an area where bathing had not been prohibited. These clones were from sites far removed from riverine inputs, suggesting a wide diffusion of pathogenic FIB in the coastal environment and a high public health risk.
Collapse
Affiliation(s)
- C Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche , via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
117
|
Burgos MJG, Aguayo MCL, Pulido RP, Gálvez A, López RL. Multilocus sequence typing and antimicrobial resistance in Enterococcus faecium isolates from fresh produce. Antonie van Leeuwenhoek 2013; 105:413-21. [DOI: 10.1007/s10482-013-0073-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023]
|
118
|
Klare I, Witte W, Wendt C, Werner G. [Vancomycin-resistant enterococci (VRE). Recent results and trends in development of antibiotic resistance]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 55:1387-400. [PMID: 23114437 DOI: 10.1007/s00103-012-1564-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enterococci (mainly E. faecalis, E. faecium) are important nosocomial pathogens predominantly affecting older and/or immunocompromised patients. The bacteria possess a broad spectrum of intrinsic and acquired antibiotic resistance properties. Among these, the transferrable glycopeptide resistance of the vanA and vanB genotypes in vancomycin-resistant enterococci (VRE; reservoir: E. faecium) as well as resistance to last resort antibiotics (e.g. linezolid and tigecycline) are of special concern. Enterococci (including VRE) are easily transferred in hospitals; however, colonizations are far more frequent than infections. Resistance frequencies for vancomycin in clinical E. faecium isolates have remained at a relatively constant level of 8-15% (but with local or regional variations) in recent years whereas frequencies for teicoplanin resistance have shown a slight decrease. Glycopeptide resistance trends correlate with a spread of hospital-associated E. faecium strains carrying the vanA and, with rising frequency in recent years, the vanB gene cluster, the latter being associated with teicoplanin susceptibility. This increased occurrence of vanB-positive E. faecium strains may be caused by an increased use of antibiotics selecting enterococci and VRE as well as due to methodological reasons (e.g. reduced EUCAST MIC-breakpoints for glycopeptides; increased use and sensitive performance of chromogenic VRE agars, increased use of molecular diagnostic assays).
Collapse
Affiliation(s)
- I Klare
- Nationales Referenzzentrum für Staphylokokken und Enterokokken, Robert Koch-Institut, Burgstrasse 37, Wernigerode, Germany.
| | | | | | | |
Collapse
|
119
|
Ziakas PD, Thapa R, Rice LB, Mylonakis E. Trends and significance of VRE colonization in the ICU: a meta-analysis of published studies. PLoS One 2013; 8:e75658. [PMID: 24086603 PMCID: PMC3785502 DOI: 10.1371/journal.pone.0075658] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 12/28/2022] Open
Abstract
Background The burden and significance of vancomycin-resistant enterococci (VRE) colonization in the ICU is not clearly understood. Methods We searched PubMed and EMBASE up to May 2013 for studies reporting the prevalence of VRE upon admission to the ICU and performed a meta-analysis to assess rates and trends of VRE colonization. We calculated the prevalence of VRE on admission and the acquisition (colonization and/or infection) rates to estimate time trends and the impact of colonization on ensuing VRE infections. Findings Across 37 studies (62,959 patients at risk), the estimated prevalence of VRE on admission to the ICU was 8.8% (7.1-10.6). Estimates were more consistent when cultures were obtained within 24 hours from admission. The VRE acquisition rate was 8.8% (95% CI 6.9-11.0) across 26 evaluable studies (35,364 patients at risk). Across US studies, VRE acquisition rate was 10.2% (95% CI 7.7-13.0) and demonstrated significant decline in annual trends. We used the US estimate of colonization on admission [12.3% (10.5-14.3)] to evaluate the impact of VRE colonization on admission in overall VRE prevalence. We demonstrated that VRE colonization on admission is a major determinant of the overall VRE burden in the ICU. Importantly, among colonized patients (including admitted and/or acquired cases) the VRE infection rates vary widely from 0-45% (with the risk of VRE bacteremia being reported from 0-16%) and <2% among those without a proven colonization. Conclusion In summary, up to 10.6% of patients admitted in the ICU are colonized with VRE on admission and a similar percentage will acquire VRE during their ICU stay. Importantly, colonization on admission is a major determinant of VRE dynamics in the ICU and the risk of VRE-related infections is close related to colonization.
Collapse
Affiliation(s)
- Panayiotis D. Ziakas
- Infectious Diseases Division, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Rachana Thapa
- Infectious Diseases Division, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Louis B. Rice
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
120
|
Zhou X, Arends JP, Span LF, Friedrich AW. Algorithm for pre-emptive glycopeptide treatment in patients with haematologic malignancies and an Enterococcus faecium bloodstream infection. Antimicrob Resist Infect Control 2013; 2:24. [PMID: 24025668 PMCID: PMC3856451 DOI: 10.1186/2047-2994-2-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/01/2013] [Indexed: 01/01/2023] Open
Abstract
Introduction Nowadays Enterococcus faecium has become one of the most emerging and challenging nosocomial pathogens. The aim of this study was to determine risk factors in haematology patients who are at risk of an Enterococcus faecium bloodstream infection (BSI) and should be considered for pre-emptive glycopeptide treatment. With these identified risk factors a prediction model can be developed for clinical use. Methods Retrospectively clinical and microbiological data in 33 patients with an E. faecium BSI were compared to 66 control patients during a 5-year period at the haematology ward. Multivariate logistic regression was used to explore the independent risk factors and a prediction model was developed to determine the risk of an E. faecium BSI. Results E. faecium BSIs were found to be associated with high mortality rates. Independent risk factors for E. faecium BSI were colonization with E. faecium 30 days prior to blood culture (OR 5.71; CI 1.7-18.7), combination of neutropenia and abdominal focus (4.37; 1.4-13.4), age > 58 years (4.01; 1.3-12.5), hospital stay prior to blood culture > 14 days (3.55; 0.98-12.9) and CRP (C-reactive protein) level >125 mg/L (4.37; 1.1-10.2). Conclusion Using data from this study, risk stratification for the development of an E. faecium BSI in patients with haematological malignancies is possible. Pre-emptive treatment should be considered in those patients who are at high risk. Using a prediction model as designed in this study, antibiotic stewardship in terms of prudent use of glycopeptides can be improved and might be helpful in controlling further spread of VRE (vancomycin resistant enterococci).
Collapse
Affiliation(s)
- Xuewei Zhou
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
121
|
Lam MMC, Seemann T, Tobias NJ, Chen H, Haring V, Moore RJ, Ballard S, Grayson LM, Johnson PDR, Howden BP, Stinear TP. Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium. BMC Genomics 2013; 14:595. [PMID: 24004955 PMCID: PMC3846456 DOI: 10.1186/1471-2164-14-595] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background In this report we have explored the genomic and microbiological basis for a sustained increase in bloodstream infections at a major Australian hospital caused by Enterococcus faecium multi-locus sequence type (ST) 203, an outbreak strain that has largely replaced a predecessor ST17 sequence type. Results To establish a ST203 reference sequence we fully assembled and annotated the genome of Aus0085, a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate, and the first example of a completed ST203 genome. Aus0085 has a 3.2 Mb genome, comprising a 2.9 Mb circular chromosome and six circular plasmids (2 kb–130 kb). Twelve percent of the 3222 coding sequences (CDS) in Aus0085 are not present in ST17 E. faecium Aus0004 and ST18 E. faecium TX16. Extending this comparison to an additional 12 ST17 and 14 ST203 E. faecium hospital isolate genomes revealed only six genomic regions spanning 41 kb that were present in all ST203 and absent from all ST17 genomes. The 40 CDS have predicted functions that include ion transport, riboflavin metabolism and two phosphotransferase systems. Comparison of the vancomycin resistance-conferring Tn1549 transposon between Aus0004 and Aus0085 revealed differences in transposon length and insertion site, and van locus sequence variation that correlated with a higher vancomycin MIC in Aus0085. Additional phenotype comparisons between ST17 and ST203 isolates showed that while there were no differences in biofilm-formation and killing of Galleria mellonella, ST203 isolates grew significantly faster and out-competed ST17 isolates in growth assays. Conclusions Here we have fully assembled and annotated the first ST203 genome, and then characterized the genomic differences between ST17 and ST203 E. faecium. We also show that ST203 E. faecium are faster growing and can out-compete ST17 E. faecium. While a causal genetic basis for these phenotype differences is not provided here, this study revealed conserved genetic differences between the two clones, differences that can now be tested to explain the molecular basis for the success and emergence of ST203 E. faecium.
Collapse
Affiliation(s)
- Margaret M C Lam
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Tremblay CL, Charlebois A, Masson L, Archambault M. Characterization of hospital-associated lineages of ampicillin-resistant Enterococcus faecium from clinical cases in dogs and humans. Front Microbiol 2013; 4:245. [PMID: 23986753 PMCID: PMC3750202 DOI: 10.3389/fmicb.2013.00245] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022] Open
Abstract
Ampicillin-resistant Enterococcus faecium (ARE) has rapidly emerged worldwide and is one of the most important nosocomial pathogens. However, very few reports are available on ARE isolates from canine clinical cases. The objective of this study was to characterize ARE strains of canine clinical origin from a veterinary teaching hospital in Canada and to compare them with human strains. Ten ARE strains from dogs and humans were characterized by multilocus sequence typing (MLST), pulsed field gel electrophoresis (PFGE), antibiotic susceptibility and biofilm activities, presence of rep-families, CRISPR-cas and putative virulence genes. All ARE strains (n = 10) were resistant to ciprofloxacin and lincomycin. Resistances to tetracycline (n = 6), macrolides (n = 6), and to high concentrations of gentamicin, kanamycin and streptomycin (n = 5) were also observed. Canine ARE isolates were found to be susceptible to vancomycin whereas resistance to this antibiotic was observed in human strains. Ampicillin resistance was linked to PBP5 showing mutations at 25 amino acid positions. Fluoroquinolone resistance was attributable to ParC, GyrA, and GyrB mutations. Data demonstrated that all canine ARE were acm (collagen binding protein)-positive and that most harbored the efaAfm gene, encoding for a cell wall adhesin. Biofilm formation was observed in two human strains but not in canine strains. Two to five rep-families were observed per strain but no CRISPR sequences were found. A total of six STs (1, 18, 65, 202, 205, and 803) were found with one belonging to a new ST (ST803). These STs were identical or closely related to human hospital-associated lineages. This report describes for the first time the characterization of canine ARE hospital-associated strains in Canada and also supports the importance of prudent antibiotic use in veterinary medicine to avoid zoonotic spread of canine ARE.
Collapse
Affiliation(s)
- Cindy-Love Tremblay
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, CRIPA Research Group Quebec, QC, Canada
| | | | | | | |
Collapse
|
123
|
Abstract
UNLABELLED Nosocomial outbreaks of vancomycin-resistant Enterococcus faecium (VREfm) are thought to occur by transmission of VREfm between patients, predicting that infection control interventions will limit cross-transmission. Despite implementation of such strategies, the incidence of VREfm infections continues to rise. We aimed to use genomics to better understand the epidemiology of E. faecium within a large hospital and investigate the reasons for failure of infection control strategies. Whole-genome sequencing was performed on 61 E. faecium (36 VREfm) isolates, predominately from blood cultures collected at a single hospital between 1998 and 2009, and on five vanB-positive anaerobic commensal bacteria isolated from human feces. Phylogenomic analysis and precise mapping of the vanB gene, which contains the Tn1549 transposon, showed that at least 18 of the 36 VREfm isolates had acquired the transposon via independent insertion events, indicating de novo generation of VREfm rather than cross-transmission. Furthermore, Tn1549 sequences found in 15 of the 36 VREfm isolates were the same as the Tn1549 sequence from one of the gut anaerobes. National and international comparator E. faecium isolates were phylogenetically interspersed with isolates from our hospital, suggesting that our findings might be globally representative. These data demonstrate that VREfm generation within a patient is common, presumably occurring in the human bowel during antibiotic therapy, and help explain our inability to reduce VREfm infections. A recommendation from our findings is that infection control practices should include screening patients for specific hospital clones of vancomycin-susceptible E. faecium rather than just VREfm. IMPORTANCE Enterococcus faecium is an increasingly important human pathogen causing predominantly antibiotic-resistant infections in hospitalized patients. Large amounts of health care funding are spent trying to control antibiotic-resistant bacteria in hospitals globally, yet in many institutions around the world, vancomycin-resistant E. faecium (VREfm) infections continue to rise. The new findings from this study help explain the failures of our current approaches to controlling vanB VREfm in health care institutions. Given the importance of this bacterium as a cause of hospital-acquired infections and the difficulties faced by infection control units in trying to prevent colonization in their institutions, the novel findings from this study provide evidence that a new approach to controlling VREfm in hospitals is required. In particular, more attention should be given to understanding the epidemiology of hospital-adapted vancomycin-susceptible E. faecium, and patients at higher risk for de novo generation of VREfm need to be identified and optimally managed.
Collapse
|
124
|
Cekin Y, Erman Daloğlu A, Oğünç D, Ozhak Baysan B, Dağlar D, Inan D, Mutlu D, Ongüt G, Colak D. Evaluation of vancomycin resistance 3 multiplexed PCR assay for detection of vancomycin-resistant enterococci from rectal swabs. Ann Lab Med 2013; 33:326-30. [PMID: 24003422 PMCID: PMC3756236 DOI: 10.3343/alm.2013.33.5.326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/18/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Background Active screening for vancomycin-resistant enterococci (VRE) using rectal specimens is recommended to limit the spread of antimicrobial resistance within certain high-risk populations. We evaluated the diagnostic performance of Vancomycin Resistance 3 Multiplexed Tandem PCR assay (AusDiagnostics, Australia), a rapid multiplex real-time PCR assay that detects vanA and/or vanB. Methods Two-hundred-and-eleven rectal swabs from Hematology and Oncology unit were submitted for VRE surveillance via direct detection of vanA and/or vanB by culture and by using Vancomycin Resistance 3 Multiplexed Tandem PCR assay. Enterococci were identified to the species level by using standard biochemical tests and BD Phoenix Automated Microbiology System (BD Diagnostic Systems, USA). Vancomycin susceptibility of enterococci was determined using Etest (BioMerieux, France). Results Compared to the culture method, Vancomycin Resistance 3 Multiplexed Tandem PCR assay had a sensitivity of 84.0%, specificity of 98.8%, positive predictive value (PPV) of 91.3%, and negative predictive value (NPV) of 97.6%. The assay failed to detect 18 (8.5%) specimens because of the presence of PCR inhibitors; of the remaining 193 specimens, 25 (12.9%) were positive, 23 for vanA, and 2 for vanB. Although both sensitivity and specificity for vanA VRE was 100% compared to the culture method, all vanB-positive specimens tested negative by VRE culture. Conclusions Vancomycin Resistance 3 Multiplexed Tandem PCR assay is a rapid and laborsaving option for VRE surveillance for direct use on rectal swabs. However, the high rate of PCR failure owing to the inhibitors in the specimens and the low specificity for vanB should be considered when interpreting the results.
Collapse
Affiliation(s)
- Yesim Cekin
- Clinical Microbiology, Antalya Research and Training Hospital, Antalya, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Zhang X, Rogers M, Bierschenk D, Bonten MJM, Willems RJL, van Schaik W. A LacI-family regulator activates maltodextrin metabolism of Enterococcus faecium. PLoS One 2013; 8:e72285. [PMID: 23951303 PMCID: PMC3737153 DOI: 10.1371/journal.pone.0072285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/05/2013] [Indexed: 11/19/2022] Open
Abstract
Enterococcus faecium is a gut commensal of humans and animals. In the intestinal tract, E. faecium will have access to a wide variety of carbohydrates, including maltodextrins and maltose, which are the sugars that result from the enzymatic digestion of starch by host-derived and microbial amylases. In this study, we identified the genetic determinants for maltodextrin utilization of E. faecium E1162. We generated a deletion mutant of the mdxABCD-pulA gene cluster that is homologous to maltodextrin uptake genes in other Gram-positive bacteria, and a deletion mutant of the mdxR gene, which is predicted to encode a LacI family regulator of mdxABCD-pulA. Both mutations impaired growth on maltodextrins but had no effect on the growth on maltose and glucose. Comparative transcriptome analysis showed that eight genes (including mdxABCD-pulA) were expressed at significantly lower levels in the isogenic ΔmdxR mutant strain compared to the parental strain when grown on maltose. Quantitative real-time RT-PCR confirmed the results of transcriptome analysis and showed that the transcription of a putative maltose utilization gene cluster is induced in a semi-defined medium supplemented with maltose but is not regulated by MdxR. Understanding the maltodextrin metabolism of E. faecium could yield novel insights into the underlying mechanisms that contribute to the gut commensal lifestyle of E. faecium.
Collapse
Affiliation(s)
- Xinglin Zhang
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
126
|
High genetic diversity of Enterococcus faecium and Enterococcus faecalis clinical isolates by pulsed-field gel electrophoresis and multilocus sequence typing from a hospital in Malaysia. BIOMED RESEARCH INTERNATIONAL 2013; 2013:938937. [PMID: 23819125 PMCID: PMC3681219 DOI: 10.1155/2013/938937] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 12/01/2022]
Abstract
Little is known on the genetic relatedness and potential dissemination of particular enterococcal clones in Malaysia. We studied the antibiotic susceptibility profiles of Enterococcus faecium and Enterococcus faecalis and subjected them to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). E. faecium and E. faecalis displayed 27 and 30 pulsotypes, respectively, and 10 representative E. faecium and E. faecalis isolates (five each) yielded few different sequence types (STs): ST17 (2 isolates), ST78, ST203, and ST601 for E. faecium, and ST6, ST16, ST28, ST179, and ST399 for E. faecalis. Resistance to tazobactam-piperacillin and ampicillin amongst E. faecium isolates was highly observed as compared to E. faecalis isolates. All of the isolates were sensitive to vancomycin and teicoplanin. The presence of epidemic and nosocomial strains of selected E. faecium STs: 17, 78, and 203 and E. faecalis ST6 as well as high rates of resistance to multiple antibiotics amongst E. faecium isolates is of a particular concern.
Collapse
|
127
|
Genetic variability of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis isolates from humans, chickens, and pigs in Malaysia. Appl Environ Microbiol 2013; 79:4528-33. [PMID: 23666337 DOI: 10.1128/aem.00650-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals.
Collapse
|
128
|
Zhang X, Bierschenk D, Top J, Anastasiou I, Bonten MJM, Willems RJL, van Schaik W. Functional genomic analysis of bile salt resistance in Enterococcus faecium. BMC Genomics 2013; 14:299. [PMID: 23641968 PMCID: PMC3653699 DOI: 10.1186/1471-2164-14-299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/18/2013] [Indexed: 02/07/2023] Open
Abstract
Background Enterococcus faecium is a Gram-positive commensal bacterium of the mammalian intestinal tract. In the last two decades it has also emerged as a multi-resistant nosocomial pathogen. In order to survive in and colonize the human intestinal tract E. faecium must resist the deleterious actions of bile. The molecular mechanisms exploited by this bacterium to tolerate bile are as yet unexplored. Results In this study we used a high-throughput quantitative screening approach of transposon mutant library, termed Microarray-based Transposon Mapping (M-TraM), to identify the genetic determinants required for resistance to bile salts in E. faecium E1162. The gene gltK, which is predicted to encode a glutamate/aspartate transport system permease protein, was identified by M-TraM to be involved in bile resistance. The role of GltK in bile salt resistance was confirmed by the subsequent observation that the deletion of gltK significantly sensitized E. faecium E1162 to bile salts. To further characterize the response of E. faecium E1162 to bile salts, we performed a transcriptome analysis to identify genes that are regulated by exposure to 0.02% bile salts. Exposure to bile salts resulted in major transcriptional rearrangements, predominantly in genes involved in carbohydrate, nucleotide and coenzyme transport and metabolism. Conclusion These findings add to a better understanding of the molecular mechanisms by which E. faecium responds and resists the antimicrobial action of bile salts.
Collapse
Affiliation(s)
- Xinglin Zhang
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100; Room G04,527, Utrecht, 3584 CX, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
129
|
Semedo-Lemsaddek T, Nóbrega CS, Ribeiro T, Pedroso NM, Sales-Luís T, Lemsaddek A, Tenreiro R, Tavares L, Vilela CL, Oliveira M. Virulence traits and antibiotic resistance among enterococci isolated from Eurasian otter (Lutra lutra). Vet Microbiol 2013; 163:378-82. [DOI: 10.1016/j.vetmic.2012.12.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
|
130
|
Miller WR, Murray BE, Arias CA. Emergence and management of drug-resistant enterococcal infections. Microb Drug Resist 2013. [DOI: 10.2217/ebo.12.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- William R Miller
- William R Miller is a graduate of the University of Texas Medical School (TX, USA) where he was named to the Alpha Omega Alpha Medical Honor Society. He is currently completing his residency training in combined internal medicine–pediatrics and plans to pursue a fellowship in infectious diseases
| | - Barbara E Murray
- Barbara E Murray graduated top of her class from the University of Texas Southwestern Medical School (TX, USA), and completed her training in internal medicine and infectious diseases at the Massachusetts General Hospital, Harvard Medical School (MA, USA). She is the JJ Ralph Meadows Professor and Director of the Division of Infectious Diseases and Laboratory for Enterococcal Research at the Center for the Study of Emerging and Re-Emerging Pathogens at the University of Texas Medical School. Her main
| | - Cesar A Arias
- Cesar A Arias received his MD from the Universidad El Bosque (Bogotá, Colombia), his MSc in clinical microbiology from the University of London (UK) and his PhD in molecular microbiology from the University of Cambridge (UK). He completed his residency in internal medicine and fellowship in infectious diseases at the University of Texas Medical School at Houston, and the University of Texas MD Anderson Cancer Center (TX, USA). He is currently Associate Professor of Medicine and Director of the Laboratory
| |
Collapse
|
131
|
Isogai N, Urushibara N, Kawaguchiya M, Ghosh S, Suzaki K, Watanabe N, Quiñones D, Kobayashi N. Characterization of Enterococcus faecium with macrolide resistance and reduced susceptibility to quinupristin/dalfopristin in a Japanese hospital: detection of extensive diversity in erm(B)-regulator regions. Microb Drug Resist 2013; 19:298-307. [PMID: 23442208 DOI: 10.1089/mdr.2012.0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cross-resistance to macrolide, lincosamide, and streptogramin B (MLSB) antibiotics is mainly mediated by the erm (erythromycin ribosome methylation) genes that encode 23S rRNA methylases in enterococi, and various mechanisms are involved in the streptogramin B resistance. Prevalence of MLSB resistance and its genetic mechanisms were analyzed for a total of 159 strains of Enterococcus faecium isolated from clinical specimens in a university hospital in Japan from 1997 to 2006. Resistance to erythromycin (EM) and clindamycin was detected in 88.1% and 89.9% of all the strains examined, respectively, and expression of resistance was totally constitutive. Although none of the strain was resistant to quinupristin/dalfopristin (Q/D), 28 strains (17.6%) showed intermediate resistance to Q/D (MIC: 2 μg/ml). The erm(B) gene was detected in 139 strains (87.4%), and msrC was found in all the strains examined, whereas no other known MLSB resistance genes were identified. The erm(B) regulator region (RR) containing a coding region of the leader peptide was classified into 13 genetic variations (L1-L3, M, S1-S7, D, and R genotypes) in 56 strains. However, no relatedness was identified between the erm(B) RR genotype and EM resistance, or reduced susceptibility to Q/D, although most of Q/D-intermediate strains were assigned to the L1, L2, and S1 genotypes. Q/D-intermediate strains were classified into five multiple-locus variable-number tandem-repeat analysis (MLVA) types, including four types of clonal complex (CC)-C1, five sequence types (STs), including four STs of CC-17, and several resistance gene/virulence factor profiles. The present study revealed the occurrence of Q/D-intermediate E. faecium, which are composed of heterogeneous strains in Japan, and more genetic diversity in the erm(B) RRs than those reported previously.
Collapse
Affiliation(s)
- Nayuta Isogai
- Department of Hygiene, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Changes in enterococcal populations and related antibiotic resistance along a medical center-wastewater treatment plant-river continuum. Appl Environ Microbiol 2013; 79:2428-34. [PMID: 23377946 DOI: 10.1128/aem.03586-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine if hospital effluent input has an ecological impact on downstream aquatic environment, antibiotic resistance in Enterococcus spp. along a medical center-retirement home-wastewater treatment plant-river continuum in France was determined using a culture-based method. Data on antibiotic consumption among hospitalized and general populations and levels of water contamination by antibiotics were collected. All isolated enterococci were genotypically identified to the species level, tested for in vitro antibiotic susceptibility, and typed by multilocus sequence typing. The erm(B) and mef(A) (macrolide resistance) and tet(M) (tetracycline resistance) genes were detected by PCR. Along the continuum, from 89 to 98% of enterococci, according to the sampled site, were identified as Enterococcus faecium. All E. faecium isolates from hospital and retirement home effluents were multiply resistant to antibiotics, contained erm(B) and mef(A) genes, and belonged to hospital-adapted clonal complex 17 (CC17). Even though this species remained dominant in the downstream continuum, the relative proportion of CC17 isolates progressively decreased in favor of other subpopulations of E. faecium that were more diverse, less resistant to antibiotics, and devoid of the classical macrolide resistance genes and that belonged to various sequence types. Antibiotic concentrations in waters were far below the MICs for susceptible isolates. CC17 E. faecium was probably selected in the gastrointestinal tract of patients under the pressure of administered antibiotics and then excreted together with the resistance genes in waters to progressively decrease along the continuum.
Collapse
|
133
|
Pusch T, Kemp D, Trevino S, Button T, Sanchez P, Gander R, Sreeramoju P. Controlling outbreak of vancomycin-resistant Enterococcus faecium among infants caused by an endemic strain in adult inpatients. Am J Infect Control 2013; 41:51-6. [PMID: 22727513 DOI: 10.1016/j.ajic.2012.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vancomycin-resistant Enterococcus faecium (VREfm) is commonly associated with hospital outbreaks and has been found to be associated with increased morbidity, mortality, length of stay, and health care costs. METHODS We sought to investigate and control an outbreak of VREfm in the neonatal intensive care unit (NICU) of a public academic hospital with a level III NICU. The index case was an infant in the NICU incidentally identified with urinary colonization with VREfm. Aggressive control measures were initiated promptly. Investigation included active surveillance cultures in infants, parents of colonized infants, and birth mothers of newborn admitted to NICU; molecular strain typing of available isolates of VREfm including adult inpatients; and medical record review. RESULTS After identification of index case, 13 additional infants were identified with VREfm colonization. Age at culture was 6 to 87 days; birth weight was 1,070 to 2,834 g. VREfm isolated from majority of infants (12/14 [85.7%]), the birth mother of a pair of colonized twins, and a pulse oximeter device used in adult inpatients belonged to a single strain. Outbreak control measures were successful in the NICU. The outbreak-causing strain was found to be endemic among adult inpatients. Adult patients with the outbreak-causing strain of VREfm were more likely to have received previous therapy with meropenem (Mann-Whitney 2-tailed P value = .038). VRE colonization was identified in 0.3% (1/310) of birth mothers with newborn admitted to NICU. CONCLUSION An endemic strain of VREfm among adult inpatients was responsible for a subsequently controlled outbreak in the NICU.
Collapse
|
134
|
da Silva LPP, Pitondo-Silva A, Martinez R, da Costa Darini AL. Genetic features and molecular epidemiology of Enterococcus faecium isolated in two university hospitals in Brazil. Diagn Microbiol Infect Dis 2012; 74:267-71. [DOI: 10.1016/j.diagmicrobio.2012.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/19/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
|
135
|
The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the "gastric barrier effect" in patients chronically treated with PPI: a pilot study. J Clin Gastroenterol 2012; 46 Suppl:S18-26. [PMID: 22955351 DOI: 10.1097/mcg.0b013e318267b55d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gastroesophageal reflux disease is a very widespread condition. In Europe, it is estimated that about 175 million people suffer from this disease and have to chronically take drugs to increase gastric pH. The proton pump inhibitors (PPIs) such as omeprazole, lansoprazole, and esomeprazole are the most widely used drug typology in this regard. However, the inhibition of normal gastric acid secretion has important side effects, the most important being bacterial overgrowth in the stomach and duodenum with a concentration of >10⁵ viable cells/mL. As a major consequence of this, many harmful or even pathogenic bacteria contained in some foods could survive the gastric transit and colonize either the stomach itself, the duodenum, or the gut, where they could establish acute and even chronic infections with unavoidable consequences for the host's health. In other words, the "gastric barrier effect" is strongly reduced or even disrupted. To date, there are no real strategies to deal with this widespread, although still relatively little known, problem. The aim of this study was to confirm the gastric bacterial overgrowth in long-term PPI consumers and to assess the efficacy of some probiotic bacteria, belonging to both genera Lactobacillus and Bifidobacterium, in the reduction of gastric and duodenal bacterial overgrowth, therefore partially restoring the gastric barrier effect against foodborne pathogenic bacteria. METHODS For this purpose, probiotics with a strong demonstrated inhibitory activity on gram-negative bacteria, such as Escherichia coli, were tested in a human intervention trial involving a total of 30 subjects treated with PPIs for either 3 to 12 consecutive months (short-term) or >12 consecutive months (long-term). An additional 10 subjects not taking PPIs were enrolled and used as a control group representing the general population. Four selected probiotics Probiotical SpA (Novara, Italy), namely Lactobacillus rhamnosus LR06 (DSM 21981), Lactobacillus pentosus LPS01 (DSM 21980), Lactobacillus plantarum LP01 (LMG P-21021), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106) were administered for 10 days to 10 subjects treated with PPIs for >12 months (group B). In the 60 mg formulation, N-acetylcysteine was included as well in light of its well-known mechanical effects on bacterial biofilms. Gastroscopies were performed at the beginning of the study (d0) in all the groups (A, B, C, and D) and after 10 days (d10) in group B only; that is, at the end of probiotics intake. The total viable cells and total Lactobacillus were quantified in gastric juice and duodenal brushing material from all subjects. The results were compared among all the groups and with the control subjects (group D) to confirm the bacterial overgrowth. A comparison was made also between d0 and d10 in group B to quantify the efficacy of the 4 probiotics administered for 10 days. Fecal samples were collected from all groups at d0, including subjects not treated with PPIs, and in group B only at d10. Specific bacterial classes, namely enterococci, total coliforms, E. coli, molds, and yeasts were quantified in all fecal specimens. RESULTS The results collected confirmed the strong bacterial overgrowth in the stomach and duodenum of people treated with PPIs compared with subjects with a normal intragastric acidity. It is also worth noting that the bacterial cell counts in subjects who underwent a long-term treatment with a PPI were greater than the results from subjects taking these drugs for 3 to 12 months. The intake of 4 specific probiotic strains with a marked antagonistic activity towards 5 E. coli bacteria, including the enterohaemorrhagic O157:H7 strain, and an effective amount of N-acetylcysteine (NAC) was able to significantly reduce bacterial overgrowth in long-term PPI-treated subjects. Total lactobacilli represented the major percentage of bacterial counts, thus demonstrating the ability of such bacteria to colonize the stomach and the duodenum, at least temporarily, and to consequently restore the gastric barrier effect. A significant decrease in fecal enterococci, total coliforms, E. coli, molds, and yeasts in subjects treated with PPIs was recorded at the end of probiotics supplementation (d10) compared with baseline (d0) in group B. This is a further confirmation of the barrier effect also exerted at the stomach level. CONCLUSIONS PPIs are the most widely sold and used drugs in the world. However, the chronic use of these pharmacological molecules exposes the subject to the risk of foodborne infections as most pathogens are able to survive the gastric transit in a condition of significantly decreased acidity.
Collapse
|
136
|
Kwon KH, Hwang SY, Moon BY, Park YK, Shin S, Hwang CY, Park YH. Occurrence of antimicrobial resistance and virulence genes, and distribution of enterococcal clonal complex 17 from animals and human beings in Korea. J Vet Diagn Invest 2012; 24:924-31. [PMID: 22855376 DOI: 10.1177/1040638712455634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enterococci are major zoonotic bacteria that cause opportunistic infections in human beings and animals. Moreover, pathogenic strains can be disseminated between human beings and animals, particularly companion animals that come into frequent contact with people. Recently, Enterococcus faecium clonal complex 17 (CC17) has emerged as a pandemic clone. Most CC17 strains are ampicillin resistant and possess virulence genes such as esp and hyl. Despite the possible dissemination of CC17 between human beings and animals, prevalence data about CC17 in animals is limited. In the present study, the phenotypes and genotypes of antimicrobial resistance were compared, as well as virulence gene profiles from 184 enterococci strains isolated from chickens, pigs, companion animals, and human patients in Korea. Ampicillin-resistant E. faecium (AREF) strains were selected, and multilocus sequence typing was performed to investigate the dispersion of CC17 among animals and human beings. The companion animal and human isolates showed high resistance rates to ampicillin and ciprofloxacin, whereas food animal isolates showed high tetracycline and erythromycin resistance rates. Ampicillin-resistant E. faecium was only detected in human (21/21 E. faecium, 100%) and companion animal (3/5 E. faecium, 60%) isolates, and all human AREF strains and 1 canine AREF strain were confirmed as CC17. In conclusion, the occurrence of antimicrobial resistance and virulence genes, and the distribution of enterococcal CC17 in companion animal enterococcal strains were similar to those of human strains rather than to those of food animal strains.
Collapse
Affiliation(s)
- Ka Hee Kwon
- Department of Veterinary Microbiology and Brain Korea 21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
137
|
Al-Ahdal MN, Abozaid SM, Al-Shammary HF, Bohol MF, Al-Thawadi SI, Al-Jaberi AA, Senok AC, Shibl AM, Al-Qahtani AA. Characterization of Enterococcus faecium isolates and first report of vanB phenotype–vanA genotype incongruence in the Middle East. Eur J Clin Microbiol Infect Dis 2012; 31:3223-9. [DOI: 10.1007/s10096-012-1689-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/21/2012] [Indexed: 11/27/2022]
|
138
|
Qin X, Galloway-Peña JR, Sillanpaa J, Roh JH, Nallapareddy SR, Chowdhury S, Bourgogne A, Choudhury T, Muzny DM, Buhay CJ, Ding Y, Dugan-Rocha S, Liu W, Kovar C, Sodergren E, Highlander S, Petrosino JF, Worley KC, Gibbs RA, Weinstock GM, Murray BE. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol 2012; 12:135. [PMID: 22769602 PMCID: PMC3433357 DOI: 10.1186/1471-2180-12-135] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/14/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Enterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references. RESULTS In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA) clade with approximately a 3-4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported. CONCLUSIONS Our findings along with other studies show that HA clonal lineages harbor specific genetic elements as well as sequence differences in the core genome which may confer selection advantages over the more heterogeneous CA E. faecium isolates. Which of these differences are important for the success of specific E. faecium lineages in the hospital environment remain(s) to be determined.
Collapse
Affiliation(s)
- Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Jessica R Galloway-Peña
- Department of Medicine, Division of Infectious Disease, Houston, TX, USA,Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA,Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Jouko Sillanpaa
- Department of Medicine, Division of Infectious Disease, Houston, TX, USA,Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA
| | - Jung Hyeob Roh
- Department of Medicine, Division of Infectious Disease, Houston, TX, USA,Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA
| | - Sreedhar R Nallapareddy
- Department of Medicine, Division of Infectious Disease, Houston, TX, USA,Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA
| | - Shahreen Chowdhury
- Department of Medicine, Division of Infectious Disease, Houston, TX, USA,Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA
| | - Agathe Bourgogne
- Department of Medicine, Division of Infectious Disease, Houston, TX, USA,Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA
| | - Tina Choudhury
- Department of Medicine, Division of Infectious Disease, Houston, TX, USA,Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Christian J Buhay
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Yan Ding
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Shannon Dugan-Rocha
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Wen Liu
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Erica Sodergren
- The Genome Institute, Washington University, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO, 63108, USA
| | - Sarah Highlander
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza MSC-226, Houston, TX, USA
| | - George M Weinstock
- The Genome Institute, Washington University, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO, 63108, USA
| | - Barbara E Murray
- Department of Medicine, Division of Infectious Disease, Houston, TX, USA,Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA,Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| |
Collapse
|
139
|
Djahmi N, Boutet-Dubois A, Nedjai S, Dekhil M, Sotto A, Lavigne JP. Molecular epidemiology of Enterococcus sp. isolated in a university hospital in Algeria. ACTA ACUST UNITED AC 2012; 44:656-62. [DOI: 10.3109/00365548.2012.673232] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
140
|
Abstract
PURPOSE OF REVIEW This review discusses the relevant studies on selective decontamination of the digestive tract (SDD) published between 2009 and mid-2011. RECENT FINDINGS In a multicenter cluster-randomized cross-over study in the Netherlands, SDD and selective oropharyngeal decontamination (SOD) were associated with higher survival at day 28, with a lower incidence of ICU-acquired bacteremia and with less acquisition of respiratory tract colonization with antibiotic resistant pathogens, compared to standard care. A post-hoc analysis of this study suggests that SDD might be more effective in surgical patients and SOD in nonsurgical patients. In a randomized study perioperative use of SDD in patients undergoing gastrointestinal surgery was associated with lower incidences of anastomotic leakages. A Cochrane meta-analysis, not including any of the before mentioned studies, reported a reduction of respiratory tract infections in studies by using topical antibiotics only and higher survival rates when topical antibiotics were combined with parenteral antibiotics. SUMMARY Recent studies show that in ICUs with low levels of antibiotic resistance, SDD and SOD improved patient outcome and reduced infections and carriage with antibiotic-resistant pathogens. The effect in settings with higher levels of antibiotic resistance remains to be determined as well as the efficacy of SDD and SOD in specific patient groups.
Collapse
|
141
|
Kwon KH, Moon BY, Hwang SY, Park YH. Detection of CC17 Enterococcus faecium in Dogs and a Comparison with Human Isolates. Zoonoses Public Health 2012; 59:375-8. [DOI: 10.1111/j.1863-2378.2012.01466.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
142
|
Abstract
Vancomycin-resistant enterococci (VRE) are one of the leading causes of nosocomial infections in health care facilities around the globe. In particular, infections caused by vancomycin-resistant Enterococcus faecium are becoming increasingly common. Comparative and functional genomic studies of E. faecium isolates have so far been limited owing to the lack of a fully assembled E. faecium genome sequence. Here we address this issue and report the complete 3.0-Mb genome sequence of the multilocus sequence type 17 vancomycin-resistant Enterococcus faecium strain Aus0004, isolated from the bloodstream of a patient in Melbourne, Australia, in 1998. The genome comprises a 2.9-Mb circular chromosome and three circular plasmids. The chromosome harbors putative E. faecium virulence factors such as enterococcal surface protein, hemolysin, and collagen-binding adhesin. Aus0004 has a very large accessory genome (38%) that includes three prophage and two genomic islands absent among 22 other E. faecium genomes. One of the prophage was present as inverted 50-kb repeats that appear to have facilitated a 683-kb chromosomal inversion across the replication terminus, resulting in a striking replichore imbalance. Other distinctive features include 76 insertion sequence elements and a single chromosomal copy of Tn1549 containing the vanB vancomycin resistance element. A complete E. faecium genome will be a useful resource to assist our understanding of this emerging nosocomial pathogen.
Collapse
|
143
|
Rice LB. Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc 2012; 87:198-208. [PMID: 22305032 PMCID: PMC3498059 DOI: 10.1016/j.mayocp.2011.12.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 11/15/2022]
Abstract
The widespread use of antibiotics has resulted in a growing problem of antimicrobial resistance in the community and hospital settings. Antimicrobial classes for which resistance has become a major problem include the β-lactams, the glycopeptides, and the fluoroquinolones. In gram-positive bacteria, β-lactam resistance most commonly results from expression of intrinsic low-affinity penicillin-binding proteins. In gram-negative bacteria, expression of acquired β-lactamases presents a particular challenge owing to some natural spectra that include virtually all β-lactam classes. Glycopeptide resistance has been largely restricted to nosocomial Enterococcus faecium strains, the spread of which is promoted by ineffective infection control mechanisms for fecal organisms and the widespread use of colonization-promoting antimicrobials (especially cephalosporins and antianaerobic antibiotics). Fluoroquinolone resistance in community-associated strains of Escherichia coli, many of which also express β-lactamases that confer cephalosporin resistance, is increasingly prevalent. Economic and regulatory forces have served to discourage large pharmaceutical companies from developing new antibiotics, suggesting that the antibiotics currently on the market may be all that will be available for the coming decade. As such, it is critical that we devise, test, and implement antimicrobial stewardship strategies that are effective at constraining and, ideally, reducing resistance in human pathogenic bacteria.
Collapse
Affiliation(s)
- Louis B Rice
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
144
|
Lebreton F, Le Bras F, Reffuveille F, Ladjouzi R, Giard JC, Leclercq R, Cattoir V. Galleria mellonella as a model for studying Enterococcus faecium host persistence. J Mol Microbiol Biotechnol 2012; 21:191-6. [PMID: 22286046 DOI: 10.1159/000332737] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Enterococcus faecium is an opportunistic pathogen responsible for numerous outbreaks worldwide. The basis for the colonization capacities, host persistence and environmental stress response of the hospital-adapted clones emerging from E. faecium are poorly understood. In this study, we propose the use of Galleria mellonella as a simple nonmammalian model to assess E. faecium host persistence. Various strains (n = 10), including hospital-adapted, commensal or animal isolates and a SodA-deficient strain were used to assess the relevance of this model. Compared to Enterococcus faecalis, E. faecium strains do not appear very lethal in a Galleria killing assay. The ability of E. faecium strains to overcome host-immune responses and multiply within the host system was evaluated by monitoring bacterial loads following Galleria infection. Among the E. faecium strains, two hospital-adapted isolates displayed increased colonization ability. In contrast, inactivation of sodA, encoding a putative manganese-dependent superoxide dismutase, significantly reduced survival of E. faecium to Galleria defenses. Galleria appears to be a suitable and convenient surrogate model to study E. faecium survival to host defenses and the role of suspected virulence factors in the colonization process.
Collapse
Affiliation(s)
- François Lebreton
- EA2128, Service de Microbiologie, Centre Hospitalier Universitaire, Université de Caen Basse-Normandie, Caen, France
| | | | | | | | | | | | | |
Collapse
|
145
|
Galloway-Peña J, Roh JH, Latorre M, Qin X, Murray BE. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS One 2012; 7:e30187. [PMID: 22291916 PMCID: PMC3266884 DOI: 10.1371/journal.pone.0030187] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022] Open
Abstract
Recent studies have pointed to the existence of two subpopulations of Enterococcus faecium, one containing primarily commensal/community-associated (CA) strains and one that contains most clinical or hospital-associated (HA) strains, including those classified by multi-locus sequence typing (MLST) as belonging to the CC17 group. The HA subpopulation more frequently has IS16, pathogenicity island(s), and plasmids or genes associated with antibiotic resistance, colonization, and/or virulence. Supporting the two clades concept, we previously found a 3-10% difference between four genes from HA-clade strains vs. CA-clade strains, including 5% difference between pbp5-R of ampicillin-resistant, HA strains and pbp5-S of ampicillin-sensitive, CA strains. To further investigate the core genome of these subpopulations, we studied 100 genes from 21 E. faecium genome sequences; our analyses of concatenated sequences, SNPs, and individual genes all identified two distinct groups. With the concatenated sequence, HA-clade strains differed by 0-1% from one another while CA clade strains differed from each other by 0-1.1%, with 3.5-4.2% difference between the two clades. While many strains had a few genes that grouped in one clade with most of their genes in the other clade, one strain had 28% of its genes in the CA clade and 72% in the HA clade, consistent with the predicted role of recombination in the evolution of E. faecium. Using estimates for Escherichia coli, molecular clock calculations using sSNP analysis indicate that these two clades may have diverged ≥1 million years ago or, using the higher mutation rate for Bacillus anthracis, ∼300,000 years ago. These data confirm the existence of two clades of E. faecium and show that the differences between the HA and CA clades occur at the core genomic level and long preceded the modern antibiotic era.
Collapse
Affiliation(s)
- Jessica Galloway-Peña
- Division of Infectious Disease, Department of Medicine, University of Texas Medical School, Houston, Texas, United States of America
- Center for the Study of Emerging and Reemerging Pathogens, University of Texas Medical School, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| | - Jung Hyeob Roh
- Division of Infectious Disease, Department of Medicine, University of Texas Medical School, Houston, Texas, United States of America
- Center for the Study of Emerging and Reemerging Pathogens, University of Texas Medical School, Houston, Texas, United States of America
| | - Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Barbara E. Murray
- Division of Infectious Disease, Department of Medicine, University of Texas Medical School, Houston, Texas, United States of America
- Center for the Study of Emerging and Reemerging Pathogens, University of Texas Medical School, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| |
Collapse
|
146
|
de Jong A, Thomas V, Simjee S, Godinho K, Schiessl B, Klein U, Butty P, Vallé M, Marion H, Shryock TR. Pan-European monitoring of susceptibility to human-use antimicrobial agents in enteric bacteria isolated from healthy food-producing animals. J Antimicrob Chemother 2011; 67:638-51. [PMID: 22210758 DOI: 10.1093/jac/dkr539] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To determine the antimicrobial susceptibility of Escherichia coli, Salmonella, Campylobacter and Enterococcus from cattle, pigs and chickens across the European Union (EU) using uniform methodology. METHODS Intestinal samples (1624) were taken at slaughter across five EU countries. Bacteria were isolated in national laboratories, whilst MICs were determined in a central laboratory for key antimicrobials used in human medicine. Clinical resistance was based on CLSI breakpoints and decreased susceptibility based on European Food Safety Authority (EFSA)/EUCAST epidemiological cut-off values. RESULTS Isolation rates were high for E. coli (n=1540), low for Salmonella (n=201) and intermediate for Campylobacter (n=940) and Enterococcus (n=786). For E. coli and Salmonella, clinical resistance to newer compounds (cefepime, cefotaxime and ciprofloxacin) was absent or low, but decreased susceptibility was apparent, particularly in chicken strains. Resistance to older compounds (except gentamicin) was variable and higher. Colistin resistance was absent for E. coli, but apparent for Salmonella. For Campylobacter jejuni, ciprofloxacin resistance was markedly prevalent for chickens, whereas clinical resistance and decreased susceptibility to erythromycin was absent or very low. For Campylobacter coli, resistance was notably higher. None of the Enterococcus faecium strains was resistant to linezolid, but some were resistant to ampicillin or vancomycin. Resistance to quinupristin/dalfopristin was frequent. CONCLUSIONS Resistance patterns varied widely depending on bacterial species, antibiotics, hosts and region. Resistance varied among countries, particularly for older antimicrobials, but clinical resistance to newer antibiotics used to treat foodborne disease in humans was generally very low. In the absence of resistance to newer compounds in E. coli and Salmonella, the apparent decreased susceptibility should be monitored.
Collapse
Affiliation(s)
- Anno de Jong
- EASSA Study Group, c/o CEESA, 1 Rue Defacqz, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Rathnayake I, Hargreaves M, Huygens F. SNP diversity of Enterococcus faecalis and Enterococcus faecium in a South East Queensland waterway, Australia, and associated antibiotic resistance gene profiles. BMC Microbiol 2011; 11:201. [PMID: 21910889 PMCID: PMC3179957 DOI: 10.1186/1471-2180-11-201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/12/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles. RESULTS Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium. CONCLUSIONS The distribution of E. faecalis and E. faecium genotypes is highly diverse in the Coomera River. The SNP genotyping method is rapid and robust and can be applied to study the diversity of E. faecalis and E. faecium in waterways. It can also be used to test for human-related and human-specific enterococci in water. The resolving power can be increased by including antibiotic-resistant profiles which can be used as a possible source tracking tool. This warrants further investigation.
Collapse
Affiliation(s)
- Irani Rathnayake
- Cell and Molecular Biosciences, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, Brisbane, 4001, Australia
| | | | | |
Collapse
|
148
|
Karlsson CLJ, Molin G, Cilio CM, Ahrné S. The pioneer gut microbiota in human neonates vaginally born at term-a pilot study. Pediatr Res 2011; 70:282-6. [PMID: 21629156 DOI: 10.1203/pdr.0b013e318225f765] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pioneer microbiota of the neonate may affect future actions of the immune system. This study aimed to map the pioneer microbiota in healthy neonates vaginally born at term. A subgroup of neonates born large for GA (LGA) was compared with the neonates appropriate for GA (AGA). Fecal samples were collected, within 48 h after birth, from 79 neonates. Quantitative PCR was used for enumeration of Lactobacillus, a subgroup of Lactobacillus common in the vagina, Bifidobacterium, Enterococcus, Enterobacteriaceae, and the Bacteroides fragilis group. Cloning and sequencing were applied for subgroups of neonates born LGA or AGA. Lactobacillus was detected in all neonates, whereas other bacterial groups were detected only in 14 to 30% of the subjects. The prevalence of Gram-negative Proteobacteria was higher in neonates born LGA, whereas Gram-positive Firmicutes was more prevalent in neonates born AGA (p < 0.001). This study contributed to increased knowledge of the pioneer microbiota and indicates that neonates born LGA had significantly different microbiota compared with those born AGA. As the early microbiota can be important for maturation of the immune system, the outcome from this study may be relevant in the care of pregnant woman and newborns.
Collapse
Affiliation(s)
- Caroline L J Karlsson
- Department of Food Technology, Engineering and Nutrition, Lund University, SE-221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
149
|
Bérenger R, Bourdon N, Auzou M, Leclercq R, Cattoir V. In vitro activity of new antimicrobial agents against glycopeptide-resistant Enterococcus faecium clinical isolates from France between 2006 and 2008. Med Mal Infect 2011; 41:405-9. [DOI: 10.1016/j.medmal.2010.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 10/17/2022]
|
150
|
D-Ala-d-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 2011; 55:4606-12. [PMID: 21807981 DOI: 10.1128/aac.00714-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium UCN71, isolated from a blood culture, was resistant to low levels of vancomycin (MIC, 16 μg/ml) but susceptible to teicoplanin (MIC, 0.5 μg/ml). No amplification was observed with primers specific for the previously described glycopeptide resistance ligase genes, but a PCR product corresponding to a gene called vanN was obtained using degenerate primers and was sequenced. The deduced VanN protein was related (65% identity) to the d-alanine:d-serine VanL ligase. The organization of the vanN gene cluster, determined using degenerate primers and by thermal asymmetric interlaced (TAIL)-PCR, was similar to that of the vanC operons. A single promoter upstream from the resistance operon was identified by rapid amplification of cDNA ends (RACE)-PCR. The presence of peptidoglycan precursors ending in d-serine and d,d-peptidase activities in the absence of vancomycin indicated constitutive expression of the resistance operon. VanN-type resistance was transferable by conjugation to E. faecium. This is the first report of transferable d-Ala-d-Ser-type resistance in E. faecium.
Collapse
|