101
|
Kviatkovski I, Shushan S, Oron Y, Frumin I, Amir D, Secundo L, Livne E, Weissbrod A, Sobel N, Helman Y. Smelling Pseudomonas aeruginosa infections using a whole-cell biosensor - An alternative for the gold-standard culturing assay. J Biotechnol 2017; 267:45-49. [PMID: 29292129 DOI: 10.1016/j.jbiotec.2017.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Improved easy-to-use diagnostic tools for infections are in strong demand worldwide. Yet, despite dramatic advances in diagnostic technologies, the gold-standard remains culturing. Here we offer an alternative tool demonstrating that a bacterial biosensor can efficiently detect Pseudomonas aeruginosa infections in patients suffering from otitis externa. Detection was based on specific binding between the biosensor and 2-aminoacetophenone (2-AA), a volatile produced by P. aeruginosa in high amounts. We collected pus samples from ears of 26 subjects exhibiting symptoms of otitis externa. Detection of P. aeruginosa using the biosensor was compared to detection using gold-standard culturing assay and to gas-chromatograph-mass-spectrometry (GC-MS) analyses of 2-AA. The biosensor strain test matched the culture assay in 24 samples (92%) and the GC-MS analyses in 25 samples (96%). With this result in hand, we designed a device containing a whole-cell luminescent biosensor combined with a photo-multiplier tube. This device allowed detection of 2-AA at levels as low as 2 nmol, on par with detection level of GC-MS. The results of the described study demonstrate that the volatile 2-AA serves as an effective biomarker for P. aeruginosa in ear infections, and that activation of the biosensor strain by 2-AA provides a unique opportunity to design an easy-to-use device that can specifically detect P. aeruginosa infections.
Collapse
Affiliation(s)
- Igor Kviatkovski
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sagit Shushan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Hospital, Holon, Israel
| | - Yahav Oron
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Hospital, Holon, Israel; Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Israel
| | - Idan Frumin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel Amir
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lavi Secundo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eitan Livne
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aharon Weissbrod
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Sobel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
102
|
Melkina OE, Koval VS, Ivanov AA, Zhuze AL, Zavilgelsky GB. DNA sequence-specific dimeric bisbenzimidazoles DBP(n) and DBPA(n) as inhibitors of H-NS silencing in bacterial cells. Microbiol Res 2017; 207:75-82. [PMID: 29458871 DOI: 10.1016/j.micres.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 11/16/2022]
Abstract
DNA sequence-specific fluorescent dimeric bisbenzimidazoles DBP(n) and DBPA(n), noncovalently interacting with A-T pairs in the minor groove of double-stranded DNA were used for studying and monitoring the expression of histone-like H-NS-dependent promoters. Histone-like H-NS selectively binds to AT-rich segments of DNA and silences a large number of genes in bacterial chromosomes. The H-NS-dependent promoters of Quorum Sensing (QS)-regulated lux operons of the marine bacteria mesophilic Aliivibrio fischeri, psychrophilic Aliivibrio logei were used. Escherichia coli lux biosensors were constructed by cloning fragments bearing QS-regulated promoters into the vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE genes. It was shown that the dimeric bisbenzimidazoles DBP(n) and DBPA(n) counteract the H-NS silencing activity. Thus, the presence of DBP(n) or DBPA(n) in the medium leads to an approximately 10-100-fold increase in the level of transcription of QS promoters in E. coli hns+. The largest decrease in the level of H-NS repression was observed using ligands containing a linker with a length of ca. 18Å, such as DBP(2) and DBPA(2). Ligands containing linkers with n=1 and 3 are an order of magnitude less active; ligands with n=4 are inactive. DBPA(2) exhibits activity starting with a concentration of 0.5μM; the minimum concentration of DBP(2) is 5-7 times higher. It is suggested that A-T pairs located at five nucleotide pair intervals, which correspond to the linker length in highly active ligands with n=2, play a key role in the structure of H-NS-binding sites in QS-regulated promoters.
Collapse
Affiliation(s)
- Olga E Melkina
- State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, 117545, Russia
| | - Vasilii S Koval
- Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Alexander A Ivanov
- Emanuel Institute of Biochemical Physics RAS, Kosygin st., 4, Moscow, 119334, Russia
| | - Alexei L Zhuze
- Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Gennadii B Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, 117545, Russia.
| |
Collapse
|
103
|
Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts. Proc Natl Acad Sci U S A 2017; 114:E8488-E8497. [PMID: 28923926 DOI: 10.1073/pnas.1706879114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacterial communities colonize epithelial surfaces of most animals. Several factors, including the innate immune system, mucus composition, and diet, have been identified as determinants of host-associated bacterial communities. Here we show that the early branching metazoan Hydra is able to modify bacterial quorum-sensing signals. We identified a eukaryotic mechanism that enables Hydra to specifically modify long-chain 3-oxo-homoserine lactones into their 3-hydroxy-HSL counterparts. Expression data revealed that Hydra's main bacterial colonizer, Curvibacter sp., responds differentially to N-(3-hydroxydodecanoyl)-l-homoserine lactone (3OHC12-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL). Investigating the impacts of the different N-acyl-HSLs on host colonization elucidated that 3OHC12-HSL allows and 3OC12-HSL represses host colonization of Curvibacter sp. These results show that an animal manipulates bacterial quorum-sensing signals and that this modification leads to a phenotypic switch in the bacterial colonizers. This mechanism may enable the host to manipulate the gene expression and thereby the behavior of its bacterial colonizers.
Collapse
|
104
|
Al-Yousef HM, Ahmed AF, Al-Shabib NA, Laeeq S, Khan RA, Rehman MT, Alsalme A, Al-Ajmi MF, Khan MS, Husain FM. Onion Peel Ethylacetate Fraction and Its Derived Constituent Quercetin 4'- O-β-D Glucopyranoside Attenuates Quorum Sensing Regulated Virulence and Biofilm Formation. Front Microbiol 2017; 8:1675. [PMID: 28928721 PMCID: PMC5591837 DOI: 10.3389/fmicb.2017.01675] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022] Open
Abstract
The resistance and pathogenesis of bacteria could be related to their ability to sense and respond to population density, termed quorum sensing (QS). Inhibition of the QS system is considered as a novel strategy for the development of antipathogenic agents, especially for combating drug-resistant bacterial infections. In the present study, the anti-QS activity of Onion peel ethylacetate fraction (ONE) was tested against Chromobacterium violaceum CV12472 and Pseudomonas aeruginosa PAO1. ONE inhibit the QS-mediated virulence factors production such as violacein in C. violaceum and elastase, pyocyanin in P. aeruginosa. Further, the treatment with sub-MICs of ONE significantly inhibited the QS-mediated biofilm formation, EPS (Extracellular polymeric substances) production and swarming motility. Further, quercetin 4′-O-β-D glucopyranoside (QGP) was isolated from ONE and its anti-QS potential was confirmed after observing significant inhibition of QS-controlled virulence factors such as violacein, elastase, pyocyanin and biofilm formation in test pathogens. Molecular docking analysis predicted that QGP should be able to bind at the active sites of Vfr and LasR, and if so blocks the entry of active sites in Vfr and LasR.
Collapse
Affiliation(s)
- Hanan M Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Atallah F Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Nasser A Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Sameen Laeeq
- Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim UniversityAligarh, India
| | - Rais A Khan
- Department of Chemistry, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Md T Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Mohamed F Al-Ajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Mohammad S Khan
- Department of Agricultural Microbiology, Aligarh Muslim UniversityAligarh, India
| | - Fohad M Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
105
|
Enhanced removal of Escherichia coli O157:H7 and Listeria innocua from fresh lettuce leaves using surfactants during simulated washing. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
106
|
Abdel-Latif HMR, Khashaba AMA. Subchronic toxicity of Nile tilapia with different exposure routes to Microcystis aeruginosa: Histopathology, liver functions, and oxidative stress biomarkers. Vet World 2017; 10:955-963. [PMID: 28919690 PMCID: PMC5591486 DOI: 10.14202/vetworld.2017.955-963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Toxic cyanobacterial blooms (Microcystis aeruginosa contains microcystins [MCs]) have been reported to induce clinicopathological alterations as well as different oxidative stress in aquatic biota. AIM Three-week subchronic exposure experiment was carried out on Nile tilapia, to determine their effects on fish behavior, tissues, liver functions, antioxidant enzymes, and lipid peroxidation. MATERIALS AND METHODS Fish were exposed to four main treatments; orally fed diet plus toxic cells of M. aeruginosa (containing 3500 µg/g MC-LR), immersion in 500 µg MC-LR/L, intraperitoneal injection of M. aeruginosa MC-LR with a dose of 0.1 ml of extracted toxin at a dose of 200 μg/kg bwt, and the fourth one served as a control group, then the fish were sacrificed at the end of 3rd week of exposure. RESULTS The results revealed no recorded mortality with obvious behavioral changes and an enlarged liver with the congested gall bladder. Histopathology demonstrated fragmentation, hyalinization, and necrosis of the subcutaneous musculature marked fatty degeneration, and vacuolation of hepatopancreatic cells with adhesion of the secondary gill lamellae associated with severe leukocytic infiltration. Furthermore, liver functions enzymes (aspartate aminotransferase and alanine aminotransferase, and the activities of glutathione peroxidase, glutathione reductase, lipid peroxidase, and catalase enzymes) were significantly increased in all treatments starting from the 2nd week as compared to the control levels. CONCLUSION In this context, the study addresses the possible toxicological impacts of toxic M. aeruginosa contain MC-LR to Nile tilapia, and the results investigated that MC-LR is toxic to Nile tilapia in different routes of exposure as well as different doses.
Collapse
Affiliation(s)
- H M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University (Matrouh Branch), Fuka City, Box: 51744, Matrouh Province, Egypt
| | - A M Abou Khashaba
- Department of Food Inspection, Animal Health Research Institute, Dokki, Giza Province, Egypt
| |
Collapse
|
107
|
Abstract
Polymicrobial interactions are complex and can influence the course of an infection, as is the case when two or more species exhibit a synergism that produces a disease state not seen with any of the individual species alone. Cell-to-cell signaling is key to many of these interactions, but little is understood about how the host environment influences polymicrobial interactions or signaling between bacteria. Chronic wounds are typically polymicrobial, with Staphylococcus aureus and Pseudomonas aeruginosa being the two most commonly isolated species. While P. aeruginosa readily kills S. aureusin vitro, the two species can coexist for long periods together in chronic wound infections. In this study, we investigated the ability of components of the wound environment to modulate interactions between P. aeruginosa and S. aureus We demonstrate that P. aeruginosa quorum sensing is inhibited by physiological levels of serum albumin, which appears to bind and sequester some homoserine lactone quorum signals, resulting in the inability of P. aeruginosa to produce virulence factors that kill S. aureus These data could provide important clues regarding the virulence of P. aeruginosa in albumin-depleted versus albumin-rich infection sites and an understanding of the nature of friendly versus antagonistic interactions between P. aeruginosa and S. aureus.
Collapse
|
108
|
Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1291-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
109
|
Gui Q, Lawson T, Shan S, Yan L, Liu Y. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. SENSORS 2017; 17:s17071623. [PMID: 28703749 PMCID: PMC5539819 DOI: 10.3390/s17071623] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 01/11/2023]
Abstract
Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies.
Collapse
Affiliation(s)
- Qingyuan Gui
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Tom Lawson
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Suyan Shan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| |
Collapse
|
110
|
Fernández-Niño M, Giraldo D, Gomez-Porras JL, Dreyer I, González Barrios AF, Arevalo-Ferro C. A synthetic multi-cellular network of coupled self-sustained oscillators. PLoS One 2017; 12:e0180155. [PMID: 28662174 PMCID: PMC5491139 DOI: 10.1371/journal.pone.0180155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Engineering artificial networks from modular components is a major challenge in synthetic biology. In the past years, single units, such as switches and oscillators, were successfully constructed and implemented. The effective integration of these parts into functional artificial self-regulated networks is currently on the verge of breakthrough. Here, we describe the design of a modular higher-order synthetic genetic network assembled from two independent self-sustained synthetic units: repressilators coupled via a modified quorum-sensing circuit. The isolated communication circuit and the network of coupled oscillators were analysed in mathematical modelling and experimental approaches. We monitored clustering of cells in groups of various sizes. Within each cluster of cells, cells oscillate synchronously, whereas the theoretical modelling predicts complete synchronization of the whole cellular population to be obtained approximately after 30 days. Our data suggest that self-regulated synchronization in biological systems can occur through an intermediate, long term clustering phase. The proposed artificial multicellular network provides a system framework for exploring how a given network generates a specific behaviour.
Collapse
Affiliation(s)
| | - Daniel Giraldo
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá DC, Colombia
| | | | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
- Heisenberg-Gruppe BPMPB, Universität Potsdam, Potsdam, Germany
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá DC, Colombia
| | | |
Collapse
|
111
|
Unluturk BD, Islam MS, Balasubramaniam S, Ivanov S. Towards Concurrent Data Transmission: Exploiting Plasmid Diversity by Bacterial Conjugation. IEEE Trans Nanobioscience 2017; 16:287-298. [PMID: 28541217 DOI: 10.1109/tnb.2017.2706757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The progress of molecular communication (MC) is tightly connected to the progress of nanomachine design. State-of-the-art states that nanomachines can be built either from novel nanomaterials by the help of nanotechnology or they can be built from living cells which are modified to function as intended by synthetic biology. With the growing need of the biomedical applications of MC, we focus on developing bio-compatible communication systems by engineering the cells to become MC nanomachines. Since this approach relies on modifying cellular functions, the improvements in the performance can only be achieved by integrating new biological properties. A previously proposed model for molecular communication is using bacteria as information carriers between transmitters and receivers, also known as bacterial nanonetworks. This approach has suggested encoding information into the plasmids inserted into the bacteria which leads to extra overhead for the receivers to decode and analyze the plasmids to obtain the encoded information. Another scheme, which is proposed in this paper, is to determine the digital information transmitted based on the quantity of bacteria emitted. While this scheme has its simplicity, the major drawback is the low-data rate resulting from the long propagation of the bacteria. To improve the performance, this paper proposes a distributed modulation scheme utilizing three bacterial properties, namely, engineering of plasmids, conjugation, and bacterial motility. In particular, genetic engineering allows us to engineer the different combinations of genes representing the different series of bits. When compared with binary density modulation and the M-ary density modulation, it is shown that the distributed modulation scheme outperforms the other two approaches in terms of bit error probability as well as the achievable rate for varying quantity of bacteria transmitted, distances, as well as time slot length.
Collapse
|
112
|
The Fitness of Pseudomonas aeruginosa Quorum Sensing Signal Cheats Is Influenced by the Diffusivity of the Environment. mBio 2017; 8:mBio.00353-17. [PMID: 28465424 PMCID: PMC5414003 DOI: 10.1128/mbio.00353-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Experiments examining the social dynamics of bacterial quorum sensing (QS) have focused on mutants which do not respond to signals and the role of QS-regulated exoproducts as public goods. The potential for QS signal molecules to themselves be social public goods has received much less attention. Here, we analyze how signal-deficient (lasI) mutants of the opportunistic pathogen Pseudomonas aeruginosa interact with wild-type cells in an environment where QS is required for growth. We show that when growth requires a "private" intracellular metabolic mechanism activated by the presence of QS signal, lasI mutants act as social cheats and outcompete signal-producing wild-type bacteria in mixed cultures, because they can exploit the signals produced by wild-type cells. However, reducing the ability of signal molecules to diffuse through the growth medium results in signal molecules becoming less accessible to mutants, leading to reduced cheating. Our results indicate that QS signal molecules can be considered social public goods in a way that has been previously described for other exoproducts but that spatial structuring of populations reduces exploitation by noncooperative signal cheats.IMPORTANCE Bacteria communicate via signaling molecules to regulate the expression of a whole range of genes. This process, termed quorum sensing (QS), moderates bacterial metabolism under many environmental conditions, from soil and water (where QS-regulated genes influence nutrient cycling) to animal hosts (where QS-regulated genes determine pathogen virulence). Understanding the ecology of QS could therefore yield vital clues to how we might modify bacterial behavior for environmental or clinical gains. Here, we demonstrate that QS signals act as shareable public goods. This means that their evolution, and therefore population-level responses to interference with QS, will be constrained by population structure. Further, we show that environmental structure (constraints on signal diffusion) alters the accessibility of QS signals and demonstrates that we need to consider population and environmental structure to help us further our understanding of QS signaling systems.
Collapse
|
113
|
Baumgardt K, Melior H, Madhugiri R, Thalmann S, Schikora A, McIntosh M, Becker A, Evguenieva-Hackenberg E. RNase E and RNase J are needed for S-adenosylmethionine homeostasis in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2017; 163:570-583. [PMID: 28141492 DOI: 10.1099/mic.0.000442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ribonucleases (RNases) E and J play major roles in E. coli and Bacillus subtilis, respectively, and co-exist in Sinorhizobium meliloti. We analysed S. meliloti 2011 mutants with mini-Tn5 insertions in the corresponding genes rne and rnj and found many overlapping effects. We observed similar changes in mRNA levels, including lower mRNA levels of the motility and chemotaxis related genes flaA, flgB and cheR and higher levels of ndvA (important for glucan export). The acyl-homoserine lactone (AHL) levels were also higher during exponential growth in both RNase mutants, despite no increase in the expression of the sinI AHL synthase gene. Furthermore, several RNAs from both mutants migrated aberrantly in denaturing gels at 300 V but not under stronger denaturing conditions at 1300 V. The similarities between the two mutants could be explained by increased levels of the key methyl donor S-adenosylmethionine (SAM), since this may result in faster AHL synthesis leading to higher AHL accumulation as well as in uncontrolled methylation of macromolecules including RNA, which may strengthen RNA secondary structures. Indeed, we found that in both mutants the N6-methyladenosine content was increased almost threefold and the SAM level was increased at least sevenfold. Complementation by induced ectopic expression of the respective RNase restored the AHL and SAM levels in each of the mutants. In summary, our data show that both RNase E and RNase J are needed for SAM homeostasis in S. meliloti.
Collapse
Affiliation(s)
- Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: CNRS, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Hendrik Melior
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Institute of Medical Virology, Biomedical Research Center, Justus Liebig University, Schubertstr. 81, D 35392 Giessen, Germany
| | - Sebastian Thalmann
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Adam Schikora
- Institute of Phytopathology and Applied Zoology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Brunswick, Germany
| | - Matthew McIntosh
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | - Anke Becker
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | | |
Collapse
|
114
|
Characterization of N-Acyl Homoserine Lactones in Vibrio tasmaniensis LGP32 by a Biosensor-Based UHPLC-HRMS/MS Method. SENSORS 2017; 17:s17040906. [PMID: 28425948 PMCID: PMC5426830 DOI: 10.3390/s17040906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022]
Abstract
Since the discovery of quorum sensing (QS) in the 1970s, many studies have demonstrated that Vibrio species coordinate activities such as biofilm formation, virulence, pathogenesis, and bioluminescence, through a large group of molecules called N-acyl homoserine lactones (AHLs). However, despite the extensive knowledge on the involved molecules and the biological processes controlled by QS in a few selected Vibrio strains, less is known about the overall diversity of AHLs produced by a broader range of environmental strains. To investigate the prevalence of QS capability of Vibrio environmental strains we analyzed 87 Vibrio spp. strains from the Banyuls Bacterial Culture Collection (WDCM911) for their ability to produce AHLs. This screening was based on three biosensors, which cover a large spectrum of AHLs, and revealed that only 9% of the screened isolates produced AHLs in the defined experimental conditions. Among these AHL-producing strains, Vibrio tasmaniensis LGP32 is a well-known pathogen of bivalves. We further analyzed the diversity of AHLs produced by this strain using a sensitive bioguided UHPLC-HRMS/MS approach (Ultra-High-Performance Liquid Chromatography followed by High-Resolution tandem Mass Spectrometry) and we identified C10-HSL, OH-C12-HSL, oxo-C12-HSL and C14:1-HSL as QS molecules. This is the first report that documents the production of AHL by Vibrio tasmaniensis LGP32.
Collapse
|
115
|
González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V, López-Bucio J, Campos-García J. Non-ribosomal Peptide Synthases from Pseudomonas aeruginosa Play a Role in Cyclodipeptide Biosynthesis, Quorum-Sensing Regulation, and Root Development in a Plant Host. MICROBIAL ECOLOGY 2017; 73:616-629. [PMID: 27900439 DOI: 10.1007/s00248-016-0896-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Diverse molecules mediate cross-kingdom communication between bacteria and their eukaryotic partners and determine pathogenic or symbiotic relationships. N-acyl-L-homoserine lactone-dependent quorum-sensing signaling represses the biosynthesis of bacterial cyclodipeptides (CDPs) that act as auxin signal mimics in the host plant Arabidopsis thaliana. In this work, we performed bioinformatics, biochemical, and plant growth analyses to identify non-ribosomal peptide synthase (NRPS) proteins of Pseudomonas aeruginosa, which are involved in CDP synthesis. A reverse genetics strategy allowed the identification of the genes encoding putative multi-modular-NRPS (MM-NRPS). Mutations in these genes affected the synthesis of the CDPs cyclo(L-Pro-L-Val), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-Tyr), while showing wild-type-like levels of virulence factors, such as violacein, elastase, and pyocyanin. When analyzing the bioactivity of purified, naturally produced CDPs, it was found that cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-L-Val) were capable of antagonizing quorum-sensing-LasR (QS-LasR)-dependent signaling in a contrasting manner in the cell-free supernatants of the selected NRPS mutants, which showed QS induction. Using a bacteria-plant interaction system, we further show that the pvdJ, ambB, and pchE P. aeruginosa mutants failed to repress primary root growth, but improved root branching in A. thaliana seedlings. These results indicated that the CDP production in P. aeruginosa depended on the functional MM-NRPS, which influences quorum-sensing of bacteria and plays a role in root architecture remodeling.
Collapse
Affiliation(s)
- Omar González
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Randy Ortíz-Castro
- Laboratorio de Biología del Desarrollo Vegetal, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. A1´, Ciudad Universitaria, 58030, Morelia, Michoacán, México
- Instituto de Ecología A.C., Xalapa, Ver., México
| | - César Díaz-Pérez
- Depto. Ingeniería Agroindustrial, División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Salvatierra, Gto., México
| | - Alma L Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Viridiana Magaña-Dueñas
- Laboratorio de Biología del Desarrollo Vegetal, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. A1´, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - José López-Bucio
- Laboratorio de Biología del Desarrollo Vegetal, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. A1´, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, México.
| |
Collapse
|
116
|
Devescovi G, Kojic M, Covaceuszach S, Cámara M, Williams P, Bertani I, Subramoni S, Venturi V. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum. Front Microbiol 2017; 8:349. [PMID: 28326068 PMCID: PMC5339254 DOI: 10.3389/fmicb.2017.00349] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.
Collapse
Affiliation(s)
- Giulia Devescovi
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Sonia Covaceuszach
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, U.O.S di Trieste Trieste, Italy
| | - Miguel Cámara
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Sujatha Subramoni
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| |
Collapse
|
117
|
Ozuru R, Saito M, Kanemaru T, Miyahara S, Villanueva SYAM, Murray GL, Adler B, Fujii J, Yoshida SI. Adipose tissue is the first colonization site of Leptospira interrogans in subcutaneously infected hamsters. PLoS One 2017; 12:e0172973. [PMID: 28245231 PMCID: PMC5330501 DOI: 10.1371/journal.pone.0172973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/12/2017] [Indexed: 01/29/2023] Open
Abstract
Leptospirosis is one of the most widespread zoonoses in the world, and its most severe form in humans, “Weil’s disease,” may lead to jaundice, hemorrhage, renal failure, pulmonary hemorrhage syndrome, and sometimes,fatal multiple organ failure. Although the mechanisms underlying jaundice in leptospirosis have been gradually unraveled, the pathophysiology and distribution of leptospires during the early stage of infection are not well understood. Therefore, we investigated the hamster leptospirosis model, which is the accepted animal model of human Weil’s disease, by using an in vivo imaging system to observe the whole bodies of animals infected with Leptospira interrogans and to identify the colonization and growth sites of the leptospires during the early phase of infection. Hamsters, infected subcutaneously with 104 bioluminescent leptospires, were analyzed by in vivo imaging, organ culture, and microscopy. The results showed that the luminescence from the leptospires spread through each hamster’s body sequentially. The luminescence was first detected at the injection site only, and finally spread to the central abdomen, in the liver area. Additionally, the luminescence observed in the adipose tissue was the earliest detectable compared with the other organs, indicating that the leptospires colonized the adipose tissue at the early stage of leptospirosis. Adipose tissue cultures of the leptospires became positive earlier than the blood cultures. Microscopic analysis revealed that the leptospires colonized the inner walls of the blood vessels in the adipose tissue. In conclusion, this is the first study to report that adipose tissue is an important colonization site for leptospires, as demonstrated by microscopy and culture analyses of adipose tissue in the hamster model of Weil’s disease.
Collapse
Affiliation(s)
- Ryo Ozuru
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Tottori, Japan
- * E-mail:
| | - Mitsumasa Saito
- Department of Microbiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Takaaki Kanemaru
- Morphology Core Unit, Kyushu University Hospital, Fukuoka, Japan
| | - Satoshi Miyahara
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Gerald L. Murray
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Ben Adler
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Jun Fujii
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Shin-ichi Yoshida
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
118
|
Costantino V, Della Sala G, Saurav K, Teta R, Bar-Shalom R, Mangoni A, Steindler L. Plakofuranolactone as a Quorum Quenching Agent from the Indonesian Sponge Plakortis cf. lita. Mar Drugs 2017; 15:md15030059. [PMID: 28264490 PMCID: PMC5367016 DOI: 10.3390/md15030059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/09/2017] [Accepted: 02/22/2017] [Indexed: 01/25/2023] Open
Abstract
There is an urgent need for novel strategies to fight drug resistance and multi-drug resistance. As an alternative to the classic antibiotic therapy, attenuation of the bacteria virulence affecting their Quorum sensing (QS) system is a promising approach. Quorum sensing (QS) is a genetic regulation system that allows bacteria to communicate with each other and coordinate group behaviors. A new γ-lactone that is capable of inhibiting the LasI/R QS system, plakofuranolactone (1), was discovered in the extract of the marine sponge Plakortis cf. lita, and its structure, including absolute configuration, was determined by NMR spectroscopy, MS spectrometry, and quantum-mechanical prediction of optical rotation. The quorum quenching activity of plakofuranolactone was evaluated using reporter gene assays for long- and short-chain signals (E. coli pSB1075, E. coli pSB401, and C. violeaceum CV026) and was confirmed by measuring the total protease activity (a virulence factor which is under control of the LasI/R system) of the wild-type P. aeruginosa PAO1. Further research will be pursued to assess the potential of plakofuranolactone as a new antivirulence lead compound and a chemical tool to increase the knowledge in this field.
Collapse
Affiliation(s)
- Valeria Costantino
- The Blue Chemistry Lab Group, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Gerardo Della Sala
- The Blue Chemistry Lab Group, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| | - Roberta Teta
- The Blue Chemistry Lab Group, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| | - Alfonso Mangoni
- The Blue Chemistry Lab Group, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| |
Collapse
|
119
|
Saurav K, Costantino V, Venturi V, Steindler L. Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors. Mar Drugs 2017; 15:md15030053. [PMID: 28241461 PMCID: PMC5367010 DOI: 10.3390/md15030053] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022] Open
Abstract
Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors is under the regulation of quorum sensing (QS). QS inhibitors (QSIs) present a promising alternative or potential synergistic treatment since they disrupt the signaling pathway used for intra- and interspecies coordination of expression of virulence factors. This review covers the set of molecules showing QSI activity that were isolated from marine organisms, including plants (algae), animals (sponges, cnidarians, and bryozoans), and microorganisms (bacteria, fungi, and cyanobacteria). The compounds found and the methods used for their isolation are the emphasis of this review.
Collapse
Affiliation(s)
- Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| | - Valeria Costantino
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology, Padriciano 99, 34149 Trieste, Italy.
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| |
Collapse
|
120
|
Abstract
Quorum sensing (QS)-based signaling is a widespread pathway used by bacteria for the regulation of functions involved in their relation to the environment or their host. QS relies upon the production, accumulation and perception of small diffusable molecules by the bacterial population, hence linking high gene expression with high cell population densities. Among the different QS signal molecules, an important class of signal molecules is the N-acyl homoserine lactone (N-AHSL). In pathogens such as Erwinia or Pseudomonas, N-AHSL based QS is crucial to overcome the host defenses and ensure a successful infection. Interfering with QS-regulation allows the algae Delisea pulcra to avoid surface colonization by bacteria. Thus, interfering the QS-regulation of pathogenic bacteria is a promising antibiotic-free antibacterial therapeutic strategy. To date, two N-AHSL lactonases and one amidohydrolase families of N-ASHL degradation enzymes have been characterized and have proven to be efficient in vitro to control N-AHSL-based QS-regulated functions in pathogens. In this chapter, we provide methods to screen individual clones or bacterial strains as well as pool of clones for genomic and metagenomic libraries, that can be used to identify strains or clones carrying N-ASHL degradation enzymes.
Collapse
Affiliation(s)
- Stéphane Uroz
- Interactions Arbres Microorganismes, INRA Université de Lorraine, UMR1136, Champenoux, 54280, France
| | - Phil M Oger
- Univ Lyon, INSA-Lyon, UCBL, CNRS UMR5240, 69621, Villeurbanne Cedex, France. .,Univ Lyon, ENS-Lyon, CNRS UMR5276, Lyon, 69634, France.
| |
Collapse
|
121
|
Perry N, Nelson EM, Timp G. Wiring Together Synthetic Bacterial Consortia to Create a Biological Integrated Circuit. ACS Synth Biol 2016; 5:1421-1432. [PMID: 27346524 DOI: 10.1021/acssynbio.6b00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The promise of adapting biology to information processing will not be realized until engineered gene circuits, operating in different cell populations, can be wired together to express a predictable function. Here, elementary biological integrated circuits (BICs), consisting of two sets of transmitter and receiver gene circuit modules with embedded memory placed in separate cell populations, were meticulously assembled using live cell lithography and wired together by the mass transport of quorum-sensing (QS) signal molecules to form two isolated communication links (comlinks). The comlink dynamics were tested by broadcasting "clock" pulses of inducers into the networks and measuring the responses of functionally linked fluorescent reporters, and then modeled through simulations that realistically captured the protein production and molecular transport. These results show that the comlinks were isolated and each mimicked aspects of the synchronous, sequential networks used in digital computing. The observations about the flow conditions, derived from numerical simulations, and the biofilm architectures that foster or silence cell-to-cell communications have implications for everything from decontamination of drinking water to bacterial virulence.
Collapse
Affiliation(s)
- Nicolas Perry
- University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward M. Nelson
- University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gregory Timp
- University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
122
|
Sunder AV, Utari PD, Ramasamy S, van Merkerk R, Quax W, Pundle A. Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2016; 101:2383-2395. [DOI: 10.1007/s00253-016-8031-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022]
|
123
|
Joshi JR, Khazanov N, Senderowitz H, Burdman S, Lipsky A, Yedidia I. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Sci Rep 2016; 6:38126. [PMID: 27905512 PMCID: PMC5131480 DOI: 10.1038/srep38126] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022] Open
Abstract
Quorum sensing (QS) is a population density-dependent regulatory system in bacteria that couples gene expression to cell density through accumulation of diffusible signaling molecules. Pectobacteria are causal agents of soft rot disease in a range of economically important crops. They rely on QS to coordinate their main virulence factor, production of plant cell wall degrading enzymes (PCWDEs). Plants have evolved an array of antimicrobial compounds to anticipate and cope with pathogens, of which essential oils (EOs) are widely recognized. Here, volatile EOs, carvacrol and eugenol, were shown to specifically interfere with QS, the master regulator of virulence in pectobacteria, resulting in strong inhibition of QS genes, biofilm formation and PCWDEs, thereby leading to impaired infection. Accumulation of the signal molecule N-acylhomoserine lactone declined upon treatment with EOs, suggesting direct interaction of EOs with either homoserine lactone synthase (ExpI) or with the regulatory protein (ExpR). Homology models of both proteins were constructed and docking simulations were performed to test the above hypotheses. The resulting binding modes and docking scores of carvacrol and eugenol support potential binding to ExpI/ExpR, with stronger interactions than previously known inhibitors of both proteins. The results demonstrate the potential involvement of phytochemicals in the control of Pectobacterium.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander Lipsky
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| |
Collapse
|
124
|
Kimura Y, Tashiro Y, Saito K, Kawai-Noma S, Umeno D. Directed evolution of Vibrio fischeri LuxR signal sensitivity. J Biosci Bioeng 2016; 122:533-538. [DOI: 10.1016/j.jbiosc.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022]
|
125
|
de Carvalho MP, Gulotta G, do Amaral MW, Lünsdorf H, Sasse F, Abraham WR. Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum-sensing and MurA. Environ Microbiol 2016; 18:4254-4264. [PMID: 27696655 DOI: 10.1111/1462-2920.13560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022]
Abstract
Pathogens embedded in biofilms are involved in many infections and are very difficult to treat with antibiotics because of higher resistance compared with planktonic cells. Therefore, new approaches for their control are urgently needed. One way to search for biofilm dispersing compounds is to look at defense strategies of organisms exposed to wet environments, which makes them prone to biofilm infections. It is reasonable to assume that mushrooms have developed mechanisms to control biofilms on their sporocarps (fruiting bodies). A preliminary screening for biofilms on sporocarps revealed several species with few or no bacteria on their sporocarps. From the edible mushroom Coprinus comatus where no bacteria on the sporocarp could be detected (3R,4S)-2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone, named coprinuslactone, was isolated. Coprinuslactone interfered with quorum-sensing and dispersed biofilms of Pseudomonas aeruginosa, where it also reduced the formation of the pathogenicity factors pyocyanin and rhamnolipid B. Coprinuslactone also damaged Staphylococcus aureus cells in biofilms at subtoxic concentrations. Furthermore, it inhibited UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), essential for bacterial cell wall synthesis. These two modes of action ensure the inhibition of a broad spectrum of pathogens on the fruiting body but may also be useful for future clinical applications.
Collapse
Affiliation(s)
- Maira P de Carvalho
- Chemical Microbiology, Helmholtz Center for Infection Research, Braunschweig, 38124, Germany
| | - Giuseppe Gulotta
- Microbial Interactions and Processes, Helmholtz Center for Infection Research, Braunschweig, 38124, Germany
| | - Matheus W do Amaral
- Chemical Microbiology, Helmholtz Center for Infection Research, Braunschweig, 38124, Germany
| | - Heinrich Lünsdorf
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, 38124, Germany
| | - Florenz Sasse
- Chemical Biology, Helmholtz Center for Infection Research, Braunschweig, 38124, Germany
| | - Wolf-Rainer Abraham
- Chemical Microbiology, Helmholtz Center for Infection Research, Braunschweig, 38124, Germany
| |
Collapse
|
126
|
Corral Lugo A, Daddaoua A, Ortega A, Morel B, Díez Peña AI, Espinosa-Urgel M, Krell T. Purification and characterization of Pseudomonas aeruginosa LasR expressed in acyl-homoserine lactone free Escherichia coli cultures. Protein Expr Purif 2016; 130:107-114. [PMID: 27756565 DOI: 10.1016/j.pep.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022]
Abstract
Quorum sensing systems are essential for bacterial communication. We report here the purification and characterization of the Pseudomonas aeruginosa LasR quorum sensing regulator purified from lysates of E. coli cultures grown in the absence of added acyl-homoserine lactones (AHL). We show by isothermal titration calorimetry that LasR recognizes different AHLs with an affinity of approximately 1 μM. The affinity of LasR for its cognate 3-Oxo-C12-AHL was similar to that of other AHLs, indicating that this regulator has not evolved to preferentially recognize its cognate AHL. The α-helical content as determined by CD spectroscopy was found to be in agreement with the corresponding value derived from the homology model. Analytical ultracentrifugation studies show that LasR is a mixture of monomers and dimers and that AHL binding does not alter its oligomeric state. Thermal unfolding studies indicate that LasR has a significant thermal stability and that AHL binding does not significantly alter the unfolding temperature. Two LasR-DNA complexes were observed in electrophoretic mobility shift assays using the hcnABC promoter that has two lux boxes. Taken together, data indicate that the presence of AHLs is not a requisite for correct LasR protein folding. The protein is able to bind AHL ligands in a reversible manner, revising initial concepts of this regulator. The availability of AHL-free protein will permit further studies to determine more precisely its mode of action.
Collapse
Affiliation(s)
- Andrés Corral Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Bertrand Morel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Ana Isabel Díez Peña
- Department of Physical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30071 Murcia, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
127
|
Gan HM, Dailey LK, Halliday N, Williams P, Hudson AO, Savka MA. Genome sequencing-assisted identification and the first functional validation of N-acyl-homoserine-lactone synthases from the Sphingomonadaceae family. PeerJ 2016; 4:e2332. [PMID: 27635318 PMCID: PMC5012321 DOI: 10.7717/peerj.2332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Members of the genus Novosphingobium have been isolated from a variety of environmental niches. Although genomics analyses have suggested the presence of genes associated with quorum sensing signal production e.g., the N-acyl-homoserine lactone (AHL) synthase (luxI) homologs in various Novosphingobium species, to date, no luxI homologs have been experimentally validated. METHODS In this study, we report the draft genome of the N-(AHL)-producing bacterium Novosphingobium subterraneum DSM 12447 and validate the functions of predicted luxI homologs from the bacterium through inducible heterologous expression in Agrobacterium tumefaciens strain NTL4. We developed a two-dimensional thin layer chromatography bioassay and used LC-ESI MS/MS analyses to separate, detect and identify the AHL signals produced by the N. subterraneum DSM 12447 strain. RESULTS Three predicted luxI homologs were annotated to the locus tags NJ75_2841 (NovINsub1), NJ75_2498 (NovINsub2), and NJ75_4146 (NovINsub3). Inducible heterologous expression of each luxI homologs followed by LC-ESI MS/MS and two-dimensional reverse phase thin layer chromatography bioassays followed by bioluminescent ccd camera imaging indicate that the three LuxI homologs are able to produce a variety of medium-length AHL compounds. New insights into the LuxI phylogeny was also gleemed as inferred by Bayesian inference. DISCUSSION This study significantly adds to our current understanding of quorum sensing in the genus Novosphingobium and provide the framework for future characterization of the phylogenetically interesting LuxI homologs from members of the genus Novosphingobium and more generally the family Sphingomonadaceae.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Genomics Facility, Tropical Medicine Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Lucas K Dailey
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Nigel Halliday
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - André O Hudson
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Michael A Savka
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| |
Collapse
|
128
|
Adam E, Müller H, Erlacher A, Berg G. Complete genome sequences of the Serratia plymuthica strains 3Rp8 and 3Re4-18, two rhizosphere bacteria with antagonistic activity towards fungal phytopathogens and plant growth promoting abilities. Stand Genomic Sci 2016; 11:61. [PMID: 27602183 PMCID: PMC5012090 DOI: 10.1186/s40793-016-0185-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
The Serratia plymuthica strains 3Rp8 and 3Re4-18 are motile, Gram-negative, non-sporulating bacteria. Strain 3Rp8 was isolated from the rhizosphere of Brassica napus L. and strain 3Re4-18 from the endorhiza of Solanum tuberosum L. Studies have shown in vitro activity against the soil-borne fungi Verticillium dahliae Kleb., Rhizoctonia solani Kühn, and Sclerotinia sclerotiorum. Here, we announce and describe the complete genome sequence of S. plymuthica 3Rp8 consisting of a single circular chromosome of 5.5 Mb that encodes 4954 protein-coding and 108 RNA-only encoding genes and of S. plymuthica 3Re4-18 consisting of a single circular chromosome of 5.4 Mb that encodes 4845 protein-coding and 109 RNA-only encoding genes. The whole genome sequences and annotations are available in NCBI under the locus numbers CP012096 and CP012097, respectively. The genome analyses revealed genes putatively responsible for the promising plant growth promoting and biocontrol properties including predicting factors such as secretion systems, iron scavenging siderophores, chitinases, secreted proteases, glucanases and non-ribosomal peptide synthetases, as well as unique genomic islands.
Collapse
Affiliation(s)
- Eveline Adam
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
129
|
Hung CC, Eade CR, Altier C. The protein acyltransferase Pat post-transcriptionally controls HilD to repress Salmonella invasion. Mol Microbiol 2016; 102:121-36. [PMID: 27341691 DOI: 10.1111/mmi.13451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/12/2023]
Abstract
N-Lysine acylation is a post-translational modification important for both prokaryotic and eukaryotic cells to control a wide array of cellular functions. Here we demonstrate that the protein acyltransferase Pat regulates genes on Salmonella Pathogenicity Island 1 (SPI1) that are required for the invasion of the intestinal epithelium. Mutation of pat slightly increased spleen colonization by Salmonella in streptomycin-treated mice, with more of the pat mutant reaching the spleen than the wild type strain. Growth of Salmonella under specific conditions selectively induced expression of Pat, and deletion of pat increased SPI1 gene expression under the same growth conditions. In addition, over-expression of Pat repressed SPI1 expression and bacterial entry into epithelial cells. These results demonstrate that Salmonella invasion is negatively controlled by Pat. Regulation of the SPI1 central regulator HilD was essential for Pat to exert its effects. The control of HilD by Pat was through post-transcriptional mechanisms, moderately repressing hilD translation while significantly reducing HilD stability. Additionally, growth of Salmonella in the presence of histone deacetylases inhibitors reduced expression of SPI1 by affecting HilD stability, supporting the concept that altering the stability of this regulator is required for Pat to control Salmonella invasion.
Collapse
Affiliation(s)
- Chien-Che Hung
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Colleen R Eade
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
130
|
Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L, Hu Y, Tang B, Zhou J. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. CHEMOSPHERE 2016; 157:137-151. [PMID: 27213243 DOI: 10.1016/j.chemosphere.2016.05.032] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/21/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Quorum sensing (QS) is a communication process between cells, in which bacteria secrete and sense the specific chemicals, and regulate gene expression in response to population density. Quorum quenching (QQ) blocks QS system, and inhibits gene expression mediating bacterial behaviors. Given the extensive research of acyl-homoserine lactone (AHL) signals, existences and effects of AHL-based QS and QQ in biological wastewater treatments are being subject to high concern. This review summarizes AHL structure, synthesis mode, degradation mechanisms, analytical methods, environmental factors, AHL-based QS and QQ mechanisms. The existences and roles of AHL-based QS and QQ in biomembrane processes, activated sludge processes and membrane bioreactors are summarized and discussed, and corresponding exogenous regulation strategy by selective enhancement of AHL-based QS or QQ coexisting in biological wastewater treatments is suggested. Such strategies including the addition of AHL signals, AHL-producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve wastewater treatment performance without killing or limiting bacterial survival and growth. This review will present the theoretical and practical cognition for bacterial AHL-based QS and QQ, suggest the feasibility of exogenous regulation strategies in biological wastewater treatments, and provide useful information to scientists and engineers who work in this field.
Collapse
Affiliation(s)
- Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Bi Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Jianxin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
131
|
Majumdar S, Mondal S. Conversation game: talking bacteria. J Cell Commun Signal 2016; 10:331-335. [PMID: 27278085 DOI: 10.1007/s12079-016-0333-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
The story of autonomous unicellular organisms, bacteria with unimaginable computational and evolutionary capabilities along with collective behavior has been running since the first six decades of the twentieth Century. However, do not consider them to be small and simple, because they possess the generic term quorum sensing adopted to describe the cell communication process which co-ordinate gene expression, when the population has reached a high cell density. Bacteria release diffusible signal molecules known as autoinducers or quorum sensing molecules. In recent research, the direction for activating or deactivating nature of a wave of gene expression is predicted experimentally which control bacterial populations subject to a diffusing autoinducer signal. On the other hand, it has been observed that the accumulation of the quorum sensing molecules leads to a negative diffusion coefficient in the solution of governing differential equation.
Collapse
Affiliation(s)
- Sarangam Majumdar
- Department of Mathematics, Universitat Hamburg, Bundesstrae, 55 20146, Hamburg, Germany.
| | - Subhoshmita Mondal
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
132
|
Flynn PB, Busetti A, Wielogorska E, Chevallier OP, Elliott CT, Laverty G, Gorman SP, Graham WG, Gilmore BF. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence. Sci Rep 2016; 6:26320. [PMID: 27242335 PMCID: PMC4886528 DOI: 10.1038/srep26320] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.
Collapse
Affiliation(s)
- Padrig B. Flynn
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, BT9 7BL, UK
- Centre for Plasma Physics, School of Maths and Physics, Queen’s University Belfast, BT7 1NN, UK
| | - Alessandro Busetti
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, BT9 7BL, UK
| | - Ewa Wielogorska
- Advanced Asset Centre, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Olivier P. Chevallier
- Advanced Asset Centre, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Christopher T. Elliott
- Advanced Asset Centre, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Garry Laverty
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, BT9 7BL, UK
| | - Sean P. Gorman
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, BT9 7BL, UK
| | - William G. Graham
- Centre for Plasma Physics, School of Maths and Physics, Queen’s University Belfast, BT7 1NN, UK
| | - Brendan F. Gilmore
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, BT9 7BL, UK
| |
Collapse
|
133
|
Bacterial tweets and podcasts #signaling#eavesdropping#microbialfightclub. Mol Biochem Parasitol 2016; 208:41-8. [PMID: 27208877 DOI: 10.1016/j.molbiopara.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 11/22/2022]
Abstract
Once thought to live independently, bacteria are now known to be highly social organisms. Their behaviors ranges from cooperatively forming complex multispecies communities to fiercely competing for resources. Work over the past fifty years has shown that bacteria communicate through diverse mechanisms, such as exchanging diffusible molecules, exporting molecules in membrane vesicles, and interacting through direct cell-cell contact. These methods allow bacteria to sense and respond to other cells around them and coordinate group behavior. In this review, we share the discoveries and lessons learned in the field of bacterial communication with the aim of providing insights to parasitologists and other researchers working on related questions.
Collapse
|
134
|
Nievas FL, Bogino PC, Giordano W. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 44:256-262. [PMID: 27027267 DOI: 10.1002/bmb.20949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/29/2015] [Indexed: 06/05/2023]
Abstract
Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences of lab experiments allow these students to investigate biochemical problems whose solution is feasible within the context of their knowledge and experience. We previously designed and reported a programmed lab experiment that familiarizes microbiology students with techniques for detection and characterization of quorum-sensing (QS) and quorum-quenching (QQ) signal molecules. Here, we describe a sequence of experiments designed to expand the understanding and capabilities of biochemistry students using techniques for extraction and identification of QS and QQ signal molecules from peanut rhizospheric soil bacteria, including culturing and manipulation of bacteria under sterile conditions. The program provides students with an opportunity to perform useful assays, draw conclusions from their results, and discuss possible extensions of the study. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:256-262, 2016.
Collapse
Affiliation(s)
- Fiorela L Nievas
- Departamento De Biología Molecular, Universidad Nacional De Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Pablo C Bogino
- Departamento De Biología Molecular, Universidad Nacional De Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Walter Giordano
- Departamento De Biología Molecular, Universidad Nacional De Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
135
|
Joshi JR, Burdman S, Lipsky A, Yariv S, Yedidia I. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. MOLECULAR PLANT PATHOLOGY 2016; 17:487-500. [PMID: 26177258 PMCID: PMC6638513 DOI: 10.1111/mpp.12295] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several studies have reported effects of the plant phenolic acids cinnamic acid (CA) and salicylic acid (SA) on the virulence of soft rot enterobacteria. However, the mechanisms involved in these processes are not yet fully understood. Here, we investigated whether CA and SA interfere with the quorum sensing (QS) system of two Pectobacterium species, P. aroidearum and P. carotovorum ssp. brasiliense, which are known to produce N-acyl-homoserine lactone (AHL) QS signals. Our results clearly indicate that both phenolic compounds affect the QS machinery of the two species, consequently altering the expression of bacterial virulence factors. Although, in control treatments, the expression of QS-related genes increased over time, the exposure of bacteria to non-lethal concentrations of CA or SA inhibited the expression of QS genes, including expI, expR, PC1_1442 (luxR transcriptional regulator) and luxS (a component of the AI-2 system). Other virulence genes known to be regulated by the QS system, such as pecS, pel, peh and yheO, were also down-regulated relative to the control. In agreement with the low levels of expression of expI and expR, CA and SA also reduced the level of the AHL signal. The effects of CA and SA on AHL signalling were confirmed in compensation assays, in which exogenous application of N-(β-ketocaproyl)-l-homoserine lactone (eAHL) led to the recovery of the reduction in virulence caused by the two phenolic acids. Collectively, the results of gene expression studies, bioluminescence assays, virulence assays and compensation assays with eAHL clearly support a mechanism by which CA and SA interfere with Pectobacterium virulence via the QS machinery.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Alexander Lipsky
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Shaked Yariv
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| |
Collapse
|
136
|
Veselova MA, Romanova YM, Lipasova VA, Koksharova OA, Zaitseva YV, Chernukha MU, Gintsburg AL, Khmel IA. The effect of mutation in the clpX gene on the synthesis of N-acyl-homoserine lactones and other properties of Burkholderia cenocepacia 370. Microbiol Res 2016; 186-187:90-8. [PMID: 27242147 DOI: 10.1016/j.micres.2016.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
In order to study the regulation of N-acyl-homoserine lactones synthesis (AHLs, the signal molecules of Quorum Sensing regulation) in Burkholderia cenocepacia strain 370 we obtained mutants with increased AHL production. One of the mutants, named BC-B6, was obtained by TnMod-RKm(r) plasposon mutagenesis. The plasposon insertion was located within the clpX gene encoding the ATPase subunit ClpX of the ClpXP protease. The mutation reduced bacterial virulence in mice intranasal infection. The results of proteomic analysis demonstrated that the expression of at least 19 proteins differed not less than 2-fold between the parental and mutant strains. 18 of the proteins were upregulated in the mutant, and one protein was downregulated. The proteins included those that involved in protein synthesis and modification, in energy production, in general metabolism, in transport and regulation. To check the effect of the clpX mutation on the AHL synthesis, a mutant with inactivated clpX gene (BC-clpX:Km(r)) was constructed by gene replacement method. This mutant also exhibited increased AHLs production. A swarming motility of both mutants was reduced compared to the original strain. Thus, the obtained results show that the clpX gene was involved in the regulation of AHL production and a number of cellular processes in B. cenocepacia 370.
Collapse
Affiliation(s)
- M A Veselova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - Yu M Romanova
- The Gamaleya Scientific Research Centre of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia
| | - V A Lipasova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - O A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia; M.V. Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1-40, Moscow 119991, Russia
| | - Yu V Zaitseva
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - M U Chernukha
- The Gamaleya Scientific Research Centre of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia
| | - A L Gintsburg
- The Gamaleya Scientific Research Centre of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia
| | - I A Khmel
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia.
| |
Collapse
|
137
|
Holm A, Magnusson KE, Vikström E. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine Lactone Elicits Changes in Cell Volume, Morphology, and AQP9 Characteristics in Macrophages. Front Cell Infect Microbiol 2016; 6:32. [PMID: 27047801 PMCID: PMC4805602 DOI: 10.3389/fcimb.2016.00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
Quorum sensing (QS) communication allows Pseudomonas aeruginosa to collectively control its population density and the production of biofilms and virulence factors. QS signal molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL), can also affect the behavior of host cells, e.g., by modulating the chemotaxis, migration, and phagocytosis of human leukocytes. Moreover, host water homeostasis and water channels aquaporins (AQP) are critical for cell morphology and functions as AQP interact indirectly with the cell cytoskeleton and signaling cascades. Here, we investigated how P. aeruginosa 3O-C12-HSL affects cell morphology, area, volume and AQP9 expression and distribution in human primary macrophages, using quantitative PCR, immunoblotting, two- and three-dimensional live imaging, confocal and nanoscale imaging. Thus, 3O-C12-HSL enhanced cell volume and area and induced cell shape and protrusion fluctuations in macrophages, processes tentatively driven by fluxes of water across cell membrane through AQP9, the predominant AQP in macrophages. Moreover, 3O-C12-HSL upregulated the expression of AQP9 at both the protein and mRNA levels. This was accompanied with enhanced whole cell AQP9 fluorescent intensity and redistribution of AQP9 to the leading and trailing regions, in parallel with increased cell area in the macrophages. Finally, nanoscopy imaging provided details on AQP9 dynamics and architecture within the lamellipodial area of 3O-C12-HSL-stimulated cells. We suggest that these novel events in the interaction between P. aeruginosa and macrophage may have an impact on the effectiveness of innate immune cells to fight bacteria, and thereby resolve the early stages of infections and inflammations.
Collapse
Affiliation(s)
- Angelika Holm
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Karl-Eric Magnusson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| |
Collapse
|
138
|
Sivasothy Y, Krishnan T, Chan KG, Abdul Wahab SM, Othman MA, Litaudon M, Awang K. Quorum Sensing Inhibitory Activity of Giganteone A from Myristica cinnamomea King against Escherichia coli Biosensors. Molecules 2016; 21:391. [PMID: 27102164 PMCID: PMC6273857 DOI: 10.3390/molecules21030391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 01/22/2023] Open
Abstract
Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.
Collapse
Affiliation(s)
- Yasodha Sivasothy
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Thiba Krishnan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Siti Mariam Abdul Wahab
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Muhamad Aqmal Othman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Cedex, France.
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
139
|
Tiwari R, Karthik K, Rana R, Singh Mali Y, Dhama K, Joshi SK. Quorum Sensing Inhibitors/antagonists Countering Food Spoilage Bacteria-need Molecular and Pharmaceutical Intervention for Protecting Current Issues of Food Safety. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.262.271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
140
|
Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque. Sci Rep 2016; 6:20702. [PMID: 26860259 PMCID: PMC4748228 DOI: 10.1038/srep20702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.
Collapse
|
141
|
Quorum sensing protects bacterial co-operation from exploitation by cheats. ISME JOURNAL 2016; 10:1706-16. [PMID: 26744811 PMCID: PMC4918439 DOI: 10.1038/ismej.2015.232] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022]
Abstract
Quorum sensing (QS) is a cell–cell communication system found in many bacterial species, commonly controlling secreted co-operative traits, including extracellular digestive enzymes. We show that the canonical QS regulatory architecture allows bacteria to sense the genotypic composition of high-density populations, and limit co-operative investments to social environments enriched for co-operators. Using high-density populations of the opportunistic pathogen Pseudomonas aeruginosa we map per-capita signal and co-operative enzyme investment in the wild type as a function of the frequency of non-responder cheats. We demonstrate mathematically and experimentally that the observed response rule of ‘co-operate when surrounded by co-operators' allows bacteria to match their investment in co-operation to the composition of the group, therefore allowing the maintenance of co-operation at lower levels of population structuring (that is, lower relatedness). Similar behavioural responses have been described in vertebrates under the banner of ‘generalised reciprocity'. Our results suggest that mechanisms of reciprocity are not confined to taxa with advanced cognition, and can be implemented at the cellular level via positive feedback circuits.
Collapse
|
142
|
Tashiro Y, Kimura Y, Furubayashi M, Tanaka A, Terakubo K, Saito K, Kawai-Noma S, Umeno D. Directed evolution of the autoinducer selectivity of Vibrio fischeri LuxR. J GEN APPL MICROBIOL 2016; 62:240-247. [DOI: 10.2323/jgam.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yohei Tashiro
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Yuki Kimura
- Department of Applied Chemistry and Biotechnology, Chiba University
| | | | - Akira Tanaka
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Kei Terakubo
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Kyoichi Saito
- Department of Applied Chemistry and Biotechnology, Chiba University
| | | | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Chiba University
| |
Collapse
|
143
|
Losa D, Köhler T, Bacchetta M, Saab JB, Frieden M, van Delden C, Chanson M. Airway Epithelial Cell Integrity Protects from Cytotoxicity of Pseudomonas aeruginosa Quorum-Sensing Signals. Am J Respir Cell Mol Biol 2015; 53:265-75. [PMID: 25562674 DOI: 10.1165/rcmb.2014-0405oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication via gap junctions regulates airway epithelial cell homeostasis and maintains the epithelium host defense. Quorum-sensing molecules produced by Pseudomonas aeruginosa coordinate the expression of virulence factors by this respiratory pathogen. These bacterial signals may also incidentally modulate mammalian airway epithelial cell responses to the pathogen, a process called interkingdom signaling. We investigated the interactions between the P. aeruginosa N-3-oxo-dodecanoyl-L-homoserine lactone (C12) quorum-sensing molecule and human airway epithelial cell gap junctional intercellular communication (GJIC). C12 degradation and its effects on cells were monitored in various airway epithelial cell models grown under nonpolarized and polarized conditions. Its concentration was further monitored in daily tracheal aspirates of colonized intubated patients. C12 rapidly altered epithelial integrity and decreased GJIC in nonpolarized airway epithelial cells, whereas other quorum-sensing molecules had no effect. The effects of C12 were dependent on [Ca(2+)]i and could be prevented by inhibitors of Src tyrosine family and Rho-associated protein kinases. In contrast, polarized airway cells grown on Transwell filters were protected from C12 except when undergoing repair after wounding. In vivo during colonization of intubated patients, C12 did not accumulate, but it paralleled bacterial densities. In vitro C12 degradation, a reaction catalyzed by intracellular paraoxonase 2 (PON2), was impaired in nonpolarized cells, whereas PON2 expression was increased during epithelial polarization. The cytotoxicity of C12 on nonpolarized epithelial cells, combined with its impaired degradation allowing its accumulation, provides an additional pathogenic mechanism for P. aeruginosa infections.
Collapse
Affiliation(s)
| | - Thilo Köhler
- 2 Service of Infectious Diseases and Department of Microbiology and Molecular Genetics, and
| | - Marc Bacchetta
- 1 Laboratory of Clinical Investigation III.,3 Department of Cell Physiology and Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| | - Joanna Bou Saab
- 1 Laboratory of Clinical Investigation III.,3 Department of Cell Physiology and Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| | - Maud Frieden
- 3 Department of Cell Physiology and Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| | - Christian van Delden
- 2 Service of Infectious Diseases and Department of Microbiology and Molecular Genetics, and
| | - Marc Chanson
- 1 Laboratory of Clinical Investigation III.,3 Department of Cell Physiology and Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| |
Collapse
|
144
|
O'Connor G, Knecht LD, Salgado N, Strobel S, Pasini P, Daunert S. Whole-Cell Biosensors as Tools for the Detection of Quorum-Sensing Molecules: Uses in Diagnostics and the Investigation of the Quorum-Sensing Mechanism. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015:181-200. [PMID: 26475469 DOI: 10.1007/10_2015_337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetically engineered bacterial whole-cell biosensors are powerful tools that take advantage of bacterial proteins and pathways to allow for detection of a specific analyte. These biosensors have been employed for a broad range of applications, including the detection of bacterial quorum-sensing molecules (QSMs). Bacterial QSMs are the small molecules bacteria use for population density-dependent communication, a process referred to as quorum sensing (QS). Various research groups have investigated the presence of QSMs, including N-acyl homoserine lactones (AHLs) and autoinducer-2 (AI-2), in physiological samples in attempts to enhance our knowledge of the role of bacteria and QS in disease states. Continued studies in these fields may allow for improved patient care and therapeutics based upon QSMs. Furthermore, bacterial whole-cell biosensors have elucidated the roles of some antibiotics as QS agonists and antagonists. Graphical Abstract.
Collapse
Affiliation(s)
- Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Leslie D Knecht
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Chemistry, University of Miami, Miami, FL, 33146, USA.
| | - Nelson Salgado
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Sebastian Strobel
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Patrizia Pasini
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
145
|
Maisuria VB, Nerurkar AS. Interference of Quorum Sensing by Delftia sp. VM4 Depends on the Activity of a Novel N-Acylhomoserine Lactone-Acylase. PLoS One 2015; 10:e0138034. [PMID: 26384328 PMCID: PMC4575145 DOI: 10.1371/journal.pone.0138034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
Background Turf soil bacterial isolate Delftia sp. VM4 can degrade exogenous N-acyl homoserine lactone (AHL), hence it effectively attenuates the virulence of bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum strain BR1 (Pcc BR1) as a consequence of quorum sensing inhibition. Methodology/Principal Findings Isolated Delftia sp. VM4 can grow in minimal medium supplemented with AHL as a sole source of carbon and energy. It also possesses the ability to degrade various AHL molecules in a short time interval. Delftia sp. VM4 suppresses AHL accumulation and the production of virulence determinant enzymes by Pcc BR1 without interference of the growth during co-culture cultivation. The quorum quenching activity was lost after the treatment with trypsin and proteinase K. The protein with quorum quenching activity was purified by three step process. Matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) and Mass spectrometry (MS/MS) analysis revealed that the AHL degrading enzyme (82 kDa) demonstrates homology with the NCBI database hypothetical protein (Daci_4366) of D. acidovorans SPH-1. The purified AHL acylase of Delftia sp. VM4 demonstrated optimum activity at 20–40°C and pH 6.2 as well as AHL acylase type mode of action. It possesses similarity with an α/β-hydrolase fold protein, which makes it unique among the known AHL acylases with domains of the N-terminal nucleophile (Ntn)-hydrolase superfamily. In addition, the kinetic and thermodynamic parameters for hydrolysis of the different AHL substrates by purified AHL-acylase were estimated. Here we present the studies that investigate the mode of action and kinetics of AHL-degradation by purified AHL acylase from Delftia sp. VM4. Significance We characterized an AHL-inactivating enzyme from Delftia sp. VM4, identified as AHL acylase showing distinctive similarity with α/β-hydrolase fold protein, described its biochemical and thermodynamic properties for the first time and revealed its potential application as an anti-virulence agent against bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum based on quorum quenching mechanism.
Collapse
Affiliation(s)
- Vimal B. Maisuria
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
- School of Life Sciences, Faculty of Health and Human Science, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, United Kingdom
| | - Anuradha S. Nerurkar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
- * E-mail:
| |
Collapse
|
146
|
Tan KH, Tan JY, Yin WF, Chan KG. Genome analysis of quorum sensing Cedecea neteri SSMD04 leads to identification of its novel signaling synthase (cneI), cognate receptor (cneR) and an orphan receptor. PeerJ 2015; 3:e1216. [PMID: 26355540 PMCID: PMC4562240 DOI: 10.7717/peerj.1216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/05/2015] [Indexed: 11/20/2022] Open
Abstract
Cedecea neteri is a very rare human pathogen. We have isolated a strain of C. neteri SSMD04 from pickled mackerel sashimi identified using molecular and phenotypics approaches. Using the biosensor Chromobacterium violaceum CV026, we have demonstrated the presence of short chain N-acyl-homoserine lactone (AHL) type quorum sensing (QS) activity in C. neteri SSMD04. Triple quadrupole LC/MS analysis revealed that C. neteri SSMD04 produced short chain N-butyryl-homoserine lactone (C4-HSL). With the available genome information of C. neteri SSMD04, we went on to analyse and identified a pair of luxI/R homologues in this genome that share the highest similarity with croI/R homologues from Citrobacter rodentium. The AHL synthase, which we named cneI(636 bp), was found in the genome sequences of C. neteri SSMD04. At a distance of 8bp from cneI is a sequence encoding a hypothetical protein, potentially the cognate receptor, a luxR homologue which we named it as cneR. Analysis of this protein amino acid sequence reveals two signature domains, the autoinducer-binding domain and the C-terminal effector which is typical characteristic of luxR. In addition, we found that this genome harboured an orphan luxR that is most closely related to easR in Enterobacter asburiae. To our knowledge, this is the first report on the AHL production activity in C. neteri, and the discovery of its luxI/R homologues, the orphan receptor and its whole genome sequence.
Collapse
Affiliation(s)
- Kian-Hin Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Jia-Yi Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
147
|
Barel V, Chalupowicz L, Barash I, Sharabani G, Reuven M, Dror O, Burdman S, Manulis-Sasson S. Virulence and in planta movement of Xanthomonas hortorum pv. pelargonii are affected by the diffusible signal factor (DSF)-dependent quorum sensing system. MOLECULAR PLANT PATHOLOGY 2015; 16:710-23. [PMID: 25530086 PMCID: PMC6638389 DOI: 10.1111/mpp.12230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xanthomonas hortorum pv. pelargonii (Xhp), the causal agent of bacterial blight in pelargonium, is the most threatening bacterial disease of this ornamental worldwide. To gain an insight into the regulation of virulence in Xhp, we have disrupted the quorum sensing (QS) genes, which mediate the biosynthesis and sensing of the diffusible signal factor (DSF). Mutations in rpfF (encoding the DSF synthase) and rpfC (encoding the histidine sensor kinase of the two-component system RfpC/RpfG) and overexpression of rpfF showed a significant reduction in incidence and severity of the disease on pelargonium. Confocal laser scanning microscopy images of inoculated plants with a green fluorescent protein (GFP)-labelled wild-type strain showed that the pathogen is homogeneously dispersed in the lumen of xylem vessels, reaching the apex and invading the intercellular spaces of the leaf mesophyll tissue within 21 days. In contrast, the rpfF and rpfC knockout mutants, as well as the rpfF-overexpressing strain, remained confined to the vicinity of the inoculation site. The rpfF and rpfC mutants formed large incoherent aggregates in the xylem vessels that might interfere with upward movement of the bacterium within the plant. Both mutants also formed extended aggregates under in vitro conditions, whereas the wild-type strain formed microcolonies. Expression levels of putative virulence genes in planta were substantially reduced within 48 h after inoculation with the QS mutants when compared with the wild-type. The results presented indicate that an optimal DSF concentration is crucial for successful colonization and virulence of Xhp in pelargonium.
Collapse
Affiliation(s)
- Victoria Barel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Laura Chalupowicz
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 61390, Israel
| | - Galit Sharabani
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Michal Reuven
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Orit Dror
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Shulamit Manulis-Sasson
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
148
|
Wahman S, Emara M, Shawky RM, El-Domany RA, Aboulwafa MM. Inhibition of quorum sensing-mediated biofilm formation in Pseudomonas aeruginosa by a locally isolated Bacillus cereus. J Basic Microbiol 2015; 55:1406-16. [PMID: 26288125 DOI: 10.1002/jobm.201500268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/24/2015] [Indexed: 11/06/2022]
Abstract
Quorum sensing has been shown to play a crucial role in Pseudomonas aeruginosa pathogenesis where it activates expression of myriad genes that regulate the production of important virulence factors such as biofilm formation. Antagonism of quorum sensing is an excellent target for antimicrobial therapy and represents a novel approach to combat drug resistance. In this study, Chromobacterium violaceum biosensor strain was employed as a fast, sensitive, reliable, and easy to use tool for rapid screening of soil samples for Quorum Sensing Inhibitors (QSI) and the optimal conditions for maximal QSI production were scrutinized. Screening of 127 soil isolates showed that 43 isolates were able to breakdown the HHL signal. Out of the 43 isolates, 38 isolates were able to inhibit the violet color of the biosensor and to form easily detectable zones of color inhibition around their growth. A confirmatory bioassay was carried out after concentrating the putative positive cell-free lysates. Three different isolates that belonged to Bacillus cereus group were shown to have QSI activities and their QSI activities were optimized by changing their culture conditions. Further experiments revealed that the cell-free lysates of these isolates were able to inhibit biofilm formation by P. aeruginosa clinical isolates.
Collapse
Affiliation(s)
- Shaimaa Wahman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Riham M Shawky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafr El Sheikh University, Egypt
| | | |
Collapse
|
149
|
Shommu NS, Vogel HJ, Storey DG. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance. Front Microbiol 2015. [PMID: 26217312 PMCID: PMC4499752 DOI: 10.3389/fmicb.2015.00668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis in CF patients and have developed resistance to most of the commonly used antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still not fully understood. This mini review discusses the established and potential virulence determinants of Bcc and some of the contemporary strategies including transcriptomics and proteomics used to identify these traits. We also propose the application of metabolic profiling, a cost-effective modern-day approach to achieve new insights.
Collapse
Affiliation(s)
- Nusrat S Shommu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Douglas G Storey
- Microbiology Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| |
Collapse
|
150
|
Endophytic Bacteria Isolated from Common Bean (Phaseolus vulgaris) Exhibiting High Variability Showed Antimicrobial Activity and Quorum Sensing Inhibition. Curr Microbiol 2015. [PMID: 26202846 DOI: 10.1007/s00284-015-0879-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Endophytic bacteria play a key role in the biocontrol of phytopathogenic microorganisms. In this study, genotypic diversity was analyzed via repetitive element PCR (rep-PCR) of endophytic isolates of the phylum Actinobacteria that were previously collected from leaves of cultivars of common bean (Phaseolus vulgaris). Considerable variability was observed, which has not been reported previously for this phylum of endophytic bacteria of the common bean. Furthermore, the ethanol extracts from cultures of various isolates inhibited the growth of pathogenic bacteria in vitro, especially Gram-positive pathogens. Extracts from cultures of Microbacterium testaceum BAC1065 and BAC1093, which were both isolated from the 'Talismã' cultivar, strongly inhibited most of the pathogenic bacteria tested. Bean endophytic bacteria were also demonstrated to have the potential to inhibit the quorum sensing of Gram-negative bacteria. This mechanism may regulate the production of virulence factors in pathogens. The ability to inhibit quorum sensing has also not been reported previously for endophytic microorganisms of P. vulgaris. Furthermore, M. testaceum with capacity to inhibit quorum sensing appears to be widespread in common bean. The genomic profiles of M. testaceum were also analyzed via pulsed-field gel electrophoresis, and greater differentiation was observed using this method than rep-PCR; in general, no groups were formed based on the cultivar of origin. This study showed for the first time that endophytic bacteria from common bean plants exhibit high variability and may be useful for the development of strategies for the biological control of diseases in this important legume plant.
Collapse
|