101
|
Gott JM, Parimi N, Bundschuh R. Discovery of new genes and deletion editing in Physarum mitochondria enabled by a novel algorithm for finding edited mRNAs. Nucleic Acids Res 2005; 33:5063-72. [PMID: 16147990 PMCID: PMC1201332 DOI: 10.1093/nar/gki820] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene finding is complicated in organisms that exhibit insertional RNA editing. Here, we demonstrate how our new algorithm Predictor of Insertional Editing (PIE) can be used to locate genes whose mRNAs are subjected to multiple frameshifting events, and extend the algorithm to include probabilistic predictions for sites of nucleotide insertion; this feature is particularly useful when designing primers for sequencing edited RNAs. Applying this algorithm, we successfully identified the nad2, nad4L, nad6 and atp8 genes within the mitochondrial genome of Physarum polycephalum, which had gone undetected by existing programs. Characterization of their mRNA products led to the unanticipated discovery of nucleotide deletion editing in Physarum. The deletion event, which results in the removal of three adjacent A residues, was confirmed by primer extension sequencing of total RNA. This finding is remarkable in that it comprises the first known instance of nucleotide deletion in this organelle, to be contrasted with nearly 500 sites of single and dinucleotide addition in characterized mitochondrial RNAs. Statistical analysis of this larger pool of editing sites indicates that there are significant biases in the 2 nt immediately upstream of editing sites, including a reduced incidence of nucleotide repeats, in addition to the previously identified purine-U bias.
Collapse
Affiliation(s)
- Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
102
|
Mower JP. PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinformatics 2005; 6:96. [PMID: 15826309 PMCID: PMC1087475 DOI: 10.1186/1471-2105-6-96] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 04/12/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, RNA editing is a process that converts specific cytidines to uridines and uridines to cytidines in transcripts from virtually all mitochondrial protein-coding genes. There are thousands of plant mitochondrial genes in the sequence databases, but sites of RNA editing have not been determined for most. Accurate methods of RNA editing site prediction will be important in filling in this information gap and could reduce or even eliminate the need for experimental determination of editing sites for many sequences. Because RNA editing tends to increase protein conservation across species by "correcting" codons that specify unconserved amino acids, this principle can be used to predict editing sites by identifying positions where an RNA editing event would increase the conservation of a protein to homologues from other plants. PREP-Mt takes this approach to predict editing sites for any protein-coding gene in plant mitochondria. RESULTS To test the general applicability of the PREP-Mt methodology, RNA editing sites were predicted for 370 full-length or nearly full-length DNA sequences and then compared to the known sites of RNA editing for these sequences. Of 60,263 cytidines in this test set, PREP-Mt correctly classified 58,994 as either an edited or unedited site (accuracy = 97.9%). PREP-Mt properly identified 3,038 of the 3,698 known sites of RNA editing (sensitivity = 82.2%) and 55,956 of the 56,565 known unedited sites (specificity = 98.9%). Accuracy and sensitivity increased to 98.7% and 94.7%, respectively, after excluding the 489 silent editing sites (which have no effect on protein sequence or function) from the test set. CONCLUSION These results indicate that PREP-Mt is effective at identifying C to U RNA editing sites in plant mitochondrial protein-coding genes. Thus, PREP-Mt should be useful in predicting protein sequences for use in molecular, biochemical, and phylogenetic analyses. In addition, PREP-Mt could be used to determine functionality of a mitochondrial gene or to identify particular sequences with unusual editing properties. The PREP-Mt methodology should be applicable to any system where RNA editing increases protein conservation across species.
Collapse
Affiliation(s)
- Jeffrey P Mower
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
103
|
Staudinger M, Bolle N, Kempken F. Mitochondrial electroporation and in organello RNA editing of chimeric atp6 transcripts. Mol Genet Genomics 2005; 273:130-6. [PMID: 15729585 DOI: 10.1007/s00438-005-1117-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 01/14/2005] [Indexed: 11/25/2022]
Abstract
The Sorghum bicolor atp6-1 gene and chimeric atp6 genes with additional maize sequences were introduced into isolated maize mitochondria via electroporation. Transcripts isolated after in vitro incubation of the transformed organelles were then analysed for RNA editing. Transcripts of the S. bicolor atp6-1 gene, and the RNAs obtained from most of chimeric sorghum-maize atp6 gene constructs tested, were not edited. However, the transcript of one engineered chimeric gene comprising the 5'untranslated sequence and a segment of the N-terminal ORF of the maize atp6 combined with the sorghum atp6 core ORF and 3'untranslated sequence was found to be partially edited. We were able to exclude low RNA stability or insufficient editing capacity as the reason for failure to edit in the other instances. Instead, the data indicate that the maize sequence in the edited fusion transcript provides a structural motif or binding site for a transcript-specific editing factor.
Collapse
Affiliation(s)
- Matthias Staudinger
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098, Kiel, Germany
| | | | | |
Collapse
|
104
|
Hepner F, Cszasar E, Roitinger E, Lubec G. Mass spectrometrical analysis of recombinant human growth hormone (Genotropin(R)) reveals amino acid substitutions in 2% of the expressed protein. Proteome Sci 2005; 3:1. [PMID: 15707495 PMCID: PMC549540 DOI: 10.1186/1477-5956-3-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 02/11/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: The structural integrity of recombinant proteins is of critical importance to their application as clinical treatments. Recombinant growth hormone preparations have been examined by several methodologies. In this study recombinant human growth hormone (rhGH; Genotropin(R)), expressed in E. coli K12, was structurally analyzed by two-dimensional gel electrophoresis and MALDI-TOF-TOF, LC-MS and LC-MS/ MS sequencing of the resolved peptides. RESULTS: Electrospray LC-MS analysis revealed one major protein with an average molecular mass of 22126.8 Da and some additional minor components. Electrospray LC-MS/MS evaluation of the enzymatically digested Genotropin(R) sample resulted in the identification of amino acid substitutions at the residues M14, M125, and M170; di-methylation of K70 (or exchange to arginine); deamidation of N149, and N152, and oxidation of M140, M125 and M170. Peak area comparison of the modified and parental peptides indicates that these changes were present in ~2% of the recombinant preparation. CONCLUSION: Modifications of the recombinant human growth hormone may lead to structural or conformational changes, modification of antigenicity and development of antibody formation in treated subjects. Amino acid exchanges may be caused by differences between human and E. coli codon usage and/or unknown copy editing mechanisms. While deamidation and oxidation can be assigned to processing events, the mechanism for possible di-methylation of K70 remains unclear.
Collapse
Affiliation(s)
- Felix Hepner
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Edina Cszasar
- Mass Spectrometry Unit, University of Vienna, Austria
| | | | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
105
|
The ATPase subunit 6 gene of Leptomonas seymouri (Trypanosomatidae) is transcribed and edited as a polycistronic mRNA. Mol Biol 2005. [DOI: 10.1007/s11008-005-0007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
106
|
Choury D, Farré JC, Jordana X, Araya A. Different patterns in the recognition of editing sites in plant mitochondria. Nucleic Acids Res 2004; 32:6397-406. [PMID: 15585663 PMCID: PMC535677 DOI: 10.1093/nar/gkh969] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Higher plant mitochondrial mRNAs are extensively modified by highly specific C-to-U conversions. However, the determinants of recognition specificity are, to date, unknown. Here, we analyse the cis-elements involved in the recognition of two editing sites in a cox2 gene in wheat mitochondria. A minimal region of 23 nt was found to be involved in recognition of the editing site C77, similar to our previous report for site C259. These regions were correctly recognized by the mitochondrial editing machinery when placed elsewhere in the transcript. The nearest neighbour residues of the target C play a crucial role in editing, but the nature and position of the residue varies according to the editing site concerned. The target region seems to be formed by two regions 5' and 3', which can be separated by a maximum of two residues. Studies on single residue mutants concerning every position in the 23 nt region indicated that editing sites are affected differently by their neighbouring sequences. These results suggest that, notwithstanding the similar extent and location of cis-elements, the editing site recognition mechanisms may differ in plant mitochondria.
Collapse
Affiliation(s)
- David Choury
- Laboratoire de Réplication et Expression des Génomes Eucaryotes et Rétroviraux, UMR 5097, Centre National de la Recherche Scientifique and Université Victor Segalen-Bordeaux II 146, rue Leo Saignat 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
107
|
Laforest MJ, Bullerwell CE, Forget L, Lang BF. Origin, evolution, and mechanism of 5' tRNA editing in chytridiomycete fungi. RNA (NEW YORK, N.Y.) 2004; 10:1191-1199. [PMID: 15247432 PMCID: PMC1370609 DOI: 10.1261/rna.7330504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 04/30/2004] [Indexed: 05/24/2023]
Abstract
5' tRNA editing has been demonstrated to occur in the mitochondria of the distantly related rhizopod amoeba Acanthamoeba castellanii and the chytridiomycete fungus Spizellomyces punctatus. In these organisms, canonical tRNA structures are restored by removing mismatched nucleotides at the first three 5' positions and replacing them with nucleotides capable of forming Watson-Crick base pairs with their 3' counterparts. This form of editing seems likely to occur in members of Amoebozoa other than A. castellanii, as well as in members of Heterolobosea. Evidence for 5' tRNA editing has not been found to date, however, in any other fungus including the deeply branching chytridiomycete Allomyces macrogynus. We predicted that a similar form of tRNA editing would occur in members of the chytridiomycete order Monoblepharidales based on the analysis of complete mitochondrial tRNA complements. This prediction was confirmed by analysis of tRNA sequences using a tRNA circularization/RT-PCR-based approach. The presence of partially and completely unedited tRNAs in members of the Monoblepharidales suggests the involvement of a 5'-to-3' exonuclease rather than an endonuclease in removing the three 5' nucleotides from a tRNA substrate. Surprisingly, analysis of the mtDNA of the chytridiomycete Rhizophydium brooksianum, which branches as a sister group to S. punctatus in molecular phylogenies, did not suggest the presence of editing. This prediction was also confirmed experimentally. The absence of tRNA editing in R. brooksianum raises the possibility that 5' tRNA editing may have evolved twice independently within Chytridiomycota, once in the lineage leading to S. punctatus and once in the lineage leading to the Monoblepharidales.
Collapse
Affiliation(s)
- Marie-Josée Laforest
- Département de Biochimie, Université de Montréal, 2900, Boulevard Edouard Montpetit, C.P. 6128, Succursale Centre-Ville, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
108
|
Engelke T, Tatlioglu T. The fertility restorer genes X and T alter the transcripts of a novel mitochondrial gene implicated in CMS1 in chives (Allium schoenoprasum L.). Mol Genet Genomics 2004; 271:150-60. [PMID: 14727184 DOI: 10.1007/s00438-003-0966-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 11/28/2003] [Indexed: 10/26/2022]
Abstract
A chimeric mitochondrial gene configuration, mainly derived from sequences associated with the essential genes atp9 and atp6, was isolated from the sterility-inducing cytoplasm of the CMS1 system in chives (Allium schoenoprasum L.). This sequence is not found in four other cytoplasm types from chives; however, two copies are present in the mitochondrial DNA of CMS1-inducing cytoplasm, whose 5'-sequences are homologous to those of the atp9 gene. We provide evidence to show that one of the two CMS1-specific copies is actively transcribed, and two transcripts which terminate at the same position but differ in their 5'initiation sites were localized using the RACE technique. These transcripts of 942 and 961 nt, respectively, were confirmed to be the major products of this gene in CMS1 plants by Northern hybridization. However, smaller transcripts were found to accumulate in plants in which fertility had been restored. Restoration of fertility was induced either by the gene X, or the gene T at high temperatures. In (S1) X. genotypes a transcript with an estimated size of 440 nt was detected in all tissues examined. An additional hybridization signal with an estimated size of approximately 850 nt is expressed in temperature-sensitive plants [(S1) xxT.], and the intensity of a minor 350-nt transcript is enhanced. These latter alterations, conditioned by the gene T, occur independently of the growth temperature, but are limited to the flowers; they were not observed in leaves. The CMS1 transcripts are edited at seven positions and contain an ORF with a maximum coding capacity of 780 nt (containing the start codon derived from the atp9 gene in-frame). Use of the third in-frame start codon would result in the synthesis of a protein of a size very close to that of a previously described CMS1-specific protein, which has an apparent molecular weight of 18 kDa. The coding sequence that begins at this third in-frame start codon is also present in the sterility-inducing cytoplasms (S) and (T) in the onion, and absent in (N) cytoplasm.
Collapse
Affiliation(s)
- T Engelke
- Abteilung Angewandte Genetik, Universität Hannover, Herrenhäuser Str 2, 30419 Hannover, Germany.
| | | |
Collapse
|
109
|
|
110
|
Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. THE PLANT CELL 2004; 16:241-56. [PMID: 14671022 PMCID: PMC301408 DOI: 10.1105/tpc.016055] [Citation(s) in RCA: 421] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 11/06/2003] [Indexed: 05/17/2023]
Abstract
A novel insight into Arabidopsis mitochondrial function was revealed from a large experimental proteome derived by liquid chromatography-tandem mass spectrometry. Within the experimental set of 416 identified proteins, a significant number of low-abundance proteins involved in DNA synthesis, transcriptional regulation, protein complex assembly, and cellular signaling were discovered. Nearly 20% of the experimentally identified proteins are of unknown function, suggesting a wealth of undiscovered mitochondrial functions in plants. Only approximately half of the experimental set is predicted to be mitochondrial by targeting prediction programs, allowing an assessment of the benefits and limitations of these programs in determining plant mitochondrial proteomes. Maps of putative orthology networks between yeast, human, and Arabidopsis mitochondrial proteomes and the Rickettsia prowazekii proteome provide detailed insights into the divergence of the plant mitochondrial proteome from those of other eukaryotes. These show a clear set of putative cross-species orthologs in the core metabolic functions of mitochondria, whereas considerable diversity exists in many signaling and regulatory functions.
Collapse
Affiliation(s)
- Joshua L Heazlewood
- Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
111
|
Sandoval P, León G, Gómez I, Carmona R, Figueroa P, Holuigue L, Araya A, Jordana X. Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 2004; 324:139-47. [PMID: 14693379 DOI: 10.1016/j.gene.2003.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gene transfer from the mitochondrion to the nucleus, a process of outstanding importance to the evolution of the eukaryotic cell, is an on-going phenomenon in higher plants. After transfer, the mitochondrial gene has to be adapted to the nuclear context by acquiring a new promoter and targeting information to direct the protein back to the organelle. To better understand the strategies developed by higher plants to transfer organellar genes during evolution, we investigated the fate of the mitochondrial RPL5-RPS14 locus in grasses. While maize mitochondrial genome does not contain RPS14 and RPL5 genes, wheat mitochondrial DNA contains an intact RPL5 gene and a nonfunctional RPS14 pseudogene. RPL5 and PsiRPS14 are co-transcribed and their transcripts are edited. In wheat, the functional RPS14 gene is located in the nucleus, within the intron of the respiratory complex II iron-sulfur subunit gene (SDH2). Its organization and expression mechanisms are similar to those previously described in maize and rice, allowing us to conclude that RPS14 transfer and nuclear activation occurred before divergence of these grasses. Unexpectedly, we found evidence for a more recent RPL5 transfer to the nucleus in wheat. This nuclear wheat RPL5 acquired its targeting information by duplication of an existing targeting presequence for another mitochondrial protein, ribosomal protein L4. Thus, mitochondrial and nuclear functional RPL5 genes appear to be maintained in wheat, supporting the hypothesis that in an intermediate stage of the transfer process, both nuclear and mitochondrial functional genes coexist. Finally, we show that RPL5 has been independently transferred to the nucleus in the maize lineage and has acquired regulatory elements for its expression and a mitochondrial targeting peptide from an unknown source.
Collapse
Affiliation(s)
- Pamela Sandoval
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Staudinger M, Kempken F. Electroporation of isolated higher-plant mitochondria: transcripts of an introduced cox2 gene, but not an atp6 gene, are edited in organello. Mol Genet Genomics 2003; 269:553-61. [PMID: 12811542 DOI: 10.1007/s00438-003-0863-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 05/07/2003] [Indexed: 10/26/2022]
Abstract
To facilitate the analysis of RNA processing in plant mitochondria, a method was established for introducing foreign DNA into mitochondria isolated from maize and sorghum. This method permits the uptake of DNA of up to 11 kb into the mitochondrial matrix. In vitro incubation of maize mitochondria in a specific buffer system was found to permit splicing and editing of newly synthesized RNAs for a period of at least 7 h. This was shown both for transcripts of endogenous mitochondrial genes (atp6, cox2) and for transcripts derived from an introduced Arabidopsis thaliana cox2 gene. In contrast, when a Sorghum bicolor atp6 gene was introduced into isolated maize mitochondria, the gene was transcribed, but the RNA was not edited, although all the editing sites in maize and sorghum atp6 RNA are identical. This may indicate the presence of transcript-specific cis -acting regions in the up- or downstream untranslated sequences of the mRNA. The system described here should allow further dissection of the mechanism of RNA editing in plant mitochondria.
Collapse
Affiliation(s)
- M Staudinger
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | |
Collapse
|
113
|
Langkjaer RB, Casaregola S, Ussery DW, Gaillardin C, Piskur J. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts. Nucleic Acids Res 2003; 31:3081-91. [PMID: 12799436 PMCID: PMC162263 DOI: 10.1093/nar/gkg423] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 04/11/2003] [Accepted: 04/11/2003] [Indexed: 11/13/2022] Open
Abstract
The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand.
Collapse
MESH Headings
- Base Sequence
- DNA, Intergenic
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Endodeoxyribonucleases/metabolism
- Endoribonucleases/genetics
- Gene Order
- Genes, rRNA
- Introns
- Mitochondrial Proteins/genetics
- Molecular Sequence Data
- Open Reading Frames
- RNA/chemistry
- RNA/metabolism
- RNA, Catalytic/genetics
- RNA, Mitochondrial
- RNA, Transfer/genetics
- Repetitive Sequences, Nucleic Acid
- Ribonuclease P
- Saccharomyces/genetics
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, DNA
- Species Specificity
- Transcription Initiation Site
- Transcription, Genetic
Collapse
Affiliation(s)
- R B Langkjaer
- BioCentrum-DTU, Technical University of Denmark, Building 301, DK-2800 Kgl. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
114
|
Chateigner-Boutin AL, Hanson MR. Developmental co-variation of RNA editing extent of plastid editing sites exhibiting similar cis-elements. Nucleic Acids Res 2003; 31:2586-94. [PMID: 12736308 PMCID: PMC156036 DOI: 10.1093/nar/gkg354] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Revised: 03/14/2003] [Accepted: 03/14/2003] [Indexed: 11/13/2022] Open
Abstract
In tobacco, 30 of 34 sites in chloroplast transcripts that undergo C-to-U RNA editing can be grouped into clusters of 2-5 sites based on sequence similarities immediately 5' to the edited C. According to a previous transgenic analysis, overexpression of transcripts representing one cluster member results in reduction in editing of all cluster members, suggesting that members of an individual cluster share a trans-factor that is present in limiting amounts. To compare leaves and roots, we quantified the editing extent at 34 sites in wild-type tobacco and at three sites in spinach and Arabidopsis. We observed that transcripts of most NADH dehydrogenase subunits are edited inefficiently in roots. With few exceptions, members of the same editing site cluster co-varied in editing extent in chloroplasts versus non-green root plastids, with members of most clusters uniformly exhibiting either a high or low editing extent in roots. The start codon of the ndhD transcript must be created by editing, but the C target is edited inefficiently in roots, and no NDH-D protein could be detected upon immunoblotting. Our data are consistent with the hypothesis that cluster-specific trans-factors exist and that some are less abundant in roots, limiting the editing extent of certain sites in root plastids.
Collapse
|
115
|
Rattanadechakul W, Webb BA. Characterization of Campoletis sonorensis ichnovirus unique segment B and excision locus structure. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:523-532. [PMID: 12770631 DOI: 10.1016/s0022-1910(03)00053-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polydnaviruses (PDVs) are segmented, symbiotic, double-stranded DNA viruses that are vertically transmitted as proviruses within the genomes of some parasitoid Hymenoptera. The PDV associated with the ichneumonid wasp Campoletis sonorensis (CsIV) consists of 24 non-redundant DNA segments varying in size from approximately 6 to 20 kbp. CsIV segment B, one of the smallest genome segments, was sequenced and the excision sites of the proviral segment were characterized. The segment B sequence was 83.2% non-coding with only two open reading frames (ORFs). Some non-coding sequences have similarities to database sequences and were likely pseudogenic, but most were unrelated to known nucleic acid or predicted protein sequences. One ORF, BHv0.9, encodes a member of the rep gene family and was expressed only in parasitized insects while transcription of the other ORF could not be detected. Previously, a third region of the segment was shown to hybridize to 0.6 and 1.2 kb poly A+ RNAs from female wasps during virus replication (Theilmann and Summers, 1988) but this region did not have an identifiable ORF in the determined sequence. In contrast to CsIV segment W, segment B had little repetitive sequence. The segment B proviral integration locus contains a 59 bp direct imperfect repeat. Further analyses of this integration locus demonstrated that segment B was excised from wasp genomic DNA with flanking sequences at the integration site rejoined after segment excision. The segment B "excision locus" retained one of the two copies of the 59 bp repeat sequence with the other repeat present in the excised segment. The data indicate that Ichnovirus segments have distinctive characteristics possibly reflecting functional co-evolution between the wasp and individual types of polydnavirus segments.
Collapse
|
116
|
Herrmann RG, Maier RM, Schmitz-Linneweber C. Eukaryotic genome evolution: rearrangement and coevolution of compartmentalized genetic information. Philos Trans R Soc Lond B Biol Sci 2003; 358:87-97; discussion 97. [PMID: 12594919 PMCID: PMC1693106 DOI: 10.1098/rstb.2002.1177] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plant cell operates with an integrated, compartmentalized genome consisting of nucleus/cytosol, plastids and mitochondria that, in its entirety, is regulated in time, quantitatively, in multicellular organisms and also in space. This genome, as do genomes of eukaryotes in general, originated in endosymbiotic events, with at least three cells, and was shaped phylogenetically by a massive and highly complex restructuring and intermixing of the genetic potentials of the symbiotic partners and by lateral gene transfer. This was accompanied by fundamental changes in expression signals in the entire system at almost all regulatory levels. The gross genome rearrangements contrast with a highly specific compartmental interplay, which becomes apparent in interspecific nuclear-plastid cybrids or hybrids. Organelle exchanges, even between closely related species, can greatly disturb the intracellular genetic balance ("hybrid bleaching"), which is indicative of compartmental coevolution and is of relevance for speciation processes. The photosynthetic machinery of plastids, which is embedded in that genetic machinery, is an appealing model to probe into genomic and organismic evolution and to develop functional molecular genomics. We have studied the reciprocal Atropa belladonna-Nicotiana tabacum cybrids, which differ markedly in their phenotypes, and found that transcriptional and post-transcriptional processes can contribute to genome/plastome incompatibility. Allopolyploidy can influence this phenomenon by providing an increased, cryptic RNA editing potential and the capacity to maintain the integrity of organelles of different taxonomic origins.
Collapse
Affiliation(s)
- Reinhold G Herrmann
- Department für Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, D-80638 Munich, Germany.
| | | | | |
Collapse
|
117
|
Miyamoto T, Obokata J, Sugiura M. Recognition of RNA editing sites is directed by unique proteins in chloroplasts: biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts. Mol Cell Biol 2002; 22:6726-34. [PMID: 12215530 PMCID: PMC134032 DOI: 10.1128/mcb.22.19.6726-6734.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2002] [Revised: 05/13/2002] [Accepted: 06/20/2002] [Indexed: 11/20/2022] Open
Abstract
RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants.
Collapse
|
118
|
Miyata Y, Sugiura C, Kobayashi Y, Hagiwara M, Sugita M. Chloroplast ribosomal S14 protein transcript is edited to create a translation initiation codon in the moss Physcomitrella patens. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:346-9. [PMID: 12084583 DOI: 10.1016/s0167-4781(02)00346-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rps14 transcript is edited in the moss Physcomitrella patens chloroplast by a C-to-U transition, to create a translation initiation codon, AUG. The efficiency of RNA editing was low, with approximately 20% of rps14 transcripts edited. This suggests that the translation of rps14 mRNA is strictly regulated by RNA editing. This is the first report of RNA editing in P. patens and the creation of a translation initiation codon in rps14 mRNA in chloroplasts.
Collapse
Affiliation(s)
- Yuki Miyata
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
119
|
Villegas J, Müller I, Arredondo J, Pinto R, Burzio LO. A putative RNA editing from U to C in a mouse mitochondrial transcript. Nucleic Acids Res 2002; 30:1895-901. [PMID: 11972325 PMCID: PMC113838 DOI: 10.1093/nar/30.9.1895] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, we isolated and characterized a new mouse mitochondrial RNA molecule containing the mitochondrial 16S RNA plus 121 nt joined to the 5' end of the RNA. This fragment arises from the L strand of the same gene and we have named this transcript chimeric RNA. At position 121 of the RNA there is a C, which, according to the sequence of the mitochondrial 16S RNA gene, should be a U. We hypothesized that this RNA is synthesized having a U at position 121, which is later substituted to a C by a putative editing reaction. Based on the presence of sites for the restriction endonucleases RsaI and Fnu4HI around position 121, both forms of the RNA were detected in mouse tissues. To confirm the presence of the non-edited and putative edited RNA, a fragment containing the first 154 nt of the RNA was amplified by RT-PCR and cloned. The substitution of U for C was demonstrated by sequencing these clones. In vitro transcription experiments demonstrated that the substitution of U for C is not due to artifact of amplification or cloning. Moreover, in mitochondria from testis only the non-edited form was found. This, together with other experimental evidence, demonstrated that the base substitution was not due to polymorphism of the mitochondrial 16S RNA gene. This is the first demonstration of a substitution reaction from U to C in a mammalian mitochondrial transcript.
Collapse
Affiliation(s)
- Jaime Villegas
- Bios Chile Ingeniería Genética S.A., Millennium Institute for Fundamental and Applied Biology and Fundación Ciencia para la Vida, Avenida Marathon 1943, Santiago, Chile
| | | | | | | | | |
Collapse
|
120
|
Regina TMR, Lopez L, Picardi E, Quagliariello C. Striking differences in RNA editing requirements to express the rps4 gene in magnolia and sunflower mitochondria. Gene 2002; 286:33-41. [PMID: 11943458 DOI: 10.1016/s0378-1119(01)00802-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ribosomal protein S4 gene (rps4) has been identified as a single copy sequence in the mitochondrial genomes of two distant higher plants, Magnolia and Helianthus. Sequence analysis revealed that the rps4 genes present in the magnolia and sunflower mitochondrial genomes encode S4 polypeptides of 352 and 331 amino acids, respectively, longer than their counterparts in liverwort and bacteria. Expression of the rps4 genes in the investigated higher plant mitochondria was confirmed by Western blot analysis. In Helianthus, one of two short nucleotide insertions at the 3'-end introduces in the coding region a premature termination codon. Northern hybridizations and reverse transcription-polymerase chain reaction analysis demonstrated that the monocistronic RNA transcripts generated from the rps4 locus in Magnolia and Helianthus mitochondria are modified by RNA editing at 28 and 13 positions, respectively. Although evolutionarily conserved, RNA editing requirements of the rps4 appear more extensive in Magnolia than in Helianthus and in the other higher plants so far investigated. Furthermore, our analysis also suggests that selection of editing sites is RNA sequence-specific in a duplicated sequence context.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Blotting, Western
- DNA, Mitochondrial/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Helianthus/genetics
- Magnoliopsida/genetics
- Molecular Sequence Data
- RNA Editing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Teresa M R Regina
- Dipartimento di Biologia Cellulare, Università degli Studi della Calabria, 87030 Arcavacata di Rende, Italy
| | | | | | | |
Collapse
|
121
|
Hoffmann M, Kuhn J, Däschner K, Binder S. The RNA world of plant mitochondria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:119-54. [PMID: 11642360 DOI: 10.1016/s0079-6603(01)70015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mitochondria are well known as the cellular power factory. Much less is known about these organelles as a genetic system. This is particularly true for mitochondria of plants, which subsist with respect to attention by the scientific community in the shadow of the chloroplasts. Nevertheless the mitochondrial genetic system is essential for the function of mitochondria and thus for the survival of the plant. In plant mitochondria the pathway from the genetic information encoded in the DNA to the functional protein leads through a very diverse RNA world. How the RNA is generated and what kinds of regulation and control mechanisms are operative in transcription are current topics in research. Furthermore, the modes of posttranscriptional alterations and their consequences for RNA stability and thus for gene expression in plant mitochondria are currently objects of intensive investigations. In this article current results obtained in the examination of plant mitochondrial transcription, RNA processing, and RNA stability are illustrated. Recent developments in the characterization of promoter structure and the respective transcription apparatus as well as new aspects of RNA processing steps including mRNA 3' processing and stability, mRNA polyadenylation, RNA editing, and tRNA maturation are presented. We also consider new suggestions concerning the endosymbiont hypothesis and evolution of mitochondria. These novel considerations may yield important clues for the further analysis of the plant mitochondrial genetic system. Conversely, an increasing knowledge about the mechanisms and components of the organellar genetic system might reveal new aspects of the evolutionary history of mitochondria.
Collapse
Affiliation(s)
- M Hoffmann
- Molekulare Botanik, Universität Ulm, Germany
| | | | | | | |
Collapse
|
122
|
Robert C, Pruneau D, Paquet JL. Pharmacological and functional characterization of the guinea-pig B2 bradykinin receptor stably expressed in CHO-K1 cell line. Br J Pharmacol 2002; 135:462-8. [PMID: 11815382 PMCID: PMC1573155 DOI: 10.1038/sj.bjp.0704494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the present study, pharmacological properties of a bradykinin B(2) receptor amplified either from guinea-pig ileum or lung and homologous to the previously reported sequence except two amino-acid changes L(124)-->P and N(227)-->Y in the receptor protein were characterized. Tritiated bradykinin ([(3)H]-BK) specifically bound to the cloned guinea-pig B(2) bradykinin receptor stably expressed in Chinese hamster ovary cells (CHO-K1) with a K(D) value of 0.29+/-0.07 nM. In competition experiments, bradykinin (BK) affinity constant value was 0.21+/-0.05 nM while the two specific kinin B(1) ligands, des-Arg(9)-bradykinin (DBK) and des-Arg(9)-Leu(8)-bradykinin (DLBK) were unable to compete with [(3)H]-BK. As the specific peptide antagonist D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-bradykinin (HOE140), (E)-3-(6-acetamido-3-pyridil)-N-[-N-[2,4-dichloro-3-[(2-methyl-8-quinolinyl)oxymethyl]phenyl]-N-methylaminocarbonylmethyl]acrylamide (FR173657) and 1-[[3-[2,4-dimethylquinolin-8-yl)oxymethyl] - 2,4 - dichloro - phenyl]sulfonyl] - 2(S) - [[4-[4-(aminoiminomethyl)-phenylcarbonyl]piperazin-1-yl]carbonyl]pyrrolidine (LF16-0335C) exhibited a high affinity for this receptor with K(i) values of 7.34+/-2.45 nM and 8.54+/-1.55 nM respectively. BK and kallidin (KD) increased inositol phosphates (IPs) levels with EC(50) values of 0.44+/-0.12 nM and 6.88+/-0.28 nM, respectively. Neither DLBK nor DBK (0.01 nM to 10 microM) stimulated or inhibited IPs turnover and as expected HOE140 did not raise IPs production. HOE140 (0.1 microM) and LF 16-0335c (1 microM) right shifted the BK response curve with pK(B) values of 9.2+/-0.4 and 8.4+/-0.3, respectively. The results indicate that this cloned guinea-pig receptor displayed typical pharmacological properties of a bradykinin B(2) receptor and support the existence of a single B(2) receptor in this species.
Collapse
Affiliation(s)
- C Robert
- Groupe de Pharmacologie des Récepteurs, Centre de Recherche, Laboratoires Fournier, 50 rue de Dijon, 21121-Daix, France.
| | | | | |
Collapse
|
123
|
Kruft V, Eubel H, Jänsch L, Werhahn W, Braun HP. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. PLANT PHYSIOLOGY 2001. [PMID: 11743114 DOI: 10.1104/pp.010474] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An Arabidopsis mitochondrial proteome project was started for a comprehensive investigation of mitochondrial functions in plants. Mitochondria were prepared from Arabidopsis stems and leaves or from Arabidopsis suspension cell cultures, and the purity of the generated fractions was tested by the resolution of organellar protein complexes applying two-dimensional blue-native/N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine (Tricine) sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Arabidopsis mitochondrial proteome was analyzed by two-dimensional isoelectric focusing/ Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 650 different proteins in a pI range of pH 3 to 10 were separated on single gels. Solubilization conditions, pH gradients for isoelectric focusing, and gel staining procedures were varied, and the number of separable proteins increased to about 800. Fifty-two protein spots were identified by immunoblotting, direct protein sequencing, and mass spectrometry. The characterized proteins cooperate in various processes, such as respiration, citric acid cycle, amino acid and nucleotide metabolism, protection against O(2), mitochondrial assembly, molecular transport, and protein biosynthesis. More than 20% of the identified proteins were not described previously for plant mitochondria, indicating novel mitochondrial functions. The map of the Arabidopsis mitochondrial proteome should be useful for the analysis of knockout mutants concerning nuclear-encoded mitochondrial genes. Considerations of the total complexity of the Arabidopsis mitochondrial proteome are discussed. The data from this investigation will be made available at http://www.gartenbau.uni-hannover.de/genetik/AMPP.
Collapse
Affiliation(s)
- V Kruft
- Applied Biosystems, D-63225 Langen, Germany
| | | | | | | | | |
Collapse
|
124
|
Farré JC, Leon G, Jordana X, Araya A. cis Recognition elements in plant mitochondrion RNA editing. Mol Cell Biol 2001; 21:6731-7. [PMID: 11564858 PMCID: PMC99851 DOI: 10.1128/mcb.21.20.6731-6737.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2001] [Accepted: 07/16/2001] [Indexed: 11/20/2022] Open
Abstract
RNA editing in higher plant mitochondria modifies mRNA sequences by means of C-to-U conversions at highly specific sites. To determine the cis elements involved in recognition of an editing site in plant mitochondria, deletion and site-directed mutation constructs containing the cognate cox II mitochondrial gene were introduced into purified mitochondria by electroporation. The RNA editing status was analyzed for precursor and spliced transcripts from the test construct. We found that only a restricted number of nucleotides in the vicinity of the target C residue were necessary for recognition by the editing machinery and that the nearest neighbor 3' residues were crucial for the editing process. We provide evidence that two functionally distinguishable sequences can be defined: the 16-nucleotide 5' region, which can be replaced with the same region from another editing site, and a 6-nucleotide 3' region specific to the editing site. The latter region may play a role in positioning the actual editing residue.
Collapse
Affiliation(s)
- J C Farré
- Laboratoire de Réplication et Expression des Gènes Eucaryotes et Rétroviraux, UMR 5097, Centre National de la Recherche Scientifique and Université Victor Segalen-Bordeaux II, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
125
|
Farré JC, Araya A. Gene expression in isolated plant mitochondria: high fidelity of transcription, splicing and editing of a transgene product in electroporated organelles. Nucleic Acids Res 2001; 29:2484-91. [PMID: 11410655 PMCID: PMC55745 DOI: 10.1093/nar/29.12.2484] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial gene expression was studied using an electrotransformation protocol to introduce foreign DNA into purified wheat mitochondria. Optimal conditions for DNA uptake and transient gene expression were determined. We show here that a DNA plasmid containing either a cognate or a non-cognate gene under the control of a plant mitochondrial promoter is incorporated into the organelle and faithfully recognized by the transcription machinery. Transcripts generated by a plasmid bearing the intron-containing cox II gene were correctly spliced. Moreover, the transcripts were edited at the expected target C residues. The expression and maturation process of the transgene is dependent on the integrity of functional elements such as the promotor or the presence of structural domains necessary for splicing. The mitochondrial transformation described in this report is an important tool to study the multiple steps involved in plant mitochondrial gene expression at conditions closer to those found in vivo.
Collapse
MESH Headings
- Base Sequence
- DNA, Mitochondrial/genetics
- DNA, Plant/genetics
- DNA, Recombinant/genetics
- Deoxyribonuclease I/metabolism
- Electron Transport Complex IV/genetics
- Electroporation/methods
- Gene Expression Regulation, Plant
- Genes, Reporter/genetics
- Introns/genetics
- Kinetics
- Magnoliopsida/cytology
- Magnoliopsida/embryology
- Magnoliopsida/genetics
- Mitochondria/genetics
- Nucleic Acid Conformation
- Plasmids/genetics
- Promoter Regions, Genetic/genetics
- RNA Editing/genetics
- RNA Splicing/genetics
- RNA Stability/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Transcription, Genetic/genetics
- Transformation, Genetic
- Transgenes/genetics
Collapse
Affiliation(s)
- J C Farré
- Laboratoire de Réplication et Expression des Gènes Eucaryotes et Rétroviraux, UMR 5097, Centre National de la Recherche Scientifique and Université Victor Segalen-Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux Cedex, France
| | | |
Collapse
|
126
|
Rabinovici R, Kabir K, Chen M, Su Y, Zhang D, Luo X, Yang JH. ADAR1 Is Involved in the Development of Microvascular Lung Injury. Circ Res 2001; 88:1066-71. [PMID: 11375277 DOI: 10.1161/hh1001.090877] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
—Deamination of adenosine on pre-mRNA to inosine is a recently discovered process of posttranscription modification of pre-mRNA, termed A-to-I RNA editing, which results in the production of proteins not inherent in the genome. The present study aimed to identify a role for A-to-I RNA editing in the development of microvascular lung injury. To that end, the pulmonary expression and activity of the RNA editase ADAR1 were evaluated in a mouse model of endotoxin (15 mg/kg IP)–induced microvascular lung injury (n=5) as well as in cultured alveolar macrophages stimulated with endotoxin, live bacteria, or interferon. ADAR1 expression and activity were identified in sham lungs that were upregulated in lungs from endotoxin-treated mice (at 2 hours). Expression was localized to polymorphonuclear and monocytic cells. These events preceded the development of pulmonary edema and leukocyte accumulation in lung tissue and followed the local production of interferon-γ, a known inducer of ADAR1 in other cell systems. ADAR1 was found to be upregulated in alveolar macrophages (MH-S cells) stimulated with endotoxin (1 to 100 μg/mL), live Escherichia coli (5×10
7
colony-forming units), or interferon-γ (1000 U/mL). Taken together, these data suggest that ADAR1 may play a role in the pathogenesis of microvascular lung injury possibly through induction by interferon.
Collapse
Affiliation(s)
- R Rabinovici
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
RNA editing can be broadly defined as any site-specific alteration in an RNA sequence that could have been copied from the template, excluding changes due to processes such as RNA splicing and polyadenylation. Changes in gene expression attributed to editing have been described in organisms from unicellular protozoa to man, and can affect the mRNAs, tRNAs, and rRNAs present in all cellular compartments. These sequence revisions, which include both the insertion and deletion of nucleotides, and the conversion of one base to another, involve a wide range of largely unrelated mechanisms. Recent advances in the development of in vitro editing and transgenic systems for these varied modifications have provided a better understanding of similarities and differences between the biochemical strategies, regulatory sequences, and cellular factors responsible for such RNA processing events.
Collapse
Affiliation(s)
- J M Gott
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
128
|
Abstract
The past decade has seen an explosive increase in information about regulation of eukaryotic gene transcription, especially for protein-coding genes. The most striking advances in our knowledge of transcriptional regulation involve the chromatin template, the large complexes recruited by transcriptional activators that regulate chromatin structure and the transcription apparatus, the holoenzyme forms of RNA polymerase II involved in initiation and elongation, and the mechanisms that link mRNA processing with its synthesis. We describe here the major advances in these areas, with particular emphasis on the modular complexes associated with RNA polymerase II that are targeted by activators and other regulators of mRNA biosynthesis.
Collapse
Affiliation(s)
- T I Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
129
|
O'Sullivan JM, Davenport JB, Tuite MF. Codon reassignment and the evolving genetic code: problems and pitfalls in post-genome analysis. Trends Genet 2001; 17:20-2. [PMID: 11163917 DOI: 10.1016/s0168-9525(00)02144-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The in silico translation of open reading frames, using the 'universal genetic code', must be approached with caution. The uncovering of a number of codon reassignments in nuclear and organellar genomes highlights the importance of experimentally confirming the assignments of all 64 codons for the species whose genome is under investigation. Such alterations to codon meaning also suggest that the genetic code is not 'frozen' and continues to evolve.
Collapse
Affiliation(s)
- J M O'Sullivan
- Dept of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | | |
Collapse
|
130
|
Merzlyak EM, Zakharova MY, Kolesnikov AA. Monogenetic trypanosomatids: comparison of the ND8 editing gene. Eur J Protistol 2001. [DOI: 10.1078/0932-4739-00823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
131
|
Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, Reyes A. Evolution of the mitochondrial genetic system: an overview. Gene 2000; 261:153-9. [PMID: 11164046 DOI: 10.1016/s0378-1119(00)00484-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondria, semi-autonomous organelles possessing their own genetic system, are commonly accepted to descend from free-living eubacteria, namely hydrogen-producing alpha-proteobacteria. The progressive loss of genes from the primitive eubacterium to the nucleus of the eukaryotic cell is strongly justified by the Muller rachet principle, which postulates that asexual genomes, like mitochondrial ones, accumulate deleterious and sublethal mutations faster than sexual genomes, like the nucleus. According to this principle, the mitochondrial genome would be doomed to death; instead, we observe that the mitochondrial genome has a variable size and structure in the different organisms, though it contains more or less the same set of genes. This is an example of genetic conservation versus structural diversity. From an evolutionary point of view the genetic system of organelles is clearly under strong selective pressure and for its survival it needs to utilize strategies to slow down or halt the ratchet. Anyway, the mitochondrial genome changes with time, and the rate of evolution is different for both diverse regions of the mtDNA and between lineages, as demonstrated in the case of mammalian mt genomes. We report here our data on the evolution of the mitochondrial DNA in mammals which demonstrate the suitability of mtDNA as a molecular tool for evolutionary analyses.
Collapse
Affiliation(s)
- C Saccone
- Centro di Studio sui Mitocondri e Metabolismo Energetico, CNR, via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
132
|
Lavrov DV, Brown WM, Boore JL. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci U S A 2000; 97:13738-42. [PMID: 11095730 PMCID: PMC17645 DOI: 10.1073/pnas.250402997] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We determined the complete mtDNA sequence of the centipede Lithobius forficatus and found that only one of the 22 inferred tRNA genes encodes a fully paired aminoacyl acceptor stem. The other 21 genes encode tRNAs with up to five mismatches in these stems, and some of these overlap extensively with the downstream genes. Because a well-paired acceptor stem is required for proper tRNA functioning, RNA editing in the products of these genes was suspected. We investigated this hypothesis by studying cDNA sequences from eight tRNAs and found the editing of up to 5 nt at their 3' ends. This editing appears to occur by a novel mechanism with the 5' end of the acceptor stem being used as a template for the de novo synthesis of the 3' end, presumably by an RNA-dependent RNA polymerase. In addition, unusual secondary structures for several tRNAs were found, including those lacking a TPsiC (T) or a dihydrouridine (D) arm, and having an unusual number of base pairs in the acceptor or anticodon stems.
Collapse
Affiliation(s)
- D V Lavrov
- Department of Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA.
| | | | | |
Collapse
|
133
|
Villegas J, Zárraga AM, Muller I, Montecinos L, Werner E, Brito M, Meneses AM, Burzio LO. A novel chimeric mitochondrial RNA localized in the nucleus of mouse sperm. DNA Cell Biol 2000; 19:579-88. [PMID: 11034550 DOI: 10.1089/104454900439809] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Six identical cDNA clones corresponding to an RNA of 1685 nucleotides that is enriched in mouse sperm compared with testis were isolated from a mouse testis cDNA library. The sequence of these clones corresponds to the 16S mitochondrial RNA plus an inverted repeat of 120 bp covalently joined to the 5' end of the RNA. By RT-PCR, it was demonstrated that this transcript, referred to as chimeric RNA, was present in mouse sperm, testis, liver, kidney, brain, and spleen. The absence of an equivalent sequence in mitochondrial DNA or as a mitochondrial pseudogene in total DNA extracted from sperm, testis, and somatic tissues suggests that the chimeric RNA is a post-transcriptional product, maybe resulting from a trans splicing reaction. The chimeric RNA was found by RT-PCR in total RNA extracted from purified sperm heads. This result was confirmed by in situ hybridization, which showed clear staining of the sperm nucleus with probes corresponding to sequences of the mitochondrial 16S RNA and the inverted repeat.
Collapse
Affiliation(s)
- J Villegas
- Bios Chile Ingeniería Genética S.A., Institute for Fundamental and Applied Biology and Fundación Ciencia Para La Vida, Nuñoa, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|