101
|
Sola Carvajal A, McKenna T, Wallén Arzt E, Eriksson M. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation. PLoS One 2015; 10:e0128917. [PMID: 26053873 PMCID: PMC4459694 DOI: 10.1371/journal.pone.0128917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/01/2015] [Indexed: 01/11/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR) expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype.
Collapse
Affiliation(s)
- Agustín Sola Carvajal
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Tomás McKenna
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Emelie Wallén Arzt
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| |
Collapse
|
102
|
Malashicheva A, Bogdanova M, Zabirnyk A, Smolina N, Ignatieva E, Freilikhman O, Fedorov A, Dmitrieva R, Sjöberg G, Sejersen T, Kostareva A. Various lamin A/C mutations alter expression profile of mesenchymal stem cells in mutation specific manner. Mol Genet Metab 2015; 115:118-27. [PMID: 25982065 DOI: 10.1016/j.ymgme.2015.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
Various mutations in LMNA gene, encoding for nuclear lamin A/C protein, lead to laminopathies and contribute to over ten human disorders, mostly affecting tissues of mesenchymal origin such as fat tissue, muscle tissue, and bones. Recently it was demonstrated that lamins not only play a structural role providing communication between extra-nuclear structures and components of cell nucleus but also control cell fate and differentiation. In our study we assessed the effect of various LMNA mutations on the expression profile of mesenchymal multipotent stem cells (MMSC) during adipogenic and osteogenic differentiation. We used lentiviral approach to modify human MMSC with LMNA-constructs bearing mutations associated with different laminopathies--G465D, R482L, G232E, R527C, and R471C. The impact of various mutations on MMSC differentiation properties and expression profile was assessed by colony-forming unit analysis, histological staining, expression of the key differentiation markers promoting adipogenesis and osteogenesis followed by the analysis of the whole set of genes involved in lineage-specific differentiation using PCR expression arrays. We demonstrate that various LMNA mutations influence the differentiation efficacy of MMSC in mutation-specific manner. Each LMNA mutation promotes a unique expression pattern of genes involved in a lineage-specific differentiation and this pattern is shared by the phenotype-specific mutations.
Collapse
Affiliation(s)
- Anna Malashicheva
- Almazov Federal Medical Research Centre, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia; ITMO University, Institute of translational Medicine, St. Petersburg, Russia
| | - Maria Bogdanova
- Almazov Federal Medical Research Centre, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia
| | | | - Natalia Smolina
- Almazov Federal Medical Research Centre, St. Petersburg, Russia; Department of Woman and Child Health, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elena Ignatieva
- Almazov Federal Medical Research Centre, St. Petersburg, Russia
| | | | - Anton Fedorov
- Almazov Federal Medical Research Centre, St. Petersburg, Russia
| | | | - Gunnar Sjöberg
- Department of Woman and Child Health, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Thomas Sejersen
- Department of Woman and Child Health, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anna Kostareva
- Almazov Federal Medical Research Centre, St. Petersburg, Russia; Department of Woman and Child Health, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; ITMO University, Institute of translational Medicine, St. Petersburg, Russia.
| |
Collapse
|
103
|
Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins. Sci Rep 2015; 5:10652. [PMID: 26024016 PMCID: PMC4448529 DOI: 10.1038/srep10652] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical α-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope.
Collapse
|
104
|
Oberstein A, Perlman DH, Shenk T, Terry LJ. Human cytomegalovirus pUL97 kinase induces global changes in the infected cell phosphoproteome. Proteomics 2015; 15:2006-22. [PMID: 25867546 DOI: 10.1002/pmic.201400607] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 12/12/2022]
Abstract
Replication of human cytomegalovirus (HCMV) is regulated in part by cellular kinases and the single viral Ser/Thr kinase, pUL97. The virus-coded kinase augments the replication of HCMV by enabling nuclear egress and altering cell cycle progression. These roles are accomplished through direct phosphorylation of nuclear lamins and the retinoblastoma protein, respectively. In an effort to identify additional pUL97 substrates, we analyzed the phosphoproteome of SILAC-labeled human fibroblasts during infection with either wild-type HCMV or a pUL97 kinase-dead mutant virus. Phosphopeptides were enriched over a titanium dioxide matrix and analyzed by high-resolution MS. We identified 157 unambiguous phosphosites from 106 cellular and 17 viral proteins whose phosphorylation required UL97. Analysis of peptides containing these sites allowed the identification of several candidate pUL97 phosphorylation motifs, including a completely novel phosphorylation motif, LxSP. Substrates harboring the LxSP motif were enriched in nucleocytoplasmic transport functions, including a number of components of the nuclear pore complex. These results extend the known functions of pUL97 and suggest that modulation of nuclear pore function may be important during HCMV replication.
Collapse
Affiliation(s)
- Adam Oberstein
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David H Perlman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Laura J Terry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
105
|
Isnard A, Christian JG, Kodiha M, Stochaj U, McMaster WR, Olivier M. Impact of Leishmania infection on host macrophage nuclear physiology and nucleopore complex integrity. PLoS Pathog 2015; 11:e1004776. [PMID: 25826301 PMCID: PMC4380401 DOI: 10.1371/journal.ppat.1004776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/03/2015] [Indexed: 12/23/2022] Open
Abstract
The protease GP63 is an important virulence factor of Leishmania parasites. We previously showed that GP63 reaches the perinuclear area of host macrophages and that it directly modifies nuclear translocation of the transcription factors NF-κB and AP-1. Here we describe for the first time, using molecular biology and in-depth proteomic analyses, that GP63 alters the host macrophage nuclear envelope, and impacts on nuclear processes. Our results suggest that GP63 does not appear to use a classical nuclear localization signal common between Leishmania species for import, but degrades nucleoporins, and is responsible for nuclear transport alterations. In the nucleoplasm, GP63 activity accounts for the degradation and mislocalization of proteins involved amongst others in gene expression and in translation. Collectively, our data indicates that Leishmania infection strongly affects nuclear physiology, suggesting that targeting of nuclear physiology may be a strategy beneficial for virulent Leishmania parasites. Unicellular parasites of the genus Leishmania are the causative agent of leishmaniasis, a disease affecting 12 million people worldwide, mainly in tropical and subtropical regions of the developing world. They have evolved strategies to circumvent cellular defense mechanisms favouring their survival. This includes the cleavage and activation of proteins and the subsequent block of signals within the host cells. In this study we discovered that a Leishmania virulence factor, GP63, is able to reach host cell nuclei and affect protein transport from and into the nucleus. Through the analysis of the protein content of nuclei after parasite infection we revealed that Leishmania, predominantly through the protein cleaving enzyme GP63, can alter several processes within the nucleus, amongst others mechanisms associated with gene expression and nucleic acid metabolism. Thus, we here introduce a novel strategy of how Leishmania parasites may overcome host cell defense and ensure their own survival.
Collapse
Affiliation(s)
- Amandine Isnard
- Departments of Medicine and Microbiology & Immunology, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
| | - Jan G. Christian
- Departments of Medicine and Microbiology & Immunology, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
| | - Mohamed Kodiha
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - W. Robert McMaster
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Olivier
- Departments of Medicine and Microbiology & Immunology, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
106
|
Talamas JA, Capelson M. Nuclear envelope and genome interactions in cell fate. Front Genet 2015; 6:95. [PMID: 25852741 PMCID: PMC4365743 DOI: 10.3389/fgene.2015.00095] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/22/2015] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate.
Collapse
Affiliation(s)
- Jessica A Talamas
- Program in Epigenetics, Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Maya Capelson
- Program in Epigenetics, Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
107
|
Abstract
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. In this review, Osmanagic-Myers et al. focus on the role of nuclear lamins in mechanosensing and also discuss how disease-linked lamin mutants may impair the response of cells to mechanical stimuli and influence the properties of the extracellular matrix. The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.
Collapse
|
108
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
109
|
Seridi L, Ryu T, Ravasi T. Dynamic epigenetic control of highly conserved noncoding elements. PLoS One 2014; 9:e109326. [PMID: 25289637 PMCID: PMC4188601 DOI: 10.1371/journal.pone.0109326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/11/2014] [Indexed: 11/19/2022] Open
Abstract
Background Many noncoding genomic loci have remained constant over long evolutionary periods, suggesting that they are exposed to strong selective pressures. The molecular functions of these elements have been partially elucidated, but the fundamental reason for their extreme conservation is still unknown. Results To gain new insights into the extreme selection of highly conserved noncoding elements (HCNEs), we used a systematic analysis of multi-omic data to study the epigenetic regulation of such elements during the development of Drosophila melanogaster. At the sequence level, HCNEs are GC-rich and have a characteristic oligomeric composition. They have higher levels of stable nucleosome occupancy than their flanking regions, and lower levels of mononucleosomes and H3.3, suggesting that these regions reside in compact chromatin. Furthermore, these regions showed remarkable modulations in histone modification and the expression levels of adjacent genes during development. Although HCNEs are primarily initiated late in replication, about 10% were related to early replication origins. Finally, HCNEs showed strong enrichment within lamina-associated domains. Conclusion HCNEs have distinct and protective sequence properties, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. These observations indicate that such elements are likely to have essential cellular functions, and offer insights into their epigenetic properties.
Collapse
Affiliation(s)
- Loqmane Seridi
- Division of Biological and Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Taewoo Ryu
- Division of Biological and Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- * E-mail: (T. Ryu); (T. Ravasi)
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (T. Ryu); (T. Ravasi)
| |
Collapse
|
110
|
Sweeney EM, Dockery P, Crankshaw DJ, O'Brien YM, Walsh JM, Morrison JJ. Human uterine lower segment myometrial cell and nuclear volume at term: influence of maternal age. J Anat 2014; 225:625-33. [PMID: 25265023 DOI: 10.1111/joa.12240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2014] [Indexed: 10/24/2022] Open
Abstract
Little is known about the cytoarchitecture of human myometrial cells in pregnancy, and whether or not this may be influenced by maternal characteristics such as age, parity and body mass index (BMI). The aim of this study was primarily to evaluate human myometrial smooth muscle cell (SMC) and nuclear volume in the third trimester of human pregnancy, and secondarily to investigate if these parameters are altered in relation to the maternal characteristics outlined above. Myometrial biopsies were obtained from 30 women undergoing elective caesarean delivery at term. One-micrometer sections were prepared for light microscopy and 100-nm sections for electron microscopy. The nucleator technique was used to assess nuclear volume from the light microscopy images. Point-counting methodology was used on transmission electron micrographs to assess the percentage of the cell volume occupied by the nucleus. Cell volume was calculated from these measurements. The euchromatin to heterochromatin (Eu/Het) ratio was determined to ascertain whether differences in nuclear volume were due to an increased range of genes being transcribed. The mean (± SEM) nuclear volume was 175 ± 10 μm(3) , the nucleus occupied 1.5 ± 0.1% of the SMC and the mean cell size was 14 047 ± 1352 μm(3) . The Eu/Het ratio was 7.54 ± 0.4. The mean volume of heterochromatin and euchromatin in the nucleus was 21.5 ± 1.7 and 149 ± 9 μm(3) , respectively. A multivariate regression analysis revealed that advanced maternal age was associated with an increase in the percentage of the cell occupied by nucleus (R(2) = 0.32, P = 0.004). There were no other significant effects of maternal age, BMI or parity on the measured parameters. These findings provide reliable volumes for human myometrial cells and their nuclei at term gestation, and show that nuclear volume fraction may be influenced by maternal age.
Collapse
Affiliation(s)
- Eva M Sweeney
- Department of Obstetrics and Gynaecology, National University of Ireland, Galway, Ireland; Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
111
|
Zhang L, Nemzow L, Chen H, Hu JJ, Gong F. Whole genome expression profiling shows that BRG1 transcriptionally regulates UV inducible genes and other novel targets in human cells. PLoS One 2014; 9:e105764. [PMID: 25157878 PMCID: PMC4144907 DOI: 10.1371/journal.pone.0105764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/19/2014] [Indexed: 12/16/2022] Open
Abstract
UV irradiation is known to cause cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6–4) pyrimidone photoproducts (6-4PPs), and plays a large role in the development of cancer. Tumor suppression, through DNA repair and proper cell cycle regulation, is an integral factor in maintaining healthy cells and preventing development of cancer. Transcriptional regulation of the genes involved in the various tumor suppression pathways is essential for them to be expressed when needed and to function properly. BRG1, an ATPase catalytic subunit of the SWI/SNF chromatin remodeling complex, has been identified as a tumor suppressor protein, as it has been shown to play a role in Nucleotide Excision Repair (NER) of CPDs, suppress apoptosis, and restore checkpoint deficiency, in response to UV exposure. Although BRG1 has been shown to regulate transcription of some genes that are instrumental in proper DNA damage repair and cell cycle maintenance in response to UV, its role in transcriptional regulation of the whole genome in response to UV has not yet been elucidated. With whole genome expression profiling in SW13 cells, we show that upon UV induction, BRG1 regulates transcriptional expression of many genes involved in cell stress response. Additionally, our results also highlight BRG1's general role as a master regulator of the genome, as it transcriptionally regulates approximately 4.8% of the human genome, including expression of genes involved in many pathways. RT-PCR and ChIP were used to validate our genome expression analysis. Importantly, our study identifies several novel transcriptional targets of BRG1, such as ATF3. Thus, BRG1 has a larger impact on human genome expression than previously thought, and our studies will provide inroads for future analysis of BRG1's role in gene regulation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Leah Nemzow
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Hua Chen
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jennifer J. Hu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Feng Gong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
112
|
Navarro CL, Esteves-Vieira V, Courrier S, Boyer A, Duong Nguyen T, Huong LTT, Meinke P, Schröder W, Cormier-Daire V, Sznajer Y, Amor DJ, Lagerstedt K, Biervliet M, van den Akker PC, Cau P, Roll P, Lévy N, Badens C, Wehnert M, De Sandre-Giovannoli A. New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. Eur J Hum Genet 2014; 22:1002-11. [PMID: 24169522 PMCID: PMC4350588 DOI: 10.1038/ejhg.2013.258] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 01/24/2023] Open
Abstract
Restrictive dermopathy (RD) is a rare and extremely severe congenital genodermatosis, characterized by a tight rigid skin with erosions at flexure sites, multiple joint contractures, low bone density and pulmonary insufficiency generally leading to death in the perinatal period. RD is caused in most patients by compound heterozygous or homozygous ZMPSTE24 null mutations. This gene encodes a metalloprotease specifically involved in lamin A post-translational processing. Here, we report a total of 16 families for whom diagnosis and molecular defects were clearly established. Among them, we report seven new ZMPSTE24 mutations, identified in classical RD or Mandibulo-acral dysplasia (MAD) affected patients. We also report nine families with one or two affected children carrying the common, homozygous thymine insertion in exon 9 and demonstrate the lack of a founder effect. In addition, we describe several new ZMPSTE24 variants identified in unaffected controls or in patients affected with non-classical progeroid syndromes. In addition, this mutation update includes a comprehensive search of the literature on previously described ZMPSTE24 mutations and associated phenotypes. Our comprehensive analysis of the molecular pathology supported the general rule: complete loss-of-function of ZMPSTE24 leads to RD, whereas other less severe phenotypes are associated with at least one haploinsufficient allele.
Collapse
Affiliation(s)
- Claire Laure Navarro
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
| | - Vera Esteves-Vieira
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Sébastien Courrier
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
| | - Amandine Boyer
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Thuy Duong Nguyen
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
- Institute of Genome Research (IGR), Vietnam Academy of Science and Technology (VAST), Hà Nô̇i, Vietnam
| | - Le Thi Thanh Huong
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
- National Institute of Hygiene and Epidemiology, Hà Nô̇i, Vietnam
| | - Peter Meinke
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Winnie Schröder
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | - Yves Sznajer
- Center for Human Genetics, Cliniques Universitaires St-Luc, U.C.L, Bruxelles, Belgique
| | - David J Amor
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Kristina Lagerstedt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Martine Biervliet
- Department of Medical Genetics, University Hospital Antwerp, Antwerp, Belgium
| | - Peter C van den Akker
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pierre Cau
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Cellular Biology, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Patrice Roll
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Cellular Biology, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Nicolas Lévy
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Catherine Badens
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Manfred Wehnert
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Annachiara De Sandre-Giovannoli
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| |
Collapse
|
113
|
Gruenbaum Y, Aebi U. Intermediate filaments: a dynamic network that controls cell mechanics. F1000PRIME REPORTS 2014; 6:54. [PMID: 25184044 PMCID: PMC4108948 DOI: 10.12703/p6-54] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In humans the superfamily of intermediate filament (IF) proteins is encoded by more than 70 different genes, which are expressed in a cell- and tissue-specific manner. IFs assemble into approximately 10 nm-wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. They are also required for organizing the microtubule and microfilament networks. In this review, we focus on the dynamics of IFs and how modifications regulate it. We also discuss the role of nuclear IF organization in determining nuclear mechanics as well as that of cytoplasmic IFs organization in maintaining cell stiffness, formation of lamellipodia, regulation of cell migration, and permitting cell adhesion.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of JerusalemGivat Ram, Jerusalem 91904Israel
| | - Ueli Aebi
- Biozentrum, University of BaselKlingelbergerstrasse 70, CH-4056 BaselSwitzerland
| |
Collapse
|
114
|
Schilf P, Peter A, Hurek T, Stick R. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family. Eur J Cell Biol 2014; 93:308-21. [DOI: 10.1016/j.ejcb.2014.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022] Open
|
115
|
Amendola M, van Steensel B. Mechanisms and dynamics of nuclear lamina–genome interactions. Curr Opin Cell Biol 2014; 28:61-8. [DOI: 10.1016/j.ceb.2014.03.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 12/21/2022]
|
116
|
p.Pro4Arg mutation in LMNA gene: a new atypical progeria phenotype without metabolism abnormalities. Gene 2014; 546:35-9. [PMID: 24861648 DOI: 10.1016/j.gene.2014.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/15/2013] [Accepted: 05/20/2014] [Indexed: 11/23/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a typical presenile disorder, with mutation in the LMNA gene. Besides HGPS, mutations in LMNA gene have also been reported in atypical progeroid syndrome (APS). The objective of the study was to investigate the phenotype and molecular basis of APS in a Chinese family. LMNA gene mutations were also reviewed to identify the phenotypic and pathogenic differences among APS. Two siblings in a non-consanguineous Chinese family with atypical progeria were reported. The clinical features were observed, including presenile manifestations such as bird-like facial appearance, generalized lipodystrophy involving the extremities and mottled hyperpigmentation on the trunk and extremities. A heterozygous mutation c.11C>G (p.Pro4Arg) of the LMNA gene was detected in the two patients. 28 different variants of the LMNA gene have been reported in APS families, spreading over almost all the 12 exons of the LMNA gene with some hot-spot regions. This is the first detailed description of an APS family without metabolism abnormalities. APS patients share most of the clinical features, but there may be some distinct features in different ethnic groups.
Collapse
|
117
|
Longuespée R, Tastet C, Desmons A, Kerdraon O, Day R, Fournier I, Salzet M. HFIP extraction followed by 2D CTAB/SDS-PAGE separation: a new methodology for protein identification from tissue sections after MALDI mass spectrometry profiling for personalized medicine research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:374-84. [PMID: 24841221 DOI: 10.1089/omi.2013.0176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and profiling technology have become the easiest methods for quickly accessing the protein composition of a tissue area. Unfortunately, the demand for the identification of these proteins remains unmet. To overcome this bottleneck, we combined several strategies to identify the proteins detected via MALDI profiling including on-tissue protein extraction using hexafluoroIsopropanol (1,1,1,3,3,3-hexafluoro-2-propanol, HFIP) coupled with two-dimensional cetyl trimethylammonium bromide/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D CTAB/SDS-PAGE) for separation followed by trypsin digestion and MALDI-MS analyses for identification. This strategy was compared with an on-tissue bottom-up strategy that we previously developed. The data reflect the complementarity of the approaches. An increase in the number of specific proteins identified has been established. This approach demonstrates the potential of adapted extraction procedures and the combination of parallel identification approaches for personalized medicine applications. The anatomical context provides important insight into identifying biomarkers and may be considered a first step for tissue-based biomarker research, as well as the extemporaneous examination of biopsies during surgery.
Collapse
Affiliation(s)
- Rémi Longuespée
- 1 Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), MALDI Imaging Team, Université de Lille 1 , Cité Scientifique, Lille, France
| | | | | | | | | | | | | |
Collapse
|
118
|
|
119
|
Stroud MJ, Banerjee I, Veevers J, Chen J. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 2014; 114:538-48. [PMID: 24481844 DOI: 10.1161/circresaha.114.301236] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of proteins within the inner and the outer nuclear membranes, connects the nuclear lamina to the cytoskeleton. The importance of this complex has been highlighted by the discovery of mutations in genes encoding LINC complex proteins, which cause skeletal or cardiac myopathies. Herein, this review summarizes structure, function, and interactions of major components of the LINC complex, highlights how mutations in these proteins may lead to cardiac disease, and outlines future challenges in the field.
Collapse
Affiliation(s)
- Matthew J Stroud
- From the Department of Cardiology, University of California San Diego School of Medicine, La Jolla, CA
| | | | | | | |
Collapse
|
120
|
Sizing and shaping the nucleus: mechanisms and significance. Curr Opin Cell Biol 2014; 28:16-27. [PMID: 24503411 DOI: 10.1016/j.ceb.2014.01.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/07/2014] [Accepted: 01/11/2014] [Indexed: 01/14/2023]
Abstract
The size and shape of the nucleus are tightly regulated, indicating the physiological significance of proper nuclear morphology, yet the mechanisms and functions of nuclear size and shape regulation remain poorly understood. Correlations between altered nuclear morphology and certain disease states have long been observed, most notably many cancers are diagnosed and staged based on graded increases in nuclear size. Here we review recent studies investigating the mechanisms regulating nuclear size and shape, how mitotic events influence nuclear morphology, and the role of nuclear size and shape in subnuclear chromatin organization and cancer progression.
Collapse
|
121
|
Ben-Shoshan SO, Simon AJ, Jacob-Hirsch J, Shaklai S, Paz-Yaacov N, Amariglio N, Rechavi G, Trakhtenbrot L. Induction of polyploidy by nuclear fusion mechanism upon decreased expression of the nuclear envelope protein LAP2β in the human osteosarcoma cell line U2OS. Mol Cytogenet 2014; 7:9. [PMID: 24472424 PMCID: PMC3926685 DOI: 10.1186/1755-8166-7-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/10/2014] [Indexed: 01/15/2023] Open
Abstract
Background Polyploidy has been recognized for many years as an important hallmark of cancer cells. Polyploid cells can arise through cell fusion, endoreplication and abortive cell cycle. The inner nuclear membrane protein LAP2β plays key roles in nuclear envelope breakdown and reassembly during mitosis, initiation of replication and transcriptional repression. Here we studied the function of LAP2β in the maintenance of cell ploidy state, a role which has not yet been assigned to this protein. Results By knocking down the expression of LAP2β, using both viral and non-viral RNAi approaches in osteosarcoma derived U2OS cells, we detected enlarged nuclear size, nearly doubling of DNA content and chromosomal duplications, as analyzed by fluorescent in situ hybridization and spectral karyotyping methodologies. Spectral karyotyping analyses revealed that near-hexaploid karyotypes of LAP2β knocked down cells consisted of not only seven duplicated chromosomal markers, as could be anticipated by genome duplication mechanism, but also of four single chromosomal markers. Furthermore, spectral karyotyping analysis revealed that both of two near-triploid U2OS sub-clones contained the seven markers that were duplicated in LAP2β knocked down cells, whereas the four single chromosomal markers were detected only in one of them. Gene expression profiling of LAP2β knocked down cells revealed that up to a third of the genes exhibiting significant changes in their expression are involved in cancer progression. Conclusions Our results suggest that nuclear fusion mechanism underlies the polyploidization induction upon LAP2β reduced expression. Our study implies on a novel role of LAP2β in the maintenance of cell ploidy status. LAP2β depleted U2OS cells can serve as a model to investigate polyploidy and aneuploidy formation by nuclear fusion mechanism and its involvement in cancerogenesis.
Collapse
Affiliation(s)
- Shirley Oren Ben-Shoshan
- Sheba Cancer Research Center, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Amos J Simon
- Sheba Cancer Research Center, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel.,Institute of Hematology, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Sigal Shaklai
- Sheba Cancer Research Center, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Nurit Paz-Yaacov
- Sheba Cancer Research Center, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Ninette Amariglio
- Sheba Cancer Research Center, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel.,Institute of Hematology, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Gideon Rechavi
- Sheba Cancer Research Center, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Luba Trakhtenbrot
- Sheba Cancer Research Center, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel.,Institute of Hematology, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| |
Collapse
|
122
|
Mizuhashi K, Kanamoto T, Moriishi T, Muranishi Y, Miyazaki T, Terada K, Omori Y, Ito M, Komori T, Furukawa T. Filamin-interacting proteins, Cfm1 and Cfm2, are essential for the formation of cartilaginous skeletal elements. Hum Mol Genet 2014; 23:2953-67. [DOI: 10.1093/hmg/ddu007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
123
|
Abstract
The spatial and temporal organization of the genome has emerged as an additional level of regulation of nuclear functions. Structural proteins associated with the nuclear envelope play important roles in the organization of the genome. The nuclear lamina, a polymeric meshwork formed by lamins (A- and B-type) and lamin-associated proteins, is viewed as a scaffold for tethering chromatin and protein complexes regulating a variety of nuclear functions. Alterations in lamins function impact DNA transactions such as transcription, replication, and repair, as well as epigenetic modifications that change chromatin structure. These data, and the association of defective lamins with a whole variety of degenerative disorders, premature aging syndromes, and cancer, provide evidence for these proteins operating as caretakers of the genome. In this chapter, we summarize current knowledge about the function of lamins in the maintenance of genome integrity, with special emphasis on the role of A-type lamins in the maintenance of telomere homeostasis and mechanisms of DNA damage repair. These findings have begun to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability and contribute to the pathophysiology of aging and aging-related diseases, especially cancer.
Collapse
Affiliation(s)
- Susana Gonzalo
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1100 S Grand Ave, St. Louis, MO, 63104, USA,
| |
Collapse
|
124
|
Greiner AM, Jäckel M, Scheiwe AC, Stamow DR, Autenrieth TJ, Lahann J, Franz CM, Bastmeyer M. Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion. Biomaterials 2014; 35:611-9. [DOI: 10.1016/j.biomaterials.2013.09.095] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022]
|
125
|
Lyakhovetsky R, Gruenbaum Y. Studying lamins in invertebrate models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:245-62. [PMID: 24563351 DOI: 10.1007/978-1-4899-8032-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lamins are nuclear intermediate filament proteins that are conserved in all multicellular animals. Proteins that resemble lamins are also found in unicellular organisms and in plants. Lamins form a proteinaceous meshwork that outlines the nucleoplasmic side of the inner nuclear membrane, while a small fraction of lamin molecules is also present in the nucleoplasm. They provide structural support for the nucleus and help regulate many other nuclear activities. Much of our knowledge on the function of nuclear lamins and their associated proteins comes from studies in invertebrate organisms and specifically in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. The simpler lamin system and the powerful genetic tools offered by these model organisms greatly promote such studies. Here we provide an overview of recent advances in the biology of invertebrate nuclear lamins, with special emphasis on their assembly, cellular functions and as models for studying the molecular basis underlying the pathology of human heritable diseases caused by mutations in lamins A/C.
Collapse
Affiliation(s)
- Roman Lyakhovetsky
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | | |
Collapse
|
126
|
Takagi M, Imamoto N. Control of nuclear size by NPC proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:571-91. [PMID: 24563366 DOI: 10.1007/978-1-4899-8032-8_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The architecture of the cell nucleus in cancer cells is often altered in a manner associated with the tumor type and aggressiveness. Therefore, it has been the central criterion in the pathological diagnosis and prognosis of cancer. However, the molecular mechanism behind these observed changes in nuclear morphology, including size, remains completely unknown. Based on our current understanding of the physiology of the nuclear pore complex (NPC) and its constituents, which are collectively referred to as nucleoporins (Nups), we discuss how the structural and functional ablation of the NPC and Nups could directly or indirectly contribute to the changes in nuclear size observed in cancer cells.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN, WAKO, Saitama, 351-0198, Japan,
| | | |
Collapse
|
127
|
Lindenboim L, Sasson T, Worman HJ, Borner C, Stein R. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release. Nucleus 2014; 5:527-41. [PMID: 25482068 PMCID: PMC4615202 DOI: 10.4161/19491034.2014.970105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
Cellular stress triggers many pathways including nuclear protein redistribution. We previously discovered that this process is regulated by Bax but the underlying mechanism has not yet been studied. Here we define this mechanism by showing that apoptotic stimuli cause Bax-regulated disturbances in lamin A/C and nuclear envelope (NE)-associated proteins which results in the generation and subsequent rupture of nuclear protein-containing bubbles. The bubbles do not contain DNA and are encapsulated by impaired nuclear pore-depleted NE. Stress-induced generation and rupture of nuclear bubbles ultimately leads to the discharge of nuclear proteins into the cytoplasm. This process precedes morphological changes of apoptosis and occurs independently of caspases. Rescue experiments revealed that this Bax effect is non-canonical, i.e. it requires the BH3 domain and α-helices 5 and 6 but it is not inhibited by Bcl(-)xL. Targeting Bax to the NE by the Klarsicht/ANC-1/Syne-1 homology (KASH) domain effectively triggers the generation and rupture of nuclear bubbles. Overall, our findings provide evidence for a novel stress-response, which is regulated by a non-canonical action of Bax on the NE.
Collapse
Key Words
- Bax
- Bax/Bak, Bax and Bak
- DKO, double knockout
- INM, inner nuclear membrane
- KASH, Klarsicht: ANC-1, Syne homology
- LAP, lamina-associated polypeptide
- LINC, links nucleoskeleton and cytoskeleton
- MEFs, mouse embryonic fibroblasts
- MOMP, mitochondrial outer membrane permeabilization
- NE, nuclear envelope
- NPCs, nuclear pore complexes
- NPM, nucleophosmin
- NPR, nuclear protein redistribution
- ONM, outer nuclear membrane
- PI, propidium iodide
- Q-VD-OPH, quinoline-Val-Asp(OMe)-CH2-OPH.
- SIGRUNB, stress-induced generation and rupture of nuclear bubbles
- apoptosis
- lamin
- nuclear envelope
- nucleus
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| | - Tiki Sasson
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology; College of Physicians and Surgeons; Columbia University; New York, NY, USA
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research; Albert Ludwigs University Freiburg; Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM); Albert Ludwigs University Freiburg; Freiburg, Germany
- Excellence Cluster, Centre for Biological Signaling Studies (BIOSS); Albert Ludwigs University Freiburg; Freiburg, Germany
| | - Reuven Stein
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| |
Collapse
|
128
|
Gesson K, Vidak S, Foisner R. Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease. Semin Cell Dev Biol 2013; 29:116-24. [PMID: 24374133 PMCID: PMC4053830 DOI: 10.1016/j.semcdb.2013.12.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/10/2013] [Accepted: 12/15/2013] [Indexed: 10/25/2022]
Abstract
A-type lamins are components of the lamina network at the nuclear envelope, which mediates nuclear stiffness and anchors chromatin to the nuclear periphery. However, A-type lamins are also found in the nuclear interior. Here we review the roles of the chromatin-associated, nucleoplasmic LEM protein, lamina-associated polypeptide 2α (LAP2α) in the regulation of A-type lamins in the nuclear interior. The lamin A/C-LAP2α complex may be involved in the regulation of the retinoblastoma protein-mediated pathway and other signaling pathways balancing proliferation and differentiation, and in the stabilization of higher-order chromatin organization throughout the nucleus. Loss of LAP2α in mice leads to selective depletion of the nucleoplasmic A-type lamin pool, promotes the proliferative stem cell phenotype of tissue progenitor cells, and delays stem cell differentiation. These findings support the hypothesis that LAP2α and nucleoplasmic lamins are regulators of adult stem cell function and tissue homeostasis. Finally, we discuss potential implications of this concept for defining the molecular disease mechanisms of lamin-linked diseases such as muscular dystrophy and premature aging syndromes.
Collapse
Affiliation(s)
- Kevin Gesson
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sandra Vidak
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
129
|
Koch AJ, Holaska JM. Emerin in health and disease. Semin Cell Dev Biol 2013; 29:95-106. [PMID: 24365856 DOI: 10.1016/j.semcdb.2013.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the genes encoding emerin, lamins A and C and FHL1. Additional EDMD-like syndromes are caused by mutations in nesprins and LUMA. This review will specifically focus on emerin function and the current thinking for how loss or mutations in emerin cause EDMD. Emerin is a well-conserved, ubiquitously expressed protein of the inner nuclear membrane. Emerin has been shown to have diverse functions, including the regulation of gene expression, cell signaling, nuclear structure and chromatin architecture. This review will focus on the relationships between these functions and the EDMD disease phenotype. Additionally it will highlight open questions concerning emerin's roles in cell and nuclear biology and disease.
Collapse
Affiliation(s)
- Adam J Koch
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - James M Holaska
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Developmental, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
130
|
Nuclear morphometry, epigenetic changes, and clinical relevance in prostate cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 773:77-99. [PMID: 24563344 PMCID: PMC7123969 DOI: 10.1007/978-1-4899-8032-8_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear structure alterations in cancer involve global genetic (mutations, amplifications, copy number variations, translocations, etc.) and epigenetic (DNA methylation and histone modifications) events that dramatically and dynamically spatially change chromatin, nuclear body, and chromosome organization. In prostate cancer (CaP) there appears to be early (<50 years) versus late (>60 years) onset clinically significant cancers, and we have yet to clearly understand the hereditary and somatic-based molecular pathways involved. We do know that once cancer is initiated, dedifferentiation of the prostate gland occurs with significant changes in nuclear structure driven by numerous genetic and epigenetic processes. This review focuses upon the nuclear architecture and epigenetic dynamics with potential translational clinically relevant applications to CaP. Further, the review correlates changes in the cancer-driven epigenetic process at the molecular level and correlates these alterations to nuclear morphological quantitative measurements. Finally, we address how we can best utilize this knowledge to improve the efficacy of personalized treatment of cancer.
Collapse
|
131
|
Mateos J, De la Fuente A, Lesende-Rodriguez I, Fernández-Pernas P, Arufe MC, Blanco FJ. Lamin A deregulation in human mesenchymal stem cells promotes an impairment in their chondrogenic potential and imbalance in their response to oxidative stress. Stem Cell Res 2013; 11:1137-1148. [PMID: 23994728 DOI: 10.1016/j.scr.2013.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 02/05/2023] Open
Abstract
In the present study, we examined the effect of the over-expression of LMNA, or its mutant form progerin (PG), on the mesoderm differentiation potential of mesenchymal stem cells (MSCs) from human umbilical cord (UC) stroma using a recently described differentiation model employing spheroid formation. Accumulation of lamin A (LMNA) was previously associated with the osteoarthritis (OA) chondrocyte phenotype. Mutations of this protein are linked to laminopathies and specifically to Hutchinson-Gilford Progeria Syndrome (HGPS), an accelerated aging disease. Some authors have proposed that a deregulation of LMNA affects the differentiation potential of stem cells. The chondrogenic potential is defective in PG-MSCs, although both PG and LMNA transduced MSCs, have an increase in hypertrophy markers during chondrogenic differentiation. Furthermore, both PG and LMNA-MSCs showed a decrease in manganese superoxide dismutase (MnSODM), an increase of mitochondrial MnSODM-dependent reactive oxygen species (ROS) and alterations in their migration capacity. Finally, defects in chondrogenesis are partially reversed by periodic incubation with ROS-scavenger agent that mimics MnSODM effect. Our results indicate that over-expression of LMNA or PG by lentiviral gene delivery leads to defects in chondrogenic differentiation potential partially due to an imbalance in oxidative stress.
Collapse
Affiliation(s)
- Jesús Mateos
- Rheumatology Division, ProteoRed/ISCIII, INIBIC-Hospital Universitario A Coruña, 15006 A Coruña, Spain; CIBER-BBN, Spain
| | | | | | | | | | | |
Collapse
|
132
|
Arora DK, Mohammed AM, Kowluru A. Nifedipine prevents etoposide-induced caspase-3 activation, prenyl transferase degradation and loss in cell viability in pancreatic β-cells. Apoptosis 2013; 18:1-8. [PMID: 23054080 DOI: 10.1007/s10495-012-0763-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Emerging evidence implicates novel roles for post-translational prenylation (i.e., farnesylation and geranylgeranylation) of various signaling proteins in a variety of cellular functions including hormone secretion, survival and apoptosis. In the context of cellular apoptosis, it has been shown previously that caspase-3 activation, a hallmark of mitochondrial dysregulation, promotes hydrolysis of several key cellular proteins. We report herein that exposure of insulin-secreting INS 832/13 cells or normal rat islets to etoposide leads to significant activation of caspase-3 and subsequent degradation of the common α-subunit of farnesyl/geranylgeranyl transferases (FTase/GGTase). Furthermore, the above stated signaling steps were prevented by Z-DEVD-FMK, a known inhibitor of caspase-3. In addition, treatment of cell lysates with recombinant caspase-3 also caused FTase/GGTase α-subunit degradation. Moreover, nifedipine, a calcium channel blocker, markedly attenuated etoposide-induced caspase-3 activation, FTase/GGTase α-subunit degradation in INS 832/13 cells and normal rat islets. Further, nifedipine significantly restored etoposide-induced loss in metabolic cell viability in INS 832/13 cells. Based on these findings, we conclude that etoposide induces loss in cell viability by inducing mitochondrial dysfunction, caspase-3 activation and degradation of FTase/GGTase α-subunit. Potential significance of these findings in the context of protein prenylation and β-cell survival are discussed.
Collapse
Affiliation(s)
- Daleep K Arora
- Beta-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | | | | |
Collapse
|
133
|
García-Cordero J, Carrillo-Halfon S, León-Juárez M, Romero-Ramírez H, Valenzuela-León P, López-González M, Santos-Argumedo L, Gutiérrez-Castañeda B, González-Y-Merchand JA, Cedillo-Barrón L. Generation and characterization of a rat monoclonal antibody against the RNA polymerase protein from Dengue Virus-2. Immunol Invest 2013; 43:28-40. [DOI: 10.3109/08820139.2013.833622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
134
|
Malashicheva AB, Zabirnik AS, Smolina NA, Dmitrieva RI, Kostareva AA. Lamin A/C mutations alter differentiation potential of mesenchymal stem cells. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x1304010x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
135
|
Towbin BD, Gonzalez-Sandoval A, Gasser SM. Mechanisms of heterochromatin subnuclear localization. Trends Biochem Sci 2013; 38:356-63. [PMID: 23746617 DOI: 10.1016/j.tibs.2013.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022]
Abstract
Transcriptionally repressed heterochromatin becomes the dominant form of chromatin in most terminally differentiated cells. Moreover, in most cells, at least one class of heterochromatin is positioned adjacent to the nuclear lamina. Recent approaches have addressed the mechanism of heterochromatin localization, in order to determine whether spatial segregation contributes to gene repression. Findings in worms and human cells confirm a role for histone H3K9 methylation in heterochromatin positioning, identifying a modification that is also necessary for gene repression of worm transgenic arrays. These pathways appear to be conserved, although mutations in mammalian cells have weaker effects, possibly due to redundancy in positioning mechanisms. We propose a general model in which perinuclear anchoring is linked to an epigenetic propagation of the heterochromatic state, through histone modification.
Collapse
Affiliation(s)
- Benjamin D Towbin
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
136
|
Kane MS, Lindsay ME, Judge DP, Barrowman J, Ap Rhys C, Simonson L, Dietz HC, Michaelis S. LMNA-associated cardiocutaneous progeria: an inherited autosomal dominant premature aging syndrome with late onset. Am J Med Genet A 2013; 161A:1599-611. [PMID: 23666920 DOI: 10.1002/ajmg.a.35971] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/11/2013] [Indexed: 11/10/2022]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder caused by mutations in LMNA, which encodes the nuclear scaffold proteins lamin A and C. In HGPS and related progerias, processing of prelamin A is blocked at a critical step mediated by the zinc metalloprotease ZMPSTE24. LMNA-linked progerias can be grouped into two classes: (1) the processing-deficient, early onset "typical" progerias (e.g., HGPS), and (2) the processing-proficient "atypical" progeria syndromes (APS) that are later in onset. Here we describe a previously unrecognized progeria syndrome with prominent cutaneous and cardiovascular manifestations belonging to the second class. We suggest the name LMNA-associated cardiocutaneous progeria syndrome (LCPS) for this disorder. Affected patients are normal at birth but undergo progressive cutaneous changes in childhood and die in middle age of cardiovascular complications, including accelerated atherosclerosis, calcific valve disease, and cardiomyopathy. In addition, the proband demonstrated cancer susceptibility, a phenotype rarely described for LMNA-based progeria disorders. The LMNA mutation that caused LCPS in this family is a heterozygous c.899A>G (p.D300G) mutation predicted to alter the coiled-coil domain of lamin A/C. In skin fibroblasts isolated from the proband, the processing and levels of lamin A and C are normal. However, nuclear morphology is aberrant and rescued by treatment with farnesyltransferase inhibitors, as is also the case for HGPS and other laminopathies. Our findings advance knowledge of human LMNA progeria syndromes, and raise the possibility that typical and atypical progerias may converge upon a common mechanism to cause premature aging disease.
Collapse
Affiliation(s)
- Megan S Kane
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.
Collapse
|
138
|
Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B. Single-cell dynamics of genome-nuclear lamina interactions. Cell 2013; 153:178-92. [PMID: 23523135 DOI: 10.1016/j.cell.2013.02.028] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/17/2012] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The nuclear lamina (NL) interacts with hundreds of large genomic regions termed lamina associated domains (LADs). The dynamics of these interactions and the relation to epigenetic modifications are poorly understood. We visualized the fate of LADs in single cells using a "molecular contact memory" approach. In each nucleus, only ~30% of LADs are positioned at the periphery; these LADs are in intermittent molecular contact with the NL but remain constrained to the periphery. Upon mitosis, LAD positioning is not detectably inherited but instead is stochastically reshuffled. Contact of individual LADs with the NL is linked to transcriptional repression and H3K9 dimethylation in single cells. Furthermore, we identify the H3K9 methyltransferase G9a as a regulator of NL contacts. Collectively, these results highlight principles of the dynamic spatial architecture of chromosomes in relation to gene regulation.
Collapse
Affiliation(s)
- Jop Kind
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Pilat U, Dechat T, Bertrand AT, Woisetschläger N, Gotic I, Spilka R, Biadasiewicz K, Bonne G, Foisner R. The muscle dystrophy-causing ΔK32 lamin A/C mutant does not impair the functions of the nucleoplasmic lamin-A/C-LAP2α complex in mice. J Cell Sci 2013; 126:1753-62. [PMID: 23444379 DOI: 10.1242/jcs.115246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A-type lamins are components of the nuclear lamina, a filamentous network of the nuclear envelope in metazoans that supports nuclear architecture. In addition, lamin A/C can also be found in the interior of the nucleus. This nucleoplasmic lamin pool is soluble in physiological buffer, depends on the presence of the lamin-binding protein, lamina-associated polypeptide 2α (LAP2α) and regulates cell cycle progression in tissue progenitor cells. ΔK32 mutations in A-type lamins cause severe congenital muscle disease in humans and a muscle maturation defect in Lmna(ΔK32/ΔK32) knock-in mice. Mutant ΔK32 lamin A/C protein levels were reduced and all mutant lamin A/C was soluble and mislocalized to the nucleoplasm. To test the role of LAP2α in nucleoplasmic ΔK32 lamin A/C regulation and functions, we deleted LAP2α in Lmna(ΔK32/ΔK32) knock-in mice. In double mutant mice the Lmna(ΔK32/ΔK32)-linked muscle defect was unaffected. LAP2α interacted with mutant lamin A/C, but unlike wild-type lamin A/C, the intranuclear localization of ΔK32 lamin A/C was not affected by loss of LAP2α. In contrast, loss of LAP2α in Lmna(ΔK32/ΔK32) mice impaired the regulation of tissue progenitor cells as in lamin A/C wild-type animals. These data indicate that a LAP2α-independent assembly defect of ΔK32 lamin A/C is the predominant cause of the mouse pathology, whereas the LAP2α-linked functions of nucleoplasmic lamin A/C in the regulation of tissue progenitor cells are not affected in Lmna(ΔK32/ΔK32) mice.
Collapse
Affiliation(s)
- Ursula Pilat
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
SUN proteins accelerate the pathological progression of laminopathies. Although the mechanisms remain to be elucidated, an intriguing possibility is that high levels of SUN proteins lead to a hyperactive DNA damage response.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology, University of California at Davis, CA 95616, USA.
| |
Collapse
|
141
|
Bertacchini J, Beretti F, Cenni V, Guida M, Gibellini F, Mediani L, Marin O, Maraldi NM, de Pol A, Lattanzi G, Cocco L, Marmiroli S. The protein kinase Akt/PKB regulates both prelamin A degradation and Lmna gene expression. FASEB J 2013; 27:2145-55. [PMID: 23430973 DOI: 10.1096/fj.12-218214] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The serine/threonine kinase Akt/PKB is a major signaling hub integrating metabolic, survival, growth, and cell cycle regulatory signals. The definition of the phospho-motif cipher driving phosphorylation by Akt led to the identification of hundreds of putative substrates, and it is therefore pivotal to identify those whose phosphorylation by Akt is of consequence to biological processes. The Lmna gene products lamin A/C and the lamin A precursor prelamin A are type V intermediate filament proteins forming a filamentous meshwork, the lamina, underneath the inner nuclear membrane, for nuclear envelope structures organization and interphase chromatin anchoring. In our previous work, we reported that A-type lamins are phosphorylated by Akt at S301 and S404 in physiological conditions and are therefore bona fide substrates of Akt. We report here that Akt phosphorylation at S404 targets the precursor prelamin A for degradation. We further demonstrate that Akt also regulates Lmna transcription. Our study unveils a previously unknown function of Akt in the control of prelamin A stability and expression. Moreover, given the large number of diseases related to prelamin A, our findings represent a further important step bridging basic A-type lamin physiology to therapeutic approaches for lamin A-linked disorders.
Collapse
Affiliation(s)
- Jessika Bertacchini
- Cellular Signaling Laboratory, Department of Surgery, Medicine, Dentistry, and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Tanaka Y, Gale L. Beneficial Applications and Deleterious Effects of Near-Infrared from Biological and Medical Perspectives. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/opj.2013.34a006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
143
|
Edens LJ, White KH, Jevtic P, Li X, Levy DL. Nuclear size regulation: from single cells to development and disease. Trends Cell Biol 2012; 23:151-9. [PMID: 23277088 DOI: 10.1016/j.tcb.2012.11.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Cell size varies greatly among different cell types and organisms, especially during early development when cell division is rapid with little overall growth. A fundamental question is how organelle size is regulated relative to cell size. The nucleus exhibits exquisite size scaling during development and between species, and nuclear size is often altered in cancer cells. Recent studies have elucidated mechanisms of nuclear size regulation in a variety of experimental systems, opening the door to future research on how nuclear size impacts upon cell and nuclear function and subnuclear organization. In this review we discuss studies that have clarified nuclear size control mechanisms and how these results have or will contribute to our understanding of the functional significance of nuclear size.
Collapse
Affiliation(s)
- Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | |
Collapse
|
144
|
Perrin S, Cremer J, Faucher O, Reynes J, Dellamonica P, Micallef J, Solas C, Lacarelle B, Stretti C, Kaspi E, Robaglia-Schlupp A, Tamalet CNBC, Lévy N, Poizot-Martin I, Cau P, Roll P. HIV protease inhibitors do not cause the accumulation of prelamin A in PBMCs from patients receiving first line therapy: the ANRS EP45 "aging" study. PLoS One 2012; 7:e53035. [PMID: 23285253 PMCID: PMC3532351 DOI: 10.1371/journal.pone.0053035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The ANRS EP45 "Aging" study investigates the cellular mechanisms involved in the accelerated aging of HIV-1 infected and treated patients. The present report focuses on lamin A processing, a pathway known to be altered in systemic genetic progeroid syndromes. METHODS 35 HIV-1 infected patients being treated with first line antiretroviral therapy (ART, mean duration at inclusion: 2.7±1.3 years) containing boosted protease inhibitors (PI/r) (comprising lopinavir/ritonavir in 65% of patients) were recruited together with 49 seronegative age- and sex-matched control subjects (http://clinicaltrials.gov/, NCT01038999). In more than 88% of patients, the viral load was <40 copies/ml and the CD4+ cell count was >500/mm³. Prelamin A processing in peripheral blood mononuclear cells (PBMCs) from patients and controls was analysed by western blotting at inclusion. PBMCs from patients were also investigated at 12 and 24 months after enrolment in the study. PBMCs from healthy controls were also incubated with boosted lopinavir in culture medium containing various concentrations of proteins (4 to 80 g/L). RESULTS Lamin A precursor was not observed in cohort patient PBMC regardless of the PI/r used, the dose and the plasma concentration. Prelamin A was detected in PBMC incubated in culture medium containing a low protein concentration (4 g/L) but not in plasma (60-80 g/L) or in medium supplemented with BSA (40 g/L), both of which contain a high protein concentration. CONCLUSIONS Prelamin A processing abnormalities were not observed in PBMCs from patients under the PI/r first line regimen. Therefore, PI/r do not appear to contribute to lamin A-related aging in PBMCs. In cultured PBMCs from healthy donors, prelamin A processing abnormalities were only observed when the protein concentration in the culture medium was low, thus increasing the amount of PI available to enter cells. ClinicalTrials.gov NCT01038999 http://clinicaltrials.gov/ct2/show/NCT01038999.
Collapse
Affiliation(s)
- Sophie Perrin
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Jonathan Cremer
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Olivia Faucher
- Service d’Immuno-Hématologie Clinique, Centre Hospitalier Universitaire (CHU) Sainte Marguerite Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Jacques Reynes
- Département des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional et Universitaire (CHRU) Gui-de-Chauliac, Montpellier, France
| | - Pierre Dellamonica
- Service d’Infectiologie, Centre Hospitalier Universitaire (CHU) L’Archet 1, Sophia-Antipolis Université, Nice, France
| | - Joëlle Micallef
- Centre d’Investigation Clinique - Unité de Pharmacologie Clinique et d’Evaluations Thérapeutiques (CIC-UPCET), Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Caroline Solas
- Laboratoire de Pharmacocinétique et de Toxicologie, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
- Inserm UMR_S 911, Aix-Marseille Université, Marseille, France
| | - Bruno Lacarelle
- Laboratoire de Pharmacocinétique et de Toxicologie, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
- Inserm UMR_S 911, Aix-Marseille Université, Marseille, France
| | - Charlotte Stretti
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Elise Kaspi
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Andrée Robaglia-Schlupp
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | | | - Nicolas Lévy
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Génetique Moléculaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Isabelle Poizot-Martin
- Département des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional et Universitaire (CHRU) Gui-de-Chauliac, Montpellier, France
| | - Pierre Cau
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Patrice Roll
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
- * E-mail:
| |
Collapse
|
145
|
Abstract
Lamins are the major components of the nuclear lamina, a filamentous layer found at the interphase between chromatin and the inner nuclear membrane. The lamina supports the nuclear envelope and provides anchorage sites for chromatin. Lamins and their associated proteins are required for most nuclear activities, mitosis, and for linking the nucleoskeleton to the network of cytoskeletal filaments. Mutations in lamins and their associated proteins give rise to a wide range of diseases, collectively called laminopathies. This review focuses on the evolution of the lamin protein family. Evolution from basal metazoans to man will be described on the basis of protein sequence comparisons and analyses of their gene structure. Lamins are the founding members of the family of intermediate filament proteins. How genes encoding cytoplasmic IF proteins could have arisen from the archetypal lamin gene progenitor, can be inferred from a comparison of the respective gene structures. The lamin/IF protein family seems to be restricted to the metazoans. In general, invertebrate genomes harbor only a single lamin gene encoding a B-type lamin. The archetypal lamin gene structure found in basal metazoans is conserved up to the vertebrate lineage. The completely different structure of lamin genes in Caenorhabditis and Drosophila are exceptions rather than the rule within their systematic groups. However, variation in the length of the coiled-coil forming central domain might be more common than previously anticipated. The increase in the number of lamin genes in vertebrates can be explained by two rounds of genome duplication. The origin of lamin A by exon shuffling might explain the processing of prelamin A to the mature non-isoprenylated form of lamin A. By alternative splicing the number of vertebrate lamin proteins has increased even further. Lamin C, an alternative splice form of the LMNA gene, is restricted to mammals. Amphibians and mammals express germline-specific lamins that differ in their protein structure from that of somatic lamins. Evidence is provided that there exist lamin-like proteins outside the metazoan lineage.
Collapse
Affiliation(s)
- Annette Peter
- Department for Cell Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
146
|
Zuela N, Bar DZ, Gruenbaum Y. Lamins in development, tissue maintenance and stress. EMBO Rep 2012; 13:1070-8. [PMID: 23146893 PMCID: PMC3512410 DOI: 10.1038/embor.2012.167] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/01/2012] [Indexed: 12/24/2022] Open
Abstract
Lamins are nuclear intermediate filament proteins. They provide mechanical stability, organize chromatin and regulate transcription, replication, nuclear assembly and nuclear positioning. Recent studies provide new insights into the role of lamins in development, differentiation and tissue response to mechanical, reactive oxygen species and thermal stresses. These studies also propose the existence of separate filament networks for A- and B-type lamins and identify new roles for the different networks. Furthermore, they show changes in lamin composition in different cell types, propose explanations for the more than 14 distinct human diseases caused by lamin A and lamin C mutations and propose a role for lamin B1 in these diseases.
Collapse
Affiliation(s)
- Noam Zuela
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Z Bar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
147
|
Tapley EC, Starr DA. Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr Opin Cell Biol 2012; 25:57-62. [PMID: 23149102 DOI: 10.1016/j.ceb.2012.10.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/20/2012] [Indexed: 12/11/2022]
Abstract
The nuclear-cytoskeleton connection influences many aspects of cellular architecture, including nuclear positioning, the stiffness of the global cytoskeleton, and mechanotransduction. Central to all of these processes is the assembly and function of conserved SUN-KASH bridges, or LINC complexes, that span the nuclear envelope. Recent studies provide details of the higher order assembly and targeting of SUN proteins to the inner nuclear membrane. Structural studies characterize SUN-KASH interactions that form the central link of the nuclear-envelope bridge. KASH proteins at the outer nuclear membrane link the nuclear envelope to the cytoskeleton where forces are generated to move nuclei. Significantly, SUN proteins were recently shown to contribute to the progression of laminopathies.
Collapse
Affiliation(s)
- Erin C Tapley
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | | |
Collapse
|
148
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
149
|
Fundamental paradox of survival determinism: the ur-etiology disease paradigm. Theory Biosci 2012; 132:65-71. [PMID: 23129566 DOI: 10.1007/s12064-012-0169-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
Following a common practice in medicine, biomedical researches tend to view various disease conditions as direct results of preceding, disease-causing events. Such events are commonly those that could have been previously detected and which have given the history of studies of particular diseases, been previously recognized as playing an important role in an onset and/or progression of the disease in question. Although such practice is justified from the very principles of experimental investigation and scientific observation, it comes short of finding the fundamental causes behind these disease conditions. This manuscript proposes a different view to the origin of some types of diseases as well as some other biological phenomena. Namely, the focus of the concept relates to a notion of survival determinism, proposed to have been in the very core of evolution of primordial organisms. Thereby, as various disease models are discussed in the light of the proposed mechanisms for adaptation, they could be seen as relicts of the early evolutionary history of life on Earth.
Collapse
|
150
|
Affiliation(s)
- Chin Yee Ho
- Cornell University, Weill Institute for Cell and Molecular Biology, Department of Biomedical Engineering, Ithaca, NY 14853, USA
| | | |
Collapse
|