101
|
Sun L, Guo C, Yan L, Li H, Sun J, Huo X, Xie X, Hu J. Syntenin regulates melanogenesis via the p38 MAPK pathway. Mol Med Rep 2020; 22:733-738. [PMID: 32626944 PMCID: PMC7339447 DOI: 10.3892/mmr.2020.11139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/16/2020] [Indexed: 11/06/2022] Open
Abstract
Melanogenesis is the synthesis of the skin pigment melanin, which serves a critical role in the study of pigmentary skin diseases. Syntenin has been identified as a melanosome protein, but its role in melanogenesis is not completely understood. The present study aimed to investigate the effects and mechanisms underlying syntenin on melanogenesis in immortalized human melanocytes. Depletion of syntenin expression increased both tyrosinase (Tyr) activity and melanin content. Syntenin silencing also increased the protein expression levels of Tyr, pre‑melanosomal protein and microphthalmia‑associated transcription factor. In addition, the results indicated that syntenin regulated melanogenesis by upregulating the phosphorylation of p38 mitogen‑activated protein kinase (p38 MAPK). Taken together, these findings suggested that the regulation of melanogenesis by syntenin may be mediated by the activation of p38 MAPK and that syntenin might provide new insights into the pathogenesis of pigmented diseases.
Collapse
Affiliation(s)
- Lijun Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Chunyan Guo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Liting Yan
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Huijin Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an, Shaanxi 710021, P.R. China
| | - Jingying Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xueping Huo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jun Hu
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
102
|
Inhibitory Effects of Pinostilbene Hydrate on Melanogenesis in B16F10 Melanoma Cells via ERK and p38 Signaling Pathways. Int J Mol Sci 2020; 21:ijms21134732. [PMID: 32630811 PMCID: PMC7369948 DOI: 10.3390/ijms21134732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Melanin protects our skin from harmful ultraviolet (UV) radiation. However, when produced in excess, it can cause hyperpigmentation disorders, such as melanoma, freckles, lentigo, and blotches. In this study, we investigated the effects of pinostilbene hydrate (PH) on melanogenesis. We also examined the underlying mechanisms of PH on melanin production in B16F10 cells. Our findings indicated that PH significantly inhibits melanin content and cellular tyrosinase activity in cells without causing cytotoxicity. In addition, Western blot analysis showed that PH downregulated the protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase, and other melanogenic enzymes, such as tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2). Although PH activated the phosphorylation of extracellular signal-regulated kinase (ERK), it inhibited p38 mitogen-activated protein kinases (p38). Furthermore, the inhibition of tyrosinase activity by PH was attenuated by treatment with PD98059 (a specific ERK inhibitor). Additionally, p-AKT was upregulated by PH treatment. Finally, the inhibitory effects of PH on melanin content and tyrosinase activity were confirmed in normal human melanocytes. These results suggest PH downregulates melanogenesis via the inhibition of MITF expression, followed by the MAPKase signaling pathways. Thus, PH may be used to treat or prevent hyperpigmentation disorders and in functional cosmetic agents for skin whitening.
Collapse
|
103
|
Neobavaisoflavone Inhibits Melanogenesis through the Regulation of Akt/GSK-3β and MEK/ERK Pathways in B16F10 Cells and a Reconstructed Human 3D Skin Model. Molecules 2020; 25:molecules25112683. [PMID: 32527040 PMCID: PMC7321173 DOI: 10.3390/molecules25112683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies have confirmed the anti-melanogenic effect of the aerial part of Pueraria lobata, however, due to its inherent color, P. lobata has limited commercial use. In this study, an extract (GALM-DC) of the aerial part of P. lobata having improved color by the use of activated carbon was obtained. Furthermore, the active compound neobavaisoflavone (NBI) was identified from GALM-DC. The effect of NBI on melanogenesis, tyrosinase activity, α-glucosidase activity, and mechanism of action in melanocytes was investigated. Tyrosinase activity, melanin contents and the expression of melanin-related genes and proteins were determined in B16F10 cells. NBI reduced melanin synthesis and tyrosinase activity. Furthermore, NBI treatment reduced the mRNA and protein expression levels of MITF, TRP-1, and tyrosinase. NBI also works by phosphorylating and activating proteins that inhibit melanogenesis, such as GSK3β and ERK. Specific inhibitors of Akt/GSK-3β (LY294002) and MEK/ERK (PD98059) signaling prevented the inhibition of melanogenesis by NBI. NBI inhibited melanin production through the regulation of MEK/ERK and Akt/GSK-3β signaling pathways in α-MSH-stimulated B16F10 cells. NBI suppresses tyrosinase activity and melanogenesis through inhibition of α-glucosidase activity. Besides, NBI significantly reduced melanogenesis in a reconstructed human 3D skin model. In conclusion, these results suggest that NBI has potential as a skin-whitening agent for hyperpigmentation.
Collapse
|
104
|
Jung JM, Noh TK, Jo SY, Kim SY, Song Y, Kim YH, Chang SE. Guanine Deaminase in Human Epidermal Keratinocytes Contributes to Skin Pigmentation. Molecules 2020; 25:molecules25112637. [PMID: 32517074 PMCID: PMC7321356 DOI: 10.3390/molecules25112637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/06/2023] Open
Abstract
Epidermal keratinocytes are considered as the most important neighboring cells that modify melanogenesis. Our previous study used microarray to show that guanine deaminase (GDA) gene expression is highly increased in melasma lesions. Hence, we investigated the role of GDA in skin pigmentation. We examined GDA expression in post-inflammatory hyperpigmentation (PIH) lesions, diagnosed as Riehl’s melanosis. We further investigated the possible role of keratinocyte-derived GDA in melanogenesis by quantitative PCR, immunofluorescence staining, small interfering RNA-based GDA knockdown, and adenovirus-mediated GDA overexpression. We found higher GDA positivity in the hyperpigmentary lesional epidermis than in the perilesional epidermis. Both UVB irradiation and stem cell factor (SCF) plus endothelin-1 (ET-1) were used, which are well-known melanogenic stimuli upregulating GDA expression in both keratinocyte culture alone and keratinocyte and melanocyte coculture. GDA knockdown downregulated melanin content, while GDA overexpression promoted melanogenesis in the coculture. When melanocytes were treated with UVB-exposed keratinocyte-conditioned media, the melanin content was increased. Also, GDA knockdown lowered SCF and ET-1 expression levels in keratinocytes. GDA in epidermal keratinocytes may promote melanogenesis by upregulating SCF and ET-1, suggesting its role in skin hyperpigmentary disorders.
Collapse
Affiliation(s)
- Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
| | - Tai Kyung Noh
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
| | - Soo Youn Jo
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
| | - Su Yeon Kim
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
| | - Youngsup Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Young-Hoon Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
- Correspondence: (Y.-H.K.); (S.E.C.); Tel.: +82-2-3010-4298 (Y.-H.K.); +82-2-3010-3460 (S.E.C.); Fax: +82-2-3010-2941 (Y.-H.K.); +82-2-486-7831 (S.E.C.)
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
- Correspondence: (Y.-H.K.); (S.E.C.); Tel.: +82-2-3010-4298 (Y.-H.K.); +82-2-3010-3460 (S.E.C.); Fax: +82-2-3010-2941 (Y.-H.K.); +82-2-486-7831 (S.E.C.)
| |
Collapse
|
105
|
Zhang X, Li J, Li Y, Liu Z, Lin Y, Huang JA. Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells. Fitoterapia 2020; 145:104634. [PMID: 32454171 DOI: 10.1016/j.fitote.2020.104634] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Tea catechins, the main bioactive polyphenols in green tea, are well known for their health promoting effects. Previous studies have shown that gallocatechin-3-gallate (GCG), epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG) exerted strong inhibitory effects on mushroom tyrosinase activity in vitro, whilst EGCG inhibited melanogenesis in vivo, yet the underlying mechanisms are not entirely clear. In this study, we (i) evaluated and compared the inhibitory effects of the main tea catechins (GCG, EGCG, and ECG) on melanogenesis in B16F10 melanoma cells, and (ii) explain the underlying mechanisms. The results showed that the tea catechins significantly suppressed tyrosinase activity and melanin synthesis in B16F10 cells, where the effects of ECG > EGCG > GCG. Interestingly, the inhibitory effects of the catechins were stronger than those of arbutin (AT), a well-known depigmenting agent. Moreover, GCG, EGCG, and ECG regulated the melanogenesis of B16F10 cells through the cAMP/CREB/MITF pathway. These results revealed catechins could be used as anti-melanogenic agents to protect cells from abnormal melanogenesis.
Collapse
Affiliation(s)
- Xiangna Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yinhua Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yong Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China.
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
106
|
Park M, Woo SY, Cho KA, Cho MS, Lee KH. PD-L1 produced by HaCaT cells under polyinosinic-polycytidylic acid stimulation inhibits melanin production by B16F10 cells. PLoS One 2020; 15:e0233448. [PMID: 32437407 PMCID: PMC7241723 DOI: 10.1371/journal.pone.0233448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Skin forms a physical barrier that protects the body against outside agents. The deepest layer of the skin, the stratum basale, contains two cell types: agent-sensing keratinocytes, and melanin-producing melanocytes. Keratinocytes can sense both harmless commensal organisms and harmful pathogens via Toll-like receptors (TLRs), and keratinocytes subsequently drive immune responses. Activation of TLR3 is required for barrier repair because it stimulates essential genes, including tight junction genes, and inflammatory cytokines. Within the basal layer of the skin, resident melanocytes use their dendritic processes to connect with approximately 30–40 neighboring keratinocytes. Most studies have focused on the transfer of melanin-synthesizing melanosomes from melanocytes to keratinocytes, but the potential regulation of melanogenesis by soluble factor(s) produced by keratinocytes remains to be explored. Studying such regulation in vivo is challenging because of the keratinocyte:melanocyte ratio in the epidermis and the location of the cells within the skin. Therefore, in this study, we investigated whether keratinocytes affected melanocyte melanogenesis in vitro under normal or inflammatory conditions. We found that polyinosinic-polycytidylic acid [poly(I:C)] stimulation induced PD-L1 secretion from HaCaT cells and that poly(I:C)-induced PD-L1 inhibited melanin production by B16F10 cells. These data provide key evidence that keratinocytes can alter melanocyte melanogenesis via the production of soluble factors under inflammatory conditions.
Collapse
Affiliation(s)
- Minhwa Park
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Min-Sun Cho
- Department of Pathology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyung Ho Lee
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Bucheon-si, Korea
- * E-mail:
| |
Collapse
|
107
|
Wang L, Guo J, Xi Y, Ma S, Li Y, He H, Wang J, Han C, Bai L, Mustafa A, Liu H, Li L. Understanding the Genetic Domestication History of the Jianchang Duck by Genotyping and Sequencing of Genomic Genes Under Selection. G3 (BETHESDA, MD.) 2020; 10:1469-1476. [PMID: 32165372 PMCID: PMC7202016 DOI: 10.1534/g3.119.400893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022]
Abstract
The Jianchang duck is mainly distributed in Southwest China, and has the characteristics of fast growth rate and strong abilities in lipid deposition in the liver. In order to investigate the effects of domestication process on formation of the unique characteristics of Jianchang duck, the whole genome of sixteen individuals and three pooling of Jianchang duck were re-sequenced, and genome data of 70 mallards and 83 domestic ducks from thirteen different places in China were obtained from NCBI. The population stratification and evolution analysis showed gene exchanges existed between the Jianchang and other domestic duck populations, as well as Jianchang ducks and mallards. Genomic comparison between mallards and Jianchang ducks showed genes, including CNTN1, CHRNA9, and SHANK2, which is involved in brain and nerve development, experienced strong positive selection in the process of Jianchang duck domestication. The genomic comparison between Jianchang and domestic duck populations showed that HSD17B12 and ESM1, which affect lipid metabolism, experienced strong positive selection during the domestication process. FST analysis among populations of Jianchang duck with different plumage colors indicated that MITF was related to the phenotype of a white feather, while MC1R was related to the phenotype of hemp feather. Our results provided a base for the domestication process of Jianchang duck and the genomic genes for unique traits.
Collapse
Affiliation(s)
- Lei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yanying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Ahsan Mustafa
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
108
|
Shin SY, Sun SO, Ko JY, Oh YS, Cho SS, Park DH, Park KM. New Synthesized Galloyl-RGD Inhibits Melanogenesis by Regulating the CREB and ERK Signaling Pathway in B16F10 Melanoma Cells. Photochem Photobiol 2020; 96:1321-1331. [PMID: 32348553 DOI: 10.1111/php.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
Gallic acid (3, 4, 5-trihydroxybenzoic acid) is a phytochemical derived from diverse herbs. It has been reported to have effective antifungal, antiviral and antioxidant activity. However, gallic acid exhibits low solubility and instability at high temperatures. In a previous study, in order to overcome these limitations, we synthesized galloyl-RGD by combining gallic acid with arginine, glycine and asparaginic acid (RGD peptide). This compound showed better thermal stability than gallic acid. In this study, we investigated the antimelanogenic effect of galloyl-RGD and the underlying mechanism for this effect. Galloyl-RGD markedly inhibited melanin content and tyrosinase activity in a concentration-dependent manner. We also found that galloyl-RGD decreased the levels of melanogenesis-related gene and protein. In addition, galloyl-RGD reduces intracellular cyclic adenosine monophosphate (cAMP) levels that leads to inhibition of cAMP-responsive element binding protein (CREB) phosphorylation and activates extracellular signal-regulated kinase (ERK) expression. These results indicate that CREB and ERK regulation by galloyl-RGD contributes to reduced melanin synthesis via degradation of microphthalmia-associated transcription factor. Therefore, galloyl-RGD can be potential candidate for application in cosmetic or pharmaceutical industry.
Collapse
Affiliation(s)
- Seo Yeon Shin
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Sang Ouk Sun
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Jae Yeon Ko
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Yun Seo Oh
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeannam, Korea
| | - Dae-Hun Park
- Department of Nursing, Dongshin University, Jeonnam, Korea
| | - Kyung Mok Park
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| |
Collapse
|
109
|
Hu Z, Song H, Zhou C, Yu ZL, Yang MJ, Zhang T. De novo assembly transcriptome analysis reveals the preliminary molecular mechanism of pigmentation in juveniles of the hard clam Mercenaria mercenaria. Genomics 2020; 112:3636-3647. [PMID: 32353476 DOI: 10.1016/j.ygeno.2020.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
Color plays a vital function in camouflage, sexual selection, immunity, and evolution. Mollusca possess vivid shell colors and pigmentation starts at the juvenile stage. The hard clam Mercenaria mercenaria is a widely cultivated bivalve of high economic value. To explore the molecular mechanism of pigmentation in juvenile clams, here, we performed RNA-Seq analysis on non-pigmented, white, and red M. mercenaria specimens. Clean reads were assembled into 358,285 transcripts and 149,234 unigenes, whose N50 lengths were 2107 bp and 1567 bp, respectively. Differentially expressed genes were identified and analyzed for KEGG enrichment. "Melanoma/Melanogenesis", "ABC transporters", and "Porphyrin and chlorophyll metabolism" pathways appeared to be associated with pigmentation. Pathways related to carotenoid metabolism seemed to also play a vital role in pigmentation in juveniles. Our results provide new insights into the formation of shell color in juvenile hard clams.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
110
|
Taguchi N, Hata T, Kamiya E, Homma T, Kobayashi A, Aoki H, Kunisada T. Eriodictyon angustifolium extract, but not Eriodictyon californicum extract, reduces human hair greying. Int J Cosmet Sci 2020; 42:336-345. [PMID: 32324292 DOI: 10.1111/ics.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Yerba Santa (Eriodictyon angustifolium and Eriodictyon californicum) has been used for many years in traditional medicine. However, the effect of Yerba Santa on melanogenesis has not yet been investigated. We aimed to assess the biological effects of Yerba Santa on hair pigmentation. METHODS Yerba Santa extracts were assessed for their cytological effects following X-ray irradiation treatment and then tested directly for the prevention of human hair greying. Ultra-performance liquid chromatography (UPLC) was utilized to identify the individual extract components. RESULTS Eriodictyon angustifolium extract significantly increased melanin synthesis in the melanoma cell line through activation of the WNT/MITF/tyrosinase-signalling pathway. In contrast, E. californicum had no effect on melanin synthesis. E. angustifolium extract also demonstrated a protective effect against the damage induced by X-ray irradiation in human keratinocytes. Application of the extracts to subjects who had grey beards demonstrated a reduced number of grey beard hair per year specifically with the E. angustifolium extract. A significant decrease in grey head hair was also observed after application of E. angustifolium extract. Upregulation of gene expression related to melanin production and WNT signalling was observed after the application of E. angustifolium extract. Sterubin was the most abundant flavonoid detected by UPLC in E. angustifolium extract. In addition, sterubin showed the highest difference in terms of quantity, between E. angustifolium and E. californicum extract. CONCLUSION Eriodictyon angustifolium extract, which is abundant in sterubin, may be suitable as a potential cosmetic and medical agent for the prevention and improvement of hair greying.
Collapse
Affiliation(s)
- N Taguchi
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan.,Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| | - T Hata
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - E Kamiya
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - T Homma
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - A Kobayashi
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - H Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| | - T Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| |
Collapse
|
111
|
Nishi K, Mori M, Nakayama D, Sato J, Kim IH, Kim M, Kim S, Sugahara T. Anti-melanogenic activity of methanolic extract from leaves of Sorbaria sorbifolia var. stellipila Max. on α-MSH-stimulated B16 melanoma 4A5 cells. BIOMEDICAL DERMATOLOGY 2020. [DOI: 10.1186/s41702-020-0061-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2025]
Abstract
Abstract
Background
Melanin is a pigment, which is widely distributed in organisms. In humans, melanin pigments determine eye, hair, and skin color and protect the skin from damage by ultraviolet radiation; however, immoderate distribution of melanin in the skin causes discoloration. In the present study, we screened methanolic extracts from leaves of 47 plant species, most of which are native to East Asia, for the inhibitory activity against melanogenesis.
Methods
B16 melanoma 4A5 cells were used in all assays conducted in this study. Melanin content assay was performed using methanolic extracts from leaves of 47 plant species. Cytotoxicity of the extract from leaves of Sorbaria sorbifolia var. stellipila Max. (SME) was evaluated by WST-8 assay. Tyrosinase activity was determined using the lysate of α-MSH-stimulated B16 melanoma 4A5 cells and L-dopa as a colorimetric substrate. Melanogenic gene expression was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR).
Results
SME showed the highest inhibitory activity among tested samples without cytotoxicity. SME exhibited the inhibition potency for the enzymatic activity of tyrosinase. In addition, qRT-PCR result displayed that SME downregulates the expression of melanogenic genes including tyrosinase, TRP-1, TRP-2, and the transcription factor MITF.
Conclusion
Overall results revealed that the extract from leaves of S. sorbifolia var. stellipila Max. has a potential to be used as a skin whitening agent.
Collapse
|
112
|
Induction of Melanogenesis by Fosfomycin in B16F10 Cells Through the Upregulation of P-JNK and P-p38 Signaling Pathways. Antibiotics (Basel) 2020; 9:antibiotics9040172. [PMID: 32290383 PMCID: PMC7235749 DOI: 10.3390/antibiotics9040172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/29/2023] Open
Abstract
Fosfomycin disodium salt (FDS), which is a water-soluble extract, is a bactericidal drug used to inhibit the synthesis of cells. Moreover, it has been found to be effective in the treatment of urinary tract infections. The present study was conducted to investigate the melanogenesis-stimulating effect of FDS in B16F10 cells. Several experiments were performed on B16F10 cells: the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, the melanin content assay, the cellular tyrosinase activity assay, and Western blotting. FDS upregulated the activity of tyrosinase in a dose-dependent manner at a wide concentration range of 0–1 mg/mL, which showed no cytotoxicity. It also increased the melanin content and the activity of the microphthalmia-associated transcription factor (MITF), tyrosinase related protein 1 (TRP-1), and tyrosinase related protein 2 (TRP-2) enzymes in a dose-dependent manner. Western blotting results showed that FDS clearly upregulated the phosphorylation of c-Jun N-terminal kinases (JNK) and p38 pathways. These data are clear evidence of the melanogenesis-inducing effect of FDS in B16F10 murine melanoma cells.
Collapse
|
113
|
Jia Q, Hu S, Jiao D, Li X, Qi S, Fan R. Synaptotagmin-4 promotes dendrite extension and melanogenesis in alpaca melanocytes by regulating Ca 2+ influx via TRPM1 channels. Cell Biochem Funct 2020; 38:275-282. [PMID: 31743468 PMCID: PMC7318172 DOI: 10.1002/cbf.3465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 02/03/2023]
Abstract
Synaptotagmin-4 (SYT4) is a membrane protein that regulates membrane traffic in neurons in a calcium-dependent or calcium-independent manner. In melanocytes, the intracellular free calcium ion (Ca2+ ) may be important for dendrite growth and melanogenesis. Mammalian melanocytes originating from neural crest cells produce melanins. Therefore, we predicted that SYT4 might play a role in melanogenesis and the dendrite morphology of melanocytes. To investigate whether SYT4 is involved in melanocyte physiology, SYT4 was overexpressed in alpaca melanocytes and B16-F10 cells. The results showed that SYT4 overexpression resulted in a phenotype consistent with melanogenesis and dendrite extension. At the molecular level, SYT4 interacted with extracellular regulated MAP kinase (ERK) to decrease p-ERK activity, which negatively regulated CREB expression. Furthermore, cyclic AMP-responsive element-binding protein (CREB) was upregulated and caused the downregulation of the expression of melanogenic regulatory proteins, including microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TYRP1), dopachrome tautomerase (DCT), and transient receptor potential melastatin 1 (TRPM1). Intracellular free Ca2+ promoted the upregulation of calcium/calmodulin dependent protein kinase IV (CAMK4) expression, which phosphorylated CREB (p-CREB). In turn, p-CREB participated in the transcription of MITF. These results demonstrated that SYT4 promoted melanogenesis through dendrite extension and tyrosinase activity, during which the regulation of Ca2+ influx via the TRPM1 channel was a key factor. SIGNIFICANCE OF THE STUDY: Intracellular Ca2+ is important for the function and survival of melanocytes and melanoma cells. SYT4 stimulated melanogenesis through calcium. These results provide evidence that SYT4 regulates Ca2+ influx through TRPM1 to cause melanogenesis and axonal elongation in alpaca melanocytes and further suggesting that the growth and metastasis of melanoma is controlled by the inhibited expression of SYT4 in melanoma cells.
Collapse
Affiliation(s)
- Qiong Jia
- College of Animal Science and Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| | - Shixiong Hu
- College of Animal Science and Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| | - Dingxing Jiao
- College of Animal Science and Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| | - Xiuqing Li
- College of Animal Science and Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| | - Shuhui Qi
- College of Animal Science and Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| | - Ruiwen Fan
- College of Animal Science and Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| |
Collapse
|
114
|
Hu Y, Huang J, Li Y, Jiang L, Ouyang Y, Li Y, Yang L, Zhao X, Huang L, Xiang H, Chen J, Zeng Q. Cistanche deserticola polysaccharide induces melanogenesis in melanocytes and reduces oxidative stress via activating NRF2/HO-1 pathway. J Cell Mol Med 2020; 24:4023-4035. [PMID: 32096914 PMCID: PMC7171403 DOI: 10.1111/jcmm.15038] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
As a main part of pigmentation disorders, skin depigmentation diseases such as vitiligo and achromic naevus are very common and get more attention now. The pathogenesis of depigmentation includes melanocyte dysfunction and loss, which are possibly caused by heredity, autoimmunity and oxidative stress. Among them, oxidative stress plays a key role; however, few clinical treatments can deal with oxidative stress. As reported, Cistanche deserticola polysaccharide (CDP) is an effective antioxidant; based on that, we evaluated its role in melanocyte and further revealed the mechanisms. In this study, we found that CDP could promote melanogenesis in human epidermal melanocytes (HEMs) and mouse melanoma B16F10 cells, it also induced pigmentation in zebrafish. Furthermore, CDP could activate mitogen‐activated protein kinase (MAPK) signal pathway, then up‐regulated the expression of microphthalmia‐associated transcription factor (MITF) and downstream genes TYR, TRP1, TRP2 and RAB27A. Otherwise, we found that CDP could attenuate H2O2‐induced cytotoxicity and apoptosis in melanocytes. Further evidence revealed that CDP could enhance NRF2/HO‐1 antioxidant pathway and scavenge intracellular ROS. In summary, CDP can promote melanogenesis and prevent melanocytes from oxidative stress injury, suggesting that CDP helps maintain the normal status of melanocytes. Thus, CDP may be a novel drug for the treatment of depigmentation diseases.
Collapse
Affiliation(s)
- Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Li
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yumeng Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lun Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Medicine Experimental Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xiang
- Medicine Experimental Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
115
|
MicroRNA-141-3p and microRNA-200a-3p regulate α-melanocyte stimulating hormone-stimulated melanogenesis by directly targeting microphthalmia-associated transcription factor. Sci Rep 2020; 10:2149. [PMID: 32034251 PMCID: PMC7005774 DOI: 10.1038/s41598-020-58911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years, it has been reported that non-coding RNAs, especially microRNAs (miRNAs) and long non-coding RNAs, act as melanogenesis-regulating molecules in melanocytes. We found that the expression levels of miR-141-3p and miR-200a-3p were decreased significantly by α-melanocyte-stimulating hormone (α-MSH) stimulation in mouse melanocyte B16-4A5 cells, as demonstrated by a miRNA array. Overexpression of miR-141-3p and miR-200a-3p in B16-4A5 cells suppressed melanogenesis and tyrosinase activity. Moreover, both miR-141-3p and miR-200a-3p showed direct targeting of microphthalmia-associated transcription factor using a luciferase reporter assay. Furthermore, topical transfection of miR-141-3p and miR-200a-3p to three-dimensional reconstructed human skin tissue inhibited α-MSH-stimulated melanin biosynthesis. Taken together, our findings indicate that downregulation of miR-141-3p and miR-200a-3p during the α-MSH-stimulated melanogenesis process acts as an important intrinsic signal. This result is expected to lead to the development of miRNA-based whitening therapeutics.
Collapse
|
116
|
Yuan XH, Tian YD, Oh JH, Bach TT, Chung JH, Jin ZH. Melochia corchorifolia extract inhibits melanogenesis in B16F10 mouse melanoma cells via activation of the ERK signaling. J Cosmet Dermatol 2020; 19:2421-2427. [PMID: 31901006 DOI: 10.1111/jocd.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Numerous researches have focused on discovering available inhibitors of melanogenesis from natural medicinal plants with stable efficacy and safety to resolve cutaneous hyperpigmentary problems. Melochia corchorifolia Linn. (MC) has been used as folk medicine to treat various diseases. However, the effect of MC on melanogenesis remains unknown. AIM In this study, we investigated the effect of MC extract on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. METHODS B16F10 cells were treated with MC extract, and then, cell viability, melanin content, and tyrosinase activity were analyzed. The mRNA and protein expression of tyrosinase and microphthalmia-associated transcription factor (MITF) were evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Phosphorylated or total protein levels in MC extract-induced signaling pathways were analyzed by Western blotting. RESULTS Treatment of B16F10 cells with MC extract inhibited melanin synthesis and intracellular tyrosinase activity in a dose-dependent manner with no cytotoxicity. Protein and mRNA expressions of tyrosinase and MITF were also significantly decreased by MC extract treatment. In addition, phosphorylated level of extracellular signal-regulated kinase (ERK) was obviously increased by MC extract, but AKT pathway was not activated. Inhibited ERK phosphorylation by pretreatment with a selective ERK inhibitor PD98059 significantly reversed the decreased melanin content induced by treatment with MC extract in B16F10 cells. CONCLUSION MC extract inhibits melanogenesis in B16F10 mouse melanoma cells through suppression of MITF-tyrosinase signaling pathway by ERK activation.
Collapse
Affiliation(s)
- Xing-Hua Yuan
- Department of Dermatology, Yanbian University Hospital, Yanji, China.,Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Yu-Dan Tian
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Zhe-Hu Jin
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
117
|
Yun CY, Roh E, Kim SH, Han J, Lee J, Jung DE, Kim GH, Jung SH, Cho WJ, Han SB, Kim Y. Stem Cell Factor-Inducible MITF-M Expression in Therapeutics for Acquired Skin Hyperpigmentation. Am J Cancer Res 2020; 10:340-352. [PMID: 31903124 PMCID: PMC6929618 DOI: 10.7150/thno.39066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 01/17/2023] Open
Abstract
Rationale: Microphthalmia-associated transcription factor M (MITF-M) plays important roles in the pigment production, differentiation and survival of melanocytes. Stem cell factor (SCF) and its receptor KIT stimulate MITF-M activity via phosphorylation at the post-translation level. However, the phosphorylation shortens half-life of MITF-M protein over the course of minutes. Here, we investigated novel hypotheses of (i) whether SCF/KIT can regulate MITF-M activity through gene expression as the alternative process, and (ii) whether chemical inhibition of KIT activity can mitigate the acquired pigmentation in skin by targeting the expression of MITF-M. Methods: We employed melanocyte cultures in vitro and pigmented skin samples in vivo, and applied immunoblotting, RT-PCR, siRNA-based gene knockdown and confocal microscopy. Results: The protein and mRNA levels of MITF-M in epidermal melanocytes and the promoter activity of MITF-M in B16-F0 melanoma cells demonstrated that SCF/KIT could trigger the expression of MITF-M de novo, following the phosphorylation-dependent proteolysis of pre-existing MITF-M protein. SCF/KIT regulated the transcription abilities of cAMP-responsive element-binding protein (CREB), CREB-regulated co-activator 1 (CRTC1) and SRY-related HMG-box 10 (SOX10) but not β-catenin at the MITF-M promoter. Meanwhile, chemical inhibition of KIT activity abolished SCF-induced melanin production in epidermal melanocyte cultures, as well as protected the skin from UV-B-induced hyperpigmentation in HRM2 mice or brownish guinea pigs, in which it down-regulated the expression of MITF-M de novo at the promoter level. Conclusion: We propose the targeting of SCF/KIT-inducible MITF-M expression as a strategy in the therapeutics for acquired pigmentary disorders.
Collapse
|
118
|
Hu M, Chen C, Liu J, Cai L, Shao J, Chen Z, Lin L, Zheng T, Ding X, Li Z. The melanogenic effects and underlying mechanism of paeoniflorin in human melanocytes and vitiligo mice. Fitoterapia 2020; 140:104416. [DOI: 10.1016/j.fitote.2019.104416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
|
119
|
Liu X, Du B, Zhang P, Zhang J, Zhu Z, Liu B, Fan R. miR-380-3p regulates melanogenesis by targeting SOX6 in melanocytes from alpacas (Vicugna pacos). BMC Genomics 2019; 20:962. [PMID: 31823726 PMCID: PMC6905097 DOI: 10.1186/s12864-019-6343-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 11/27/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Melanocytes are derived from neural crest stem cells in the embryonic stage. In mature melanocytes, a series of complex enzyme-catalyzed reactions leads to the production of melanins, which determine the hair and skin colors of animals. The process of melanogenesis is complex and can be regulated by mRNA, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) genes. MiRNAs are a type of endogenous noncoding RNA approximately 22 nt in size that predominantly regulate gene expression by inhibiting translation. miR-380-3p is a candidate miRNA potentially related to melanogenesis. To better understand the mechanism of miR-380-3p melanogenesis regulation, plasmids to overexpress or knockdown miR-380-3p were transfected into alpaca melanocytes, and their effects on melanogenesis were evaluated. RESULTS In situ hybridization identified a positive miR-380-3p signal in alpaca melanocyte cytoplasm. Luciferase activity assays confirmed that SOX6 is targeted by miR-380-3p. miR-380-3p overexpression and knockdown in alpaca melanocytes respectively downregulated and upregulated SOX6 expression at the mRNA and protein levels. Additionally, miR-380-3p overexpression and knockdown, respectively, in alpaca melanocytes decreased and increased the mRNA levels of melanin transfer-related genes, including microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosine-related protein-1 (TYRP1), and dopachrome tautomerase (DCT). In contrast, miR-380-3p overexpression and knockdown respectively increased and decreased the mRNA levels of β-catenin. Additionally, the effect of miR-380-3p on melanogenesis was assessed by Masson-Fontana melanin staining. CONCLUSIONS The results demonstrated that miR-380-3p targeted SOX6 to regulate melanogenesis by influencing β-catenin and MITF transcription and translation, which reduced the expression of downstream genes, including TYR, TYRP1, and DCT. These results provide insights into the mechanisms through which miR-380-3p controls melanogenesis.
Collapse
Affiliation(s)
- Xuexian Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China
| | - Bin Du
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China
| | - Pengqian Zhang
- Department of Ecology Research, Beijing Milu Ecological Research Center, Nanhaizi, Daxing district, Beijing, China
| | - Junzhen Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China
| | - Zhiwei Zhu
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Bo Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China
| | - Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China.
| |
Collapse
|
120
|
Lv J, Fu Y, Gao R, Li J, Kang M, Song G, Yun C. Diazepam enhances melanogenesis, melanocyte dendricity and melanosome transport via the PBR/cAMP/PKA pathway. Int J Biochem Cell Biol 2019; 116:105620. [PMID: 31561018 DOI: 10.1016/j.biocel.2019.105620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Diazepam is a medicament of the benzodiazepine family and it typically produces a sedative effect. Researchers have revealed that diazepam can induce melanogenesis and produce dendrite-like structures in B16 melanoma cells. However, the associated mechanisms of melanogenesis and phenotypic alterations have mostly remained unknown. In this study, we determined the effects of diazepam on melanogenesis, cellular phenotypic alterations, the location of melanosomes and the expression of relevant proteins in melanocytes using Masson-Fontana ammoniacal silver staining, scanning electron microscopy, immunocytochemistry and western blot analysis. Our results collectively indicated that diazepam had a pivotal role in melanocytes by enhancing melanin synthesis, melanocyte dendricity, melanosome trafficking, and capture at the dendrite tips. These functions might be attributed to the fact that diazepam activated the peripheral benzodiazepine receptor (PBR). This increased intracellular levels of cAMP, which stimulated the phosphorylation of cAMP response element-binding (CREB). As a result, this increased the tyrosinase, microphthalmia-associated transcription factor (MITF), Rab27a, Myosin Va, Rab17 and Cdc42 expression. This caused melanogenesis and melanosome transport. Therefore, our findings may provide a potential strategy for treating anti-hypopigmentation disorders.
Collapse
Affiliation(s)
- Jinpeng Lv
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China; Shanghai Institute of Pharmaceutical Industry, Shanghai 200000, China; Yabang Medical Research Institute, Changzhou 213000, China.
| | - Ying Fu
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China
| | - Rongyin Gao
- Department of Pharmacy, The first people's Hospital of Changzhou, The third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Jiawen Li
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China
| | - Maofan Kang
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China
| | - Guoqiang Song
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China
| | - Changjun Yun
- Changzhou Wujin People's Hospital, Changzhou 213000, China
| |
Collapse
|
121
|
Béziers P, Ducrest AL, San-Jose LM, Simon C, Roulin A. Expression of glucocorticoid and mineralocorticoid receptor genes co-varies with a stress-related colour signal in barn owls. Gen Comp Endocrinol 2019; 283:113224. [PMID: 31323230 DOI: 10.1016/j.ygcen.2019.113224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
Glucocorticoid hormones are important intermediates between an organism and its environment. They enable an organism to adjust its behavioural and physiological processes in response to environmental changes by binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) expressed in many tissues, including the integument. The regulation of glucocorticoids co-varies with melanin-based colouration in numerous species, an association that might result from pleiotropic effects of genes in the melanocortin system and evolve within a signalling context. Most studies have focused on the circulating levels of glucocorticoids disregarding the receptors that mediate their action, and that might partly account for the covariation between the regulation of stress and melanin-based colouration. We investigated the association of the expression levels of GR and MR genes with melanin-based colouration in the growing feathers of nestling barn owls (Tyto alba). We also explored the association between GR and MR expression levels and the expression of genes related to the melanocortin system and melanogenesis to better understand the origin of the link between the expression of receptors to which corticosterone binds and melanin-based colouration. Nestling barn owls displaying larger eumelanic black feather spots expressed GR and MR at lower levels than smaller-spotted individuals. However, we found that the expression of the GR and MR genes was positively rather than negatively correlated with the expression of genes involved in the deposition of melanin pigments at the time we sampled the nestlings. This provides mixed evidence of the association between melanin-based traits and MR and GR gene expression. The finding that the expression of GR and MR was positively associated with the expression of the PCSK2 gene (encoding one of the protein convertase responsible for the production of hormone peptide ACTH and α-MSH) suggests that the melanocortin system may be implicated in the establishment of the covariation between melanin-based colour and the expression of receptors to which glucocorticoids bind. However, further studies investigating the expression of melanin-based traits with stress-related endpoints at different time points of feather development will be necessary to understand better the proximate mechanism linking melanin-based traits with stress.
Collapse
Affiliation(s)
- Paul Béziers
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
122
|
Integrated Analysis of mRNA Expression, CpG Island Methylation, and Polymorphisms in the MITF Gene in Ducks ( Anas platyrhynchos). BIOMED RESEARCH INTERNATIONAL 2019; 2019:8512467. [PMID: 31662999 PMCID: PMC6778931 DOI: 10.1155/2019/8512467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/29/2019] [Accepted: 09/05/2019] [Indexed: 01/31/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) is a key regulator for the development and function of melanocytes in skin, eye, and plumage pigmentations. Thus, the MITF was selected as a candidate gene associated with plumage coloration in ducks. This study analyzed the mRNA expression, promoter methylation, and polymorphisms in the MITF gene in ducks with different plumage colors (Putian Black, Putian White, Liancheng White, and Longsheng Jade-green). No expression of the MITF melanin-specific isoform (MITF-M) was detected in white feather bulbs. By contrast, the mRNA expression levels of MITF-M were high in black feather bulbs. Bioinformatics analysis showed that two CpG islands were present in the promoter region of the MITF gene. The methylation level of the second CpG island was significantly lower in black feather bulbs than in white feather bulbs. However, the methylation level of the first CpG island was not different among the feather bulbs with various colors except Liancheng White feather bulbs. The methylation status of the whole CpG island significantly and negatively correlated with the mRNA expression of MITF-M (P < 0.05). Furthermore, four novel SNPs (single nucleotide polymorphisms) were identified in the 5′UTR, exon 4, intron 7, and intron 8 of the MITF gene. Allele T in g.39807T>G and allele G in g.40862G>A were the predominant alleles only found in Putian White, whereas the variant A allele in g.32813G>A exhibited a high allele frequency in Liancheng White. Collectively, these results contributed to the understanding of the function of the MITF gene in duck plumage coloration.
Collapse
|
123
|
Anthocyanins from Hibiscus syriacus L. Inhibit Melanogenesis by Activating the ERK Signaling Pathway. Biomolecules 2019; 9:biom9110645. [PMID: 31653006 PMCID: PMC6920888 DOI: 10.3390/biom9110645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Hibiscus syriacus L. exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus L. has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus L. varieties Pulsae and Paektanshim (PS and PTS) inhibit melanin biogenesis. B16F10 cells and zebrafish larvae were exposed to PS and PTS in the presence or absence of α-melanocyte-stimulating hormone (α-MSH), and melanin contents accompanied by its regulating genes and proteins were analyzed. PS and PTS moderately downregulated mushroom tyrosinase activity in vitro, but significantly decreased extracellular and intracellular melanin production in B16F10 cells, and inhibited α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. PS and PTS also attenuated pigmentation in α-MSH-stimulated zebrafish larvae. Furthermore, PS and PTS activated the phosphorylation of extracellular signal-regulated kinase (ERK), whereas PD98059, a specific ERK inhibitor, completely reversed PS- and PTS-mediated anti-melanogenic activity in B16F10 cells and zebrafish larvae, which indicates that PS- and PTS-mediated anti-melanogenic activity is due to ERK activation. Moreover, chromatography data showed that PS and PTS possessed 17 identical anthocyanins as a negative regulator of ERK. These findings suggested that anthocyanins from PS and PTS inhibited melanogenesis in vitro and in vivo by activating the ERK signaling pathway.
Collapse
|
124
|
Russo R, Chiaramonte M, Lampiasi N, Zito F. MITF: an evolutionarily conserved transcription factor in the sea urchin Paracentrotus lividus. Genetica 2019; 147:369-379. [PMID: 31625006 DOI: 10.1007/s10709-019-00077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 11/28/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is a member of MYC superfamily, associated with melanocyte cells, as it was discovered in depigmented mice. However, over the last years it was found to be involved in many cellular signaling pathways, among which oncogenesis, osteoclast differentiation, and stress response. In mammals, Mitf gene mutations can cause diverse syndromes affecting pigmentation of eyes or skin, bone defects and melanomas. As MITF protein homologs were also found in some invertebrates, we have isolated and characterized the MITF cDNAs from the sea urchin Paracentrotus lividus, referred to as Pl-Mitf. The in silico study of the secondary and tertiary structure of Pl-Mitf protein showed high conserved regions mostly lying in the DNA binding domain. To understand the degree of evolutionary conservation of MITF, a phylogenetic analysis was performed comparing the Pl-Mitf deduced protein with proteins from different animal species. Moreover, the analysis of temporal and spatial expression pattern of Pl-Mitf mRNA showed that it was expressed from the onset of gastrulation of the sea urchin embryo to the pluteus larva, specifically in primary mesenchymes cells (PMCs), the sea urchin skeletogenic cells, and in the forming archenteron, the larval gut precursor. In silico protein-protein interactions analysis was used to understand the association of MITF with other proteins. Our results put in evidence the conservation of the MITF protein among vertebrates and invertebrates and may provide new perspectives on the pathways underlying sea urchin development, even if further functional analyses are needed.
Collapse
Affiliation(s)
- Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Marco Chiaramonte
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Nadia Lampiasi
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
125
|
Qi S, Liu B, Zhang J, Liu X, Dong C, Fan R. Knockdown of microRNA‑143‑5p by STTM technology affects eumelanin and pheomelanin production in melanocytes. Mol Med Rep 2019; 20:2649-2656. [PMID: 31322203 PMCID: PMC6691272 DOI: 10.3892/mmr.2019.10492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) serve various roles in the regulation of melanogenesis in mammalian melanocytes that contribute to the development of hair color. The manipulation of the melanocyte action is a new target for genetic improvement. Short tandem target mimic (STTM) is a potent approach for silencing miRNAs in plants and animals. To investigate the function of miR‑143‑5p in melanogenesis, STTM was used to block the expression of miR‑143‑5p (STTM‑miR‑143‑5p). The molecular analysis and luciferase reporter assay identified myosin Va gene (MYO5A) as one of the miR‑143‑5p targets. STTM‑miR‑143‑5p overexpression resulted in an increased expression of downstream melanogenesis genes including microphthalmia‑associated transcription factor (MITF), tyrosinase family members [tyrosinase (TYR) and tyrosinase‑related protein 1 (TYRP1)], melanophilin (MLPH), and Rab27a, thereby contributing to melanocyte pigmentation by promoting total alkali‑soluble melanogenesis (ASM) and eumelanin (EM) contents; conversely, STTM‑miR‑143‑5p overexpression resulted in decreased expression of the tyrosinase‑related protein 2 (TYRP2)/dopachrome tautomerase (DCT), which is responsible for decreased pheomelanin (PM) content in mouse melanocytes. The results indicated that melanin production in melanocytes could be increased by manipulating miR‑143‑5p expression using STTM which resulted in ASM and EM production.
Collapse
Affiliation(s)
- Shuhui Qi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Bo Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Junzhen Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Xuexian Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| |
Collapse
|
126
|
Goenka S, Ceccoli J, Simon SR. Anti-melanogenic activity of ellagitannin casuarictin in B16F10 mouse melanoma cells. Nat Prod Res 2019; 35:1830-1835. [PMID: 31274002 DOI: 10.1080/14786419.2019.1636242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ellagitannins such as casuarictin (CAS), isolated from clove extracts, have been shown to have superior benefits such as antioxidant and anti-inflammatory activity, but there have been no reports on their capacity to inhibit melanogenesis. Inhibition of melanogenesis by novel natural products has gained attention for cosmetic applications such as skin lightening. Here, we report the effects of CAS on melanogenesis in B16F10 mouse melanoma cells. Our results showed that CAS (30 µM) significantly inhibited intracellular melanogenesis while being nontoxic to B16F10 cells or to HaCaT cells at that concentration. CAS (30 μM) also inhibited intracellular tyrosinase activity as well as mushroom tyrosinase activity; possessed robust copper chelating ability comparable to that of 500 µM kojic acid; and downregulated MITF protein levels, all of which contribute to the inhibitory mechanisms underlying its anti-melanogenic activity. In summary, our results demonstrate that CAS might hold promise as a depigmenting agent for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | | | - Sanford R Simon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.,Department of Pathology, Stony Brook University, Stony Brook, New York, USA.,Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
127
|
Plasticity of Drug-Naïve and Vemurafenib- or Trametinib-Resistant Melanoma Cells in Execution of Differentiation/Pigmentation Program. JOURNAL OF ONCOLOGY 2019; 2019:1697913. [PMID: 31354817 PMCID: PMC6636509 DOI: 10.1155/2019/1697913] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
Melanoma plasticity creates a plethora of opportunities for cancer cells to escape treatment. Thus, therapies must target all cancer cell subpopulations bearing the potential to contribute to disease. The role of the differentiation/pigmentation program in intrinsic and acquired drug resistance is largely uncharacterized. MITF level and expression of MITF-dependent pigmentation-related genes, MLANA, PMEL, TYR, and DCT, in drug-naïve and vemurafenib- or trametinib-treated patient-derived melanoma cell lines and their drug-resistant counterparts were analysed and referred to genomic alterations. Variability in execution of pigmentation/differentiation program was detected in patient-derived melanoma cell lines. Acute treatment with vemurafenib or trametinib enhanced expression of pigmentation-related genes in MITF-Mhigh melanoma cells, partially as the consequence of transcriptional reprograming. During development of resistance, changes in pigmentation program were not unidirectional, but also not universal as expression of different pigmentation-related genes was diversely affected. In selected resistant cell lines, differentiation/pigmentation was promoted and might be considered as one of drug-tolerant phenotypes. In other resistant lines, dedifferentiation was induced. Upon drug withdrawal ("drug holiday"), the dedifferentiation process in resistant cells either was enhanced but reversed by drug reexposure suggesting involvement of epigenetic mechanisms or was irreversible. The irreversible dedifferentiation might be connected with homozygous loss-of-function mutation in MC1R, as MC1RR151C +/+ variant was found exclusively in drug-naïve MITF-Mlow dedifferentiated cells and drug-resistant cells derived from MITFhigh/MC1RWT cells undergoing irreversible dedifferentiation. MC1RR151C +/+ variant might be further investigated as a parameter potentially impacting melanoma patient stratification and aiding in treatment decision.
Collapse
|
128
|
The Amount of Melanin Influences p16 Loss in Spitzoid Melanocytic Lesions: Correlation With CDKN2A Status by FISH and MLPA. Appl Immunohistochem Mol Morphol 2019; 27:423-429. [DOI: 10.1097/pai.0000000000000633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
129
|
Chung YC, Kim MJ, Kang EY, Kim YB, Kim BS, Park SM, Hyun CG. Anti-Melanogenic Effects of Hydroxyectoine via MITF Inhibition by JNK, p38, and AKT Pathways in B16F10 Melanoma Cells. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19858523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Melanin plays a role in determining human skin color of a person, and a large amount of melanin makes the skin color look darkened. The proper amount of melanin formation protects our skin from UV radiation, but excessive melanin production causes hyperpigmentation and leads to freckles, melasma, and lentigo. In this study, we investigated the inhibitory effect of hydroxyectoine on melanogenesis and its mechanism in B16F10 cells. Melanin content and cellular tyrosinase activity were determined. The expression of microphthalmia-associated transcription factor (MITF), and the activities of tyrosinase and other melanogenesis-related enzymes, such as tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2, were also examined. Hydroxyectoine treatment significantly inhibited melanin production and intracellular tyrosinase activity in a dose-dependent manner. Western blot analysis showed that hydroxyectoine also reduced the expressions of tyrosinase and TRP-1. In addition, hydroxyectoine significantly reduced the expression of MITF, a major regulator of melanin production, and inhibited the phosphorylation of p38, c-Jun N-terminal kinase, and activated the protein kinase B. The results demonstrated that hydroxyectoine inhibits the expression of MITF through the inhibition or activation of melanin-related signaling pathways and downregulates melanogenesis by inhibiting melanogenic enzyme expression and tyrosinase activity. Hydroxyectoine has potential value in functional cosmetics applications, such as whitening.
Collapse
Affiliation(s)
- You C. Chung
- Department of Chemistry and Cosmetics, Jeju National University, Korea
| | - Min-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, Korea
| | | | - Yun B. Kim
- NewMedion Co., Ltd., Jeju City, Jeju, Korea
| | - Bong S. Kim
- Bio-Convergence Center, Jeju Technopark, Korea
| | | | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Korea
| |
Collapse
|
130
|
Modulation of Diacylglycerol-Induced Melanogenesis in Human Melanoma and Primary Melanocytes: Role of Stress Chaperone Mortalin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9848969. [PMID: 31097976 PMCID: PMC6487102 DOI: 10.1155/2019/9848969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/21/2018] [Accepted: 02/17/2019] [Indexed: 12/03/2022]
Abstract
Skin color/pigmentation is regulated through melanogenesis process in specialized melanin-producing cells, melanocytes, involving multiple signaling pathways. It is highly influenced by intrinsic and extrinsic factors such as oxidative, ultraviolet radiations and other environmental stress conditions. Besides determining the color, it governs response and tolerance of skin to a variety of environmental stresses and pathological conditions including photodamage, hyperpigmentation, and skin cancer. Depigmenting reagents have been deemed useful not only for cosmetics but also for pigmentation-related pathologies. In the present study, we attempted modulation of 1-oleoyl-2-acetyl-glycerol- (OAG-) induced melanogenesis in human melanoma and primary melanocytes. In both cell types, OAG-induced melanogenesis was associated with increase in enhanced expression of melanin, tyrosinase, as well as stress chaperones (mortalin and HSP60) and Reactive Oxygen Species (ROS). Treatment with TXC (trans-4-(Aminomethyl) cyclohexanecarboxylic acid hexadecyl ester hydrochloride) and 5/40 natural compounds resulted in their reduction. The data proposed an important role of mortalin and oxidative stress in skin pigmentation and the use of TXC and natural extracts for modulation of pigmentation pathways in normal and pathological conditions.
Collapse
|
131
|
Li X, Wang R, Zhang J, Yang S, Ji K, Du B, Liu X, Liu B, Qi S, Jia Q, Fan R. Cyclin-dependent kinase 5 regulates proliferation, migration, tyrosinase activity, and melanin production in B16-F10 melanoma cells via the essential regulator p-CREB. In Vitro Cell Dev Biol Anim 2019; 55:416-425. [PMID: 31069610 DOI: 10.1007/s11626-019-00343-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/22/2019] [Indexed: 01/18/2023]
Abstract
Melanoma is an aggressive cancer with increasing incidence and a growing lifetime risk that arises from normal melanocytes or their precursors. A thorough understanding of the molecular mechanism of melanomagenesis and melanoma biology is essential for the diagnosis, prognostication, and therapy of melanoma. Cyclin-dependent protein kinase 5 (Cdk5) is one of the proteins highly expressed in B16-F10 melanoma cells that controls melanoma cell motility, invasiveness, and metastatic spread and might be a promising novel therapeutic target. The effect of Cdk5 on proliferation and migration, which are important for carcinogenesis, has not been reported. In the current study, we found that siRNA-mediated knockdown of Cdk5 in B16-F10 melanoma cells inhibited melanoma cell proliferation through downregulation of the CaMK4-p-CREB pathway, inhibited migration through downregulation of p-CREB, integrin beta 1, and integrin beta 5, and also inhibited tyrosinase activity and melanin production through p-CREB-MITF regulation. The results indicate that Cdk5 controls melanoma development, with an essential regulatory role for p-CREB.
Collapse
Affiliation(s)
- Xiuqing Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China
| | - Ruifang Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China
| | - Junzhen Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China
| | - Shanshan Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China
| | - Kaiyuan Ji
- College of Animal Science and Veterinary Medicine, Anhui Agricultural University, Changjiang West Road, Hefei, 230036, China
| | - Bin Du
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China
| | - Xuexian Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China
| | - Bo Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China
| | - Shuhui Qi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China
| | - Qiong Jia
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China
| | - Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, 030801, China.
| |
Collapse
|
132
|
Wu CC, Klaesson A, Buskas J, Ranefall P, Mirzazadeh R, Söderberg O, Wolf JBW. In situ quantification of individual mRNA transcripts in melanocytes discloses gene regulation of relevance to speciation. J Exp Biol 2019; 222:jeb194431. [PMID: 30718374 PMCID: PMC6650291 DOI: 10.1242/jeb.194431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023]
Abstract
Functional validation of candidate genes involved in adaptation and speciation remains challenging. Here, we exemplify the utility of a method quantifying individual mRNA transcripts in revealing the molecular basis of divergence in feather pigment synthesis during early-stage speciation in crows. Using a padlock probe assay combined with rolling circle amplification, we quantified cell-type-specific gene expression in the histological context of growing feather follicles. Expression of Tyrosinase Related Protein 1 (TYRP1), Solute Carrier Family 45 member 2 (SLC45A2) and Hematopoietic Prostaglandin D Synthase (HPGDS) was melanocyte-limited and significantly reduced in follicles from hooded crow, explaining the substantially lower eumelanin content in grey versus black feathers. The central upstream Melanocyte Inducing Transcription Factor (MITF) only showed differential expression specific to melanocytes - a feature not captured by bulk RNA-seq. Overall, this study provides insight into the molecular basis of an evolutionary young transition in pigment synthesis, and demonstrates the power of histologically explicit, statistically substantiated single-cell gene expression quantification for functional genetic inference in natural populations.
Collapse
Affiliation(s)
- Chi-Chih Wu
- Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Axel Klaesson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Julia Buskas
- Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Petter Ranefall
- Science of Life Laboratories and Department of Information Technology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Jochen B W Wolf
- Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
133
|
Na JI, Shin JW, Choi HR, Kwon SH, Park KC. Resveratrol as a Multifunctional Topical Hypopigmenting Agent. Int J Mol Sci 2019; 20:ijms20040956. [PMID: 30813264 PMCID: PMC6412432 DOI: 10.3390/ijms20040956] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Melanin is produced in melanocytes and stored in melanosomes, after which it is transferred to keratinocytes and, thus, determines skin color. Despite its beneficial sun-protective effects, abnormal accumulation of melanin results in esthetic problems. A range of topical hypopigmenting agents have been evaluated for their use in the treatment of pigmentary disorders with varying degrees of success. Hydroquinone (HQ), which competes with tyrosine, is the main ingredient in topical pharmacological agents. However, frequent occurrence of adverse reactions is an important factor that limits its use. Thus, efforts to discover effective topical hypopigmenting agents with less adverse effects continue. Here, we describe the potential of resveratrol to function as an effective hypopigmenting agent based on its mechanism of action. Resveratrol is not only a direct tyrosinase inhibitor but an indirect inhibitor as well. Additionally, it can affect keratinocytes, which regulate the function of melanocytes. Resveratrol regulates the inflammatory process of keratinocytes and protects them from oxidative damage. In this way, it prevents keratinocyte-induced melanocyte stimulation. Furthermore, it has a rescuing effect on the stemness of interfollicular epidermal cells that can repair signs of photoaging in the melasma, a typical pigmentary skin disorder. Overall, resveratrol is a promising potent hypopigmenting agent.
Collapse
Affiliation(s)
- Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Soon-Hyo Kwon
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Kyung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| |
Collapse
|
134
|
Yun CY, Hong SD, Lee YH, Lee J, Jung DE, Kim GH, Kim SH, Jung JK, Kim KH, Lee H, Hong JT, Han SB, Kim Y. Nuclear Entry of CRTC1 as Druggable Target of Acquired Pigmentary Disorder. Am J Cancer Res 2019; 9:646-660. [PMID: 30809299 PMCID: PMC6376463 DOI: 10.7150/thno.30276] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Rationale: SOX10 (SRY-related HMG-box 10) and MITF-M (microphthalmia-associated transcription factor M) restrict the expression of melanogenic genes, such as TYR (tyrosinase), in melanocytes. DACE (diacetylcaffeic acid cyclohexyl ester) inhibits melanin production in α-MSH (α-melanocyte stimulating hormone)-activated B16-F0 melanoma cells. In this study, we evaluated the antimelanogenic activity of DACE in vivo and elucidated the molecular basis of its action. Methods: We employed melanocyte cultures and hyperpigmented skin samples for pigmentation assays, and applied chromatin immunoprecipitation, immunoblotting, RT-PCR or siRNA-based knockdown for mechanistic analyses. Results: Topical treatment with DACE mitigated UV-B-induced hyperpigmentation in the skin with attenuated expression of MITF-M and TYR. DACE also inhibited melanin production in α-MSH- or ET-1 (endothelin 1)-activated melanocyte cultures. As a mechanism, DACE blocked the nuclear import of CRTC1 (CREB-regulated co-activator 1) in melanocytes. DACE resultantly inhibited SOX10 induction, and suppressed the transcriptional abilities of CREB/CRTC1 heterodimer and SOX10 at MITF-M promoter, thereby ameliorating facultative melanogenesis. Furthermore, this study unveiled new issues in melanocyte biology that i) KPNA1 (Impα5) escorted CRTC1 as a cargo across the nuclear envelope, ii) SOX10 was inducible in the melanogenic process, and iii) CRTC1 could direct SOX10 induction at the transcription level. Conclusion: We propose the targeting of CRTC1 as a unique strategy in the treatment of acquired pigmentary disorders.
Collapse
|
135
|
Qiu W, Chuong CM, Lei M. Regulation of melanocyte stem cells in the pigmentation of skin and its appendages: Biological patterning and therapeutic potentials. Exp Dermatol 2019; 28:395-405. [PMID: 30537004 DOI: 10.1111/exd.13856] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Skin evolves essential appendages and indispensable types of cells that synergistically insulate the body from environmental insults. Residing in the specific regions in the skin such as epidermis, dermis and hair follicle, melanocytes perform an array of vital functions including defending the ultraviolet radiation and diversifying animal appearance. As one of the adult stem cells, melanocyte stem cells in the hair follicle bulge niche can proliferate, differentiate and keep quiescence to control and coordinate tissue homeostasis, repair and regeneration. In synchrony with hair follicle stem cells, melanocyte stem cells in the hair follicles undergo cyclic activation, degeneration and resting phases, to pigment the hairs and to preserve the stem cells. Disorder of melanocytes results in severe skin problems such as canities, vitiligo and even melanoma. Here, we compare and summarize recent discoveries about melanocyte in the skin, particularly in the hair follicle. A better understanding of the physiological and pathological regulation of melanocyte and melanocyte stem cell behaviours will help to guide the clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Weiming Qiu
- Department of Dermatology, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
136
|
Shin SY, Choi JH, Jung E, Gil HN, Lim Y, Lee YH. The EGR1-STAT3 Transcription Factor Axis Regulates α-Melanocyte-Stimulating Hormone-Induced Tyrosinase Gene Transcription in Melanocytes. J Invest Dermatol 2019; 139:1616-1619. [PMID: 30648541 DOI: 10.1016/j.jid.2018.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea; Cancer and Metabolism Institute, Konkuk University, Seoul, Republic of Korea.
| | - Ji Hye Choi
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Ha-Na Gil
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea; Cancer and Metabolism Institute, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
137
|
WIPI1, BAG1, and PEX3 Autophagy-Related Genes Are Relevant Melanoma Markers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1471682. [PMID: 30622661 PMCID: PMC6304818 DOI: 10.1155/2018/1471682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
ROS and oxidative stress may promote autophagy; on the other hand, autophagy may help reduce oxidative damages. According to the known interplay of ROS, autophagy, and melanoma onset, we hypothesized that autophagy-related genes (ARGs) may represent useful melanoma biomarkers. We therefore analyzed the gene and protein expression of 222 ARGs in human melanoma samples, from 5 independent expression databases (overall 572 patients). Gene expression was first evaluated in the GEO database. Forty-two genes showed extremely high ability to discriminate melanoma from nevi (63 samples) according to ROC (AUC ≥ 0.85) and Mann-Whitney (p < 0.0001) analyses. The 9 genes never related to melanoma before were then in silico validated in the IST online database. BAG1, CHMP2B, PEX3, and WIPI1 confirmed a strong differential gene expression, in 355 samples. A second-round validation performed on the Human Protein Atlas database showed strong differential protein expression for BAG1, PEX3, and WIPI1 in melanoma vs control samples, according to the image analysis of 80 human histological sections. WIPI1 gene expression also showed a significant prognostic value (p < 0.0001) according to 102 melanoma patients' survival data. We finally addressed in Oncomine database whether WIPI1 overexpression is melanoma-specific. Within more than 20 cancer types, the most relevant WIPI1 expression change (p = 0.00002; fold change = 3.1) was observed in melanoma. Molecular/functional relationships of the investigated molecules with melanoma and their molecular/functional network were analyzed via Chilibot software, STRING analysis, and gene ontology enrichment analysis. We conclude that WIPI1 (AUC = 0.99), BAG1 (AUC = 1), and PEX3 (AUC = 0.93) are relevant novel melanoma markers at both gene and protein levels.
Collapse
|
138
|
Yu F, Qu B, Lin D, Deng Y, Huang R, Zhong Z. Pax3 Gene Regulated Melanin Synthesis by Tyrosinase Pathway in Pteria penguin. Int J Mol Sci 2018; 19:ijms19123700. [PMID: 30469474 PMCID: PMC6321176 DOI: 10.3390/ijms19123700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/31/2022] Open
Abstract
The paired-box 3 (Pax3) is a transcription factor and it plays an important part in melanin synthesis. In this study, a new Pax3 gene was identified from Pteria penguin (Röding, 1798) (P. penguin) by RACE-PCR (rapid-amplification of cDNA ends-polymerase chain reaction) and its effect on melanin synthesis was deliberated by RNA interference (RNAi). The cDNA of PpPax3 was 2250 bp long, containing an open reading fragment of 1365 bp encoding 455 amino acids. Amino acid alignment and phylogenetic tree showed PpPax3 shared the highest (69.2%) identity with Pax3 of Mizuhopecten yessoensis. Tissue expression profile showed that PpPax3 had the highest expression in mantle, a nacre-formation related tissue. The PpPax3 silencing significantly inhibited the expression of PpPax3, PpMitf, PpTyr and PpCdk2, genes involved in Tyr-mediated melanin synthesis, but had no effect on PpCreb2 and an increase effect on PpBcl2. Furthermore, the PpPax3 knockdown obviously decreased the tyrosinase activity, the total content of eumelanin and the proportion of PDCA (pyrrole-2,3-dicarboxylic acid) in eumelanin, consistent with influence of tyrosinase (Tyr) knockdown. These data indicated that PpPax3 played an important regulating role in melanin synthesis by Tyr pathway in P. penguin.
Collapse
Affiliation(s)
- Feifei Yu
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Bingliang Qu
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Dandan Lin
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| | - Zhiming Zhong
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang 524025, China.
| |
Collapse
|
139
|
Cloning of a microphthalmia-associated transcription factor gene and its functional analysis in nacre formation and melanin synthesis in Hyriopsis cumingii. AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
140
|
Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK-mediated pathways. Sci Rep 2018; 8:14958. [PMID: 30297846 PMCID: PMC6175938 DOI: 10.1038/s41598-018-33352-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Melanogenesis is the process of production of melanin pigments that are responsible for the colors of skin, eye, and hair and provide protection from ultraviolet radiation. However, excessive levels of melanin formation cause hyperpigmentation disorders such as freckles, melasma, and age spots. Liver X receptors (LXR) are nuclear oxysterol receptors belonging to the family of ligand-activated transcription factors and physiological regulators of lipid and cholesterol metabolism. In the skin, activation of LXRs stimulates differentiation of keratinocytes and augments lipid synthesis in sebocytes. However, the function of LXRs in melanogenesis has not been clearly elucidated. In addition, although beauvericin, a well-known mycotoxin primarily isolated from several fungi, has various biological properties, its involvement in melanogenesis has not been reported. Therefore, in this study, we examined the effects of beauvericin on melanogenesis and its molecular mechanisms. Beauvericin decreased melanin content and tyrosinase activity without any cytotoxicity. Beauvericin also reduced protein levels of MITF, tyrosinase, TRP1, and TRP2. In addition, beauvericin suppressed cAMP-PKA-CREB signaling and upregulated expression of LXR-α, resulting in the suppression of p38 MAPK. Our results indicate that beauvericin attenuates melanogenesis by regulating both cAMP/PKA/CREB and LXR-α/p38 MAPK pathways, consequently leading to a reduction of melanin levels.
Collapse
|
141
|
Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci 2018; 40:328-347. [PMID: 29752874 DOI: 10.1111/ics.12466] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Collapse
Affiliation(s)
- C Serre
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - V Busuttil
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - J-M Botto
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| |
Collapse
|
142
|
Jeon NJ, Kim YS, Kim EK, Dong X, Lee JW, Park JS, Shin WB, Moon SH, Jeon BT, Park PJ. Inhibitory effect of carvacrol on melanin synthesis via suppression of tyrosinase expression. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
143
|
Lee DH, Ahn SS, Kim JB, Lim Y, Lee YH, Shin SY. Downregulation of α-Melanocyte-Stimulating Hormone-Induced Activation of the Pax3-MITF-Tyrosinase Axis by Sorghum Ethanolic Extract in B16F10 Melanoma Cells. Int J Mol Sci 2018; 19:ijms19061640. [PMID: 29865165 PMCID: PMC6032395 DOI: 10.3390/ijms19061640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 01/15/2023] Open
Abstract
Ultraviolet irradiation-induced hyperpigmentation of the skin is associated with excessive melanin production in melanocytes. Tyrosinase (TYR) is a key enzyme catalyzing the rate-limiting step in melanogenesis. TYR expression is controlled by microphthalmia-associated transcription factor (MITF) expression. Sorghum is a cereal crop widely used in a variety of foods worldwide. Sorghum contains many bioactive compounds and is beneficial to human health. However, the effects of sorghum in anti-melanogenesis have not been well characterized. In this study, the biological activity of sorghum ethanolic extract (SEE) on α-melanocyte-stimulating hormone (α-MSH)-induced TYR expression was evaluated in B16F10 melanoma cells. SEE attenuated α-MSH-induced TYR gene promoter activity through the downregulation of the transcription factor MITF. We found that paired box gene 3 (Pax3) contributes to the maximal induction of MITF gene promoter activity. Further analysis demonstrated that SEE inhibited α-MSH-induced Pax3 expression. The collective results indicate that SEE attenuates α-MSH-induced TYR expression through the suppression of Pax3-mediated MITF gene promoter activity. Targeting the Pax3-MITF axis pathway could be considered a potential strategy to increase the efficacy of anti-melanogenesis.
Collapse
Affiliation(s)
- Da Hyun Lee
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
| | - Sung Shin Ahn
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
| | - Jung-Bong Kim
- Functional Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Korea.
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 05029, Korea.
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Korea.
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
144
|
Azam MS, Kwon M, Choi J, Kim HR. Sargaquinoic acid ameliorates hyperpigmentation through cAMP and ERK-mediated downregulation of MITF in α-MSH-stimulated B16F10 cells. Biomed Pharmacother 2018; 104:582-589. [PMID: 29803170 DOI: 10.1016/j.biopha.2018.05.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 01/27/2023] Open
Abstract
Hyperpigmentation disorders of the skin adversely influence the quality of life. We previously demonstrated the hypopigmenting properties of the ethanolic extract from Sargassum serratifolium and identified sargaquinoic acid (SQA) as an active component. The current study aims to investigate the hypopigmenting action of SQA in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. SQA attenuated cellular melanin synthesis by inhibiting the expression of the melanogenic enzymes, including tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and TRP2. SQA also inhibited cellular TYR activity in a dose-dependent manner. Reduced intracellular cAMP accumulation by SQA treatment resulted in the suppressed phosphorylation of cAMP-responsive element-binding protein (CREB), leading to the downregulation of microphthalmia-associated transcription factor (MITF) in α-MSH-stimulated B16F10 cells. SQA increased the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and MITF (Ser73), inducing proteasomal degradation of MITF. SQA showed high binding affinity to the cAMP binding domain of PKA; the direct binding of SQA to PKA may exert an additional inhibitory effect on the PKA-dependent CREB activation. Our data demonstrated that SQA suppressed melanin production through the cAMP/CREB- and ERK1/2-mediated downregulation of MITF in α-MSH-stimulated B16F10 cells and SQA has a potential therapeutic agent for the treatment of skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Mohammed Shariful Azam
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| | - Misung Kwon
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| | - Jinkyung Choi
- Department of Foodservice Management, Woosong University, Daejeon 34606, Republic of Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea; CEO, PhyHeal Co. Ltd, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
145
|
Pillaiyar T, Namasivayam V, Manickam M, Jung SH. Inhibitors of Melanogenesis: An Updated Review. J Med Chem 2018; 61:7395-7418. [PMID: 29763564 DOI: 10.1021/acs.jmedchem.7b00967] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Melanins are pigment molecules that determine the skin, eye, and hair color of the human subject to its amount, quality, and distribution. Melanocytes synthesize melanin and provide epidermal protection from various stimuli, such as harmful ultraviolet radiation, through the complex process called melanogenesis. However, serious dermatological problems occur when there is excessive production of melanin in different parts of the human body. These include freckles, melasma, senile lentigo, pigmented acne scars, and cancer. Therefore, controlling the production of melanin is an important approach for the treatment of pigmentation related disorderes. In this Perspective, we focus on the inhibitors of melanogenesis that directly/indirectly target a key enzyme tyrosinase as well as its associated signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| |
Collapse
|
146
|
Yang S, Liu B, Ji K, Fan R, Dong C. MicroRNA-5110 regulates pigmentation by cotargeting melanophilin and WNT family member 1. FASEB J 2018; 32:5405-5412. [PMID: 29733692 PMCID: PMC6133708 DOI: 10.1096/fj.201800040r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian pigmentation requires the production of melanin by melanocytes and its transfer to neighboring keratinocytes. These complex processes are regulated by several molecular pathways. Melanophilin ( MLPH) and WNT family member 1 ( WNT1), known to be involved in melanin transfer and melanin production, respectively, were predicted to be targets of microRNA-5110 using bioinformatics. In the current study, we investigated the effects of microRNA-5110 on pigmentation in alpaca ( Vicugna pacos) melanocytes. In situ hybridization identified high levels of microRNA-5110 in the cytoplasm of alpaca melanocytes. Luciferase activity assays confirmed that MLPH and WNT1 were targeted by microRNA-5110 in these cells. Overexpression and knockdown of microRNA-5110 in alpaca melanocytes downregulated and upregulated MLPH and WNT1 expression at the mRNA and protein levels, respectively. In addition, overexpression and knockdown of microRNA-5110 in alpaca melanocytes decreased and increased, respectively, the mRNA levels of the melanin transfer-related genes, rat sarcoma (RAS)-associated binding ( RAB27a) and myosin 5a ( MYO5a); the mRNA levels of microphthalmia-associated transcription factor ( MITF), tyrosinase ( TYR), and tyrosinase-related protein ( TYRP) 1; and the production of total alkali melanin and pheomelanin. In contrast, overexpression and knockdown of microRNA-5110 increased and decreased the mRNA levels of TYRP2, respectively. Overexpression of microRNA-5110 also increased eumelanin. These results indicate that microRNA-5110 regulates pigmentation in alpaca melanocytes by directly targeting MLPH and WNT1 to affect eumelanin production and transfer.-Yang, S., Liu, B., Ji, K., Fan, R., Dong, C. MicroRNA-5110 regulates pigmentation by cotargeting melanophilin and WNT family member 1.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Bo Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kaiyuan Ji
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
147
|
A direct link between MITF, innate immunity, and hair graying. PLoS Biol 2018; 16:e2003648. [PMID: 29723194 PMCID: PMC5933715 DOI: 10.1371/journal.pbio.2003648] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/30/2018] [Indexed: 12/03/2022] Open
Abstract
Melanocyte stem cells (McSCs) and mouse models of hair graying serve as useful systems to uncover mechanisms involved in stem cell self-renewal and the maintenance of regenerating tissues. Interested in assessing genetic variants that influence McSC maintenance, we found previously that heterozygosity for the melanogenesis associated transcription factor, Mitf, exacerbates McSC differentiation and hair graying in mice that are predisposed for this phenotype. Based on transcriptome and molecular analyses of Mitfmi-vga9/+ mice, we report a novel role for MITF in the regulation of systemic innate immune gene expression. We also demonstrate that the viral mimic poly(I:C) is sufficient to expose genetic susceptibility to hair graying. These observations point to a critical suppressor of innate immunity, the consequences of innate immune dysregulation on pigmentation, both of which may have implications in the autoimmune, depigmenting disease, vitiligo. Hair pigmentation over the course of a lifetime depends on melanocyte stem cells that reside in the hair follicle. As old hairs fall out and new hairs grow in, melanocyte stem cells serve as a reservoir for the melanocytes that produce the pigment that gives hair its visible color. The loss of these stem cells leads to the growth of nonpigmented, or gray, hairs. Evaluating mouse models of hair graying can reveal key aspects of melanocyte stem cell biology. Using this approach, we discovered a novel role for the melanogenesis associated transcription factor, MITF, in repressing the expression of innate immune genes within cells of the melanocyte lineage. The importance of this repression is revealed in animals that have a predisposition for hair graying. In these animals, artificial elevation of the innate immune response, either through a genetic mechanism or via exposure to viral mimic, results in significant melanocyte and melanocyte stem cell loss and leads to the production of an increased number of gray hairs. These observations highlight the negative effects of innate immune activation on melanocyte and melanocyte stem cell physiology and suggest a connection between viral infection and hair graying.
Collapse
|
148
|
Chen W, Hao QQ, Ren LL, Ren W, Lin HS, Guo WW, Yang SM. Cochlear morphology in the developing inner ear of the porcine model of spontaneous deafness. BMC Neurosci 2018; 19:28. [PMID: 29716524 PMCID: PMC5930852 DOI: 10.1186/s12868-018-0426-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/18/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Auditory function and cochlear morphology have previously been described in a porcine model with spontaneous WS2-like phenotype. In the present study, cochlear histopathology was further investigated in the inner ear of the developing spontaneous deafness pig. RESULTS We found that the stria vascularis transformed into a complex tri-laminar tissue at embryonic 85 days (E85) in normal pigs, but not in the MITF-/- pigs. As the neural crest (NC) of cochlea was derived by melanocytes. MITF mutation caused failure of development of melanocytes which caused a subsequent collapse of cochlear duct and deficits of the epithelium after E100. Furthermore, the spiral ganglion neurons of cochlea in the MITF-/- pigs began to degenerate at postnatal 30 days (P30). Thus, our histopathological results indicated that the malformation of the stria vascularis was a primary defect in MITF-/- induced WT pigs which was resulted from the loss of NC-derived melanocytes. Subsequently, the cochleae underwent secondary degeneration of the vestibular organs. As the degeneration of spiral ganglion neurons happened after P30, it suggests that WS patients should be considered as candidates for cochlear implant. CONCLUSIONS Our porcine model of MITF-M mutation may provide a crucial animal model for cochlear implant, cell therapy in patients with congenital hereditary hearing loss.
Collapse
Affiliation(s)
- Wei Chen
- Department of Otolaryngology, Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School,Ministry of Education, Beijng, China
| | - Qing-Qing Hao
- Department of Otolaryngology, Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School,Ministry of Education, Beijng, China
| | - Li-Li Ren
- Department of Otolaryngology, Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School,Ministry of Education, Beijng, China
| | - Wei Ren
- Department of Otolaryngology, Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School,Ministry of Education, Beijng, China
| | - Hui-Sang Lin
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Wei-Wei Guo
- Department of Otolaryngology, Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School,Ministry of Education, Beijng, China.
| | - Shi-Ming Yang
- Department of Otolaryngology, Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School,Ministry of Education, Beijng, China.
| |
Collapse
|
149
|
Nishina A, Miura A, Goto M, Terakado K, Sato D, Kimura H, Hirai Y, Sato H, Phay N. Mansonone E from Mansonia gagei Inhibited α-MSH-Induced Melanogenesis in B16 Cells by Inhibiting CREB Expression and Phosphorylation in the PI3K/Akt Pathway. Biol Pharm Bull 2018; 41:770-776. [DOI: 10.1248/bpb.b17-01045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Airi Miura
- College of Science and Technology, Nihon University
| | | | | | - Daisuke Sato
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University
| | | | | | | |
Collapse
|
150
|
Seberg HE, Van Otterloo E, Cornell RA. Beyond MITF: Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma. Pigment Cell Melanoma Res 2018. [PMID: 28649789 DOI: 10.1111/pcmr.12611] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MITF governs multiple steps in the development of melanocytes, including specification from neural crest, growth, survival, and terminal differentiation. In addition, the level of MITF activity determines the phenotype adopted by melanoma cells, whether invasive, proliferative, or differentiated. However, MITF does not act alone. Here, we review literature on the transcription factors that co-regulate MITF-dependent genes. ChIP-seq studies have indicated that the transcription factors SOX10, YY1, and TFAP2A co-occupy subsets of regulatory elements bound by MITF in melanocytes. Analyses at single loci also support roles for LEF1, RB1, IRF4, and PAX3 acting in combination with MITF, while sequence motif analyses suggest that additional transcription factors colocalize with MITF at many melanocyte-specific regulatory elements. However, the precise biochemical functions of each of these MITF collaborators and their contributions to gene expression remain to be elucidated. Analogous to the transcriptional networks in morphogen-patterned tissues during embryogenesis, we anticipate that the level of MITF activity is controlled not only by the concentration of activated MITF, but also by additional transcription factors that either quantitatively or qualitatively influence the expression of MITF-target genes.
Collapse
Affiliation(s)
- Hannah E Seberg
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Eric Van Otterloo
- SDM-Craniofacial Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Robert A Cornell
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|