101
|
Dong X, Huang Y, Cho BG, Zhong J, Gautam S, Peng W, Williamson SD, Banazadeh A, Torres-Ulloa KY, Mechref Y. Advances in mass spectrometry-based glycomics. Electrophoresis 2018; 39:3063-3081. [PMID: 30199110 DOI: 10.1002/elps.201800273] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
The diversification of the chemical properties and biological functions of proteins is attained through posttranslational modifications, such as glycosylation. Glycans, which are covalently attached to proteins, play a vital role in cell activities. The microheterogeneity and complexity of glycan structures associated with proteins make comprehensive glycomic analysis challenging. However, recent advancements in mass spectrometry (MS), separation techniques, and sample preparation methods have primarily facilitated structural elucidation and quantitation of glycans. This review focuses on describing recent advances in MS-based techniques used for glycomic analysis (2012-2018), including ionization, tandem MS, and separation techniques coupled with MS. Progress in glycomics workflow involving glycan release, purification, derivatization, and separation will also be highlighted here. Additionally, the recent development of quantitative glycomics through comparative and multiplex approaches will also be described.
Collapse
Affiliation(s)
- Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Seth D Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Katya Y Torres-Ulloa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
102
|
White EJ, Gyulay G, Lhoták Š, Szewczyk MM, Chong T, Fuller MT, Dadoo O, Fox-Robichaud AE, Austin RC, Trigatti BL, Igdoura SA. Sialidase down-regulation reduces non-HDL cholesterol, inhibits leukocyte transmigration, and attenuates atherosclerosis in ApoE knockout mice. J Biol Chem 2018; 293:14689-14706. [PMID: 30097518 DOI: 10.1074/jbc.ra118.004589] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/01/2018] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis is a complex disease that involves alterations in lipoprotein metabolism and inflammation. Protein and lipid glycosylation events, such as sialylation, contribute to the development of atherosclerosis and are regulated by specific glycosidases, including sialidases. To evaluate the effect of the sialidase neuraminidase 1 (NEU1) on atherogenesis, here we generated apolipoprotein E (ApoE)-deficient mice that express hypomorphic levels of NEU1 (Neu1hypoApoe-/-). We found that the hypomorphic NEU1 expression in male Apoe-/- mice reduces serum levels of very-low-density lipoprotein (VLDL) and LDL cholesterol, diminishes infiltration of inflammatory cells into lesions, and decreases aortic sinus atherosclerosis. Transplantation of Apoe-/- bone marrow (BM) into Neu1hypoApoe-/- mice significantly increased atherosclerotic lesion development and had no effect on serum lipoprotein levels. Moreover, Neu1hypoApoe-/- mice exhibited a reduction in circulating monocyte and neutrophil levels and had reduced hyaluronic acid and P-selectin adhesion capability on monocytes/neutrophils and T cells. Consistent with these findings, administration of a sialidase inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, had a significant anti-atherogenic effect in the Apoe-/- mice. In summary, the reduction in NEU1 expression or function decreases atherosclerosis in mice via its significant effects on lipid metabolism and inflammatory processes. We conclude that NEU1 may represent a promising target for managing atherosclerosis.
Collapse
Affiliation(s)
| | | | - Šárka Lhoták
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | | | | | - Mark T Fuller
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Omid Dadoo
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Alison E Fox-Robichaud
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Richard C Austin
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Bernardo L Trigatti
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Suleiman A Igdoura
- From the Departments of Biology, .,Pathology and Molecular Medicine, and
| |
Collapse
|
103
|
Kurz ARM, Catz SD, Sperandio M. Noncanonical Hippo Signalling in the Regulation of Leukocyte Function. Trends Immunol 2018; 39:656-669. [PMID: 29954663 DOI: 10.1016/j.it.2018.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 01/06/2023]
Abstract
The mammalian sterile 20-like (MST) kinases are central constituents of the evolutionary ancient canonical Hippo pathway regulating cell proliferation and survival. However, perhaps surprisingly, MST1 deficiency in human patients leads to a severe combined immunodeficiency syndrome with features of autoimmune disease. In line with this, Mst1-deficient mice exhibit severe defects in lymphocyte and neutrophil functions as well as disturbed intracellular vesicle transport. These findings spurred research on the noncanonical functions of MST1 in leukocytes. Here, we summarise the latest findings on this topic and discuss MST1 as a critical regulator of various leukocyte functions.
Collapse
Affiliation(s)
- Angela R M Kurz
- Walter Brendel Center of Experimental Medicine, BMC, Klinikum der Universität, LMU Munich, Germany; The Centenary Institute, Camperdown, New South Wales, Australia
| | - Sergio D Catz
- The Scripps Research Institute, La Jolla, California, USA
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine, BMC, Klinikum der Universität, LMU Munich, Germany; DZHK Munich, Germany.
| |
Collapse
|
104
|
Galectin-3 in M2 Macrophages Plays a Protective Role in Resolution of Neuropathology in Brain Parasitic Infection by Regulating Neutrophil Turnover. J Neurosci 2018; 38:6737-6750. [PMID: 29946038 DOI: 10.1523/jneurosci.3575-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophages/microglia with M2-activation phenotype are thought to play important anti-inflammatory and tissue reparative functions in the brain, yet the molecular bases of their functions in the CNS remain to be clearly defined. In a preclinical model of neurocysticercosis using brain infection with a parasite Mesocestoides corti, we previously reported the presence of large numbers of M2 cells in the CNS. In this study using female mice, we report that M2 macrophages in the parasite-infected brain display abundant galectin-3 expression. Disease severity was increased in Galectin-3-/- mice correlating with increased neurological defects, augmented cell death and, importantly, massive accumulation of neutrophils and M2 macrophages in the CNS of these mice. Because neutrophil clearance by efferocytosis is an important function of M2 macrophages, we investigated a possible role of galectin-3 in this process. Indeed, galectin-3-deficient M2 macrophages exhibited a defect in efferocytic clearance of neutrophils in vitro Furthermore, adoptive transfer of M2 macrophages from galectin-3-sufficient WT mice reduced neutrophilia in the CNS and ameliorated disease severity in parasite-infected Galectin-3-/- mice. Together, these results demonstrate, for the first time, a novel role of galectin-3 in M2 macrophage function in neutrophil turnover and resolution of inflammatory pathology in the CNS. This likely will have implications in neurocysticercosis and neuroinflammatory diseases.SIGNIFICANCE STATEMENT Macrophages/microglia with M1-activation phenotype are thought to promote CNS pathology, whereas M2-anti-inflammatory phenotype promote CNS repair. However, the mechanisms regulating M2 cell-protective functions in the CNS microenvironment are undefined. The current study reports that helminth infection of the brain induces an increased expression of galectin-3 in M2 macrophages accumulated in the CNS. Using multiple experimental models in vivo and in vitro, they show that galectin-3 in M2 macrophages functions to clear neutrophils accumulated in the CNS. Importantly, galectin-3 in M2 macrophages plays a central role in the containment of neuropathology and disease severity. These results provide a direct mechanistic evidence of the protective function of M2 macrophages in the CNS.
Collapse
|
105
|
Rodrigues E, Macauley MS. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers (Basel) 2018; 10:cancers10060207. [PMID: 29912148 PMCID: PMC6025361 DOI: 10.3390/cancers10060207] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Cell surface glycosylation is dynamic and often changes in response to cellular differentiation under physiological or pathophysiological conditions. Altered glycosylation on cancers cells is gaining attention due its wide-spread occurrence across a variety of cancer types and recent studies that have documented functional roles for aberrant glycosylation in driving cancer progression at various stages. One change in glycosylation that can correlate with cancer stage and disease prognosis is hypersialylation. Increased levels of sialic acid are pervasive in cancer and a growing body of evidence demonstrates how hypersialylation is advantageous to cancer cells, particularly from the perspective of modulating immune cell responses. Sialic acid-binding receptors, such as Siglecs and Selectins, are well-positioned to be exploited by cancer hypersialylation. Evidence is also mounting that Siglecs modulate key immune cell types in the tumor microenvironment, particularly those responsible for maintaining the appropriate inflammatory environment. From these studies have come new and innovative ways to block the effects of hypersialylation by directly reducing sialic acid on cancer cells or blocking interactions between sialic acid and Siglecs or Selectins. Here we review recent works examining how cancer cells become hypersialylated, how hypersialylation benefits cancer cells and tumors, and proposed therapies to abrogate hypersialylation of cancer.
Collapse
Affiliation(s)
- Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
106
|
Osborn JF, Mooster JL, Hobbs SJ, Munks MW, Barry C, Harty JT, Hill AB, Nolz JC. Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8 + T cells. Sci Immunol 2018; 2:2/16/eaan6049. [PMID: 29030501 DOI: 10.1126/sciimmunol.aan6049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
Trafficking of memory CD8+ T cells out of the circulation is essential to provide protective immunity against intracellular pathogens in nonlymphoid tissues. However, the molecular mechanisms that dictate the trafficking potential of diverse memory CD8+ T cell populations are not completely defined. We show that after infection or inflammatory challenge, central memory (TCM) CD8+ T cells rapidly traffic into nonlymphoid tissues, whereas most effector memory cells remain in the circulation. Furthermore, we demonstrate that cellular migration of memory CD8+ T cells into nonlymphoid tissues is driven by interleukin-15 (IL-15)-stimulated enzymatic synthesis of core 2 O-glycans, which generates functional ligands for E- and P-selectins. Given that IL-15-stimulated expression of glycosyltransferase enzymes is largely a feature of TCM CD8+ T cells, this allows TCM to selectively migrate out of the circulation and into nonlymphoid tissues. Collectively, our data indicate that entry of memory CD8+ T cells into inflamed, nonlymphoid tissues is primarily restricted to TCM cells that have the capacity to synthesize core 2 O-glycans.
Collapse
Affiliation(s)
- Jossef F Osborn
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jana L Mooster
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Michael W Munks
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Conrad Barry
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA. .,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
107
|
Carrascal MA, Silva M, Ferreira JA, Azevedo R, Ferreira D, Silva AMN, Ligeiro D, Santos LL, Sackstein R, Videira PA. A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer. Biochim Biophys Acta Gen Subj 2018; 1862:2069-2080. [PMID: 29777742 DOI: 10.1016/j.bbagen.2018.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The glycan moieties sialyl-Lewis-X and/or -A (sLeX/A) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. METHODS We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. RESULTS We observed that the CF1_T cell line expressed sLeX, but not sLeA and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLeX-CD44 and sLeX-CD13 was confirmed in clinical breast cancer tissue samples. CONCLUSIONS Both CD44 and CD13 glycoforms display sLeX in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. GENERAL SIGNIFICANCE While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target.
Collapse
Affiliation(s)
- M A Carrascal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - M Silva
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Departments of Dermatology and Medicine, Brigham & Women's Hospital, and Program of Excellence in Glycosciences, Harvard Medical School, USA
| | - J A Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; International Iberian Nanotechnology Laboratory, Braga, Portugal; Department of Pathology and Immunology, ICBAS-UP, Porto, Portugal
| | - R Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - D Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - A M N Silva
- REQUIMTE-LAQV/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - D Ligeiro
- Centro de Sangue e Transplantação de Lisboa, Instituto Português de Sangue e Transplantação, IP, Lisboa, Portugal
| | - L L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - R Sackstein
- Departments of Dermatology and Medicine, Brigham & Women's Hospital, and Program of Excellence in Glycosciences, Harvard Medical School, USA
| | - P A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
108
|
Wu Z, Liu Y, Li L, Wan XF, Zhu H, Guo Y, Wei M, Guan W, Wang PG. Decoding glycan protein interactions by a new class of asymmetric N-glycans. Org Biomol Chem 2018; 15:8946-8951. [PMID: 29043371 DOI: 10.1039/c7ob02303k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Glycans are normally involved in crucial physiological and disease processes by interactions with glycan-binding proteins. So far structurally defined N-glycans have been good candidates for glycan binding study. Herein, a class of homogeneous asymmetric N-glycans was synthesized by coupling glycan-oxazoline and N-glycans using EndoM N175Q catalyzed quick glycan extension. Branch-biased binding and spacial inhibition caused by the bulky group on the other branch of N-glycan were observed in glycan protein interactions involving lectins and these glycans by glycan microarray study. These new compounds are valuable for functional glycomic studies to better understand new functions of glycans and glycan-binding proteins.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Lee CH, Zhang HH, Singh SP, Koo L, Kabat J, Tsang H, Singh TP, Farber JM. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. eLife 2018; 7:32532. [PMID: 29469805 PMCID: PMC5869018 DOI: 10.7554/elife.32532] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Many mediators and regulators of extravasation by bona fide human memory-phenotype T cells remain undefined. Mucosal-associated invariant T (MAIT) cells are innate-like, antibacterial cells that we found excelled at crossing inflamed endothelium. They displayed abundant selectin ligands, with high expression of FUT7 and ST3GAL4, and expressed CCR6, CCR5, and CCR2, which played non-redundant roles in trafficking on activated endothelial cells. MAIT cells selectively expressed CCAAT/enhancer-binding protein delta (C/EBPδ). Knockdown of C/EBPδ diminished expression of FUT7, ST3GAL4 and CCR6, decreasing MAIT cell rolling and arrest, and consequently the cells' ability to cross an endothelial monolayer in vitro and extravasate in mice. Nonetheless, knockdown of C/EBPδ did not affect CCR2, which was important for the step of transendothelial migration. Thus, MAIT cells demonstrate a program for extravasastion that includes, in part, C/EBPδ and C/EBPδ-regulated genes, and that could be used to enhance, or targeted to inhibit T cell recruitment into inflamed tissue.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Hongwei H Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Lily Koo
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Hsinyi Tsang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Tej Pratap Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Joshua M Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
110
|
Reduced mannosidase MAN1A1 expression leads to aberrant N-glycosylation and impaired survival in breast cancer. Br J Cancer 2018; 118:847-856. [PMID: 29381688 PMCID: PMC5877434 DOI: 10.1038/bjc.2017.472] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alterations in protein glycosylation have been related to malignant transformation and tumour progression. We recently showed that low mRNA levels of Golgi alpha-mannosidase MAN1A1 correlate with poor prognosis in breast cancer patients. METHODS We analysed the role of MAN1A1 on a protein level using western blot analysis (n=105) and studied the impact of MAN1A1-related glycosylation on the prognostic relevance of adhesion molecules involved in breast cancer using microarray data (n=194). Functional consequences of mannosidase inhibition using the inhibitor kifunensine or MAN1A1 silencing were investigated in breast cancer cells in vitro. RESULTS Patients with low/moderate MAN1A1 expression in tumours showed significantly shorter disease-free intervals than those with high MAN1A1 levels (P=0.005). Moreover, low MAN1A1 expression correlated significantly with nodal status, grading and brain metastasis. At an mRNA level, membrane proteins ALCAM and CD24 were only significantly prognostic in tumours with high MAN1A1 expression. In vitro, reduced MAN1A1 expression or mannosidase inhibition led to a significantly increased adhesion of breast cancer cells to endothelial cells. CONCLUSIONS Our study demonstrates the prognostic role of MAN1A1 in breast cancer by affecting the adhesive properties of tumour cells and the strong influence of this glycosylation enzyme on the prognostic impact of some adhesion proteins.
Collapse
|
111
|
Silva M, Silva Z, Marques G, Ferro T, Gonçalves M, Monteiro M, van Vliet SJ, Mohr E, Lino AC, Fernandes AR, Lima FA, van Kooyk Y, Matos T, Tadokoro CE, Videira PA. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses. Oncotarget 2018; 7:41053-41066. [PMID: 27203391 PMCID: PMC5173042 DOI: 10.18632/oncotarget.9419] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/16/2016] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280–288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs' ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Mariana Silva
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Zélia Silva
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal
| | - Graça Marques
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Tiago Ferro
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal
| | - Márcia Gonçalves
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mauro Monteiro
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elodie Mohr
- IGC, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal.,CQE, Centro Química Estrutural, Instituto Superior Técnico, ULisboa, Lisboa, Portugal
| | - Flávia A Lima
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Carlos E Tadokoro
- Universidade Vila Velha, Espírito Santo, Brasil.,IGC, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal
| | - Paula A Videira
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal
| |
Collapse
|
112
|
|
113
|
van den Boogert MAW, Rader DJ, Holleboom AG. New insights into the role of glycosylation in lipoprotein metabolism. Curr Opin Lipidol 2017; 28:502-506. [PMID: 28922188 DOI: 10.1097/mol.0000000000000461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Human genetics has provided new insights into the role of protein glycosylation in regulating lipoprotein metabolism. Here we review these new developments and discuss the biological insights they provide. RECENT FINDINGS Case descriptions of patients with congenital defects in N-glycosylation (CDG-I) frequently describe a distinct hypocholesterolemia in these rare multisystem clinical syndromes. Two novel CDGs with disturbed Golgi homeostasis and trafficking defects result in mixed glycosylation disorders, hepatic steatosis and hypercholesterolemia. In addition, the presence of particular N-glycans is essential for physiological membrane expression of scavenger receptor B1 and for adequate lipolytic activity of endothelial lipase. GalNAc-T2, a specific O-glycosyl transferase, was found to be a direct modulator of HDL metabolism across mammals, validating its relationship with HDL-c found in genome-wide association studies. Furthermore, genetic variation in ASGR1, the major subunit of the asialoglycoprotein receptor (ASGPR), was found to be associated with a reduction in LDL-c and risk of coronary artery disease. SUMMARY Protein glycosylation plays an important regulatory role in lipoprotein metabolism. Greater insight into how protein glycosylation regulates lipoprotein metabolism could provide novel approaches for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Marjolein A W van den Boogert
- aDepartment of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands bDepartments of Genetics and Medicine, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | |
Collapse
|
114
|
Glycosylation of hemocyanin in Litopenaeus vannamei is an antibacterial response feature. Immunol Lett 2017; 192:42-47. [DOI: 10.1016/j.imlet.2017.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/04/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022]
|
115
|
Kim M, Yoo SJ, Kang SW, Kwon J, Choi I, Lee CH. TNFα and IL-1β in the synovial fluid facilitate mucosal-associated invariant T (MAIT) cell migration. Cytokine 2017; 99:91-98. [DOI: 10.1016/j.cyto.2017.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
|
116
|
Whitehead MW, Khanzhin N, Borsig L, Hennet T. Custom Glycosylation of Cells and Proteins Using Cyclic Carbamate-Derivatized Oligosaccharides. Cell Chem Biol 2017; 24:1336-1346.e3. [DOI: 10.1016/j.chembiol.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 01/15/2023]
|
117
|
Abstract
PURPOSE OF REVIEW We review P-selectin glycoprotein ligand-1 (PSGL-1) as a selectin and chemokine-binding adhesion molecule. PSGL-1 is widely studied in neutrophils. Here, we focus on T cells, because PSGL-1 was recently described as a major immunomodulatory molecule during viral infection. PSGL-1 also plays a crucial role in T-cell homeostasis by binding to lymphoid chemokines, and can induce tolerance by enhancing the functions of regulatory T cells. RECENT FINDINGS PSGL-1 was originally described as a leukocyte ligand for P-selectin, but it is actually a ligand for all selectins (P-, L- and E-selectin), binds chemokines, activates integrins and profoundly affects T-cell biology. It has been shown recently that PSGL-1 can modulate T cells during viral infection by acting as a negative regulator for T-cell functions. Absence of PSGL-1 promotes effector CD4 and CD8 T-cell differentiation and prevents T-cell exhaustion. Consistent with this, tumor growth was significantly reduced in PSGL-1-deficient mice because of an enhanced number of effector T cells together with reduced levels of inhibitory receptors that induce T-cell exhaustion. SUMMARY PSGL-1 is the best-studied selectin ligand and has become a posterchild of versatility in leukocyte adhesion, inflammation and immunology. The direct involvement of PSGL-1 in T-cell biology suggests that it might be a drug target. Indeed, PSGL-1 has been tested in some clinical trials and recently, PSGL-1 blockers were proposed as a potential cotherapy in cancer immunotherapy.
Collapse
|
118
|
Palestinian Arab ethnicity is associated with an adverse metabolic phenotype. Clin Chim Acta 2017; 475:56-63. [PMID: 28987777 DOI: 10.1016/j.cca.2017.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Abstract
Urban-dwelling Palestinians have been shown to have higher cardiovascular morbidity and mortality and prevalence of diabetes than urban Israelis. Inflammation is implicated in the etiology of these conditions. We hypothesized that increased inflammatory activation, manifested as increased GlycA, a novel biomarker of global inflammation, would be evident in Palestinians. We compared GlycA concentrations between Palestinians and Israelis and assessed the associations of GlycA with anthropometric, health behavioral and clinical variables in a sample of 1674 Palestinians and Israelis aged 25-74, residing in Jerusalem. The main outcome measure was GlycA concentration. GlycA was higher in Palestinians than Israelis (p<0.001). This finding persisted in young Palestinians with normal glucose tolerance. GlycA, total white blood cell count, the triglyceride to HDL-cholesterol ratio and small LDL-cholesterol particles were all significantly higher in Palestinians compared to Israelis across obesity and glucose tolerance categories. Palestinian women had greater GlycA compared to Israeli women and men of both ethnicities. GlycA as well as adverse cardiovascular biomarkers are all higher in Palestinian Arabs than Israeli Jews, even in young healthy adults. This propensity to inflammation may be a driver of the higher risk of cardiovascular disease, insulin resistance and diabetes observed in this population.
Collapse
|
119
|
Abrahams JL, Campbell MP, Packer NH. Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J 2017; 35:15-29. [PMID: 28905148 DOI: 10.1007/s10719-017-9793-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 11/27/2022]
Abstract
Porous graphitised carbon-liquid chromatography (PGC-LC) has been proven to be a powerful technique for the analysis and characterisation of complex mixtures of isomeric and isobaric glycan structures. Here we evaluate the elution behaviour of N-glycans on PGC-LC and thereby provide the potential of using chromatographic separation properties, together with mass spectrometry (MS) fragmentation, to determine glycan structure assignments more easily. We used previously reported N-glycan structures released from the purified glycoproteins Immunoglobulin G (IgG), Immunoglobulin A (IgA), lactoferrin, α1-acid glycoprotein, Ribonuclease B (RNase B), fetuin and ovalbumin to profile their behaviour on capillary PGC-LC-MS. Over 100 glycan structures were determined by MS/MS, and together with targeted exoglycosidase digestions, created a N-glycan PGC retention library covering a full spectrum of biologically significant N-glycans from pauci mannose to sialylated tetra-antennary classes. The resultant PGC retention library ( http://www.glycostore.org/showPgc ) incorporates retention times and supporting fragmentation spectra including exoglycosidase digestion products, and provides detailed knowledge on the elution properties of N-glycans by PGC-LC. Consequently, this platform should serve as a valuable resource for facilitating the detailed analysis of the glycosylation of both purified recombinant, and complex mixtures of, glycoproteins using established workflows.
Collapse
Affiliation(s)
- Jodie L Abrahams
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Institute for Glycomics, Griffith University, QLD, Gold Coast, 4222, Australia
| | - Matthew P Campbell
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Institute for Glycomics, Griffith University, QLD, Gold Coast, 4222, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
- Institute for Glycomics, Griffith University, QLD, Gold Coast, 4222, Australia.
| |
Collapse
|
120
|
Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y. Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 2017; 38:2100-2114. [PMID: 28370073 PMCID: PMC5581235 DOI: 10.1002/elps.201700042] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022]
Abstract
The characterization of glycosylation is critical for obtaining a comprehensive view of the regulation and functions of glycoproteins of interest. Due to the complex nature of oligosaccharides, stemming from variable compositions and linkages, and ion suppression effects, the chromatographic separation of glycans, including isomeric structures, is necessary for exhaustive characterization by MS. This review introduces the fundamental principles underlying the techniques in LC utilized by modern day glycomics researchers. Recent advances in porous graphitized carbon, reverse phase, ion exchange, and hydrophilic interaction LC utilized in conjunction with MS, for the characterization of protein glycosylation, are described with an emphasis on methods capable of resolving isomeric glycan structures.
Collapse
Affiliation(s)
- Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | | | | | | | - Byeong G. Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
121
|
Hanna DB, Lin J, Post WS, Hodis HN, Xue X, Anastos K, Cohen MH, Gange SJ, Haberlen SA, Heath SL, Lazar JM, Liu C, Mack WJ, Ofotokun I, Palella FJ, Tien PC, Witt MD, Landay AL, Kingsley LA, Tracy RP, Kaplan RC. Association of Macrophage Inflammation Biomarkers With Progression of Subclinical Carotid Artery Atherosclerosis in HIV-Infected Women and Men. J Infect Dis 2017; 215:1352-1361. [PMID: 28199691 DOI: 10.1093/infdis/jix082] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
Background Monocytes and monocyte-derived macrophages promote atherosclerosis through increased inflammation and vascular remodeling. This may be especially true in chronic human immunodeficiency virus (HIV) infection. Methods We examined 778 women (74% HIV+) in the Women's Interagency HIV Study and 503 men (65% HIV+) in the Multicenter AIDS Cohort Study who underwent repeated B-mode carotid artery ultrasound imaging in 2004-2013. We assessed baseline associations of the serum macrophage inflammation markers soluble (s)CD163, sCD14, galectin-3 (Gal-3), and Gal-3 binding protein (Gal-3BP) with carotid plaque formation (focal intima-media thickness >1.5 mm) over 7 years. Results Marker levels were higher in HIV+ persons versus HIV- persons. Presence of focal plaque increased over time: from 8% to 15% in women, and 24% to 34% in men. After adjustment for demographic, behavioral, and cardiometabolic factors, and CRP and interleukin-6, each standard deviation increase in sCD14 was associated with increased plaque formation (risk ratio [RR] 1.24, 95% confidence interval [CI] 1.07-1.43). This pattern was consistentby sex. sCD163 was associated with plaque formation in virally suppressed HIV+ men (RR 1.52, 95% CI 1.04-2.22); Gal-3BP and Gal-3 were not associated with increased plaque. Conclusions sCD14 and sCD163 may play important roles in atherogenesis among HIV+ persons.
Collapse
Affiliation(s)
- David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Juan Lin
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Wendy S Post
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Howard N Hodis
- Department of Medicine, University of Southern California, Los Angeles
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Mardge H Cohen
- Department of Medicine, John H. Stroger, Jr Hospital of Cook County, Chicago, Illinois
| | - Stephen J Gange
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Sabina A Haberlen
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham
| | - Jason M Lazar
- Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York
| | - Chenglong Liu
- Department of Medicine, Georgetown University Medical Center, Washington, DC
| | - Wendy J Mack
- Department of Preventive Medicine, University of Southern California, Los Angeles
| | - Igho Ofotokun
- Department of Medicine, Emory University and Grady Healthcare System, Atlanta, Georgia
| | - Frank J Palella
- Department of Medicine, Northwestern University Medical Center, Chicago, Illinois
| | - Phyllis C Tien
- Department of Medicine, University of California-San Francisco and the Department of Veterans Affairs
| | - Mallory D Witt
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, California
| | - Alan L Landay
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Lawrence A Kingsley
- Departments of Epidemiology and Infectious Diseases and Microbiology, University of Pittsburgh, Pennsylvania; and
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
122
|
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune system cells that play an essential role in eradicating invading pathogens. PMN migration to sites of infection/inflammation requires exiting the microcirculation and subsequent crossing of epithelial barriers in mucosa-lined organs such as the lungs and intestines. Although these processes usually occur without significant damage to surrounding host tissues, dysregulated/excessive PMN transmigration and resultant bystander-tissue damage are characteristic of numerous mucosal inflammatory disorders. Mechanisms controlling PMN extravasation have been well characterized, but the molecular details regarding regulation of PMN migration across mucosal epithelia are poorly understood. Given that PMN migration across mucosal epithelia is strongly correlated with disease symptoms in many inflammatory mucosal disorders, enhanced understanding of the mechanisms regulating PMN transepithelial migration should provide insights into clinically relevant tissue-targeted therapies aimed at ameliorating PMN-mediated bystander-tissue damage. This review will highlight current understanding of the molecular interactions between PMNs and mucosal epithelia and the associated functional consequences.
Collapse
Affiliation(s)
- Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
123
|
Jaillet C, Morelle W, Slomianny MC, Paget V, Tarlet G, Buard V, Selbonne S, Caffin F, Rannou E, Martinez P, François A, Foulquier F, Allain F, Milliat F, Guipaud O. Radiation-induced changes in the glycome of endothelial cells with functional consequences. Sci Rep 2017; 7:5290. [PMID: 28706280 PMCID: PMC5509684 DOI: 10.1038/s41598-017-05563-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
As it is altered by ionizing radiation, the vascular network is considered as a prime target in limiting normal tissue damage and improving tumor control in radiation therapy. Irradiation activates endothelial cells which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Since protein glycosylation is an important determinant of cell adhesion, we hypothesized that radiation could alter the glycosylation pattern of endothelial cells and thereby impact adhesion of circulating cells. Herein, we show that ionizing radiation increases high mannose-type N-glycans and decreases glycosaminoglycans. These changes stimulate interactions measured under flow conditions between irradiated endothelial cells and monocytes. Targeted transcriptomic approaches in vitro in endothelial cells and in vivo in a radiation enteropathy mouse model confirm that genes involved in N- and O-glycosylation are modulated by radiation, and in silico analyses give insight into the mechanism by which radiation modifies glycosylation. The endothelium glycome may therefore be considered as a key therapeutic target for modulating the chronic inflammatory response observed in healthy tissues or for participating in tumor control by radiation therapy.
Collapse
Affiliation(s)
- Cyprien Jaillet
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Willy Morelle
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marie-Christine Slomianny
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Sonia Selbonne
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Fanny Caffin
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Emilie Rannou
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France.,Department of Molecular, Cell and Developmental Biology, UCLA, CA 90095-7239, Los Angeles, USA
| | - Pierre Martinez
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.,GSK - GlaxoSmithKline, 1300, Wavre, Belgium
| | - Agnès François
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - François Foulquier
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Fabrice Allain
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Fabien Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France.
| |
Collapse
|
124
|
Freire-de-Lima L, Gentile LB, da Fonseca LM, da Costa KM, Santos Lemos J, Jacques LR, Morrot A, Freire-de-Lima CG, Nunes MP, Takiya CM, Previato JO, Mendonça-Previato L. Role of Inactive and Active Trypanosoma cruzi Trans-sialidases on T Cell Homing and Secretion of Inflammatory Cytokines. Front Microbiol 2017; 8:1307. [PMID: 28744279 PMCID: PMC5504189 DOI: 10.3389/fmicb.2017.01307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022] Open
Abstract
Trans-sialidase from Trypanosoma cruzi (Tc-TS) belongs to a superfamily of proteins that may have enzymatic activity. While enzymatically active members (Tc-aTS) are able to transfer sialic acid from the host cell sialyl-glycoconjugates onto the parasite or to other molecules on the host cell surface, the inactive members (Tc-iTS) are characterized by their lectinic properties. Over the last 10 years, several papers demonstrated that, individually, Tc-aTS or Tc-iTS is able to modulate several biological events. Since the genes encoding Tc-iTS and Tc-aTS are present in the same copy number, and both proteins portray similar substrate-specificities as well, it would be plausible to speculate that such molecules may compete for the same sialyl-glycan structures and govern numerous immunobiological phenomena. However, their combined effect has never been evaluated in the course of an acute infection. In this study, we investigated the ability of both proteins to modulate the production of inflammatory signals, as well as the homing of T cells to the cardiac tissue of infected mice, events that usually occur during the acute phase of T. cruzi infection. The results showed that the intravenous administration of Tc-iTS, but not Tc-aTS protected the cardiac tissue from injury caused by reduced traffic of inflammatory cells. In addition, the ability of Tc-aTS to modulate the production of inflammatory cytokines was attenuated and/or compromised when Tc-iTS was co-injected in the same proportions. These results suggest that although both proteins present structural similarities and compete for the same sialyl-glycan epitopes, they might present distinct immunomodulatory properties on T cells following T. cruzi infection.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Luciana B Gentile
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Leonardo M da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Kelli M da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Jessica Santos Lemos
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lucas Rodrigues Jacques
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil.,Instituto de Microbiologia, Centro de Ciência da Saúde - Sala D1-035, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Célio G Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marise P Nunes
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Christina M Takiya
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Jose O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
125
|
The importance of N-glycosylation on β 3 integrin ligand binding and conformational regulation. Sci Rep 2017; 7:4656. [PMID: 28680094 PMCID: PMC5498496 DOI: 10.1038/s41598-017-04844-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022] Open
Abstract
N-glycosylations can regulate the adhesive function of integrins. Great variations in both the number and distribution of N-glycosylation sites are found in the 18 α and 8 β integrin subunits. Crystal structures of αIIbβ3 and αVβ3 have resolved the precise structural location of each N-glycan site, but the structural consequences of individual N-glycan site on integrin activation remain unclear. By site-directed mutagenesis and structure-guided analyses, we dissected the function of individual N-glycan sites in β3 integrin activation. We found that the N-glycan site, β3-N320 at the headpiece and leg domain interface positively regulates αIIbβ3 but not αVβ3 activation. The β3-N559 N-glycan at the β3-I-EGF3 and αIIb-calf-1 domain interface, and the β3-N654 N-glycan at the β3-β-tail and αIIb-calf-2 domain interface positively regulate the activation of both αIIbβ3 and αVβ3 integrins. In contrast, removal of the β3-N371 N-glycan near the β3 hybrid and I-EGF3 interface, or the β3-N452 N-glycan at the I-EGF1 domain rendered β3 integrin more active than the wild type. We identified one unique N-glycan at the βI domain of β1 subunit that negatively regulates α5β1 activation. Our study suggests that the bulky N-glycans influence the large-scale conformational rearrangement by potentially stabilizing or destabilizing the domain interfaces of integrin.
Collapse
|
126
|
ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells. Int J Mol Sci 2017; 18:ijms18071400. [PMID: 28665310 PMCID: PMC5535893 DOI: 10.3390/ijms18071400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/24/2022] Open
Abstract
The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia.
Collapse
|
127
|
Begandt D, Thome S, Sperandio M, Walzog B. How neutrophils resist shear stress at blood vessel walls: molecular mechanisms, subcellular structures, and cell-cell interactions. J Leukoc Biol 2017; 102:699-709. [PMID: 28619950 DOI: 10.1189/jlb.3mr0117-026rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the first cells arriving at sites of tissue injury or infection to combat invading pathogens. Successful neutrophil recruitment to sites of inflammation highly depends on specific molecular mechanisms, fine-tuning the received information into signaling pathways and converting them into well-described recruitment steps. This review highlights the impact of vascular flow conditions on neutrophil recruitment and the multitude of mechanisms developed to enable this sophisticated process under wall shear stress conditions. The recruitment process underlies a complex interplay between adhesion and signaling molecules, as well as chemokines, in which neutrophils developed specific mechanisms to travel to sites of lesion in low and high shear stress conditions. Rolling, as the first step in the recruitment process, highly depends on endothelial selectins and their ligands on neutrophils, inducting of intracellular signaling and subsequently activating β2 integrins, enabling adhesion and postadhesion events. In addition, subcellular structures, such as microvilli, tethers, and slings allow the cell to arrest, even under high wall shear stress. Thereby, microvilli that are pulled out from the cell body form tethers that develop into slings upon their detachment from the substrate. In addition to the above-described primary capture, secondary capture of neutrophils via neutrophil-neutrophil or neutrophil-platelet interaction promotes the process of neutrophil recruitment to sites of lesion. Thus, precise mechanisms based on a complex molecular interplay, subcellular structures, and cell-cell interactions turn the delicate process of neutrophil trafficking during flow into a robust response allowing effective neutrophil accumulation at sites of injury.
Collapse
Affiliation(s)
- Daniela Begandt
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sarah Thome
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Barbara Walzog
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
128
|
Hobbs SJ, Nolz JC. Regulation of T Cell Trafficking by Enzymatic Synthesis of O-Glycans. Front Immunol 2017; 8:600. [PMID: 28596771 PMCID: PMC5442166 DOI: 10.3389/fimmu.2017.00600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Selectins constitute a family of oligosaccharide binding proteins that play critical roles in regulating the trafficking of leukocytes. In T cells, L-selectin (CD62L) controls the capacity for naive and memory T cells to actively survey peripheral lymph nodes, whereas P- and E-selectin capture activated T cells on inflamed vascular endothelium to initiate extravasation into non-lymphoid tissues. The capacity for T cells to interact with all of these selectins is dependent on the enzymatic synthesis of complex O-glycans, and thus, this protein modification plays an indispensable role in regulating the distribution and homing of both naive and previously activated T cells in vivo. In contrast to neutrophils, O-glycan synthesis is highly dynamic in T cell populations and is largely controlled by extracellular stimuli such as antigen recognition or signaling though cytokine receptors. Herein, we review the basic principles of enzymatic synthesis of complex O-glycans, discuss tools and reagents for studying this type of protein modification and highlight our current understanding of how O-glycan synthesis is regulated and subsequently impacts the trafficking potential of diverse T cell populations.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States.,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
129
|
Schubert M. Insights into Carbohydrate Recognition by 3D Structure Determination of Protein–Carbohydrate Complexes Using NMR. NMR IN GLYCOSCIENCE AND GLYCOTECHNOLOGY 2017:101-122. [DOI: 10.1039/9781782623946-00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This chapter provides an overview of protein–carbohydrate complex structures determined with NMR spectroscopy and deposited in the Protein Data Bank (PDB). These 14 structures include protein–carbohydrate interactions ranging from nanomolar to millimolar affinities. Two complexes are discussed in detail, one representing a tightly bound complex and one a weak but specific interaction. This review illustrates that NMR spectroscopy is a competitive method for three-dimensional structure determination of protein–carbohydrate complexes, especially in the case of weak interactions. The number of biological functions in which protein–carbohydrate interactions are involved is steadily growing. Essential functions of the immune system such as the distinction between self and non-self, or the resolution of inflammation, involve critical protein–carbohydrate recognition events. It is therefore expected that by providing atomic details, NMR spectroscopy can make a significant contribution in the near future to unexplored pathways of the immune system and of many other biological processes.
Collapse
Affiliation(s)
- Mario Schubert
- Department of Molecular Biology, University of Salzburg 5020 Salzburg Austria
| |
Collapse
|
130
|
Seong Y, Lazarus NH, Sutherland L, Habtezion A, Abramson T, He XS, Greenberg HB, Butcher EC. Trafficking receptor signatures define blood plasmablasts responding to tissue-specific immune challenge. JCI Insight 2017; 2:e90233. [PMID: 28352656 PMCID: PMC5358486 DOI: 10.1172/jci.insight.90233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Antibody-secreting cells are generated in regional lymphoid tissues and traffic as plasmablasts (PBs) via lymph and blood to target sites for local immunity. We used multiparameter flow cytometry to define PB trafficking programs (TPs, combinations of adhesion molecules and chemoattractant receptors) and their imprinting in patients in response to localized infection or immune insults. TPs enriched after infection or autoimmune inflammation of mucosae correlate with sites of immune response or symptoms, with different TPs imprinted during small intestinal, colon, throat, and upper respiratory immune challenge. PBs induced after intramuscular or intradermal influenza vaccination, including flu-specific antibody-secreting cells, display TPs characterized by the lack of mucosal homing receptors. PBs of healthy donors display diverse mucosa-associated TPs, consistent with homeostatic immune activity. Identification of TP signatures of PBs may facilitate noninvasive monitoring of organ-specific immune responses.
Collapse
Affiliation(s)
- Yekyung Seong
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA and the Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA.,Program of Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Nicole H Lazarus
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA and the Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA.,The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Lusijah Sutherland
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA and the Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA.,The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Tzvia Abramson
- San Jose State University, Department of Biology, San Jose, California, USA
| | - Xiao-Song He
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Harry B Greenberg
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Immunology and Microbiology, Stanford University School of Medicine, Stanford, California, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA and the Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA.,The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
131
|
Ferluga J, Kouser L, Murugaiah V, Sim RB, Kishore U. Potential influences of complement factor H in autoimmune inflammatory and thrombotic disorders. Mol Immunol 2017; 84:84-106. [PMID: 28216098 DOI: 10.1016/j.molimm.2017.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/01/2023]
Abstract
Complement system homeostasis is important for host self-protection and anti-microbial immune surveillance, and recent research indicates roles in tissue development and remodelling. Complement also appears to have several points of interaction with the blood coagulation system. Deficiency and altered function due to gene mutations and polymorphisms in complement effectors and regulators, including Factor H, have been associated with familial and sporadic autoimmune inflammatory - thrombotic disorders, in which autoantibodies play a part. These include systemic lupus erythematosus, rheumatoid arthritis, atypical haemolytic uremic syndrome, anti-phospholipid syndrome and age-related macular degeneration. Such diseases are generally complex - multigenic and heterogeneous in their symptoms and predisposition/susceptibility. They usually need to be triggered by vascular trauma, drugs or infection and non-complement genetic factors also play a part. Underlying events seem to include decline in peripheral regulatory T cells, dendritic cell, and B cell tolerance, associated with alterations in lymphoid organ microenvironment. Factor H is an abundant protein, synthesised in many cell types, and its reported binding to many different ligands, even if not of high affinity, may influence a large number of molecular interactions, together with the accepted role of Factor H within the complement system. Factor H is involved in mesenchymal stem cell mediated tolerance and also contributes to self-tolerance by augmenting iC3b production and opsonisation of apoptotic cells for their silent dendritic cell engulfment via complement receptor CR3, which mediates anti-inflammatory-tolerogenic effects in the apoptotic cell context. There may be co-operation with other phagocytic receptors, such as complement C1q receptors, and the Tim glycoprotein family, which specifically bind phosphatidylserine expressed on the apoptotic cell surface. Factor H is able to discriminate between self and nonself surfaces for self-protection and anti-microbe defence. Factor H, particularly as an abundant platelet protein, may also modulate blood coagulation, having an anti-thrombotic role. Here, we review a number of interaction pathways in coagulation and in immunity, together with associated diseases, and indicate where Factor H may be expected to exert an influence, based on reports of the diversity of ligands for Factor H.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Robert B Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
132
|
Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 2017; 147:149-174. [PMID: 27975143 PMCID: PMC7088086 DOI: 10.1007/s00418-016-1520-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Sialylated N-glycans play essential roles in the immune system, pathogen recognition and cancer. This review approaches the sialylation of N-glycans from three perspectives. The first section focuses on the sialyltransferases that add sialic acid to N-glycans. Included in the discussion is a description of these enzymes' glycan acceptors, conserved domain organization and sequences, molecular structure and catalytic mechanism. In addition, we discuss the protein interactions underlying the polysialylation of a select group of adhesion and signaling molecules. In the second section, the biosynthesis of sialic acid, CMP-sialic acid and sialylated N-glycans is discussed, with a special emphasis on the compartmentalization of these processes in the mammalian cell. The sequences and mechanisms maintaining the sialyltransferases and other glycosylation enzymes in the Golgi are also reviewed. In the final section, we have chosen to discuss processes in which sialylated glycans, both N- and O-linked, play a role. The first part of this section focuses on sialic acid-binding proteins including viral hemagglutinins, Siglecs and selectins. In the second half of this section, we comment on the role of sialylated N-glycans in cancer, including the roles of β1-integrin and Fas receptor N-glycan sialylation in cancer cell survival and drug resistance, and the role of these sialylated proteins and polysialic acid in cancer metastasis.
Collapse
Affiliation(s)
- Gaurang P Bhide
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA
| | - Karen J Colley
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA.
| |
Collapse
|
133
|
Abstract
More than half of all proteins are glycosylated. The attached glycans provide proteins with important structural and functional properties and glycan parts of glycoproteins have essential roles in many key biological processes. This chapter describes the effect of glycosylation on the structure and function of proteins, with emphasis on regulation of protein half-life and modulation of protein function by alternative glycosylation. In addition, this chapter highlights the importance of glycan-lectin interactions, the ability of glycans to block phosphorylation of proteins, and the importance of glycans in disease.
Collapse
Affiliation(s)
- Jasminka Krištić
- Genos Glycoscience Research Laboratory, Hondlova 2/11, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Hondlova 2/11, Zagreb, Croatia. .,Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
134
|
Monticelli M, Ferro T, Jaeken J, Dos Reis Ferreira V, Videira PA. Immunological aspects of congenital disorders of glycosylation (CDG): a review. J Inherit Metab Dis 2016; 39:765-780. [PMID: 27393411 DOI: 10.1007/s10545-016-9954-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/16/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family of genetic diseases comprising more than 85 known distinct disorders. They show a great phenotypic variability ranging from multi-organ/system to mono-organ/system involvement with very mild to extremely severe expression. Immunological dysfunction has a significant impact on the phenotype in a minority of CDG. CDG with major immunological involvement are ALG12-CDG, MAGT1-CDG, MOGS-CDG, SLC35C1-CDG and PGM3-CDG. This review discusses the variety of immunological abnormalities reported in human CDG. Understanding the immunological aspects of CDG may contribute to a better management/treatment of these pathologies and possibly of more common diseases, such as inflammatory diseases.
Collapse
Affiliation(s)
- Maria Monticelli
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Tiago Ferro
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Lisbon, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
| | - Paula A Videira
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
| |
Collapse
|
135
|
Lee-Sundlov MM, Ashline DJ, Hanneman AJ, Grozovsky R, Reinhold VN, Hoffmeister KM, Lau JT. Circulating blood and platelets supply glycosyltransferases that enable extrinsic extracellular glycosylation. Glycobiology 2016; 27:188-198. [PMID: 27798070 DOI: 10.1093/glycob/cww108] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
Glycosyltransferases, usually residing within the intracellular secretory apparatus, also circulate in the blood. Many of these blood-borne glycosyltransferases are associated with pathological states, including malignancies and inflammatory conditions. Despite the potential for dynamic modifications of glycans on distal cell surfaces and in the extracellular milieu, the glycan-modifying activities present in systemic circulation have not been systematically examined. Here, we describe an evaluation of blood-borne sialyl-, galactosyl- and fucosyltransferase activities that act upon the four common terminal glycan precursor motifs, GlcNAc monomer, Gal(β3)GlcNAc, Gal(β4)GlcNAc and Gal(β3)GalNAc, to produce more complex glycan structures. Data from radioisotope assays and detailed product analysis by sequential tandem mass spectrometry show that blood has the capacity to generate many of the well-recognized and important glycan motifs, including the Lewis, sialyl-Lewis, H- and Sialyl-T antigens. While many of these glycosyltransferases are freely circulating in the plasma, human and mouse platelets are important carriers for others, including ST3Gal-1 and β4GalT. Platelets compartmentalize glycosyltransferases and release them upon activation. Human platelets are also carriers for large amounts of ST6Gal-1 and the α3-sialyl to Gal(β4)GlcNAc sialyltransferases, both of which are conspicuously absent in mouse platelets. This study highlights the capability of circulatory glycosyltransferases, which are dynamically controlled by platelet activation, to remodel cell surface glycans and alter cell behavior.
Collapse
Affiliation(s)
- Melissa M Lee-Sundlov
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - David J Ashline
- The Glycomics Center, Division of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Andrew J Hanneman
- The Glycomics Center, Division of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Renata Grozovsky
- Division of Hematology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Vernon N Reinhold
- The Glycomics Center, Division of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Karin M Hoffmeister
- Division of Hematology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph Ty Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
136
|
Weinstein AM, Storkus WJ. Biosynthesis and Functional Significance of Peripheral Node Addressin in Cancer-Associated TLO. Front Immunol 2016; 7:301. [PMID: 27555845 PMCID: PMC4977569 DOI: 10.3389/fimmu.2016.00301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Peripheral node addressin (PNAd) marks high endothelial venules (HEV), which are crucial for the recruitment of lymphocytes into lymphoid organs in non-mucosal tissue sites. PNAd is a sulfated and fucosylated glycoprotein recognized by the prototypic monoclonal antibody, MECA-79. PNAd is the ligand for L-selectin, which is expressed on the surface of naive and central memory T cells, where it mediates leukocyte rolling on vascular endothelial surfaces. Although PNAd was first identified in the HEV of peripheral lymph nodes, recent work suggests a critical role for PNAd in the context of chronic inflammatory diseases, where it can be used as a marker for the formation of tertiary lymphoid organs (TLOs). TLO form in tissues impacted by sustained inflammation, such as the tumor microenvironment where they function as local sites of adaptive immune cell priming. This allows for specific B- and T-cell responses to be initiated or reactivated in inflamed tissues without dependency on secondary lymphoid organs. Recent studies of cancer in mice and humans have identified PNAd as a biomarker of improved disease prognosis. Blockade of PNAd or its ligand, L-selectin, can abrogate protective antitumor immunity in murine models. This review examines pathways regulating PNAd biosynthesis by the endothelial cells integral to HEV and the formation and maintenance of lymphoid structures throughout the body, particularly in the setting of cancer.
Collapse
Affiliation(s)
- Aliyah M Weinstein
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
137
|
Häuselmann I, Roblek M, Protsyuk D, Huck V, Knopfova L, Grässle S, Bauer AT, Schneider SW, Borsig L. Monocyte Induction of E-Selectin-Mediated Endothelial Activation Releases VE-Cadherin Junctions to Promote Tumor Cell Extravasation in the Metastasis Cascade. Cancer Res 2016; 76:5302-12. [PMID: 27488527 DOI: 10.1158/0008-5472.can-16-0784] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022]
Abstract
Tumor cells interact with blood constituents and these interactions promote metastasis. Selectins are vascular receptors facilitating interactions of tumor cells with platelets, leukocytes, and endothelium, but the role of endothelial E-selectin remains unclear. Here we show that E-selectin is a major receptor for monocyte recruitment to tumor cell-activated endothelium. Experimental and spontaneous lung metastasis using murine tumor cells, without E-selectin ligands, were attenuated in E-selectin-deficient mice. Tumor cell-derived CCL2 promoted endothelial activation, resulting in enhanced endothelial E-selectin expression. The recruitment of inflammatory monocytes to metastasizing tumor cells was dependent on the local endothelial activation and the presence of E-selectin. Monocytes promoted transendothelial migration of tumor cells through the induction of E-selectin-dependent endothelial retractions and a subsequent modulation of tight junctions through dephosphorylation of VE-cadherin. Thus, endothelial E-selectin shapes the tumor microenvironment through the recruitment, adhesion, and activation of monocytes that facilitate tumor cell extravasation and thereby metastasis. These findings provide evidence that endothelial E-selectin is a novel factor contributing to endothelial retraction required for efficient lung metastasis. Cancer Res; 76(18); 5302-12. ©2016 AACR.
Collapse
Affiliation(s)
- Irina Häuselmann
- Institute of Physiology, University of Zürich and Zürich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Marko Roblek
- Institute of Physiology, University of Zürich and Zürich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Darya Protsyuk
- Institute of Physiology, University of Zürich and Zürich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Volker Huck
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lucia Knopfova
- International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital and Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sandra Grässle
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander T Bauer
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan W Schneider
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lubor Borsig
- Institute of Physiology, University of Zürich and Zürich Center for Integrative Human Physiology, Zurich, Switzerland.
| |
Collapse
|
138
|
Talaga ML, Fan N, Fueri AL, Brown RK, Bandyopadhyay P, Dam TK. Multitasking Human Lectin Galectin-3 Interacts with Sulfated Glycosaminoglycans and Chondroitin Sulfate Proteoglycans. Biochemistry 2016; 55:4541-51. [PMID: 27427828 DOI: 10.1021/acs.biochem.6b00504] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycosaminoglycan (GAG) binding proteins (GAGBPs), including growth factors, cytokines, morphogens, and extracellular matrix proteins, interact with both free GAGs and those covalently linked to proteoglycans. Such interactions modulate a variety of cellular and extracellular events, such as cell growth, metastasis, morphogenesis, neural development, and inflammation. GAGBPs are structurally and evolutionarily unrelated proteins that typically recognize internal sequences of sulfated GAGs. GAGBPs are distinct from the other major group of glycan binding proteins, lectins. The multifunctional human galectin-3 (Gal-3) is a β-galactoside binding lectin that preferentially binds to N-acetyllactosamine moieties on glycoconjugates. Here, we demonstrate through microcalorimetric and spectroscopic data that Gal-3 possesses the characteristics of a GAGBP. Gal-3 interacts with unmodified heparin, chondroitin sulfate-A (CSA), -B (CSB), and -C (CSC) as well as chondroitin sulfate proteoglycans (CSPGs). While heparin, CSA, and CSC bind with micromolar affinity, the affinity of CSPGs is nanomolar. Significantly, CSA, CSC, and a bovine CSPG were engaged in multivalent binding with Gal-3 and formed noncovalent cross-linked complexes with the lectin. Binding of sulfated GAGs was completely abolished when Gal-3 was preincubated with β-lactose. Cross-linking of Gal-3 by CSA, CSC, and the bovine CSPG was reversed by β-lactose. Both observations strongly suggest that GAGs primarily occupy the lactose/LacNAc binding site of Gal-3. Hill plot analysis of calorimetric data reveals that the binding of CSA, CSC, and a bovine CSPG to Gal-3 is associated with progressive negative cooperativity effects. Identification of Gal-3 as a GAGBP should help to reveal new functions of Gal-3 mediated by GAGs and proteoglycans.
Collapse
Affiliation(s)
- Melanie L Talaga
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Ni Fan
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Ashli L Fueri
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Robert K Brown
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Purnima Bandyopadhyay
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Tarun K Dam
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| |
Collapse
|
139
|
Gray C, Thomas B, Upton R, Migas L, Eyers C, Barran P, Flitsch S. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta Gen Subj 2016; 1860:1688-709. [DOI: 10.1016/j.bbagen.2016.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
|
140
|
Eakin AJ, Bustard MJ, McGeough CM, Ahmed T, Bjourson AJ, Gibson DS. Siglec-1 and -2 as potential biomarkers in autoimmune disease. Proteomics Clin Appl 2016; 10:635-44. [DOI: 10.1002/prca.201500069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/25/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Amanda J. Eakin
- Northern Ireland Centre for Stratified Medicine; Altnagelvin Hospital Campus; Ulster University; Londonderry Northern Ireland UK
| | - Michael J. Bustard
- Northern Ireland Centre for Stratified Medicine; Altnagelvin Hospital Campus; Ulster University; Londonderry Northern Ireland UK
| | - Cathy M. McGeough
- Northern Ireland Centre for Stratified Medicine; Altnagelvin Hospital Campus; Ulster University; Londonderry Northern Ireland UK
| | - Tahanver Ahmed
- Northern Ireland Centre for Stratified Medicine; Altnagelvin Hospital Campus; Ulster University; Londonderry Northern Ireland UK
| | - Anthony J. Bjourson
- Northern Ireland Centre for Stratified Medicine; Altnagelvin Hospital Campus; Ulster University; Londonderry Northern Ireland UK
| | - David S. Gibson
- Northern Ireland Centre for Stratified Medicine; Altnagelvin Hospital Campus; Ulster University; Londonderry Northern Ireland UK
| |
Collapse
|
141
|
Thiemann S, Baum LG. Galectins and Immune Responses—Just How Do They Do Those Things They Do? Annu Rev Immunol 2016; 34:243-64. [DOI: 10.1146/annurev-immunol-041015-055402] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra Thiemann
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| |
Collapse
|
142
|
Azzi J, Yin Q, Uehara M, Ohori S, Tang L, Cai K, Ichimura T, McGrath M, Maarouf O, Kefaloyianni E, Loughhead S, Petr J, Sun Q, Kwon M, Tullius S, von Andrian UH, Cheng J, Abdi R. Targeted Delivery of Immunomodulators to Lymph Nodes. Cell Rep 2016; 15:1202-13. [PMID: 27134176 PMCID: PMC4973867 DOI: 10.1016/j.celrep.2016.04.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/21/2016] [Accepted: 03/28/2016] [Indexed: 11/03/2022] Open
Abstract
Active-targeted delivery to lymph nodes represents a major advance toward more effective treatment of immune-mediated disease. The MECA79 antibody recognizes peripheral node addressin molecules expressed by high endothelial venules of lymph nodes. By mimicking lymphocyte trafficking to the lymph nodes, we have engineered MECA79-coated microparticles containing an immunosuppressive medication, tacrolimus. Following intravenous administration, MECA79-bearing particles showed marked accumulation in the draining lymph nodes of transplanted animals. Using an allograft heart transplant model, we show that targeted lymph node delivery of microparticles containing tacrolimus can prolong heart allograft survival with negligible changes in tacrolimus serum level. Using MECA79 conjugation, we have demonstrated targeted delivery of tacrolimus to the lymph nodes following systemic administration, with the capacity for immune modulation in vivo.
Collapse
Affiliation(s)
- Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qian Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shunsuke Ohori
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Takaharu Ichimura
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Martina McGrath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omar Maarouf
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eirini Kefaloyianni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Loughhead
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jarolim Petr
- Department of Pathology, Clinical Laboratories Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qidi Sun
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Mincheol Kwon
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Stefan Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
143
|
Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol 2016; 131:753-73. [PMID: 26932603 PMCID: PMC4835530 DOI: 10.1007/s00401-016-1551-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 12/20/2022]
Abstract
The homeostasis of the central nervous system is maintained by the blood-brain barrier (BBB). Angiopoietins (Ang-1/Ang-2) act as antagonizing molecules to regulate angiogenesis, vascular stability, vascular permeability and lymphatic integrity. However, the precise role of angiopoietin/Tie2 signaling at the BBB remains unclear. We investigated the influence of Ang-2 on BBB permeability in wild-type and gain-of-function (GOF) mice and demonstrated an increase in permeability by Ang-2, both in vitro and in vivo. Expression analysis of brain endothelial cells from Ang-2 GOF mice showed a downregulation of tight/adherens junction molecules and increased caveolin-1, a vesicular permeability-related molecule. Immunohistochemistry revealed reduced pericyte coverage in Ang-2 GOF mice that was supported by electron microscopy analyses, which demonstrated defective intra-endothelial junctions with increased vesicles and decreased/disrupted glycocalyx. These results demonstrate that Ang-2 mediates permeability via paracellular and transcellular routes. In patients suffering from stroke, a cerebrovascular disorder associated with BBB disruption, Ang-2 levels were upregulated. In mice, Ang-2 GOF resulted in increased infarct sizes and vessel permeability upon experimental stroke, implicating a role of Ang-2 in stroke pathophysiology. Increased permeability and stroke size were rescued by activation of Tie2 signaling using a vascular endothelial protein tyrosine phosphatase inhibitor and were independent of VE-cadherin phosphorylation. We thus identified Ang-2 as an endothelial cell-derived regulator of BBB permeability. We postulate that novel therapeutics targeting Tie2 signaling could be of potential use for opening the BBB for increased CNS drug delivery or tighten it in neurological disorders associated with cerebrovascular leakage and brain edema.
Collapse
|
144
|
Lawler PR, Akinkuolie AO, Chandler PD, Moorthy MV, Vandenburgh MJ, Schaumberg DA, Lee IM, Glynn RJ, Ridker PM, Buring JE, Mora S. Circulating N-Linked Glycoprotein Acetyls and Longitudinal Mortality Risk. Circ Res 2016; 118:1106-15. [PMID: 26951635 DOI: 10.1161/circresaha.115.308078] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/03/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Circulating glycoprotein N-acetyl glucosamine residues have recently been associated with incident cardiovascular disease and diabetes mellitus. OBJECTIVE Using a plasma glycan biosignature (GlycA) to identify circulating N-acetyl glycan groups, we examined the longitudinal association between GlycA and mortality among initially healthy individuals. METHODS AND RESULTS We quantified GlycA by 400 MHz (1)H nuclear magnetic resonance spectroscopy in 27,524 participants in the Women's Health Study (NCT00000479). The primary outcome was all-cause mortality. We replicated the findings in an independent cohort of 12,527 individuals in the Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial (NCT00239681). We also undertook secondary examination of cardiovascular disease and cancer mortality in the Women's Health Study. In the Women's Health Study, during 524,515 person-years of follow-up (median, 20.5 years), there were 3523 deaths. Risk factor-adjusted multivariable Cox proportional hazard ratio (95% confidence interval) per SD increment in GlycA for all-cause mortality was significantly increased at 5 years (1.21 [1.06-1.40]) and during maximal follow-up (1.14 [1.09-1.16]). Similar risk for all-cause mortality was observed in the replication cohort (1.33 [1.21-1.45]). In the Women's Health Study, risk of cardiovascular disease mortality was increased at 5 years (1.43 [1.05-1.95]) and during maximal follow-up (1.15 [1.04-1.26]) and of cancer mortality at 5 years (1.23 [1.02-1.47]) and during maximal follow-up (1.08 [1.01-1.16]). Examination of correlations and mortality associations adjusted for high-sensitivity C-reactive protein, fibrinogen, and intercellular adhesion molecule-1, suggested that GlycA reflects summative risk related to multiple pathways of systemic inflammation. CONCLUSIONS Among initially healthy individuals, elevated baseline circulating glycoprotein N-acetyl methyl groups were associated with longitudinal risk of all-cause, cardiovascular, and cancer mortality.
Collapse
Affiliation(s)
- Patrick R Lawler
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - Akintunde O Akinkuolie
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - Paulette D Chandler
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - M Vinayaga Moorthy
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - Martin J Vandenburgh
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - Debra A Schaumberg
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - I-Min Lee
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - Robert J Glynn
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - Paul M Ridker
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - Julie E Buring
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.)
| | - Samia Mora
- From the Center for Lipid Metabolomics (P.R.L., A.O.A., S.M.), the Cardiovascular Division (P.R.L., P.MR., S.M.) and Division of Preventive Medicine (P.R.L., A.O.A., P.D.C., M.V.M., M.J.V., I.-M.L., R.J.G., P.MR., J.E.B., S.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Chan School of Public Health, Boston, MA (P.R.L., I-M.L., R.J.G., P.MR., J.E.B.), and Department of Ophthalmology and Visual Sciences, Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City (D.A.S.).
| |
Collapse
|
145
|
Thimiri Govinda Raj DB, Khan NA. Designer nanoparticle: nanobiotechnology tool for cell biology. NANO CONVERGENCE 2016; 3:22. [PMID: 28191432 PMCID: PMC5271163 DOI: 10.1186/s40580-016-0082-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/29/2016] [Indexed: 05/17/2023]
Abstract
This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nanoparticles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in generating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as immunology, cancer and stem cell research.
Collapse
Affiliation(s)
- Deepak B. Thimiri Govinda Raj
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation and Unit of Virus Host-Cell Interactions (UVHCI), UJF-EMBL-CNRS, UMR 5233 Grenoble, France
- Envirotransgene Bio-solutions Global, Chennai, India
- Biotechnology Centre for Oslo, Centre for Molecular Medicine Norway (NCMM), P.O. Box 1137, Blindern, 0318 Oslo, Norway
| | - Niamat Ali Khan
- Laboratory of Lipid Metabolism and Cancer, O&N I, Herestraat 49, Box 902, 3000 Louvain, Belgium
| |
Collapse
|
146
|
Targeting of Neutrophil Lewis X Blocks Transepithelial Migration and Increases Phagocytosis and Degranulation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:297-311. [PMID: 26687991 DOI: 10.1016/j.ajpath.2015.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/28/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) are innate immune cells whose principal function is to migrate from the blood to sites of inflammation, where they exert crucial anti-infectious and immunomodulatory effects. However, dysregulated migration of PMNs into mucosal epithelial tissues is characteristic of chronic inflammatory disorders, including inflammatory bowel disease. Carbohydrate-mediated binding interactions between PMN Lewis glycans and endothelial glycan-binding proteins are critical for initial migration of PMN out of the vasculature. However, the role of Lewis glycans during transepithelial migration (TEM) has not been well characterized. Herein, we show that antibody blockade of Lewis X (Le(x)) displayed as terminal glycan residues on the PMN surface blocks chemotaxis and TEM while enhancing PMN-adhesive interactions with intestinal epithelia. Unexpectedly, targeting of subterminal Le(x) residues within glycan chains had no effect on PMN migration or adhesive interactions. There was increased surface expression of Le(x) on PMN after TEM, and blockade of terminal Le(x) regulated post-migratory PMN functions, increasing PMN phagocytosis and the surface mobilization of azurophilic (CD63, myeloperoxidase, and neutrophil elastase) and specific (CD66b and lactoferrin) granule markers. These findings suggest that terminal Le(x) represents a potential target for regulating PMN trafficking and function in inflamed mucosa. Furthermore, given its abundant expression on migrating PMN, Le(x) may be a rational target for modulating inflammation in diseases where dysregulated PMN influx is associated with host tissue damage.
Collapse
|
147
|
Bovine Herpesvirus 4 Modulates Its β-1,6-N-Acetylglucosaminyltransferase Activity through Alternative Splicing. J Virol 2015; 90:2039-51. [PMID: 26656682 DOI: 10.1128/jvi.01722-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Carbohydrates play major roles in host-virus interactions. It is therefore not surprising that, during coevolution with their hosts, viruses have developed sophisticated mechanisms to hijack for their profit different pathways of glycan synthesis. Thus, the Bo17 gene of Bovine herpesvirus 4 (BoHV-4) encodes a homologue of the cellular core 2 protein β-1,6-N-acetylglucosaminyltransferase-mucin type (C2GnT-M), which is a key player for the synthesis of complex O-glycans. Surprisingly, we show in this study that, as opposed to what is observed for the cellular enzyme, two different mRNAs are encoded by the Bo17 gene of all available BoHV-4 strains. While the first one corresponds to the entire coding sequence of the Bo17 gene, the second results from the splicing of a 138-bp intron encoding critical residues of the enzyme. Antibodies generated against the Bo17 C terminus showed that the two forms of Bo17 are expressed in BoHV-4 infected cells, but enzymatic assays revealed that the spliced form is not active. In order to reveal the function of these two forms, we then generated recombinant strains expressing only the long or the short form of Bo17. Although we did not highlight replication differences between these strains, glycomic analyses and lectin neutralization assays confirmed that the splicing of the Bo17 gene gives the potential to BoHV-4 to fine-tune the global level of core 2 branching activity in the infected cell. Altogether, these results suggest the existence of new mechanisms to regulate the activity of glycosyltransferases from the Golgi apparatus. IMPORTANCE Viruses are masters of adaptation that hijack cellular pathways to allow their growth. Glycans play a central role in many biological processes, and several studies have highlighted mechanisms by which viruses can affect glycosylation. Glycan synthesis is a nontemplate process regulated by the availability of key glycosyltransferases. Interestingly, bovine herpesvirus 4 encodes one such enzyme which is a key enzyme for the synthesis of complex O-glycans. In this study, we show that, in contrast to cellular homologues, this virus has evolved to alternatively express two proteins from this gene. While the first one is enzymatically active, the second results from the alternative splicing of the region encoding the catalytic site of the enzyme. We postulate that this regulatory mechanism could allow the virus to modulate the synthesis of some particular glycans for function at the location and/or the moment of infection.
Collapse
|
148
|
Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J 2015; 33:309-43. [PMID: 26555091 PMCID: PMC4891372 DOI: 10.1007/s10719-015-9626-2] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023]
Abstract
Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level.
Collapse
Affiliation(s)
- Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Karli R Reiding
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Guinevere S M Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
149
|
Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 2015; 14:984-95. [DOI: 10.1016/j.autrev.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|
150
|
Immunosuppressive drugs affect high-mannose/hybrid N-glycans on human allostimulated leukocytes. Anal Cell Pathol (Amst) 2015; 2015:324980. [PMID: 26339568 PMCID: PMC4538311 DOI: 10.1155/2015/324980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/21/2015] [Indexed: 02/04/2023] Open
Abstract
N-glycosylation plays an important role in the majority of physiological and pathological processes occurring in the immune system. Alteration of the type and abundance of glycans is an element of lymphocyte differentiation; it is also common in the development of immune-mediated inflammatory diseases. The N-glycosylation process is very sensitive to different environmental agents, among them the pharmacological environment of immunosuppressive drugs. Some results show that high-mannose oligosaccharides have the ability to suppress different stages of the immune response. We evaluated the effects of cyclosporin A (CsA) and rapamycin (Rapa) on high-mannose/hybrid-type glycosylation in human leukocytes activated in a two-way mixed leukocyte reaction (MLR). CsA significantly reduced the number of leukocytes covered by high-mannose/hybrid N-glycans, and the synergistic action of CsA and Rapa led to an increase of these structures on the remaining leukocytes. This is the first study indicating that β1 and β3 integrins bearing high-mannose/hybrid structures are affected by Rapa and CsA. Rapa taken separately and together with CsA changed the expression of β1 and β3 integrins and, by regulating the protein amount, increased the oligomannose/hybrid-type N-glycosylation on the leukocyte surface. We suggest that the changes in the glycosylation profile of leukocytes may promote the development of tolerance in transplantation.
Collapse
|