101
|
Koneru L, Ksiazek M, Waligorska I, Straczek A, Lukasik M, Madej M, Thøgersen IB, Enghild JJ, Potempa J. Mirolysin, a LysargiNase from Tannerella forsythia, proteolytically inactivates the human cathelicidin, LL-37. Biol Chem 2017; 398:395-409. [PMID: 27997347 DOI: 10.1515/hsz-2016-0267] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022]
Abstract
Tannerella forsythia is a periodontal pathogen expressing six secretory proteolytic enzymes with a unique multidomain structure referred to as KLIKK proteases. Two of these proteases, karilysin and mirolysin, were previously shown to protect the bacterium against complement-mediated bactericidal activity. The latter metalloprotease, however, was not characterized at the protein level. Therefore, we purified recombinant mirolysin and subjected it to detailed biochemical characterization. Mirolysin was obtained as a 66 kDa zymogen, which autoproteolytically processed itself into a 31 kDa active form via truncations at both the N- and C-termini. Further autodegradation was prevented by calcium. Substrate specificity was determined by the S1' subsite of the substrate-binding pocket, which shows strong preference for Arg and Lys at the carbonyl side of a scissile peptide bond (P1' residue). The protease cleaved an array of host proteins, including human fibronectin, fibrinogen, complement proteins C3, C4, and C5, and the antimicrobial peptide, LL-37. Degradation of LL-37 abolished not only the bactericidal activity of the peptide, but also its ability to bind lipopolysaccharide (LPS), thus quenching the endotoxin proinflammatory activity. Taken together, these results indicate that, through cleavage of LL-37 and complement proteins, mirolysin might be involved in evasion of the host immune response.
Collapse
|
102
|
Draft Genome Sequences of Three Clinical Isolates of Tannerella forsythia Isolated from Subgingival Plaque from Periodontitis Patients in the United States. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01286-16. [PMID: 27908987 PMCID: PMC5137401 DOI: 10.1128/genomea.01286-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the genome sequences of three clinical isolates of Tannerella forsythia from the subgingival plaque of periodontitis patients attending clinics at the School of Dental Medicine, University at Buffalo. The availability of these genome sequences will aid the understanding of the pathogenesis of periodontitis.
Collapse
|
103
|
Identification of a Novel N-Acetylmuramic Acid Transporter in Tannerella forsythia. J Bacteriol 2016; 198:3119-3125. [PMID: 27601356 DOI: 10.1128/jb.00473-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022] Open
Abstract
Tannerella forsythia is a Gram-negative periodontal pathogen lacking the ability to undergo de novo synthesis of amino sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) that form the disaccharide repeating unit of the peptidoglycan backbone. T. forsythia relies on the uptake of these sugars from the environment, which is so far unexplored. Here, we identified a novel transporter system of T. forsythia involved in the uptake of MurNAc across the inner membrane and characterized a homolog of the Escherichia coli MurQ etherase involved in the conversion of MurNAc-6-phosphate (MurNAc-6-P) to GlcNAc-6-P. The genes encoding these components were identified on a three-gene cluster spanning Tanf_08375 to Tanf_08385 located downstream from a putative peptidoglycan recycling locus. We show that the three genes, Tanf_08375, Tanf_08380, and Tanf_08385, encoding a MurNAc transporter, a putative sugar kinase, and a MurQ etherase, respectively, are transcriptionally linked. Complementation of the Tanf_08375 and Tanf_08380 genes together in trans, but not individually, rescued the inability of an E. coli mutant deficient in the phosphotransferase (PTS) system-dependent MurNAc transporter MurP as well as that of a double mutant deficient in MurP and components of the PTS system to grow on MurNAc. In addition, complementation with this two-gene construct in E. coli caused depletion of MurNAc in the medium, further confirming this observation. Our results show that the products of Tanf_08375 and Tanf_08380 constitute a novel non-PTS MurNAc transporter system that seems to be widespread among bacteria of the Bacteroidetes phylum. To the best of our knowledge, this is the first identification of a PTS-independent MurNAc transporter in bacteria. IMPORTANCE In this study, we report the identification of a novel transporter for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc) in the periodontal pathogen T. forsythia It has been known since the late 1980s that T. forsythia is a MurNAc auxotroph relying on environmental sources for this essential sugar. Most sugar transporters, and the MurNAc transporter MurP in particular, require a PTS phosphorelay to drive the uptake and concurrent phosphorylation of the sugar through the inner membrane in Gram-negative bacteria. Our study uncovered a novel type of PTS-independent MurNAc transporter, and although so far, it seems to be unique to T. forsythia, it may be present in a range of bacteria both of the oral cavity and gut, especially of the phylum Bacteroidetes.
Collapse
|
104
|
Zhou P, Li X, Qi F. Identification and characterization of a haem biosynthesis locus in Veillonella. MICROBIOLOGY-SGM 2016; 162:1735-1743. [PMID: 27566661 DOI: 10.1099/mic.0.000366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Haemin/haem is one of the essential nutrients required by periodontopathogens such as Porphyromonas gingivalis to grow in vitro. In the oral cavity, this nutrient is believed to be provided by the crevicular fluid, a serum-like exudate produced during gum inflammation. However, P. gingivalis is also present in the healthy dental biofilm where inflammation is absent. This study was designed to answer the question: what organism(s) in the healthy dental biofilm provides haemin/haem to those periodontal pathogens? We report here that veillonellae, a group of bridging species in dental biofilm development, harbour a complete gene cluster for haem biosynthesis. Haemin production was detected from cell lysate, suggesting that the haem biosynthesis pathway is functional in veillonellae. Using the only transformable strain Veillonella atypica OK5, we inactivated specific key genes in the haem biosynthesis pathway. Inactivation of hemE, encoding the enzyme uroporphyrinogen decarboxylase, not only abolished haemin production but also significantly decreased OK5-supported growth of P. gingivalis. A luciferase gene reporter to the hemEHG operon demonstrated up-regulation of operon expression by P. gingivalis. Analysis of all sequenced genomes of oral bacteria in the HOMD database identified three genera (Veillonella, Propionibacterium and Aggregatibacter) that have a complete haem biosynthesis gene cluster, suggesting that they all could be potential haemin/haem providers in the dental biofilm.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma 73104, USA
| | - Xiaoli Li
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma 73104, USA
| | - Fengxia Qi
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma 73104, USA.,Department of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma 73104, USA
| |
Collapse
|
105
|
Barratt J, Gough R, Stark D, Ellis J. Bulky Trichomonad Genomes: Encoding a Swiss Army Knife. Trends Parasitol 2016; 32:783-797. [PMID: 27312283 DOI: 10.1016/j.pt.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
The trichomonads are a remarkably successful lineage of ancient, predominantly parasitic protozoa. Recent molecular analyses have revealed extensive duplication of certain genetic loci in trichomonads. Consequently, their genomes are exceptionally large compared to other parasitic protozoa. Retention of these large gene expansions across different trichomonad families raises the question: do these duplications afford an advantage? Many duplicated genes are linked to the parasitic lifestyle and some are regulated differently to their paralogues, suggesting they have acquired new functions. It is proposed that these large genomes encode a Swiss army knife of sorts, packed with a multitude of tools for use in many different circumstances. This may have bestowed trichomonads with the extraordinary versatility that has undoubtedly contributed to their success.
Collapse
Affiliation(s)
- Joel Barratt
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia.
| | - Rory Gough
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Damien Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
106
|
Vartoukian SR, Moazzez RV, Paster BJ, Dewhirst FE, Wade WG. First Cultivation of Health-Associated Tannerella sp. HOT-286 (BU063). J Dent Res 2016; 95:1308-13. [PMID: 27193146 DOI: 10.1177/0022034516651078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite significant advances in recent years in culture-independent molecular microbiology methods, the detailed study of individual bacterial species still relies on having pure cultures in the laboratory. Yet, more than a third of the approximately 700 bacterial taxa found in the human oral cavity are as yet uncultivated in vitro. One such taxon, Tannerella sp. HOT-286 (phylotype BU063), is the focus of much interest since it is associated with periodontal health, while Tannerella forsythia, its closest phylogenetic neighbor, is strongly associated with periodontal disease. HOT-286, however, has remained uncultivated despite the efforts of several research groups, spanning over a decade. The aim of this study was to cultivate Tannerella sp. HOT-286. A heavily diluted sample of subgingival plaque was inoculated onto culture plates supplemented with siderophores (pyoverdines-Fe complex or desferricoprogen) or a neat plaque suspension. After 8 d of anaerobic incubation, microcolonies and colonies showing satellitism were passaged onto fresh culture plates cross-streaked with potential helper strains or onto cellulose-acetate membranes placed over lawn cultures of helper strains. Subcultured colonies were identified by 16S rRNA gene sequencing, and purity was confirmed by sequencing 20 clones per library prepared from a single colony. Three colonies of interest (derived from pyoverdines- and plaque-supplemented plates) were identified as Tannerella sp. HOT-286. The isolates were found to be incapable of independent growth, requiring helpers such as Propionibacterium acnes and Prevotella intermedia for stimulation, with best growth on membranes over "helper" lawns. A representative isolate was subjected to phenotypic characterization and found to produce a range of glycosidic and proteolytic enzymes. Further comparison of this novel "periodontal health-associated" taxon with T. forsythia will be valuable in investigating virulence factors of the latter and possible health benefits of the former.
Collapse
Affiliation(s)
- S R Vartoukian
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - R V Moazzez
- King's College London Dental Institute, London, UK
| | - B J Paster
- The Forsyth Institute, Cambridge, MA, USA Harvard School of Dental Medicine, Boston, MA, USA
| | - F E Dewhirst
- The Forsyth Institute, Cambridge, MA, USA Harvard School of Dental Medicine, Boston, MA, USA
| | - W G Wade
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
107
|
Involvement of the Type IX Secretion System in Capnocytophaga ochracea Gliding Motility and Biofilm Formation. Appl Environ Microbiol 2016; 82:1756-1766. [PMID: 26729712 DOI: 10.1128/aem.03452-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
Capnocytophaga ochracea is a Gram-negative, rod-shaped bacterium that demonstrates gliding motility when cultured on solid agar surfaces. C. ochracea possesses the ability to form biofilms; however, factors involved in biofilm formation by this bacterium are unclear. A type IX secretion system (T9SS) in Flavobacterium johnsoniae was shown to be involved in the transport of proteins (e.g., several adhesins) to the cell surface. Genes orthologous to those encoding T9SS proteins in F. johnsoniae have been identified in the genome of C. ochracea; therefore, the T9SS may be involved in biofilm formation by C. ochracea. Here we constructed three ortholog-deficient C. ochracea mutants lacking sprB (which encodes a gliding motility adhesin) or gldK or sprT (which encode T9SS proteins in F. johnsoniae). Gliding motility was lost in each mutant, suggesting that, in C. ochracea, the proteins encoded by sprB, gldK, and sprT are necessary for gliding motility, and SprB is transported to the cell surface by the T9SS. For the ΔgldK, ΔsprT, and ΔsprB strains, the amounts of crystal violet-associated biofilm, relative to wild-type values, were 49%, 34%, and 65%, respectively, at 48 h. Confocal laser scanning and scanning electron microscopy revealed that the biofilms formed by wild-type C. ochracea were denser and bacterial cells were closer together than in those formed by the mutant strains. Together, these results indicate that proteins exported by the T9SS are key elements of the gliding motility and biofilm formation of C. ochracea.
Collapse
|
108
|
Friedrich V, Gruber C, Nimeth I, Pabinger S, Sekot G, Posch G, Altmann F, Messner P, Andrukhov O, Schäffer C. Outer membrane vesicles of Tannerella forsythia: biogenesis, composition, and virulence. Mol Oral Microbiol 2015; 30:451-473. [PMID: 25953484 PMCID: PMC4604654 DOI: 10.1111/omi.12104] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/25/2022]
Abstract
Tannerella forsythia is the only 'red-complex' bacterium covered by an S-layer, which has been shown to affect virulence. Here, outer membrane vesicles (OMVs) enriched with putative glycoproteins are described as a new addition to the virulence repertoire of T. forsythia. Investigations of this bacterium are hampered by its fastidious growth requirements and the recently discovered mismatch of the available genome sequence (92A2 = ATCC BAA-2717) and the widely used T. forsythia strain (ATCC 43037). T. forsythia was grown anaerobically in serum-free medium and biogenesis of OMVs was analyzed by electron and atomic force microscopy. This revealed OMVs with a mean diameter of ~100 nm budding off from the outer membrane while retaining the S-layer. An LC-ESI-TOF/TOF proteomic analysis of OMVs from three independent biological replicates identified 175 proteins. Of these, 14 exhibited a C-terminal outer membrane translocation signal that directs them to the cell/vesicle surface, 61 and 53 were localized to the outer membrane and periplasm, respectively, 22 were predicted to be extracellular, and 39 to originate from the cytoplasm. Eighty proteins contained the Bacteroidales O-glycosylation motif, 18 of which were confirmed as glycoproteins. Release of pro-inflammatory mediators from the human monocytic cell line U937 and periodontal ligament fibroblasts upon stimulation with OMVs followed a concentration-dependent increase that was more pronounced in the presence of soluble CD14 in conditioned media. The inflammatory response was significantly higher than that caused by whole T. forsythia cells. Our study represents the first characterization of T. forsythia OMVs, their proteomic composition and immunogenic potential.
Collapse
Affiliation(s)
- V Friedrich
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - C Gruber
- Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - I Nimeth
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - S Pabinger
- AIT Austrian Institute of Technology, Health & Environment Department, Molecular Diagnostics, Vienna, Austria
| | - G Sekot
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - G Posch
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - F Altmann
- Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - P Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - O Andrukhov
- Division of Conservative Dentistry and Periodontology, Competence Centre of Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - C Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
109
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
110
|
Jung YJ, Jun HK, Choi BK. Gingipain-dependent augmentation by Porphyromonas gingivalis of phagocytosis of Tannerella forsythia. Mol Oral Microbiol 2015; 31:457-471. [PMID: 26434368 DOI: 10.1111/omi.12139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/20/2022]
Abstract
In the pathogenesis of periodontitis, Porphyromonas gingivalis plays a role as a keystone pathogen that manipulates host immune responses leading to dysbiotic oral microbial communities. Arg-gingipains (RgpA and RgpB) and Lys-gingipain (Kgp) are responsible for the majority of bacterial proteolytic activity and play essential roles in bacterial virulence. Therefore, gingipains are often considered as therapeutic targets. This study investigated the role of gingipains in the modulation by P. gingivalis of phagocytosis of Tannerella forsythia by macrophages. Phagocytosis of T. forsythia was significantly enhanced by coinfection with P. gingivalis in a multiplicity of infection-dependent and gingipain-dependent manner. Mutation of either Kgp or Rgp in the coinfecting P. gingivalis resulted in attenuated enhancement of T. forsythia phagocytosis. Inhibition of coaggregation between the two bacterial species reduced phagocytosis of T. forsythia in mixed infection, and this coaggregation was dependent on gingipains. Inhibition of gingipain protease activities in coinfecting P. gingivalis abated the coaggregation and the enhancement of T. forsythia phagocytosis. However, the direct effect of protease activities of gingipains on T. forsythia seemed to be minimal. Although most of the phagocytosed T. forsythia were cleared in infected macrophages, more T. forsythia remained in cells coinfected with gingipain-expressing P. gingivalis than in cells coinfected with the gingipain-null mutant or infected only with T. forsythia at 24 and 48 h post-infection. Collectively, these results suggest that P. gingivalis, mainly via its gingipains, alters the clearance of T. forsythia, and provide some insights into the role of P. gingivalis as a keystone pathogen.
Collapse
Affiliation(s)
- Y-J Jung
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-K Jun
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - B-K Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea. .,Dental Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
111
|
Veith PD, Chen YY, Chen D, O’Brien-Simpson NM, Cecil JD, Holden JA, Lenzo JC, Reynolds EC. Tannerella forsythia Outer Membrane Vesicles Are Enriched with Substrates of the Type IX Secretion System and TonB-Dependent Receptors. J Proteome Res 2015; 14:5355-66. [DOI: 10.1021/acs.jproteome.5b00878] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paul D. Veith
- Oral Health CRC, Melbourne
Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston
Street, Melbourne, Victoria 3010, Australia
| | - Yu-Yen Chen
- Oral Health CRC, Melbourne
Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston
Street, Melbourne, Victoria 3010, Australia
| | - Dina Chen
- Oral Health CRC, Melbourne
Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston
Street, Melbourne, Victoria 3010, Australia
| | - Neil M. O’Brien-Simpson
- Oral Health CRC, Melbourne
Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston
Street, Melbourne, Victoria 3010, Australia
| | - Jessica D. Cecil
- Oral Health CRC, Melbourne
Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston
Street, Melbourne, Victoria 3010, Australia
| | - James A. Holden
- Oral Health CRC, Melbourne
Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston
Street, Melbourne, Victoria 3010, Australia
| | - Jason C. Lenzo
- Oral Health CRC, Melbourne
Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston
Street, Melbourne, Victoria 3010, Australia
| | - Eric C. Reynolds
- Oral Health CRC, Melbourne
Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston
Street, Melbourne, Victoria 3010, Australia
| |
Collapse
|
112
|
Blanc V, O'Valle F, Pozo E, Puertas A, León R, Mesa F. Oral bacteria in placental tissues: increased molecular detection in pregnant periodontitis patients. Oral Dis 2015; 21:905-12. [PMID: 26259070 DOI: 10.1111/odi.12364] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/23/2015] [Accepted: 07/30/2015] [Indexed: 01/31/2023]
Abstract
OBJECTIVES The objective of this study was to identify the DNA of oral bacteria in placental samples from women with and without periodontitis who had or had not had preterm births and/or low birthweight (PB/LBW) neonates. METHODS Data were gathered from 57 puerperal women in relation to socio-demographic, gynaecological, and periodontal variables and to placental histomorphology. Fifty-seven biopsies, 28 from mothers with periodontitis, were taken aseptically from preterm placentas (n = 36) and from full-term placentas (n = 21). Total DNA was extracted, and the presence of 15 oral bacteria was assessed using Nested-PCR. RESULTS The placentas from women with periodontitis showed a higher prevalence of periodontopathogens compared to those from women without periodontitis (P = 0.009). Samples showed low prevalences of Actinomyces israelii, Parvimonas micra and Tannerella forsythia. An association was found between Eikenella corrodens in placenta and periodontitis (P = 0.002). The most ubiquitous bacterium, Fusobacterium nucleatum, was more prevalent in mothers with periodontitis and PB/LBW (P = 0.033). Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia and Aggregatibacter actinomycetemcomitans were not detected. CONCLUSIONS These results, along with previous findings, show that oral bacteria may be normally present in the placenta, however, the levels of certain oral pathogens in the placenta would highly depend on the mother's periodontal state.
Collapse
Affiliation(s)
- V Blanc
- Microbiology Laboratory, Dentaid Research Center, Cerdanyola del Valles, Barcelona, Spain
| | - F O'Valle
- Pathology Department, School of Medicine, University of Granada, Granada, Spain
| | - E Pozo
- Periodontology Department, School of Dentistry, University of Granada, Granada, Spain
| | - A Puertas
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
| | - R León
- Microbiology Laboratory, Dentaid Research Center, Cerdanyola del Valles, Barcelona, Spain
| | - F Mesa
- Periodontology Department, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
113
|
Honma K, Ruscitto A, Frey AM, Stafford GP, Sharma A. Sialic acid transporter NanT participates in Tannerella forsythia biofilm formation and survival on epithelial cells. Microb Pathog 2015; 94:12-20. [PMID: 26318875 DOI: 10.1016/j.micpath.2015.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Tannerella forsythia is a periodontal pathogen implicated in periodontitis. This gram-negative pathogen depends on exogenous peptidoglycan amino sugar N-acetylmuramic acid (NAM) for growth. In the biofilm state the bacterium can utilize sialic acid (Neu5Ac) instead of NAM to sustain its growth. Thus, the sialic acid utilization system of the bacterium plays a critical role in the growth and survival of the organism in the absence of NAM. We sought the function of a T. forsythia gene annotated as nanT coding for an inner-membrane sugar transporter located on a sialic acid utilization genetic cluster. To determine the function of this putative sialic acid transporter, an isogenic nanT-deletion mutant generated by allelic replacement strategy was evaluated for biofilm formation on NAM or Neu5Ac, and survival on KB epithelial cells. Moreover, since T. forsythia forms synergistic biofilms with Fusobacterium nucleatum, co-biofilm formation activity in mixed culture and sialic acid uptake in culture were also assessed. The data showed that the nanT-inactivated mutant of T. forsythia was attenuated in its ability to uptake sialic acid. The mutant formed weaker biofilms compared to the wild-type strain in the presence of sialic acid and as co-biofilms with F. nucleatum. Moreover, compared to the wild-type T. forsythia nanT-inactivated mutant showed reduced survival when incubated on KB epithelial cells. Taken together, the data presented here demonstrate that NanT-mediated sialic transportation is essential for sialic acid utilization during biofilm growth and survival of the organism on epithelial cells and implies sialic acid might be key for its survival both in subgingival biofilms and during infection of human epithelial cells in vivo.
Collapse
Affiliation(s)
- Kiyonobu Honma
- Dept. of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Angela Ruscitto
- Dept. of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Andrew M Frey
- Oral & Maxillofacial Pathology, The University of Sheffield, Sheffield, United Kingdom
| | - Graham P Stafford
- Oral & Maxillofacial Pathology, The University of Sheffield, Sheffield, United Kingdom
| | - Ashu Sharma
- Dept. of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
114
|
Lee JY, Jung YJ, Jun HK, Choi BK. Pathogenic potential of Tannerella forsythia enolase. Mol Oral Microbiol 2015; 31:189-203. [PMID: 26172848 DOI: 10.1111/omi.12115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 11/29/2022]
Abstract
Although enolases are cytosolic enzymes involved in the glycolytic pathway, they can also be secreted or expressed on the surface of a variety of eukaryotic cells and bacteria. Surface-exposed enolases of eukaryotes and bacteria can function as plasminogen receptors. Furthermore, antibodies raised against bacterial enolases can react with host enolases, suggesting molecular mimicry between bacterial and host enzymes. In this study, we analyzed an enolase of the major periodontopathogen Tannerella forsythia, which is either secreted or present on the cell surface, via matrix-assisted laser desorption ionization time-of-flight mass spectrometry and immunofluorescence, respectively. The T. forsythia enolase retained the enzymatic activity converting 2-phosphoglycerate to phosphoenolpyruvate and showed plasminogen binding and activating ability, which resulted in the degradation of fibronectin secreted from human gingival fibroblasts. In addition, it induced proinflammatory cytokine production, including interleukin-1β (IL-1β), IL-6, IL-8, and tumour necrosis factor-α (TNF-a) in the human THP-1 monocytic cell line. Taken together, our results demonstrate that T. forsythia enolase plays a role in pathogenesis in the host by plasminogen activation and proinflammatory cytokine induction, which has the potential to exaggerate inflammation in periodontitis.
Collapse
Affiliation(s)
- J-Y Lee
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Y-J Jung
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-K Jun
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - B-K Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea.,Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
115
|
Silvestre A, Plaze A, Berthon P, Thibeaux R, Guillen N, Labruyère E. In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor. MICROBIAL CELL (GRAZ, AUSTRIA) 2015; 2:235-246. [PMID: 28357299 PMCID: PMC5349171 DOI: 10.15698/mic2015.07.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Entamoeba histolytica cell migration is essential for the development of human amoebiasis (an infectious disease characterized by tissue invasion and destruction). The tissue inflammation associated with tumour necrosis factor (TNF) secretion by host cells is a well-documented feature of amoebiasis. Tumour necrosis factor is a chemoattractant for E. histolytica, and the parasite may have a TNF receptor at its cell surface. METHODS confocal microscopy, RNA Sequencing, bioinformatics, RNA antisense techniques and histological analysis of human colon explants were used to characterize the interplay between TNF and E. histolytica. RESULTS an antibody against human TNF receptor 1 (TNFR1) stained the E. histolytica trophozoite surface and (on immunoblots) binds to a 150-kDa protein. Proteome screening with the TNFR1 sequence revealed a BspA family protein in E. histolytica that carries a TNFR signature domain and six leucine-rich repeats (named here as "cell surface protein", CSP, in view of its cellular location). Cell surface protein shares structural homologies with Toll-Like receptors, colocalizes with TNF and is internalized in TNF-containing vesicles. Reduction of cellular CSP levels abolished chemotaxis toward TNF and blocked parasite invasion of human colon. CONCLUSIONS there is a clear link between TNF chemotaxis, CSP and pathogenesis.
Collapse
Affiliation(s)
- Anne Silvestre
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Aurélie Plaze
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| | - Patricia Berthon
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Roman Thibeaux
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| | - Elisabeth Labruyère
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| |
Collapse
|
116
|
Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00660-15. [PMID: 26067981 PMCID: PMC4463545 DOI: 10.1128/genomea.00660-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).
Collapse
|
117
|
Ksiazek M, Mizgalska D, Eick S, Thøgersen IB, Enghild JJ, Potempa J. KLIKK proteases of Tannerella forsythia: putative virulence factors with a unique domain structure. Front Microbiol 2015; 6:312. [PMID: 25954253 PMCID: PMC4404884 DOI: 10.3389/fmicb.2015.00312] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/29/2015] [Indexed: 11/13/2022] Open
Abstract
Comparative genomics of virulent Tannerella forsythia ATCC 43037 and a close health-associated relative, Tannerella BU063, revealed, in the latter, the absence of an entire array of genes encoding putative secretory proteases that possess a nearly identical C-terminal domain (CTD) that ends with a -Lys-Leu-Ile-Lys-Lys motif. This observation suggests that these proteins, referred to as KLIKK proteases, may function as virulence factors. Re-sequencing of the loci of the KLIKK proteases found only six genes grouped in two clusters. All six genes were expressed by T. forsythia in routine culture conditions, although at different levels. More importantly, a transcript of each gene was detected in gingival crevicular fluid (GCF) from periodontitis sites infected with T. forsythia indicating that the proteases are expressed in vivo. In each protein, a protease domain was flanked by a unique N-terminal profragment and a C-terminal extension ending with the CTD. Partially purified recombinant proteases showed variable levels of proteolytic activity in zymography gels and toward protein substrates, including collagen, gelatin, elastin, and casein. Taken together, these results indicate that the pathogenic strain of T. forsythia secretes active proteases capable of degrading an array of host proteins, which likely represents an important pathogenic feature of this bacterium.
Collapse
Affiliation(s)
- Miroslaw Ksiazek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Sigrum Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern Bern, Switzerland
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University Aarhus, Denmark
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland ; Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry Louisville, KY, USA
| |
Collapse
|
118
|
Chukkapalli SS, Rivera-Kweh MF, Velsko IM, Chen H, Zheng D, Bhattacharyya I, Gangula PR, Lucas AR, Kesavalu L. Chronic oral infection with major periodontal bacteria Tannerella forsythia modulates systemic atherosclerosis risk factors and inflammatory markers. Pathog Dis 2015; 73:ftv009. [PMID: 25663343 DOI: 10.1093/femspd/ftv009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tannerella forsythia is a Gram-negative anaerobic organism that inhabits the subgingival cavity and initiates connective tissue destruction and alveolar bone resorption in periodontal disease (PD). PD is a chronic immunoinflammatory disease and has been linked to several systemic diseases including atherosclerosis. This study evaluated the effects of a chronic oral infection with T. forsythia ATCC 43037 on the induction of PD, inflammatory markers and atherosclerosis risk factors in hyperlipidemic ApoE(null) mice. Mice were orally infected for 12 and 24 weeks prior to euthanasia. Bacterial colonization of the oral cavity and bacteremia was confirmed via isolation of genomic DNA from oral plaque and tissues. Oral infection elicited significantly elevated levels of serum IgG and IgM antibodies and alveolar bone resorption compared to control mice. Tannerella forsythia-infected mice had increased serum amyloid A, and significantly reduced serum nitric oxide when compared to controls. Tannerella forsythia chronic infection also significantly increased serum lipoproteins suggesting altered cholesterol metabolism and potential for aortic inflammation. Despite enhanced acute phase reactants and altered lipid profiles, T. forsythia infection was associated with decreased aortic plaque. This study investigates the potential of a known periodontal bacterial pathogen found in atherosclerotic plaque in humans to accelerate atherosclerosis in hyperlipdemic mice.
Collapse
Affiliation(s)
- Sasanka S Chukkapalli
- Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | - Irina M Velsko
- Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Hao Chen
- Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Donghang Zheng
- Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Indraneel Bhattacharyya
- Oral Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Pandu R Gangula
- Department of Physiology, Department of Oral Biology and Research, School of Medicine and School of Dentistry, CWHR Nashville, TN 37208, USA
| | - Alexandra R Lucas
- Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lakshmyya Kesavalu
- Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA Dept. of Periodontology and Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
119
|
Sano Y, Okamoto-Shibayama K, Tanaka K, Ito R, Shintani S, Yakushiji M, Ishihara K. Dentilisin involvement in coaggregation between Treponema denticola and Tannerella forsythia. Anaerobe 2014; 30:45-50. [DOI: 10.1016/j.anaerobe.2014.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
|
120
|
Abstract
Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.
Collapse
|
121
|
Chakraborty S, Karmakar K, Chakravortty D. Cells producing their own nemesis: understanding methylglyoxal metabolism. IUBMB Life 2014; 66:667-678. [PMID: 25380137 DOI: 10.1002/iub.1324] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/15/2014] [Indexed: 01/21/2023]
Abstract
Methylglyoxal, which is technically known as 2-oxopropanal or pyruvaldehyde, shows typical reactions of carbonyl compounds as it has both an aldehyde and a ketone functional group. It is an extremely cytotoxic physiological metabolite, which is generated by both enzymatic and nonenzymatic reactions. The deleterious nature of the compound is due to its ability to glycate and crosslink macromolecules like protein and DNA, respectively. However, despite having toxic effects on cellular processes, methylglyoxal retains its efficacy as an anticancer drug. Indeed, methylglyoxal is one of the well-known anticancer therapeutic agents used in the treatment. Several studies on methylglyoxal biology revolve around the manifestations of its inhibitory effects and toxicity in microbial growth and diabetic complications, respectively. Here, we have revisited the chronology of methylglyoxal research with emphasis on metabolism of methylglyoxal and implications of methylglyoxal production or detoxification on bacterial pathogenesis and disease progression.
Collapse
Affiliation(s)
- Sangeeta Chakraborty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
122
|
Tomek MB, Neumann L, Nimeth I, Koerdt A, Andesner P, Messner P, Mach L, Potempa JS, Schäffer C. The S-layer proteins of Tannerella forsythia are secreted via a type IX secretion system that is decoupled from protein O-glycosylation. Mol Oral Microbiol 2014; 29:307-20. [PMID: 24943676 DOI: 10.1111/omi.12062] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2014] [Indexed: 01/10/2023]
Abstract
Conserved C-terminal domains (CTD) have been shown to act as a signal for the translocation of certain proteins across the outer membrane of Bacteroidetes via a type IX secretion system (T9SS). The genome sequence of the periodontal pathogen Tannerella forsythia predicts the presence of the components for a T9SS in conjunction with a suite of CTD proteins. T. forsythia is covered with a two-dimensional crystalline surface (S-) layer composed of the glycosylated CTD proteins TfsA and TfsB. To investigate, if T9SS is functional in T. forsythia, T9SS-deficient mutants were generated by targeting either TF0955 (putative C-terminal signal peptidase) or TF2327 (PorK ortholog), and the mutants were analyzed with respect to secretion, assembly and glycosylation of the S-layer proteins as well as proteolytic processing of the CTD and biofilm formation. In either mutant, TfsA and TfsB were incapable of translocation, as evidenced by the absence of the S-layer in transmission electron microscopy of ultrathin-sectioned bacterial cells. Despite being entrapped within the periplasm, mass spectrometry analysis revealed that the S-layer proteins were modified with the complete, mature glycan found on the secreted proteins, indicating that protein translocation and glycosylation are two independent processes. Further, the T9SS mutants showed a denser biofilm with fewer voids compared with the wild-type. This study demonstrates the functionality of T9SS and the requirement of CTD for the outer membrane passage of extracellular proteins in T. forsythia, exemplified by the two S-layer proteins. In addition, T9SS protein translocation is decoupled from O-glycan attachment in T. forsythia.
Collapse
Affiliation(s)
- M B Tomek
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Comparative genome analysis and identification of competitive and cooperative interactions in a polymicrobial disease. ISME JOURNAL 2014; 9:629-42. [PMID: 25171331 PMCID: PMC4331577 DOI: 10.1038/ismej.2014.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Polymicrobial diseases are caused by combinations of multiple bacteria, which can lead to not only mild but also life-threatening illnesses. Periodontitis represents a polymicrobial disease; Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, called ‘the red complex', have been recognized as the causative agents of periodontitis. Although molecular interactions among the three species could be responsible for progression of periodontitis, the relevant genetic mechanisms are unknown. In this study, we uncovered novel interactions in comparative genome analysis among the red complex species. Clustered regularly interspaced short palindromic repeats (CRISPRs) of T. forsythia might attack the restriction modification system of P. gingivalis, and possibly work as a defense system against DNA invasion from P. gingivalis. On the other hand, gene deficiencies were mutually compensated in metabolic pathways when the genes of all the three species were taken into account, suggesting that there are cooperative relationships among the three species. This notion was supported by the observation that each of the three species had its own virulence factors, which might facilitate persistence and manifestations of virulence of the three species. Here, we propose new mechanisms of bacterial symbiosis in periodontitis; these mechanisms consist of competitive and cooperative interactions. Our results might shed light on the pathogenesis of periodontitis and of other polymicrobial diseases.
Collapse
|
124
|
Narita Y, Sato K, Yukitake H, Shoji M, Nakane D, Nagano K, Yoshimura F, Naito M, Nakayama K. Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system. MICROBIOLOGY-SGM 2014; 160:2295-2303. [PMID: 25023245 PMCID: PMC4175972 DOI: 10.1099/mic.0.080192-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tannerella forsythia, a Gram-negative anaerobic bacterium, is an important pathogen in periodontal disease. This bacterium possesses genes encoding all known components of the type IX secretion system (T9SS). T. forsythia mutants deficient in genes orthologous to the T9SS-encoding genes porK, porT and sov were constructed. All porK, porT and sov single mutants lacked the surface layer (S-layer) and expressed less-glycosylated versions of the S-layer glycoproteins TfsA and TfsB. In addition, these mutants exhibited decreased haemagglutination and increased biofilm formation. Comparison of the proteins secreted by the porK and WT strains revealed that the secretion of several proteins containing C-terminal domain (CTD)-like sequences is dependent on the porK gene. These results indicate that the T9SS is functional in T. forsythia and contributes to the translocation of CTD proteins to the cell surface or into the extracellular milieu.
Collapse
Affiliation(s)
- Yuka Narita
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 819-8588, Japan
| | - Keiko Sato
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 819-8588, Japan
| | - Hideharu Yukitake
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 819-8588, Japan
| | - Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 819-8588, Japan
| | - Daisuke Nakane
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 819-8588, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 819-8588, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 819-8588, Japan
| |
Collapse
|
125
|
Abstract
A dental wax was evaluated after unilateral application in 20 client-owned, mixed and purebred small dogs using a clean, split-mouth study model. All dogs had clinical signs of periodontal disease including plaque, calculus, and/or gingivitis. The wax was randomly applied to the teeth of one side of the mouth daily for 30-days while the contralateral side received no treatment. Owner parameters evaluated included compliance and a subjective assessment of ease of wax application. Gingivitis, plaque and calculus accumulation were scored at the end of the study period. Owners considered the wax easy to apply in all dogs. Compliance with no missed application days was achieved in 8 dogs. The number of missed application days had no effect on wax efficacy. There was no significant difference in gingivitis or plaque accumulation scores when comparing treated and untreated sides. Calculus accumulation scores were significantly less (22.1 %) for teeth receiving the dental wax.
Collapse
|
126
|
Amano A, Chen C, Honma K, Li C, Settem R, Sharma A. Genetic characteristics and pathogenic mechanisms of periodontal pathogens. Adv Dent Res 2014; 26:15-22. [PMID: 24736700 PMCID: PMC6636228 DOI: 10.1177/0022034514526237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.
Collapse
Affiliation(s)
- A. Amano
- Department of Preventive Dentistry,
Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-Osaka 565-0871,
Japan
| | - C. Chen
- Division of Periodontology, Diagnostic
Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of
Southern California, Los Angeles, CA, USA
| | - K. Honma
- Department of Oral Biology, School of
Dental Medicine, the State University of New York at Buffalo, NY 14214, USA
| | - C. Li
- Department of Oral Biology, School of
Dental Medicine, the State University of New York at Buffalo, NY 14214, USA
- Department of Microbiology and
Immunology, the State University of New York at Buffalo, NY 14214, USA
| | - R.P. Settem
- Department of Oral Biology, School of
Dental Medicine, the State University of New York at Buffalo, NY 14214, USA
| | - A. Sharma
- Department of Oral Biology, School of
Dental Medicine, the State University of New York at Buffalo, NY 14214, USA
| |
Collapse
|
127
|
Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, Radini A, Hancock Y, Tito RY, Fiddyment S, Speller C, Hendy J, Charlton S, Luder HU, Salazar-García DC, Eppler E, Seiler R, Hansen LH, Castruita JAS, Barkow-Oesterreicher S, Teoh KY, Kelstrup CD, Olsen JV, Nanni P, Kawai T, Willerslev E, von Mering C, Lewis CM, Collins MJ, Gilbert MTP, Rühli F, Cappellini E. Pathogens and host immunity in the ancient human oral cavity. Nat Genet 2014; 46:336-44. [PMID: 24562188 PMCID: PMC3969750 DOI: 10.1038/ng.2906] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 02/03/2014] [Indexed: 01/19/2023]
Abstract
Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, 'red complex' pathogens and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity and diet, thereby extending direct investigation of common diseases into the human evolutionary past.
Collapse
Affiliation(s)
- Christina Warinner
- 1] Centre for Evolutionary Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland. [2] Department of Anthropology, University of Oklahoma, Norman, Oklahoma, USA
| | - João F Matias Rodrigues
- 1] Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland. [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rounak Vyas
- 1] Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland. [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zürich, University of Zürich/Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Natallia Shved
- Centre for Evolutionary Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zürich, University of Zürich/Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Anita Radini
- 1] BioArCh, Department of Archaeology, University of York, York, UK. [2] University of Leicester Archaeological Services (ULAS), School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Y Hancock
- Department of Physics, University of York, York, UK
| | - Raul Y Tito
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma, USA
| | - Sarah Fiddyment
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Camilla Speller
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Jessica Hendy
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Sophy Charlton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Hans Ulrich Luder
- Centre of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - Domingo C Salazar-García
- 1] Research Group on Plant Foods in Hominin Dietary Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. [2] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. [3] Department of Prehistory and Archaeology, University of Valencia, Valencia, Spain
| | - Elisabeth Eppler
- 1] Research Group Neuro-Endocrine-Immune Interactions, Institute of Anatomy, University of Zürich, Zürich, Switzerland. [2] Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Roger Seiler
- Centre for Evolutionary Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Lars H Hansen
- 1] Department of Biology, Microbiology, University of Copenhagen, Copenhagen, Denmark. [2] Department of Environmental Science, Aarhus Universitet, Roskilde, Denmark
| | | | - Simon Barkow-Oesterreicher
- Functional Genomics Center Zürich, University of Zürich/Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Kai Yik Teoh
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Christian D Kelstrup
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Nanni
- Functional Genomics Center Zürich, University of Zürich/Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Toshihisa Kawai
- 1] Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA. [2] Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Christian von Mering
- 1] Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland. [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cecil M Lewis
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma, USA
| | | | - M Thomas P Gilbert
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. [2] Ancient DNA Laboratory, Murdoch University, Perth, Western Australia, Australia
| | - Frank Rühli
- 1] Centre for Evolutionary Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland. [2]
| | - Enrico Cappellini
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. [2]
| |
Collapse
|
128
|
Beall CJ, Campbell AG, Dayeh DM, Griffen AL, Podar M, Leys EJ. Single cell genomics of uncultured, health-associated Tannerella BU063 (Oral Taxon 286) and comparison to the closely related pathogen Tannerella forsythia. PLoS One 2014; 9:e89398. [PMID: 24551246 PMCID: PMC3925233 DOI: 10.1371/journal.pone.0089398] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/21/2014] [Indexed: 01/24/2023] Open
Abstract
The uncultivated bacterium Tannerella BU063 (oral taxon 286) is the closest relative to the periodontal pathogen Tannerella forsythia, but is not disease-associated itself. Using a single cell genomics approach, we isolated 12 individual BU063 cells by flow cytometry, and we amplified and sequenced their genomes. Comparative analyses of the assembled genomic scaffolds and their gene contents allowed us to study the diversity of this taxon within the oral community of a single human donor that provided the sample. Eight different BU063 genotypes were represented, all about 5% divergent at the nucleotide level. There were 2 pairs of cells and one group of three that were more highly identical, and may represent clonal populations. We did pooled assemblies on the nearly identical genomes to increase the assembled genomic coverage. The presence of a set of 66 “core” housekeeping genes showed that two of the single cell assemblies and the assembly derived from the three putatively identical cells were essentially complete. As expected, the genome of BU063 is more similar to Tannerella forsythia than any other known genome, although there are significant differences, including a 44% difference in gene content, changes in metabolic pathways, loss of synteny, and an 8–9% difference in GC content. Several identified virulence genes of T. forsythia are not found in BU063 including karilysin, prtH, and bspA. The absence of these genes may explain the lack of periodontal pathogenesis by this species and provides a new foundation to further understand the genome evolution and mechanisms of bacterial-host interaction in closely related oral microbes with different pathogenicity potential.
Collapse
Affiliation(s)
- Clifford J. Beall
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Alisha G. Campbell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Daniel M. Dayeh
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Ann L. Griffen
- Division of Pediatric Dentistry and Community Oral Health, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Eugene J. Leys
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
129
|
Lee HR, Jun HK, Choi BK. Tannerella forsythia BspA increases the risk factors for atherosclerosis in ApoE(-/-) mice. Oral Dis 2013; 20:803-8. [PMID: 24372897 DOI: 10.1111/odi.12214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effects of Tannerella forsythia and its major surface virulence factor, BspA, on the progression of atherosclerosis in ApoE(-/-) mice and the expression of lipid metabolism-related genes. METHODS PMA-differentiated THP-1 cells were treated with BspA to detect foam cell formation. The proximal aortas of ApoE(-/-) mice injected with T. forsythia or BspA were stained with oil red O to examine lipid deposition. The serum levels of CRP, HDL, and LDL were detected by ELISA. The liver tissue of T. forsythia- or BspA-injected ApoE(-/-) mice was examined for mRNA expression of lipid metabolism-related genes, such as liver X receptors (LXRα and LXRβ) and ATP-binding cassette transporter A1 (ABCA1). RESULTS Tannerella forsythia and BspA induced foam cell formation in THP-1 cells and accelerated the progression of atherosclerotic lesions in ApoE(-/-) mice. Mouse serum levels of CRP and LDL were increased, and HDL was decreased by T. forsythia and BspA. The expression levels of LXRα and LXRβ, and ABCA1 in liver tissue were decreased by T. forsythia and BspA. CONCLUSIONS Tannerella forsythia and BspA augmented atherosclerotic lesion progression in ApoE(-/-) mice. This process may be associated with downregulation of lipid metabolism-related gene expression.
Collapse
Affiliation(s)
- H R Lee
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | | | | |
Collapse
|
130
|
Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol 2013; 35:3-11. [PMID: 24269668 DOI: 10.1016/j.it.2013.09.001] [Citation(s) in RCA: 722] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
Recent studies have uncovered novel mechanisms underlying the breakdown of periodontal host-microbe homeostasis, which can precipitate dysbiosis and periodontitis in susceptible hosts. Dysbiotic microbial communities of keystone pathogens and pathobionts are thought to exhibit synergistic virulence whereby not only can they endure the host response but can also thrive by exploiting tissue-destructive inflammation, which fuels a self-feeding cycle of escalating dysbiosis and inflammatory bone loss, potentially leading to tooth loss and systemic complications. Here, I discuss new paradigms in our understanding of periodontitis, which may shed light into other polymicrobial inflammatory disorders. In addition, I highlight gaps in knowledge required for an integrated picture of the interplay between microbes and innate and adaptive immune elements that initiate and propagate chronic periodontal inflammation.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
131
|
Settem RP, Honma K, Stafford GP, Sharma A. Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface. Front Microbiol 2013; 4:310. [PMID: 24146665 PMCID: PMC3797959 DOI: 10.3389/fmicb.2013.00310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/27/2013] [Indexed: 12/20/2022] Open
Abstract
Protein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation. In addition, surface glycans may help certain periodontal bacteria protect against serum complement attack or help them escape immune detection through glycomimicry. In this review we will focus mainly on the generalized surface-layer protein glycosylation system of the periodontal pathogen Tannerella forsythia in shaping innate and adaptive host immunity in the context of periodontal disease. In addition, we will also review the current state of knowledge of surface protein glycosylation and its potential for immune modulation in other periodontal pathogens.
Collapse
Affiliation(s)
- Rajendra P Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York Buffalo, NY, USA
| | | | | | | |
Collapse
|
132
|
Myneni SR, Settem RP, Sharma A. Bacteria take control of tolls and T cells to destruct jaw bone. Immunol Invest 2013; 42:519-31. [DOI: 10.3109/08820139.2013.822761] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
133
|
Sağlam M, Arslan U, Buket Bozkurt Ş, Hakki SS. Boric Acid Irrigation as an Adjunct to Mechanical Periodontal Therapy in Patients With Chronic Periodontitis: A Randomized Clinical Trial. J Periodontol 2013; 84:1297-308. [DOI: 10.1902/jop.2012.120467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
134
|
Tomita S, Komiya-Ito A, Imamura K, Kita D, Ota K, Takayama S, Makino-Oi A, Kinumatsu T, Ota M, Saito A. Prevalence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in Japanese patients with generalized chronic and aggressive periodontitis. Microb Pathog 2013; 61-62:11-5. [DOI: 10.1016/j.micpath.2013.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 11/24/2022]
|
135
|
Castrillon CA, Hincapie JP, Yepes FL, Roldan N, Moreno SM, Contreras A, Botero JE. Occurrence of red complex microorganisms and Aggregatibacter actinomycetemcomitans in patients with diabetes. ACTA ACUST UNITED AC 2013; 6:25-31. [PMID: 23857867 DOI: 10.1111/jicd.12051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Abstract
AIM The aim of the present study was to analyze the occurrence of Porphyromonas gingivalis (P. gingivalis), Tannerella forsythia (T. forsythia), Treponema denticola (T. denticola), and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in patients with diabetes. METHODS Periodontal and diabetic parameters and subgingival biofilm samples were obtained from 60 patients with diabetes and 62 patients without diabetes. By using polymerase chain reaction, the prevalence of red complex microorganisms (P. gingivalis, T. forsythia, and T. denticola) and A. actinomycetemcomitans were determined. Descriptive and non-parametric statistical analyses between groups were performed (Kruskal-Wallis, Mann-Whitney U-test, and Fisher's exact test). RESULTS Patients with diabetes presented significantly higher periodontal attachment loss levels compared to patients without diabetes. Red complex microorganisms were detected in lower frequencies in patients with diabetes. The detection of A. actinomycetemcomitans was higher in patients with diabetes and periodontitis compared to systemically-healthy patients without periodontitis (P < 0.05). P. gingivalis was associated with periodontitis in non-diabetic patients (P < 0.05), whereas A. actinomycetemcomitans was associated with periodontitis in diabetic patients (P < 0.05). CONCLUSIONS The findings of the present study indicate that there might be differences in the subgingival microbiota between diabetic and non-diabetic patients. In addition, P. gingivalis and A. actinomycetemcomitans were associated with periodontitis in patients without diabetes and patients with diabetes, respectively.
Collapse
Affiliation(s)
- Cesar A Castrillon
- Department of Periodontics, Faculty of Dentistry, Universidad de Antioquia, Medellin, Colombia
| | | | | | | | | | | | | |
Collapse
|
136
|
Posch G, Andrukhov O, Vinogradov E, Lindner B, Messner P, Holst O, Schäffer C. Structure and immunogenicity of the rough-type lipopolysaccharide from the periodontal pathogen Tannerella forsythia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:945-953. [PMID: 23616409 PMCID: PMC3675976 DOI: 10.1128/cvi.00139-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/17/2013] [Indexed: 11/20/2022]
Abstract
Tannerella forsythia is a Gram-negative anaerobic organism that inhabits subgingival plaque biofilms and is covered with a so far unique surface layer composed of two glycoproteins. It belongs to the so-called "red complex" of bacteria comprising species that are associated with periodontal disease. While the surface layer glycoprotein glycan structure had been elucidated recently and found to be a virulence factor, no structural data on the lipopolysaccharide (LPS) of this organism were available. In this study, the T. forsythia LPS structure was partially elucidated by a combined mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) approach and initial experiments to characterize its immunostimulatory potential were performed. The T. forsythia LPS is a complex, rough-type LPS with a core region composed of one 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue, three mannose residues, and two glucosamine residues. MS analyses of O-deacylated LPS proved that, in addition, one phosphoethanolamine residue and most likely one galactose-phosphate residue were present, however, their positions could not be identified. Stimulation of human macrophages with T. forsythia LPS resulted in the production of the proinflammatory cytokines interleukin-1 (IL-1), IL-6, and tumor necrosis factor alpha in a dose-dependent manner. The response to T. forsythia LPS was observed only upon stimulation in the presence of fetal calf serum (FCS), whereas no cytokine production was observed in the absence of FCS. This finding suggests that the presence of certain additional cofactors is crucial for the immune response induced by T. forsythia LPS.
Collapse
Affiliation(s)
- Gerald Posch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Division of Oral Biology, Bernhard Gottlieb University School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada
| | | | - Paul Messner
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada
| | - Otto Holst
- Structural Biochemistry,
Research Center Borstel, Leibniz Center for Medicine and Biosciences, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Borstel, Germany
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
137
|
Stafford P, Higham J, Pinnock A, Murdoch C, Douglas CWI, Stafford GP, Lambert DW. Gingipain-dependent degradation of mammalian target of rapamycin pathway proteins by the periodontal pathogen Porphyromonas gingivalis during invasion. Mol Oral Microbiol 2013; 28:366-78. [PMID: 23714361 DOI: 10.1111/omi.12030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2013] [Indexed: 01/09/2023]
Abstract
Porphyromonas gingivalis and Tannerella forsythia are gram-negative pathogens strongly associated with periodontitis. Their abilities to interact, invade and persist within host cells are considered crucial to their pathogenicity, but the mechanisms by which they subvert host defences are not well understood. In this study, we set out to investigate whether P. gingivalis and T. forsythia directly target key signalling molecules that may modulate the host cell phenotype to favour invasion and persistence. Our data identify, for the first time, that P. gingivalis, but not T. forsythia, reduces levels of intracellular mammalian target of rapamycin (mTOR) in oral epithelial cells following invasion over a 4-h time course, via the action of gingipains. The ability of cytochalasin D to abrogate P. gingivalis-mediated mTOR degradation suggests that this effect is dependent upon cellular invasion. We also show that levels of several other proteins in the mTOR signalling pathway are modulated by gingipains, either directly or as a consequence of mTOR degradation including p-4E-BP1. Taken together, our data suggest that P. gingivalis manipulates the mTOR pathway, providing evidence for a potentially novel mechanism by which P. gingivalis mediates its effects on host cell responses to infection.
Collapse
Affiliation(s)
- P Stafford
- Integrated Bioscience, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
138
|
Hajishengallis G, Abe T, Maekawa T, Hajishengallis E, Lambris JD. Role of complement in host-microbe homeostasis of the periodontium. Semin Immunol 2013; 25:65-72. [PMID: 23684627 DOI: 10.1016/j.smim.2013.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 02/08/2023]
Abstract
Complement plays a key role in immunity and inflammation through direct effects on immune cells or via crosstalk and regulation of other host signaling pathways. Deregulation of these finely balanced complement activities can link infection to inflammatory tissue damage. Periodontitis is a polymicrobial community-induced chronic inflammatory disease that can destroy the tooth-supporting tissues. In this review, we summarize and discuss evidence that complement is involved in the dysbiotic transformation of the periodontal microbiota and in the inflammatory process that leads to the destruction of periodontal bone. Recent insights into the mechanisms of complement involvement in periodontitis have additionally provided likely targets for therapeutic intervention against this oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
139
|
Guevara T, Ksiazek M, Skottrup PD, Cerdà-Costa N, Trillo-Muyo S, de Diego I, Riise E, Potempa J, Gomis-Rüth FX. Structure of the catalytic domain of the Tannerella forsythia matrix metallopeptidase karilysin in complex with a tetrapeptidic inhibitor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:472-6. [PMID: 23695557 DOI: 10.1107/s1744309113007392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/18/2013] [Indexed: 01/22/2023]
Abstract
Karilysin is the only metallopeptidase identified as a virulence factor in the odontopathogen Tannerella forsythia owing to its deleterious effect on the host immune response during bacterial infection. The very close structural and sequence-based similarity of its catalytic domain (Kly18) to matrix metalloproteinases suggests that karilysin was acquired by horizontal gene transfer from an animal host. Previous studies by phage display identified peptides with the consensus sequence XWFPXXXGGG (single-letter amino-acid codes; X represents any residue) as karilysin inhibitors with low-micromolar binding affinities. Subsequent refinement revealed that inhibition comparable to that of longer peptides could be achieved using the tetrapeptide SWFP. To analyze its binding, the high-resolution crystal structure of the complex between Kly18 and SWFP was determined and it was found that the peptide binds to the primed side of the active-site cleft in a substrate-like manner. The catalytic zinc ion is clamped by the α-amino group and the carbonyl O atom of the serine, thus distantly mimicking the general manner of binding of hydroxamate inhibitors to metallopeptidases and contributing, together with three zinc-binding histidines from the protein scaffold, to an octahedral-minus-one metal-coordination sphere. The tryptophan side chain penetrates the deep partially water-filled specificity pocket of Kly18. Together with previous serendipitous product complexes of Kly18, the present results provide the structural determinants of inhibition of karilysin and open the field for the design of novel inhibitory strategies aimed at the treatment of human periodontal disease based on a peptidic hit molecule.
Collapse
Affiliation(s)
- Tibisay Guevara
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council CSIC, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth. Antimicrob Agents Chemother 2013; 57:3388-91. [PMID: 23587952 DOI: 10.1128/aac.00129-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus anthracis, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio cholerae was completely inhibited by 10 μM SPI. At this concentration of SPI, no cytotoxicity was observed. We conclude that SPI inhibits bacterial virulence factors and has the potential to become a novel therapeutic treatment against a range of unrelated pathogenic bacteria.
Collapse
|
141
|
Settem RP, Honma K, Nakajima T, Phansopa C, Roy S, Stafford GP, Sharma A. A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression. Mucosal Immunol 2013; 6:415-26. [PMID: 22968422 PMCID: PMC4049606 DOI: 10.1038/mi.2012.85] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth-supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacterium's proteinaceous surface (S)-layer lattice and other glycoproteins. Herein, we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress T-helper (Th)17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen may act to ensure its persistence in the host likely through suppression of Th17 responses. In addition, our data suggest that the bacterium then induces the Toll-like receptor 2-Th2 inflammatory axis that has previously been shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases.
Collapse
Affiliation(s)
- Rajendra P. Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Kiyonobu Honma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Takuma Nakajima
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Chatchawal Phansopa
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Sumita Roy
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Graham P. Stafford
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
,Correspondence: Tel: (716) 829-2759; Fax: (716) 829-3942
| |
Collapse
|
142
|
The surface layer of Tannerella forsythia contributes to serum resistance and oral bacterial coaggregation. Infect Immun 2013; 81:1198-206. [PMID: 23357386 DOI: 10.1128/iai.00983-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tannerella forsythia is an anaerobic, Gram-negative bacterium involved in the so-called "red complex," which is associated with severe and chronic periodontitis. The surface layer (S-layer) of T. forsythia is composed of cell surface glycoproteins, such as TfsA and TfsB, and is known to play a role in adhesion/invasion and suppression of proinflammatory cytokine expression. Here we investigated the association of this S-layer with serum resistance and coaggregation with other oral bacteria. The growth of the S-layer-deficient mutant in a bacterial medium containing more than 20% non-heat-inactivated calf serum (CS) or more than 40% non-heat-inactivated human serum was significantly suppressed relative to that of the wild type (WT). Next, we used confocal microscopy to perform quantitative analysis on the effect of serum. The survival ratio of the mutant exposed to 100% non-heat-inactivated CS (76% survival) was significantly lower than that of the WT (97% survival). Furthermore, significant C3b deposition was observed in the mutant but not in the WT. In a coaggregation assay, the mutant showed reduced coaggregation with Streptococcus sanguinis, Streptococcus salivarius, and Porphyromonas gingivalis but strong coaggregation with Fusobacterium nucleatum. These results indicated that the S-layer of T. forsythia plays multiple roles in virulence and may be associated with periodontitis.
Collapse
|
143
|
Posch G, Sekot G, Friedrich V, Megson ZA, Koerdt A, Messner P, Schäffer C. Glycobiology Aspects of the Periodontal Pathogen Tannerella forsythia. Biomolecules 2012; 2:467-82. [PMID: 24970146 PMCID: PMC4030854 DOI: 10.3390/biom2040467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 12/22/2022] Open
Abstract
Glycobiology is important for the periodontal pathogen Tannerella forsythia, affecting the bacterium's cellular integrity, its life-style, and virulence potential. The bacterium possesses a unique Gram-negative cell envelope with a glycosylated surface (S-) layer as outermost decoration that is proposed to be anchored via a rough lipopolysaccharide. The S-layer glycan has the structure 4‑MeO-b-ManpNAcCONH2-(1→3)-[Pse5Am7Gc-(2→4)-]-b-ManpNAcA-(1→4)-[4-MeO-a-Galp-(1→2)-]-a-Fucp-(1→4)-[-a-Xylp-(1→3)-]-b-GlcpA-(1→3)-[-b-Digp-(1→2)-]-a-Galp and is linked to distinct serine and threonine residues within the D(S/T)(A/I/L/M/T/V) amino acid motif. Also several other Tannerella proteins are modified with the S‑layer oligosaccharide, indicating the presence of a general O‑glycosylation system. Protein O‑glycosylation impacts the life-style of T. forsythia since truncated S-layer glycans present in a defined mutant favor biofilm formation. While the S‑layer has also been shown to be a virulence factor and to delay the bacterium's recognition by the innate immune system of the host, the contribution of glycosylation to modulating host immunity is currently unraveling. Recently, it was shown that Tannerella surface glycosylation has a role in restraining the Th17-mediated neutrophil infiltration in the gingival tissues. Related to its asaccharolytic physiology, T. forsythia expresses a robust enzymatic repertoire, including several glycosidases, such as sialidases, which are linked to specific growth requirements and are involved in triggering host tissue destruction. This review compiles the current knowledge on the glycobiology of T. forsythia.
Collapse
Affiliation(s)
- Gerald Posch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Gerhard Sekot
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Valentin Friedrich
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Zoë A Megson
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Andrea Koerdt
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
144
|
Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 2012; 27:409-19. [PMID: 23134607 DOI: 10.1111/j.2041-1014.2012.00663.x] [Citation(s) in RCA: 808] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 12/11/2022]
Abstract
Recent advancements in the periodontal research field are consistent with a new model of pathogenesis according to which periodontitis is initiated by a synergistic and dysbiotic microbial community rather than by select 'periopathogens', such as the 'red complex'. In this polymicrobial synergy, different members or specific gene combinations within the community fulfill distinct roles that converge to shape and stabilize a disease-provoking microbiota. One of the core requirements for a potentially pathogenic community to arise involves the capacity of certain species, termed 'keystone pathogens', to modulate the host response in ways that impair immune surveillance and tip the balance from homeostasis to dysbiosis. Keystone pathogens also elevate the virulence of the entire microbial community through interactive communication with accessory pathogens. Other important core functions for pathogenicity require the expression of diverse molecules (e.g. appropriate adhesins, cognate receptors, proteolytic enzymes and proinflammatory surface structures/ligands), which in combination act as community virulence factors to nutritionally sustain a heterotypic, compatible and proinflammatory microbial community that elicits a non-resolving and tissue-destructive host response. On the basis of the fundamental concepts underlying this model of periodontal pathogenesis, that is, polymicrobial synergy and dysbiosis, we term it the PSD model.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
145
|
Myneni SR, Settem RP, Sojar HT, Malone JP, Vuokko L, Nakajima T, Sharma A. Identification of a unique TLR2-interacting peptide motif in a microbial leucine-rich repeat protein. Biochem Biophys Res Commun 2012; 423:577-82. [PMID: 22695115 PMCID: PMC3405494 DOI: 10.1016/j.bbrc.2012.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 12/24/2022]
Abstract
Pathogenesis of many bacterially-induced inflammatory diseases is driven by Toll-like receptor (TLR) mediated immune responses following recognition of bacterial factors by different TLRs. Periodontitis is a chronic inflammation of the tooth supporting apparatus often leading to tooth loss, and is caused by a Gram-negative bacterial consortium that includes Tannerella forsythia. This bacterium expresses a virulence factor, the BspA, which drives periodontal inflammation by activating TLR2. The N-terminal portion of the BspA protein comprises a leucine-rich repeat (LRR) domain previously shown to be involved in the binding and activation of TLR2. The objective of the current study was to identify specific epitopes in the LRR domain of BspA that interact with TLR2. Our results demonstrate that a sequence motif GC(S/T)GLXSIT is involved in mediating the interaction of BspA with TLR2. Thus, our study has identified a peptide motif that mediates the binding of a bacterial protein to TLR2 and highlights the promiscuous nature of TLR2 with respect to ligand binding. This work could provide a structural basis for designing peptidomimetics to modulate the activity of TLR2 in order to block bacterially-induced inflammation.
Collapse
Affiliation(s)
- Srinivas R. Myneni
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214
| | - Rajendra P. Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214
| | - Hakimuddin T. Sojar
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214
| | - James P. Malone
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214
| | - Loimaranta Vuokko
- Department of Medical Biochemistry and Genetics, University of Turku, Finland
| | - Takuma Nakajima
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214
- Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214
| |
Collapse
|
146
|
Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model. Infect Immun 2012; 80:2436-43. [PMID: 22547549 DOI: 10.1128/iai.06276-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tannerella forsythia is strongly associated with chronic periodontitis, an inflammatory disease of the tooth-supporting tissues, leading to tooth loss. Fusobacterium nucleatum, an opportunistic pathogen, is thought to promote dental plaque formation by serving as a bridge bacterium between early- and late-colonizing species of the oral cavity. Previous studies have shown that F. nucleatum species synergize with T. forsythia during biofilm formation and pathogenesis. In the present study, we showed that coinfection of F. nucleatum and T. forsythia is more potent than infection with either species alone in inducing NF-κB activity and proinflammatory cytokine secretion in monocytic cells and primary murine macrophages. Moreover, in a murine model of periodontitis, mixed infection with the two species induces synergistic alveolar bone loss, characterized by bone loss which is greater than the additive alveolar bone losses induced by each species alone. Further, in comparison to the single-species infection, mixed infection caused significantly increased inflammatory cell infiltration in the gingivae and osteoclastic activity in the jaw bones. These data show that F. nucleatum subspecies and T. forsythia synergistically stimulate the host immune response and induce alveolar bone loss in a murine experimental periodontitis model.
Collapse
|
147
|
Hirt RP, de Miguel N, Nakjang S, Dessi D, Liu YC, Diaz N, Rappelli P, Acosta-Serrano A, Fiori PL, Mottram JC. Trichomonas vaginalis pathobiology new insights from the genome sequence. ADVANCES IN PARASITOLOGY 2012; 77:87-140. [PMID: 22137583 DOI: 10.1016/b978-0-12-391429-3.00006-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The draft genome of the common sexually transmitted pathogen Trichomonas vaginalis encodes one of the largest known proteome with 60,000 candidate proteins. This provides parasitologists and molecular cell biologists alike with exciting, yet challenging, opportunities to unravel the molecular features of the parasite's cellular systems and potentially the molecular basis of its pathobiology. Here, recent investigations addressing selected aspects of the parasite's molecular cell biology are discussed, including surface and secreted virulent factors, membrane trafficking, cell signalling, the degradome, and the potential role of RNA interference in the regulation of gene expression.
Collapse
Affiliation(s)
- Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Sekot G, Posch G, Oh YJ, Zayni S, Mayer HF, Pum D, Messner P, Hinterdorfer P, Schäffer C. Analysis of the cell surface layer ultrastructure of the oral pathogen Tannerella forsythia. Arch Microbiol 2012; 194:525-39. [PMID: 22273979 PMCID: PMC3354324 DOI: 10.1007/s00203-012-0792-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/02/2011] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
Abstract
The Gram-negative oral pathogen Tannerella forsythia is decorated with a 2D crystalline surface (S-) layer, with two different S-layer glycoprotein species being present. Prompted by the predicted virulence potential of the S-layer, this study focused on the analysis of the arrangement of the individual S-layer glycoproteins by a combination of microscopic, genetic, and biochemical analyses. The two S-layer genes are transcribed into mRNA and expressed into protein in equal amounts. The S-layer was investigated on intact bacterial cells by transmission electron microscopy, by immune fluorescence microscopy, and by atomic force microscopy. The analyses of wild-type cells revealed a distinct square S-layer lattice with an overall lattice constant of 10.1 ± 0.7 nm. In contrast, a blurred lattice with a lattice constant of 9.0 nm was found on S-layer single-mutant cells. This together with in vitro self-assembly studies using purified (glyco)protein species indicated their increased structural flexibility after self-assembly and/or impaired self-assembly capability. In conjunction with TEM analyses of thin-sectioned cells, this study demonstrates the unusual case that two S-layer glycoproteins are co-assembled into a single S-layer. Additionally, flagella and pilus-like structures were observed on T. forsythia cells, which might impact the pathogenicity of this bacterium.
Collapse
Affiliation(s)
- Gerhard Sekot
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Wien, Austria
| | - Gerald Posch
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Wien, Austria
| | - Yoo Jin Oh
- Christian Doppler Laboratory of Nanoscopic Methods in Biophysics, Institute for Biophysics, Johannes Kepler University, Altenbergerstrasse 69, 4070 Linz, Austria
| | - Sonja Zayni
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Wien, Austria
| | - Harald F. Mayer
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Wien, Austria
| | - Dietmar Pum
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Wien, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Wien, Austria
| | - Peter Hinterdorfer
- Christian Doppler Laboratory of Nanoscopic Methods in Biophysics, Institute for Biophysics, Johannes Kepler University, Altenbergerstrasse 69, 4070 Linz, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Wien, Austria
| |
Collapse
|
149
|
Highly specific protease-based approach for detection of porphyromonas gingivalis in diagnosis of periodontitis. J Clin Microbiol 2011; 50:104-12. [PMID: 22075590 DOI: 10.1128/jcm.05313-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is associated with the development of periodontitis. Here we describe the development of a highly specific protease-based diagnostic method for the detection of P. gingivalis in gingival crevicular fluid. Screening of a proteolytic peptide substrate library, including fluorogenic dipeptides that contain d-amino acids, led to the discovery of five P. gingivalis-specific substrates. Due to the presence of lysine and arginine residues in these substrates, it was hypothesized that the cleavage was mediated by the gingipains, a group of P. gingivalis-specific proteases. This hypothesis was confirmed by the observation that P. gingivalis gingipain knockout strains demonstrated clearly impaired substrate cleavage efficacy. Further, proteolytic activity on the substrates was increased by the addition of the gingipain stimulators dithiothreitol and l-cysteine and decreased by the inhibitors leupeptin and N-ethylmaleimide. Screening of saliva and gingival crevicular fluid of periodontitis patients and healthy controls showed the potential of the substrates to diagnose the presence of P. gingivalis proteases. By using paper points, a sensitivity of approximately 10(5) CFU/ml was achieved. P. gingivalis-reactive substrates fully composed of l-amino acids and Bz-l-Arg-NHPhNO(2) showed a relatively low specificity (44 to 85%). However, the five P. gingivalis-specific substrates that each contained a single d-amino acid showed high specificity (96 to 100%). This observation underlines the importance of the presence of d-amino acids in substrates used for the detection of bacterial proteases. We envisage that these substrates may improve the specificity of the current enzyme-based diagnosis of periodontitis associated with P. gingivalis.
Collapse
|
150
|
Moffatt CE, Whitmore SE, Griffen AL, Leys EJ, Lamont RJ. Filifactor alocis interactions with gingival epithelial cells. Mol Oral Microbiol 2011; 26:365-73. [PMID: 22053964 DOI: 10.1111/j.2041-1014.2011.00624.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An association between the gram-positive anaerobe Filifactor alocis and periodontal disease has recently emerged; however, possible pathogenic mechanisms have not been investigated. In this study we examined the responses of primary cultures of gingival epithelial cells (GECs) to infection with F. alocis. Secretion of the pro-inflammatory cytokines interleukin-1β, interleukin-6 and tumor necrosis factor-α from GECs was stimulated by F. alocis infection. F. alocis also induced apoptosis in GECs through pathways that involved caspase-3 but not caspase-9. Apoptosis was coincident with inhibition of mitogen-activated protein kinase kinase (MEK) activation. These results show that F. alocis has characteristics in common with established periodontal pathogens and has the potential to contribute to periodontal tissue destruction.
Collapse
Affiliation(s)
- C E Moffatt
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|