101
|
Chandra Garain B, Pati SK. Unraveling the Efficiency of Thioxanthone Based Triplet Sensitizers: A Detailed Theoretical Study. Chemphyschem 2022; 24:e202200753. [PMID: 36495016 DOI: 10.1002/cphc.202200753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Photochemical activation by triplet photosensitizers is highly expedient for a green focus society. In this work, we have theoretically probed excited state characteristics of thioxanthone and its derivatives for their triplet harvesting efficiency using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Absorption and triplet energies corroborate well with the available experimental data. Our results predict that both the S1 and T1 states are π-π* in nature, which renders a high oscillator strength for S0 to S1 transition. Major triplet exciton conversion occurs through intersystem crossing (ISC) channel between the S1 (1 π-π* ) and high energy 3 n- π* state. Apart from that, there is both radiative and non-radiative channel from S1 to S0 , which competes with the ISC channel and reduces the triplet harvesting efficiency. For thioxanthones with -OMe (Me=Methyl) or -F substitution at 2 or 2' positions, the ISC channel is not energetically feasible, causing sluggish intersystem crossing quantum yield (ΦISC ). For unsubstituted thioxanthone and for isopropyl substitution at 2' position, the S1 -T1 gap is slightly positive ( Δ E S 1 - 3 n π * ${\Delta {E}_{{S}_{1}-{}^{3}n{\rm \pi }{\rm {^\ast}}}}$ ), rendering a lower triplet harvesting efficiency. For systems with -OMe or -F substitution at 3 or 3' position of thioxanthone, because of buried π state and high energy π* state, the S1 -3 nπ* gap becomes negative. This leads to a high ΦISC (>0.9), which is key to being an effective photocatalyst.
Collapse
Affiliation(s)
- Bidhan Chandra Garain
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| |
Collapse
|
102
|
Herculano LS, Kalschne DL, Canan C, Reis TS, Marcon CT, Benetti VP, Malacarne LC, Blanco K, Bagnato VS. Antimicrobial curcumin-mediated photodynamic inactivation of bacteria in natural bovine casing. Photodiagnosis Photodyn Ther 2022; 40:103173. [PMID: 36307061 DOI: 10.1016/j.pdpdt.2022.103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Outbreaks related to food contamination by resistant microorganisms is a worldwide concern that, motivates industries and research institutions to search for affordable solutions. Among the solutions that have been proposed, Photodynamic Inactivation (PDI) of microorganisms has gained prominence, among other aspects, because it is easy to apply and does not generate microbial resistance. METHODS In this study, we used the association between curcumin solubilized with Tween and light in the photodynamic inactivation process, using light-emitting diodes with a wavelength of 430 nm for decontamination S. Typhimurium and K. pneumoniae from bovine casings used as wrappers for meat products. The result was verified by counting and comparing the number of colony-forming units of the treatment concerning the negative control. RESULTS The solubilizer, Tween 80, used does not change the optical absorption of curcumin. An optical fluence of 150J/cm2 induces a microbial log reduction of 3.8±0.2 and 2.7±0.1 for S. Typhimurium, and K. pneumoniae contaminated guts, respectively. For the 200μM concentration of curcumin, the PDI provided a microbial log reduction of 3.16±0.03 for S. Typhimurium. For K. pneumoniae, the minimal inhibitory concentration of curcumin occurs up to 12.5μM, causing an microbial log reduction of 2.08±0.03. CONCLUSION Both curcumin and tween are already used as additives in food production and do not pose health risks at the concentrations used. Furthermore, in the case of the material studied, the addition of curcumin favors the organoleptic quality associated with the color of the food, unlike the green or blue photossensitizers. The results pave the way for possible application of curcumin in finished meat products.
Collapse
Affiliation(s)
- Leandro S Herculano
- Departamento de Física, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Medianeira, Paraná 85884-000, Brazil.
| | - Daneysa L Kalschne
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Medianeira, Paraná 85884-000, Brazil
| | - Cristiane Canan
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Medianeira, Paraná 85884-000, Brazil
| | - Thiago Sousa Reis
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Medianeira, Paraná 85884-000, Brazil
| | - Caroline Togo Marcon
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Medianeira, Paraná 85884-000, Brazil
| | - Viviane Prima Benetti
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Medianeira, Paraná 85884-000, Brazil
| | - Luis Carlos Malacarne
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil
| | - Kate Blanco
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil; Department of Biomedical Engineering, Texas A & M University, 101 Bizzell St, College Station, TX 77843, United States
| | - Vanderlei S Bagnato
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
103
|
Liposomes encapsulating methylene blue and acridine orange: An approach for phototherapy of skin cancer. Colloids Surf B Biointerfaces 2022; 220:112901. [DOI: 10.1016/j.colsurfb.2022.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
104
|
Zhang L, Zhang H. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics. NANOSCALE RESEARCH LETTERS 2022; 17:114. [PMID: 36437419 PMCID: PMC9702141 DOI: 10.1186/s11671-022-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, silver halide (AgX, X = Cl, Br, I)-based photocatalytic materials have received increasing research attention owing to their excellent visible-light-driven photocatalytic performance for applications in organic pollutant degradation, HER, OER, and biomedical engineering. Ag as a noble metal has a surface plasma effect and can form Schottky junctions with AgX, which significantly promotes electron transport and increases photocatalytic efficiency. Therefore, Ag/AgX can reduce the recombination rate of electrons and holes more than pure AgX, leading to using AgX as a photocatalytic material in biomedical applications. The use of AgX-based materials in photocatalytic fields can be classified into three categories: AgX (Ag/AgX), AgX composites, and supported AgX materials. In this review, we introduce recent developments made in biomedical applications and biosensing diagnostics of AgX (Ag/AgX) photocatalytic materials. In addition, this review also discusses the photocatalytic mechanism and applications of AgX (Ag/AgX) and supported AgX materials.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| | - Hong Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| |
Collapse
|
105
|
Bridged Magaela N, Matshitse R, Managa M, Nyokong T. The effect of asymmetry and conjugation of biotin decorated nitrogen doped graphene quantum dots on morpholine porphyrin for photodynamic therapy. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2148103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Refilwe Matshitse
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| |
Collapse
|
106
|
Saad MA, Hasan T. Spotlight on Photoactivatable Liposomes beyond Drug Delivery: An Enabler of Multitargeting of Molecular Pathways. Bioconjug Chem 2022; 33:2041-2064. [PMID: 36197738 DOI: 10.1021/acs.bioconjchem.2c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of photoactivating certain molecules, photosensitizers (PS), resulting in photochemical processes, has long been realized in the form of photodynamic therapy (PDT) for the management of several cancerous and noncancerous pathologies. With an improved understanding of the photoactivation process and its broader implications, efforts are being made to exploit the various facets of photoactivation, PDT, and the associated phenomenon of photodynamic priming in enhancing treatment outcomes, specifically in cancer therapeutics. The parallel emergence of nanomedicine, specifically liposome-based nanoformulations, and the convergence of the two fields of liposome-based drug delivery and PDT have led to the development of unique hybrid systems, which combine the exciting features of liposomes with adequate complementation through the photoactivation process. While initially liposomes carrying photosensitizers (PSs) were developed for enhancing the pharmacokinetics and the general applicability of PSs, more recently, PS-loaded liposomes, apart from their utility in PDT, have found several applications including enhanced targeting of drugs, coloading multiple therapeutic agents to enhance synergistic effects, imaging, priming, triggering drug release, and facilitating the escape of therapeutic agents from the endolysosomal complex. This review discusses the design strategies, potential, and unique attributes of these hybrid systems, with not only photoactivation as an attribute but also the ability to encapsulate multiple agents for imaging, biomodulation, priming, and therapy referred to as photoactivatable multiagent/inhibitor liposomes (PMILS) and their targeted versions─targeted PMILS (TPMILS). While liposomes have formed their own niche in nanotechnology and nanomedicine with several clinically approved formulations, we try to highlight how using PS-loaded liposomes could address some of the limitations and concerns usually associated with liposomes to overcome them and enhance their preclinical and clinical utility in the future.
Collapse
Affiliation(s)
- Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
107
|
Li S, Wang D, Cheng J, Sun J, Kalvakolanu DV, Zhao X, Wang D, You Y, Zhang L, Yu D. A photodynamically sensitized dendritic cell vaccine that promotes the anti-tumor effects of anti-PD-L1 monoclonal antibody in a murine model of head and neck squamous cell carcinoma. J Transl Med 2022; 20:505. [PMID: 36329529 PMCID: PMC9635135 DOI: 10.1186/s12967-022-03707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are promising tools in combating several cancers, including head and neck squamous cell carcinoma (HNSCC). However, a substantial portion of HNSCC patients do not respond to PD-L1 antibody. Here we describe a photodynamic therapeutic (PDT) approach to enhance anti-tumor effects of the anti-PD-L1 antibody. METHODS Phototoxicity of PDT was confirmed using fluorescence microscopy, Cell Counting Kit-8 (CCK-8), Enzyme Linked Immunosorbent Assay (ELISA) and flow cytometry analyses. Phenotypic and functional maturation of immature DCs (imDCs) induced by PDT were measured using flow cytometry and ELISA. A mouse model was established using the HNSCC line, SCC7, and was used to evaluate therapeutic effects of PDT-DC vaccine in facilitating anti-tumor immunity of PD-L1 antibody. RESULTS Immunogenic cell death (ICD) of SCC7 cells was induced by PDT with 0.5 µM of m-THPC and the 5 J/cm2 of light dose. ICD of SCC7 cells stimulated imDCs maturation. In vivo assays suggested that PDT-DC vaccine and anti-PD-L1 mAb synergistically induced anti-tumor immunity and suppressed tumor progression. CONCLUSION PDT-DC vaccine enhances therapeutic effects of PD-L1 antibody, which might provide a novel approach for HNSCC immunotherapy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Ding Wang
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China
| | - Jinzhang Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Jicheng Sun
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China
| | - Dhan V Kalvakolanu
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China.,Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Xue Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Di Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Yunhan You
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China.
| | - Dan Yu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
108
|
Ali LMA, Miyagawa K, Fukui N, Onofre M, El Cheikh K, Morère A, Clément S, Gary-Bobo M, Richeter S, Shinokubo H. D-Mannose-appended 5,15-diazaporphyrin for photodynamic therapy. Org Biomol Chem 2022; 20:8217-8222. [PMID: 36043857 DOI: 10.1039/d2ob01410f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5,15-Diazaporphyrin appended with D-mannose moieties was prepared through Suzuki-Miyaura cross-coupling reaction and SN2 alkylation. The resultant diazaporphyrin was hydrophilic enough to exhibit sufficient solubility in aqueous media. Because of the photosensitizing ability of diazaporphyrins, the in vitro activity of the D-mannose-appended diazaporphyrin in photodynamic therapy (PDT) was investigated. The specific internalization of the functionalized diazaporphyrin into human breast adenocarcinoma (MDA-MB-231) cells through mannose receptors was confirmed by confocal microscopy imaging. We also demonstrated the strong PDT activity of the functionalized diazaporphyrin at a nanomolar level with short light irradiation time.
Collapse
Affiliation(s)
- Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM, 34093 Montpellier, France. .,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Kazuya Miyagawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Mélanie Onofre
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM, 34093 Montpellier, France.
| | - Khaled El Cheikh
- NanoMedSyn, 15 Avenue Charles Flahault, 34093, Montpellier, France
| | - Alain Morère
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM, 34093 Montpellier, France.
| | | | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM, 34093 Montpellier, France.
| | | | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
109
|
Zhang Y, Li G, Li J, Wu M, Liu X, Liu J. A novel BODIPY-based nano-photosensitizer with aggregation-induced emission for cancer photodynamic therapy. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2022; 15. [DOI: 10.1142/s1793545822400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The discovery of aggregation-induced emission (AIE) effect provides opportunities for the rapid development of fluorescence imaging-guided photodynamic therapy (PDT). In this work, a boron dipyrromethene (BODIPY)-based photosensitizer (ET-BDP-O) with AIE characteristics was developed, in which the two linear arms of BODIPY group were linked with triphenylamine to form an electron Donor–Acceptor–Donor (D–A–D) architecture while side chain was equipped with triethylene glycol group. ET-BDP-O was able to directly self-assemble into nanoparticles (NPs) without supplement of any other matrices or stabilizers due to its amphiphilic property. The as-prepared ET-BDP-O NPs had an excellent colloid stability with the size of 125 nm. Benefiting from the AIE property, ET-BDP-O NPs could generate strong fluorescence and reactive oxygen species under light-emitting diode light irradiation (60[Formula: see text]mW/cm[Formula: see text]. After internalized in cancer cells, ET-BDP-O NPs were able to emit bright red fluorescence signal for bioimaging. In addition, the cell viability assay demonstrated that the ET-BDP-O NPs exhibited excellent photo-cytotoxicity against cancer cells, while negligible cytotoxicity under dark environment. Thus, ET-BDP-O NPs might be regarded as a promising photosensitizer for fluorescence imaging-guided PDT in future.
Collapse
Affiliation(s)
- Yuting Zhang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Guojing Li
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jiong Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Jingfeng Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, P. R. China
| |
Collapse
|
110
|
Hybrid Ultrasound-Activated Nanoparticles Based on Graphene Quantum Dots for Cancer Treatment. Int J Pharm 2022; 629:122373. [DOI: 10.1016/j.ijpharm.2022.122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
111
|
George BP, Abrahamse H. Light-Activated Phytochemicals in Photodynamic Therapy for Cancer: A Mini Review. Photobiomodul Photomed Laser Surg 2022; 40:734-741. [PMID: 36395087 DOI: 10.1089/photob.2022.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Cancer is a serious life-threatening disease often thought of as a deadly and painful disease with no permanent cure. With the advancement of medical science, there have been several clinically approved treatment options developed over the past decade. Photodynamic therapy (PDT) is one such approved minimally invasive light-based therapeutic option for many cancers. Selection of a suitable photosensitizer (PS) is an important step in PDT for improved therapeutic outcomes. Efforts to discover more efficient PSs continue for optimal PDT. Objective: This review discusses the available natural PS of plant origin, the role of phytochemicals in the application of PDT of cancer, specific localization of PS in various cell organelles, and photochemical reactions. Materials and methods: Owing to the substantial side effects, many biomedical research fields are currently focusing on natural compounds with chemotherapeutic potential with environmentally sustainable green approaches. Medicinal plant extracts have been used since ancient times for the treatment of various ailments. Plants are a natural source of many bioactive compounds with pharmaceutical potential and there have been some efforts made to discover potential new compounds from plants with photosensitizing properties for effective PDT outcomes. Results and conclusions: The PDT application in the current scenario raises some questions, such as most effective PS, its administration, the time of irradiation, light source, sensitivity of cells toward PS, and so forth. PDT effects can be direct or indirect. Owing to the direct effect of the PDT, most of the tumoral mass is destroyed. In the cancer cells that were not directly affected, secondary effects such as vascular effects, apoptosis induction, inflammation, and generation of an immune response may occur; however, the complex nature of PDT tissue response is not fully established.
Collapse
Affiliation(s)
- Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
112
|
Mamardashvili G, Kaigorodova E, Lebedev I, Mamardashvili N. Axial complexes of Sn(IV)-tetra(4-sulfophenyl)porphyrin with azorubine in aqueous media: Fluorescent probes of local viscosity and pH indicators. J Mol Liq 2022; 366:120277. [DOI: 10.1016/j.molliq.2022.120277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
113
|
Teeuwen PCP, Melissari Z, Senge MO, Williams RM. Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers. Molecules 2022; 27:molecules27206967. [PMID: 36296559 PMCID: PMC9610856 DOI: 10.3390/molecules27206967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Within this work, we review the metal coordination effect on the photophysics of metal dipyrrinato complexes. Dipyrrinato complexes are promising candidates in the search for alternative transition metal photosensitizers for application in photodynamic therapy (PDT). These complexes can be activated by irradiation with light of a specific wavelength, after which, cytotoxic reactive oxygen species (ROS) are generated. The metal coordination allows for the use of the heavy atom effect, which can enhance the triplet generation necessary for generation of ROS. Additionally, the flexibility of these complexes for metal ions, substitutions and ligands allows the possibility to tune their photophysical properties. A general overview of the mechanism of photodynamic therapy and the properties of the triplet photosensitizers is given, followed by further details of dipyrrinato complexes described in the literature that show relevance as photosensitizers for PDT. In particular, the photophysical properties of Re(I), Ru(II), Rh(III), Ir(III), Zn(II), Pd(II), Pt(II), Ni(II), Cu(II), Ga(III), In(III) and Al(III) dipyrrinato complexes are discussed. The potential for future development in the field of (dipyrrinato)metal complexes is addressed, and several new research topics are suggested throughout this work. We propose that significant advances could be made for heteroleptic bis(dipyrrinato)zinc(II) and homoleptic bis(dipyrrinato)palladium(II) complexes and their application as photosensitizers for PDT.
Collapse
Affiliation(s)
- Paula C. P. Teeuwen
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Zoi Melissari
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenberg-Str. 2a, 85748 Garching, Germany
- Correspondence: (M.O.S.); (R.M.W.)
| | - René M. Williams
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Correspondence: (M.O.S.); (R.M.W.)
| |
Collapse
|
114
|
Awad M, Barnes TJ, Thomas N, Joyce P, Prestidge CA. Gallium Protoporphyrin Liquid Crystalline Lipid Nanoparticles: A Third-Generation Photosensitizer against Pseudomonas aeruginosa Biofilms. Pharmaceutics 2022; 14:pharmaceutics14102124. [PMID: 36297559 PMCID: PMC9610264 DOI: 10.3390/pharmaceutics14102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
The looming antimicrobial resistance pandemic has encouraged the investigation of antimicrobial photodynamic therapy (aPDT) as a promising technology to combat recalcitrant bacterial infections caused by antibiotic resistant strains. Here, we report on the optimization and effective application of gallium protoporphyrin liquid crystalline lipid nanoparticles (GaPP-LCNP) as a photosensitizer for aPDT against the Gram-negative bacteria P. aeruginosa in both planktonic and biofilm modes of growth. LCNP significantly enhanced the performance of GaPP as photosensitizer by two-fold, which was correlated with higher antibacterial activity, reducing the viability of planktonic P. aeruginosa by 7 log10 using 0.8 µM GaPP-LCNP and a light dose of 17 J.cm−2. Importantly, GaPP-LCNP also reduced the viability of biofilms by 6 log10 at relatively low light dose of 34.2 J.cm−2 using only 3 µM GaPP-LCNP. The high antibiofilm activity of GaPP-LCNP at low GaPP-LCNP dose indicated the high efficiency and safety profile of GaPP-LCNP as a promising platform for photodynamic inactivation of recalcitrant infections.
Collapse
Affiliation(s)
- Muhammed Awad
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia
| | - Timothy J. Barnes
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Clive A. Prestidge
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
- Correspondence:
| |
Collapse
|
115
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
116
|
Qi Y, Fu P, Volmer DA. Analysis of natural organic matter via fourier transform ion cyclotron resonance mass spectrometry: an overview of recent non-petroleum applications. MASS SPECTROMETRY REVIEWS 2022; 41:647-661. [PMID: 32412674 DOI: 10.1002/mas.21634] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Among the different techniques for mass analysis, ultra-high-resolution Fourier transform ion cyclotron resonance (FTICR) is the method of choice for highly complex samples, as it offers unrivaled mass accuracy and resolving power, combined with a high degree of flexibility in hybrid instruments as well as for ion activation techniques. FTICR instruments are readily embraced by the biological and biomedical research communities and applied over a wide range of applications for the analysis of biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In the field of natural organic matter (NOM) analysis, petroleum-related studies currently dominate FTICR-MS applications. Recently, however, there is a growing interest in developing high-performance MS methods for the characterization of NOM samples from natural aquatic and terrestrial environments. Here, we present an overview of FTICR-MS techniques for complex, non-petroleum NOM samples, including data analysis and novel tandem mass spectrometry (MS/MS) methods for structural classifications. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
117
|
Polivanovskaia DA, Konstantinova AN, Birin KP, Sokolov VS, Batishchev OV, Gorbunova YG. Peripheral Groups of Dicationic Pyrazinoporphyrins Regulate Lipid Membrane Binding. MEMBRANES 2022; 12:membranes12090846. [PMID: 36135866 PMCID: PMC9505865 DOI: 10.3390/membranes12090846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/02/2023]
Abstract
Photodynamic therapy (PDT) is a widely used technique for skin cancer treatment and antimicrobial therapy. An improvement in PDT efficiency requires not only an increase in quantum yield of photosensitizer (PS) molecules but also their applicability for biological systems. Recently, we demonstrated that the activity of porphyrin-based PSs in the lipid membrane environment depends on the nature of the cation in the macrocycle due to its interactions with the lipid phosphate moiety, as well as the orientation of the PS molecules inside the membrane. Here, we report the synthesis, membrane binding properties and photodynamic efficiency of novel dicationic free-base, Ni(II) and Zn(II) pyrazinoporphyrins with terminal tetraalkylammonium units (2H-1, Ni-1 and Zn-1), to show the possibility to enhance the membrane binding of PS molecules, regardless of the central cation. All of these substances adsorb at the lipid membrane, while free-base and Zn(II) porphyrins actively generate singlet oxygen (SO) in the membranes. Thus, this study reveals a new way to tune the PDT activity of PSs in biological membranes through designing the structure of the peripheral groups in the macrocyclic photosensitizer.
Collapse
Affiliation(s)
- Daria A. Polivanovskaia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Anna N. Konstantinova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Kirill P. Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Valerij S. Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskiy pr., 119991 Moscow, Russia
| |
Collapse
|
118
|
Nau REP, Bösking J, Pannwitz A. Compartmentalization Accelerates Photosensitized NADH to NAD+ Conversion. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roland E. P. Nau
- Ulm University: Universitat Ulm Institut fuer Anorganische Chemie I GERMANY
| | - Julian Bösking
- Ulm University: Universitat Ulm Institut fuer Anorganische Chemie I GERMANY
| | - Andrea Pannwitz
- Ulm University: Universitat Ulm Institut fuer Anorganische Chemie I Albert-Einstein-Allee 11 89081 Ulm GERMANY
| |
Collapse
|
119
|
Chen T, Yang D, Lei S, Liu J, Song Y, Zhao H, Zeng X, Dan H, Chen Q. Photodynamic therapy-a promising treatment of oral mucosal infections. Photodiagnosis Photodyn Ther 2022; 39:103010. [PMID: 35820633 DOI: 10.1016/j.pdpdt.2022.103010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
The treatment of oral mucosal infections is increasingly challenging owing to antibiotic resistance. Therefore, alternative antimicrobial strategies are urgently required. Photodynamic therapy (PDT) has attracted attention for the treatment of oral mucosal infections because of its ability to effectively inactivate drug-resistant bacteria, completely heal clinical infectious lesions and usually offers only mild adverse reactions. This review briefly summarizes relevant scientific data and published papers and discusses the potential mechanism and application of PDT in the treatment of oral mucosal infections.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yansong Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
120
|
Zinc(II) Sulfanyltribenzoporphyrazines with Bulky Peripheral Substituents—Synthesis, Photophysical Characterization, and Potential Photocytotoxicity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The study’s aim was to synthesize new unsymmetrical sulfanyl zinc(II) porphyrazines and subject them to physicochemical and electrochemical characterization and also an initial acute toxicity assessment. The procedure was initiated from a commercially available dimercaptomaleonitrile disodium salt and o-phthalonitrile using Linstead’s macrocyclization reaction conditions, which led to magnesium(II) tribenzoporphyrazine with 4-(3,5-dibutoxycarbonylphenoxy)butylthio substituents. The obtained macrocycle was demetallated with trifluoroacetic acid and subsequently remetallated with zinc(II) acetate toward the zinc(II) porphyrazine derivative. The zinc(II) tribenzoporphyrazine with 4-(3,5-dibutoxycarbonylphenoxy)butylthio substituents was then subjected to the reduction reaction with LiAlH4, yielding zinc(II) tribenzoporphyrazine with 4-[3,5-di(hydroxymethyl)phenoxy]butylthio substituents. The new zinc(II) tribenzoporphyrazines were characterized by UV-Vis spectroscopy, various NMR techniques (1HNMR, 13CNMR, 1H-1H COSY, 1H-13C HSQC, and 1H-13C HMBC), and mass spectrometry. In the UV-Vis spectra, both macrocycles revealed characteristic Soret and Q-bands, whose positions were dependent on the solvent used for the measurements. Zinc(II) tribenzoporphyrazines were studied using electrochemical and photochemical methods, including the singlet oxygen generation assessment. Both zinc(II) porphyrazines revealed high singlet oxygen generation quantum yield values of up to 0.59 in DMSO, which indicates their potential photosensitizing potential for photodynamic therapy. In addition, new derivatives were subjected to a Microtox® bioluminescence assay.
Collapse
|
121
|
Ozlem-Caliskan S, Ertabaklar H, Bilgin MD, Ertug S. Evaluation of photodynamic therapy against Leishmania tropica promastigotes using different photosensitizers. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:354-364. [PMID: 34897808 DOI: 10.1111/phpp.12758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Photodynamic therapy is a two-step procedure, involving the use of photosensitizing agents followed by selective illumination of the target lesion with visible light. Photodynamic therapy has been described recently as a promising strategy for treatment of leishmaniasis. This study aims to evaluate the in vitro phototoxic, morphological, and apoptotic effect of methylene blue, toluidine blue, chloro-aluminum phthalocyanine, and pheophorbide a-mediated photodynamic therapy on the viability of Leishmania tropica promastigotes. METHODS Parasites were treated with methylene blue, toluidine blue, chloro-aluminum phthalocyanine, and pheophorbide a or/and methylene blue, toluidine blue, chloro-aluminum phthalocyanine, and pheophorbide a-mediated photodynamic therapy, and cell proliferation, morphological changes, and apoptosis were evaluated by XTT, giemsa staining, DAPI staining, and DNA fragmentation, respectively. RESULTS Parasite viability was significantly different in between the groups treated with methylene blue, toluidine blue, and pheophorbide a, with or without irradiation. chloro-aluminum phthalocyanine treatment did not lead to any alterations in cell viability in Leishmania tropica promastigotes with or without irradiation. DAPI staining results indicated that apoptotic bodies and nucleus fragmentation started to be visible in methylene blue, chloro-aluminum phthalocyanine, and pheophorbide a-mediated photodynamic therapy groups. DNA ladder pattern which is used to define apoptosis was observed in irradiated methylene blue, chloro-aluminum phthalocyanine, and pheophorbide a groups. CONCLUSIONS The results revealed that apoptosis-induced cell death was observed in Leishmania tropica promastigotes after the application of photosensitizers in combination with light irradiation.
Collapse
Affiliation(s)
- Sercin Ozlem-Caliskan
- Department of Biophysics, Institute of Health Sciences, Aydin Adnan Menderes University, Aydin, Turkey
| | - Hatice Ertabaklar
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Mehmet Dincer Bilgin
- Department of Biophysics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Sema Ertug
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
122
|
Seung Lee J, Kim J, Ye YS, Kim TI. Materials and device design for advanced phototherapy systems. Adv Drug Deliv Rev 2022; 186:114339. [PMID: 35568104 DOI: 10.1016/j.addr.2022.114339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
Abstract
Phototherapy has recently emerged as a promising solution for cancer treatment due to its multifunctionality and minimal invasiveness. Notwithstanding the limited penetration depth of light through skin, the ability of photopharmaceutical device systems to deliver light to desired lesions is important. The device system deploys advanced biocompatible materials and fabrication technologies for electronics, and eventually enables more efficient phototherapy. In this review, we focus on diverse optical electronics to illuminate the lesion site with light. Then, moving on to the phototherapy, we highlight photo-thermal therapy with light absorbing materials, photo-activated chemotherapy with light sensitive materials, and photo-dynamic therapy using photosensitizers. Furthermore, we introduce a drug delivery system that can deliver these photopharmaceutical agents spatiotemporally to the tumor site. To this end, we provide a general overview of materials and devices for phototherapy and discuss critical issues and pending limitations of such phototherapy.
Collapse
|
123
|
Sarbadhikary P, George BP, Abrahamse H. Potential Application of Photosensitizers With High-Z Elements for Synergic Cancer Therapy. Front Pharmacol 2022; 13:921729. [PMID: 35837287 PMCID: PMC9274123 DOI: 10.3389/fphar.2022.921729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 01/10/2023] Open
Abstract
The presence of heavy elements in photosensitizers (PS) strongly influences their electronic and photophysical properties, and hence, conjugation of PS with a suitable element is regarded as a potential strategy to improve their photodynamic properties. Moreover, PS conjugated to metal ion or metal complex and heavy atoms such as halogen have attracted considerable attention as promising agents for multimodal or synergistic cancer therapy. These tetrapyrrole compounds depending on the type and nature of the inorganic elements have been explored for photodynamic therapy (PDT), chemotherapy, X-ray photon activation therapy (PAT), and radiotherapy. Particularly, the combination of metal-based PS and X-ray irradiation has been investigated as a promising novel approach for treating deep-seated tumors, which in the case of PDT is a major limitation due to low light penetration in tissue. This review will summarize the present status of evidence on the effect of insertion of metal or halogen on the photophysical properties of PS and the effectiveness of various metal and halogenated PS investigated for PDT, chemotherapy, and PAT as mono and/or combination therapy.
Collapse
|
124
|
Porphyrins and Metalloporphyrins Combined with N-Heterocyclic Carbene (NHC) Gold(I) Complexes for Photodynamic Therapy Application: What Is the Weight of the Heavy Atom Effect? Molecules 2022; 27:molecules27134046. [PMID: 35807296 PMCID: PMC9268150 DOI: 10.3390/molecules27134046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/10/2023] Open
Abstract
The photophysical properties of two classes of porphyrins and metalloporphyrins linked to N-heterocyclic carbene (NHC) Au(I) complexes have been investigated by means of density functional theory and its time-dependent extension for their potential application in photodynamic therapy. For this purpose, the absorption spectra, the singlet–triplet energy gaps, and the spin–orbit coupling (SOC) constants have been determined. The obtained results show that all the studied compounds possess the appropriate properties to generate cytotoxic singlet molecular oxygen, and consequently, they can be employed as photosensitizers in photodynamic therapy. Nevertheless, on the basis of the computed SOCs and the analysis of the metal contribution to the involved molecular orbitals, a different influence in terms of the heavy atom effect in promoting the intersystem crossing process has been found as a function of the identity of the metal center and its position in the center of the porphyrin core or linked to the peripheral NHC.
Collapse
|
125
|
Cheng K, Guo Q, Shen Z, Yang W, Wang Y, Sun Z, Wu H. Bibliometric Analysis of Global Research on Cancer Photodynamic Therapy: Focus on Nano-Related Research. Front Pharmacol 2022; 13:927219. [PMID: 35784740 PMCID: PMC9243586 DOI: 10.3389/fphar.2022.927219] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 01/10/2023] Open
Abstract
A growing body of research has illuminated that photodynamic therapy (PDT) serves as an important therapeutic strategy in oncology and has become a hot topic in recent years. Although numerous papers related to cancer PDT (CPDT) have been published, no bibliometric studies have been conducted to summarize the research landscape, and highlight the research trends and hotspots in this field. This study collected 5,804 records on CPDT published between 2000 and 2021 from Web of Science Core Collection. Bibliometric analysis and visualization were conducted using VOSviewer, CiteSpace, and one online platform. The annual publication and citation results revealed significant increasing trends over the past 22 years. China and the United States, contributing 56.24% of the total publications, were the main driving force in this field. Chinese Academy of Sciences was the most prolific institution. Photodiagnosis and Photodynamic Therapy and Photochemistry and Photobiology were the most productive and most co-cited journals, respectively. All keywords were categorized into four clusters including studies on nanomaterial technology, clinical applications, mechanism, and photosensitizers. “nanotech-based PDT” and “enhanced PDT” were current research hotspots. In addition to several nano-related topics such as “nanosphere,” “nanoparticle,” “nanomaterial,” “nanoplatform,” “nanomedicine” and “gold nanoparticle,” the following topics including “photothermal therapy,” “metal organic framework,” “checkpoint blockade,” “tumor microenvironment,” “prodrug” also deserve further attention in the near future.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Guo
- Department of Orthopaedics, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Zefeng Shen
- Department of Graduate School, Sun Yat-sen University, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Weiguang Yang
- Department of Graduate School of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Department of Graduate School of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Kunming Cheng, ; Zaijie Sun, ; Haiyang Wu,
| | - Haiyang Wu
- Department of Graduate School of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- *Correspondence: Kunming Cheng, ; Zaijie Sun, ; Haiyang Wu,
| |
Collapse
|
126
|
A combined experimental and theoretical study on the Synthesis, Spectroscopic Characterization of Magnesium(II) Porphyrin Complex with DMAP axial ligand and antifungal activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
127
|
Cancer Treatment by Laser and Electrochemical Therapy Combined with Magnetic Nanoparticles as Potent Therapy Against Ehrlich Ascites Carcinoma. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
128
|
Yang Y, Tao F, Zhang L, Zhou Y, Zhong Y, Tian S, Wang Y. Preparation of a porphyrin-polyoxometalate hybrid and its photocatalytic degradation performance for mustard gas simulant 2-chloroethyl ethyl sulfide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
129
|
Liu H, Lei Y, Nie W, Zhao H, Wu Y, Zuo L, Wu G, Yang R, Xie HY. Immunomodulatory hybrid bio-nanovesicle for self-promoted photodynamic therapy. NANO RESEARCH 2022; 15:4233-4242. [DOI: 10.1007/s12274-021-4050-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 03/10/2025]
|
130
|
Laranjo M, Pereira NAM, Oliveira ASR, Campos Aguiar M, Brites G, Nascimento BFO, Serambeque B, Costa BDP, Pina J, Seixas de Melo JS, Pineiro M, Botelho MF, Pinho e Melo TMVD. Ring-Fused meso-Tetraarylchlorins as Auspicious PDT Sensitizers: Synthesis, Structural Characterization, Photophysics, and Biological Evaluation. Front Chem 2022; 10:873245. [PMID: 35572112 PMCID: PMC9091369 DOI: 10.3389/fchem.2022.873245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Novel 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused meso-tetraarylchlorins, with different degrees of hydrophilicity (with methyl ester, hydroxymethyl, and carboxylic acid moieties), have been synthesized and their photophysical characterization as well as in vitro photocytotoxicity assessment against human melanoma and esophageal and bladder carcinomas was carried out. An integrated analysis of the photosensitizers’ performance, considering the singlet oxygen generation data, cell internalization, and intracellular localization, allowed to establish relevant structure-photoactivity relationships and the rationalization of the observed photocytotoxicity. In the diacid and monoalcohol series, chlorins derived from meso-tetraphenylporphyrin proved to be the most efficient photodynamic therapy agents, showing IC50 values of 68 and 344 nM against A375 cells, respectively. These compounds were less active against OE19 and HT1376 cells, the diacid chlorin with IC50 values still in the nano-molar range, whereas the monohydroxymethyl-chlorin showed significantly higher IC50 values. The lead di(hydroxymethyl)-substituted meso-tetraphenylchlorin confirmed its remarkable photoactivity with IC50 values below 75 nM against the studied cancer cell lines. Subcellular accumulation of this chlorin in the mitochondria, endoplasmic reticulum, and plasma membrane was demonstrated.
Collapse
Affiliation(s)
- Mafalda Laranjo
- Institute of Biophysics and Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Nelson A. M. Pereira
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - Andreia S. R. Oliveira
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - Márcia Campos Aguiar
- Institute of Biophysics and Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - Gonçalo Brites
- Institute of Biophysics and Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bruno F. O. Nascimento
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - Beatriz Serambeque
- Institute of Biophysics and Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Bruna D. P. Costa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - João Pina
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - J. Sérgio Seixas de Melo
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - Marta Pineiro
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - M. Filomena Botelho
- Institute of Biophysics and Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Teresa M. V. D. Pinho e Melo
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
- *Correspondence: Teresa M. V. D. Pinho e Melo,
| |
Collapse
|
131
|
Arnau Del Valle C, Hirsch T, Marin M. Recent Advances in Near Infrared Upconverting Nanomaterials for Targeted Photodynamic Therapy of Cancer. Methods Appl Fluoresc 2022; 10. [PMID: 35447614 DOI: 10.1088/2050-6120/ac6937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment of cancer that uses the toxic reactive oxygen species, including singlet oxygen (1O2), generated by photosensitiser drugs following irradiation of a specific wavelength to destroy the cancerous cells and tumours. Visible light is commonly used as the excitation source in PDT, which is not ideal for cancer treatment due to its reduced tissue penetration, and thus inefficiency to treat deep-lying tumours. Additionally, these wavelengths exhibit elevated autofluorescence background from the biological tissues which hinders optical biomedical imaging. An alternative to UV-Vis irradiation is the use of near infrared (NIR) excitation for PDT. This can be achieved using upconverting nanoparticles (UCNPs) functionalised with photosensitiser (PS) drugs where UCNPs can be used as an indirect excitation source for the activation of PS drugs yielding to the production of singlet 1O2 following NIR excitation. The use of nanoparticles for PDT is also beneficial due to their tumour targeting capability, either passively via the enhanced permeability and retention (EPR) effect or actively via stimuli-responsive targeting and ligand-mediated targeting (ie. using recognition units that can bind specific receptors only present or overexpressed on tumour cells). Here, we review recent advances in NIR upconverting nanomaterials for PDT of cancer with a clear distinction between those reported nanoparticles that could potentially target the tumour due to accumulation via the EPR effect (passive targeting) and nanoparticle-based systems that contain targeting agents with the aim of actively target the tumour via a molecular recognition process.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, Regensburg, 93040, GERMANY
| | - Maria Marin
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
132
|
Synergistic Effect of Combination of a Temoporfin-Based Photodynamic Therapy with Potassium Iodide or Antibacterial Agents on Oral Disease Pathogens In Vitro. Pharmaceuticals (Basel) 2022; 15:ph15040488. [PMID: 35455485 PMCID: PMC9027005 DOI: 10.3390/ph15040488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
5, 10, 15, 20-Tetrakis(3-hydroxyphenyl)chlorin (temoporfin) is a photosensitizer used in photodynamic therapy for oral cancer and periodontal disease treatment. This study determined the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of temoporfin. Additionally, the combination of potassium iodide (KI) or antimicrobial agents in oral pathogens under hypoxic or normoxic conditions were determined. We also evaluated the biofilm removal effect and detected the expressions of the antibiotic resistance-related genes and biofilm formation-related genes of methicillin-resistant staphylococcus aureus (MRSA). The results provided reveal that the combination of the temoporfin and KI had a synergistic effect of reducing the MICs and MBCs of Lactobacillus acidophilus and Lactobacillus paracasei under normoxic and hypoxic conditions due to increasing H2O2 production. Temoporfin increased the biofilm removal of Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, and Staphylococcus aureus under normoxic condition, and it reduced the antibiotic resistance-related genes expression of MRSA. The combination of temoporfin with ampicillin or chlorhexidine significantly enhanced the bactericidal effect on MRSA. This study provides a potential application of temoporfin on the clinical side against oral pathogens and the prevention of oral diseases.
Collapse
|
133
|
Zou Q, Bao J, Yan X. Functional Nanomaterials Based on Self-Assembly of Endogenic NIR-Absorbing Pigments for Diagnostic and Therapeutic Applications. SMALL METHODS 2022; 6:e2101359. [PMID: 35142112 DOI: 10.1002/smtd.202101359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Endogenic pigments derived from hemoglobin have been successfully applied in the clinic for both imaging and therapy based on their inherent photophysical and photochemical properties, including light absorption, fluorescence emission, and producing reactive oxygen species. However, the clinically approved endogenic pigments can be excited only by UV/vis light, restricting the penetration depth of in vivo applications. Recently, endogenic pigments with NIR-absorbing properties have been explored for constructing functional nanomaterials. Here, the overview of NIR-absorbing endogenic pigments, mainly bile pigments, and melanins, as emerging building blocks for supramolecular construction of diagnostic and therapeutic nanomaterials is provided. The endogenic origins, synthetic pathways, and structural characteristics of the NIR-absorbing endogenic pigments are described. The self-assembling approaches and noncovalent interactions in fabricating the nanomaterials are emphasized. Since bile pigments and melanins are inherently photothermal agents, the resulting nanomaterials are demonstrated as promising candidates for photoacoustic imaging and photothermal therapy. Integration of additional diagnostic and therapeutic agents by the nanomaterials through chemical conjugation or physical encapsulation toward synergetic effects is also included. Especially, the degradation behaviors of the nanomaterials in biological environments are summarized. Along with the challenges, future perspectives are discussed for accelerating the ration design and clinical translation of NIR-absorbing nanomaterials.
Collapse
Affiliation(s)
- Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xuehai Yan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
134
|
Mussini A, Uriati E, Bianchini P, Diaspro A, Cavanna L, Abbruzzetti S, Viappiani C. Targeted photoimmunotherapy for cancer. Biomol Concepts 2022; 13:126-147. [PMID: 35304984 DOI: 10.1515/bmc-2022-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Eleonora Uriati
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza, Piacenza, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| |
Collapse
|
135
|
Poly(styrene-co-maleic Acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake. J Pers Med 2022; 12:jpm12030493. [PMID: 35330492 PMCID: PMC8951206 DOI: 10.3390/jpm12030493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Targeted therapy by using nanomedicines based on the enhanced permeability and retention (EPR) effect is becoming a promising anticancer strategy. Many nano-designed photosensitizers (PSs) for photodynamic therapy (PDT) have been developed which show superior therapeutic potentials than free PS. To further understand the advantages of nano-designed PS, in this study, we used styrene-co-maleyl telomer (SMA) as a polymer platform to prepare a micellar type of PS with two well-characterized PSs—rose bengal (RB) and methylene blue (MB)—and evaluated the outmatching benefits of SMA-PS micelles, especially focusing on the singlet oxygen (1O2) generation capacity and intracellular uptake profiles. In aqueous solutions, SMA-PS self-assembles to form micelles by non-covalent interactions between PS and SMA. SMA-PS micelles showed discrete distributions by dynamic light scattering having a mean particle size of 18–30 nm depending on the types of SMA and different PSs. The hydrodynamic size of SMA-PS was evaluated by Sephadex chromatography and it found to be 30–50 kDa. In the presence of human serum albumin, the sizes of SMA-PS remarkably increased, suggesting the albumin-binding property. 1O2 generation from the SMA-PS micelle was determined by electron spin resonance, in which the SMA-PS micelle showed comparatively more photo-stable, and consequently a more durable and constant, 1O2 generation capability than free PS. Moreover, intracellular uptake of SMA-PS micelles was extensively faster and higher than free PS, especially in tumor cells. Taken together, SMA-PS micelles appear highly advantageous for photodynamic therapy in addition to its capacity in utilizing the EPR effect for tumor targeted delivery.
Collapse
|
136
|
Linares IA, Martinelli LP, Moritz MN, Selistre-de-Araujo HS, de Oliveira KT, Rodrigues Perussi J. Cytotoxicity of structurally-modified chlorins aimed for photodynamic therapy applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
137
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
138
|
Dereje DM, Pontremoli C, Moran Plata MJ, Visentin S, Barbero N. Polymethine dyes for PDT: recent advances and perspectives to drive future applications. Photochem Photobiol Sci 2022; 21:397-419. [PMID: 35103979 DOI: 10.1007/s43630-022-00175-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
It has been proved that the effectiveness of photodynamic therapy (PDT) is closely related to the intrinsic features of the photosensitizer (PS). Over the recent years, several efforts have been devoted to the discovery of novel and more efficient photosensitizers showing higher efficacy and lower side effects. In this context, squaraine and cyanine dyes have been reported to potentially overcome the drawbacks related to the traditional PSs. In fact, squaraines and cyanines are characterized by sharp and intense absorption bands and narrow emission bands with high extinction coefficients typically in the red and near-infrared region, good photo and thermal stability and a strong fluorescent emission in organic solvents. In addition, biocompatibility and low toxicity make them suitable for biological applications. Despite these interesting intrinsic features, their chemical instability and self-aggregation properties in biological media still limit their use in PDT. To overcome these drawbacks, the self-assembly and incorporation into smart nanoparticle systems are forwarded promising approaches that can control their physicochemical properties, providing rational solutions for the limitation of free dye administration in the PDT application. The present review summarizes the latest advances in squaraine and cyanine dyes for PDT application, analyzing the different strategies, i.e.the self-assembly and the incorporation into nanoparticles, to further enhance their photochemical properties and therapeutic potential. The in vivo assessments are still limited, thus further delaying their effective application in PDT.
Collapse
Affiliation(s)
- Degnet Melese Dereje
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.,Department of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Polypeda 01, 0026, Bahir Dar, Ethiopia
| | - Carlotta Pontremoli
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Maria Jesus Moran Plata
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Quarello 15/A, 10135, Turin, Italy
| | - Nadia Barbero
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| |
Collapse
|
139
|
Victória HFV, Ferreira DC, Filho JBG, Martins DCS, Pinheiro MVB, Sáfar GDAM, Krambrock K. Detection of singlet oxygen by EPR: The instability of the nitroxyl radicals. Free Radic Biol Med 2022; 180:143-152. [PMID: 34979255 DOI: 10.1016/j.freeradbiomed.2021.12.303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022]
Abstract
The use of spin traps and redox probes coupled with electron paramagnetic resonance (EPR) is a method frequently applied in the evaluation of the efficiency of photosensitizers and photocatalysts in phototherapeutic and photocatalytic processes that involve reactive oxygen species. In this way, the method helps to clarify the mechanism behind photo-induced reactions. Hydroxy-TEMP is a very specific redox probe for selectively identifying and quantifying singlet oxygen (1O2). In this work, the kinetics of radical generated by the oxidation products of the Hydroxy-TEMP redox probe was analyzed from EPR spectra in aqueous solutions of several water-soluble porphyrins ([H2T4MPyP](OTs)4, Na4[H2T4SPP], [H2T2MPyP](OTs)4, [ZnT4MyPyP](OTs)4, [MnT4MyPyP](OTs)5, H2T4CPP, and [H2T4TriMAPP](OTs)4) under white light illumination. Different factors such as the concentration of the redox probe, pH of the medium, and photostability of the porphyrins were evaluated. A systematic study was carried out to reveal the factors associated with stable radical degradation (TEMPOL) by illumination in the visible spectral region in systems containing photosensitizer (porphyrin) and redox probe (Hydroxy-TEMP). With the aid of EPR and gas chromatography coupled with mass spectroscopy (GC-MS) techniques, the mechanism of the radical degradation and the photobleaching of porphyrins were investigated. After successive interactions with the porphyrin in its excited state, in alkaline aqueous solution (pH > 10), the free radical TEMPOL is transformed into TEMPONE until the final diamagnetic product Phorone. A protocol was elaborated to identify and quantify the generation of 1O2 by Hydroxy-TEMP reliably, to avoid possible errors in the interpretation of efficiency of photosensitizers.
Collapse
Affiliation(s)
- Henrique F V Victória
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Daniele C Ferreira
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - José B G Filho
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Dayse C S Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maurício V B Pinheiro
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gustavo de A M Sáfar
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Klaus Krambrock
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
140
|
Andrade-Villalobos F, Zúñiga-Núñez D, Fuentealba D, Fierro A. Binding of toluidine blue-myristic acid derivative to cucurbit[7]uril and human serum albumin: computational and biophysical insights towards a biosupramolecular assembly. Phys Chem Chem Phys 2022; 24:3222-3230. [PMID: 35044390 DOI: 10.1039/d1cp04307b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new toluidine blue-myristic acid photosensitizer derivate (TBOMyr) was investigated as a design molecule to bind simultaneously to cucurbit[7]uril (CB[7]) and human serum albumin (HSA) with the aim of constructing a biosupramolecular assembly. Molecular docking and dynamics calculations revealed the main supramolecular and bio-molecular interactions of TBOMyr with the macrocycle or the protein, respectively. The addition of the negatively charged myristic acid-like tail resulted in a unique conformation of the CB[7] complex where the phenothiazine core was included in the cavity of CB[7], leaving the fatty acid portion free to interact with the protein. A favorable ternary interaction between TBOMyr, CB[7] and HSA was suggested by the calculations, and an experimental binding affinity in the order of 105 M-1 was determined for the TBOMyr@CB[7] complex with HSA. The new TBOMyr derivative could find applications in photodynamic therapy benefiting from the biosupramolecular interactions as a transport system.
Collapse
Affiliation(s)
- Felipe Andrade-Villalobos
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile. .,Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - Daniel Zúñiga-Núñez
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - Angelica Fierro
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
141
|
Kumar S, Singh S, Kumar A, Murthy K, Kumar Singh A. pH-Responsive luminescence sensing, photoredox catalysis and photodynamic applications of ruthenium(II) photosensitizers bearing imidazo[4,5-f][1,10]phenanthroline scaffolds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
142
|
Likhonina AE, Mamardashvili GM, Mamardashvili NZ. Photoactive porphyrin-fluorescein arrays to control the acidity of medium. J Photochem Photobiol A Chem 2022; 424:113650. [DOI: 10.1016/j.jphotochem.2021.113650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
143
|
In vitro and in vivo evaluation of a chlorin-based photosensitizer KAE® for cancer treatment. Photodiagnosis Photodyn Ther 2022; 38:102759. [DOI: 10.1016/j.pdpdt.2022.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022]
|
144
|
Pereira LS, Camacho SA, Almeida AM, Gonçalves RS, Caetano W, DeWolf C, Aoki PH. Mechanisms of hypericin incorporation to explain the photooxidation outcomes in phospholipid biomembrane models. Chem Phys Lipids 2022; 244:105181. [DOI: 10.1016/j.chemphyslip.2022.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 11/03/2022]
|
145
|
Tetra-2,3-Pyrazinoporphyrazines with Externally Appended Pyridine Rings 22 Synthesis, Physicochemical and Photoactivity Studies on In(III) Mono- and Heteropentanuclear Complexes. Molecules 2022; 27:molecules27030849. [PMID: 35164111 PMCID: PMC8840402 DOI: 10.3390/molecules27030849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
The basic macrocyclic octapyridinotetrapyrazinoporphyrazine InIII complex of formula [Py8TPyzPzIn(OAc)]·8H2O, prepared by reaction of the free ligand [Py8TPyzPzH2]·2H2O with In(OAc)3, is a stable-to-air species of which the structure has been studied by its X-ray powder diffraction and mass spectra and characterization operated by IR and UV-visible spectral behavior. The complex has been further examined and proven to be of potential interest for its response as an anticancer agent in the field of photodynamic therapy (PDT), the value of ΦΔ = 0.55 (in DMF) being in the range of 0.4–0.6 at the level of similar phthalocyanine and porphyrazine analogs and qualifying the species as a highly efficient anticancer agent. Planned parallel types of investigation, including their photoactive behaviour in PDT, have been extended to the mononuclear octacation [(2-Mepy)8TPyzPzIn(OAc)]8+ (salted by iodide ions) and the heteropentanuclear derivatives [(M’Cl2)4Py8TPyzPzIn(OAc)]·xH2O (M’ = PdII, x = 8; PtII, x = 1)) and [{(Pd(CBT)2)4}Py8TPyzPzIn(OAc)]·19H2O (CBT = m-carborane-1-thiolate anion).
Collapse
|
146
|
Solis-Egaña F, Lavín-Urqueta N, Guerra Díaz D, Mariño-Ocampo N, Faúndez MA, Fuentealba D. Supramolecular co-encapsulation of a photosensitizer and chemotherapeutic drug in cucurbit[8]uril for potential chemophototherapy. Photochem Photobiol Sci 2022; 21:349-359. [PMID: 35088367 DOI: 10.1007/s43630-022-00174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
Supramolecular strategies as well as combinatorial approaches have been proposed to improve cancer therapeutics. In this work, we investigated the encapsulation of the photosensitizer acridine orange (AO) and the chemotherapeutic drug oxaliplatin (OxPt) in cucurbit[8]uril (CB[8]), and tested their effect both separate and combined on tumoral cells cultivated in vitro. Binding constants and enthalpies of reaction for the AO@CB[8], (AO)2@CB[8] and OxPt@CB[8] complexes were determined by isothermal titration calorimetry. In the case of AO, a negative cooperativity for the binding of the second AO molecule was found, in agreement with previous fluorescence titration data. We show herein that the AO@CB[8] complex was effectively incorporated within the cells and showed important phototoxicity, while the OxPt@CB[8] complex was cytotoxic only at long incubation times (24 h). Pre-treatment of the cells with the OxPt@CB[8] complex for 24 h inhibited any photodynamic action by the later treatment with the AO@CB[8] complex. However, when both complexes were co-incubated for 90 min, the combined cytotoxicity/phototoxicity was superior to any of the treatments individually. A cooperative effect was identified that added up to an extra 30% cytotoxicity/phototoxicity. The results point to an interesting system where a photosensitizer and chemotherapeutic drug are co-encapsulated in a macrocycle to develop chemophototherapy applications.
Collapse
Affiliation(s)
- Fresia Solis-Egaña
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Nicole Lavín-Urqueta
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Daniel Guerra Díaz
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Nory Mariño-Ocampo
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Mario A Faúndez
- Escuela de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
147
|
Karges J. Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angew Chem Int Ed Engl 2022; 61:e202112236. [PMID: 34748690 DOI: 10.1002/anie.202112236] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer has emerged over the last decades as one of the deadliest diseases in the world. Among the most commonly used techniques (i.e. surgery, immunotherapy, radiotherapy or chemotherapy), increasing attention has been devoted towards photodynamic therapy. However, the vast majority of clinically applied photosensitizers are not ideal and associated with several limitations including poor aqueous solubility, poor photostability and slow clearance from the body, causing photosensitivity. In an effort to overcome these drawbacks, much attention has been devoted towards the incorporation of a metal ion. Herein, the clinical development of metal-containing compounds including Purlytin® , Lutrin® /Antrin® , Photosens® , TOOKAD® soluble or TLD-1433 is critically reviewed.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
148
|
Karges J. Klinische Entwicklung von Metallkomplexen als Photosensibilisatoren für die photodynamische Therapie von Krebs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
149
|
DFT Study of the Molecular and Electronic Structure of Metal-Free Tetrabenzoporphyrin and Its Metal Complexes with Zn, Cd, Al, Ga, In. Int J Mol Sci 2022; 23:ijms23020939. [PMID: 35055126 PMCID: PMC8781462 DOI: 10.3390/ijms23020939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The electronic and molecular structures of metal-free tetrabenzoporphyrin (H2TBP) and its complexes with zinc, cadmium, aluminum, gallium and indium were investigated by density functional theory (DFT) calculations with a def2-TZVP basis set. A geometrical structure of ZnTBP and CdTBP was found to possess D4h symmetry; AlClTBP, GaClTBP and InClTBP were non-planar complexes with C4v symmetry. The molecular structure of H2TBP belonged to the point symmetry group of D2h. According to the results of the natural bond orbital (NBO) analysis, the M-N bonds had a substantial ionic character in the cases of the Zn(II) and Cd(II) complexes, with a noticeably increased covalent contribution for Al(III), Ga(III) and In(III) complexes with an axial –Cl ligand. The lowest excited states were computed with the use of time-dependent density functional theory (TDDFT) calculations. The model electronic absorption spectra indicated a weak influence of the nature of the metal on the Q-band position.
Collapse
|
150
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|