101
|
Mycobacterium ulcerans Population Genomics To Inform on the Spread of Buruli Ulcer across Central Africa. mSphere 2019; 4:4/1/e00472-18. [PMID: 30728280 PMCID: PMC6365612 DOI: 10.1128/msphere.00472-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Buruli ulcer is a neglected tropical disease of skin and subcutaneous tissue caused by infection with the pathogen Mycobacterium ulcerans Many critical issues for disease control, such as understanding the mode of transmission and identifying source reservoirs of M. ulcerans, are still largely unknown. Here, we used genomics to reconstruct in detail the evolutionary trajectory and dynamics of M. ulcerans populations at a central African scale and at smaller geographical village scales. Whole-genome sequencing (WGS) data were analyzed from 179 M. ulcerans strains isolated from all Buruli ulcer foci in the Democratic Republic of the Congo, The Republic of Congo, and Angola that have ever yielded positive M. ulcerans cultures. We used both temporal associations and the study of the mycobacterial demographic history to estimate the contribution of humans as a reservoir in Buruli ulcer transmission. Our phylogeographic analysis revealed one almost exclusively predominant sublineage of M. ulcerans that arose in Central Africa and proliferated in its different regions of endemicity during the Age of Discovery. We observed how the best sampled endemic hot spot, the Songololo territory, became an area of endemicity while the region was being colonized by Belgium (1880s). We furthermore identified temporal parallels between the observed past population fluxes of M. ulcerans from the Songololo territory and the timing of health policy changes toward control of the Buruli ulcer epidemic in that region. These findings suggest that an intervention based on detecting and treating human cases in an area of endemicity might be sufficient to break disease transmission chains, irrespective of other reservoirs of the bacterium.IMPORTANCE Buruli ulcer is a destructive skin and soft tissue infection caused by Mycobacterium ulcerans The disease is characterized by progressive skin ulceration, which can lead to permanent disfigurement and long-term disability. Currently, the major hurdles facing disease control are incomplete understandings of both the mode of transmission and environmental reservoirs of M. ulcerans As decades of spasmodic environmental sampling surveys have not brought us much closer to overcoming these hurdles, the Buruli ulcer research community has recently switched to using comparative genomics. The significance of our research is in how we used both temporal associations and the study of the mycobacterial demographic history to estimate the contribution of humans as a reservoir in Buruli ulcer transmission. Our approach shows that it might be possible to use bacterial population genomics to assess the impact of health interventions, providing valuable feedback for managers of disease control programs in areas where health surveillance infrastructure is poor.
Collapse
|
102
|
Rakotoarivelo AR, Goodman SM, Schoeman MC, Willows-Munro S. Phylogeography and population genetics of the endemic Malagasy bat, Macronycteris commersoni s.s. (Chiroptera: Hipposideridae). PeerJ 2019; 7:e5866. [PMID: 30671293 PMCID: PMC6339777 DOI: 10.7717/peerj.5866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
Macronycteris commersoni (Hipposideridae), a bat species endemic to Madagascar, is widespread across the island and utilizes a range of habitat types including open woodland, degraded habitats, and forested areas from sea level to 1,325 m. Despite being widely distributed, there is evidence that M. commersoni exhibits morphological and bioacoustic variation across its geographical range. We investigated the fine-scale phylogeographic structure of populations in the western half of the island using extensive spatial sampling and sequence data from two mitochondrial DNA regions. Our results indicated several lineages within M. commersoni. Individuals collected from northern Madagascar formed a single monophyletic clade (clade C). A second clade (clade B) included individuals collected from the south-western portion of the island. This second clade displayed more phylogeographical partitioning with differences in mtDNA haplotypes frequency detected between populations collected in different bioclimatic regions. Lineage dispersal, genetic divergence, and timing of expansion events of M. commersoni were probably associated with Pleistocene climate fluctuations. Our data suggest that the northern and the central western regions of Madagascar may have acted as refugia for this species during periods of cooler and drier climate conditions associated with the Pleistocene.
Collapse
Affiliation(s)
- Andrinajoro R. Rakotoarivelo
- Department of Zoology, University of Venda, Thohoyandou, Limpopo, South Africa
- School of Life Sciences, University of Kwa-Zulu Natal, Pietermaritzburg, Kwa-Zulu Natal, South Africa
- Natiora Ahy, Antananarivo, Madagascar
| | - Steven M. Goodman
- Field Museum of Natural History, Chicago, IL, United States of America
- Association Vahatra, Antananarivo, Madagascar
| | - M. Corrie Schoeman
- School of Life Sciences, University of Kwa-Zulu Natal, Westville, Kwa-Zulu Natal, South Africa
| | - Sandi Willows-Munro
- School of Life Sciences, University of Kwa-Zulu Natal, Pietermaritzburg, Kwa-Zulu Natal, South Africa
| |
Collapse
|
103
|
Rocha-Méndez A, Sánchez-González LA, Arbeláez-Cortés E, Navarro-Sigüenza AG. Phylogeography indicates incomplete genetic divergence among phenotypically differentiated montane forest populations of Atlapetesalbinucha (Aves, Passerellidae). Zookeys 2019:125-148. [PMID: 30598618 PMCID: PMC6306474 DOI: 10.3897/zookeys.809.28743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/19/2018] [Indexed: 11/12/2022] Open
Abstract
The White-naped Brushfinch (Atlapetesalbinucha) comprises up to eight allopatric subspecies mainly identified by the color of the underparts (gray vs. yellow belly). Yellow and gray bellied forms were long considered two different species (A.albinucha and A.gutturalis), but they are presently considered as one polytypic species. Previous studies in the genus Atlapetes have shown that the phylogeny, based on molecular data, is not congruent with characters such as coloration, ecology, or distributional patterns. The phylogeography of A.albinucha was analyzed using two mitochondrial DNA regions from samples including 24 different localities throughout montane areas from eastern Mexico to Colombia. Phylogeographic analyses using Bayesian inference, maximum likelihood and haplotype network revealed incomplete geographic structure. The genetic diversity pattern is congruent with a recent process of expansion, which is also supported by Ecological Niche Models (ENM) constructed for the species and projected into three past scenarios. Overall, the results revealed an incomplete genetic divergence among populations of A.albinucha in spite of the species’ ample range, which contrasts with previous results of phylogeographic patterns in other Neotropical montane forest bird species, suggesting idiosyncratic evolutionary histories for different taxa throughout the region.
Collapse
Affiliation(s)
- Alberto Rocha-Méndez
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, México City 04510, México Universidad Nacional Autónoma de México México City Mexico
| | - Luis A Sánchez-González
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, México City 04510, México Universidad Nacional Autónoma de México México City Mexico
| | - Enrique Arbeláez-Cortés
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Carrera 27 Calle 9. Bucaramanga, Santander, Colombia Universidad Industrial de Santander Bucaramanga Colombia
| | - Adolfo G Navarro-Sigüenza
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, México City 04510, México Universidad Nacional Autónoma de México México City Mexico
| |
Collapse
|
104
|
Edge MD, Coop G. Reconstructing the History of Polygenic Scores Using Coalescent Trees. Genetics 2019; 211:235-262. [PMID: 30389808 PMCID: PMC6325695 DOI: 10.1534/genetics.118.301687] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
Genome-wide association studies (GWAS) have revealed that many traits are highly polygenic, in that their within-population variance is governed, in part, by small-effect variants at many genetic loci. Standard population-genetic methods for inferring evolutionary history are ill-suited for polygenic traits: when there are many variants of small effect, signatures of natural selection are spread across the genome and are subtle at any one locus. In the last several years, various methods have emerged for detecting the action of natural selection on polygenic scores, sums of genotypes weighted by GWAS effect sizes. However, most existing methods do not reveal the timing or strength of selection. Here, we present a set of methods for estimating the historical time course of a population-mean polygenic score using local coalescent trees at GWAS loci. These time courses are estimated by using coalescent theory to relate the branch lengths of trees to allele-frequency change. The resulting time course can be tested for evidence of natural selection. We present theory and simulations supporting our procedures, as well as estimated time courses of polygenic scores for human height. Because of its grounding in coalescent theory, the framework presented here can be extended to a variety of demographic scenarios, and its usefulness will increase as both GWAS and ancestral-recombination-graph inference continue to progress.
Collapse
Affiliation(s)
- Michael D Edge
- Center for Population Biology, Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Graham Coop
- Center for Population Biology, Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
105
|
Feng L, Xu ZY, Wang L. Genetic diversity and demographic analysis of an endangered tree species Diplopanax stachyanthus in subtropical China: implications for conservation and management. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1133-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
106
|
Sainudiin R, Véber A. Full likelihood inference from the site frequency spectrum based on the optimal tree resolution. Theor Popul Biol 2018; 124:1-15. [DOI: 10.1016/j.tpb.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
107
|
Khanal L, Chalise MK, Wan T, Jiang X. Riverine barrier effects on population genetic structure of the Hanuman langur (Semnopithecus entellus) in the Nepal Himalaya. BMC Evol Biol 2018; 18:159. [PMID: 30382913 PMCID: PMC6211570 DOI: 10.1186/s12862-018-1280-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/24/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Past climatological events and contemporary geophysical barriers shape the distribution, population genetic structure, and evolutionary history of many organisms. The Himalayan region, frequently referred to as the third pole of the Earth, has experienced large-scale climatic oscillations in the past and bears unique geographic, topographic, and climatic areas. The influences of the Pleistocene climatic fluctuations and present-day geographical barriers such as rivers in shaping the demographic history and population genetic structure of organisms in the Nepal Himalaya have not yet been documented. Hence, we examined the effects of late-Quaternary glacial-interglacial cycles and riverine barriers on the genetic composition of Hanuman langurs (Semnopithecus entellus), a colobine primate with a wide range of altitudinal distribution across the Nepalese Himalaya, using the mitochondrial DNA control region (CR, 1090 bp) and cytochrome B (CYTB, 1140 bp) sequences combined with paleodistribution modeling. RESULTS DNA sequences were successfully retrieved from 67 non-invasively collected fecal samples belonging to 18 wild Hanuman langur troops covering the entire distribution range of the species in Nepal. We identified 37 haplotypes from the concatenated CR + CYTB (2230 bp) sequences, with haplotype and nucleotide diversities of 0.958 ± 0.015 and 0.0237 ± 0.0008, respectively. The troops were clustered into six major clades corresponding to their river-isolated spatial distribution, with the significantly high genetic variation among these clades confirming the barrier effects of the snow-fed Himalayan rivers on genetic structuring. Analysis of demographic history projected a decrease in population size with the onset of the last glacial maximum (LGM); and, in accordance with the molecular analyses, paleodistribution modeling revealed a range shift in its suitable habitat downward/southward during the LGM. The complex genetic structure among the populations of central Nepal, and the stable optimal habitat through the last interglacial period to the present suggest that the central mid-hills of Nepal served as glacial refugia for the Hanuman langur. CONCLUSIONS Hanuman langurs of the Nepal Himalaya region exhibit high genetic diversity, with their population genetic structure is strongly shaped by riverine barrier effects beyond isolation by distance; hence, this species demands detailed future phylogenetic study.
Collapse
Affiliation(s)
- Laxman Khanal
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223 China
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu, 44613 Nepal
| | - Mukesh Kumar Chalise
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu, 44613 Nepal
| | - Tao Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| | - Xuelong Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
108
|
Volz EM, Didelot X. Modeling the Growth and Decline of Pathogen Effective Population Size Provides Insight into Epidemic Dynamics and Drivers of Antimicrobial Resistance. Syst Biol 2018; 67:719-728. [PMID: 29432602 PMCID: PMC6005154 DOI: 10.1093/sysbio/syy007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/04/2018] [Indexed: 12/15/2022] Open
Abstract
Nonparametric population genetic modeling provides a simple and flexible approach for studying demographic history and epidemic dynamics using pathogen sequence data. Existing Bayesian approaches are premised on stochastic processes with stationary increments which may provide an unrealistic prior for epidemic histories which feature extended period of exponential growth or decline. We show that nonparametric models defined in terms of the growth rate of the effective population size can provide a more realistic prior for epidemic history. We propose a nonparametric autoregressive model on the growth rate as a prior for effective population size, which corresponds to the dynamics expected under many epidemic situations. We demonstrate the use of this model within a Bayesian phylodynamic inference framework. Our method correctly reconstructs trends of epidemic growth and decline from pathogen genealogies even when genealogical data are sparse and conventional skyline estimators erroneously predict stable population size. We also propose a regression approach for relating growth rates of pathogen effective population size and time-varying variables that may impact the replicative fitness of a pathogen. The model is applied to real data from rabies virus and Staphylococcus aureus epidemics. We find a close correspondence between the estimated growth rates of a lineage of methicillin-resistant S. aureus and population-level prescription rates of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\beta$\end{document}-lactam antibiotics. The new models are implemented in an open source R package called skygrowth which is available at https://github.com/mrc-ide/skygrowth.
Collapse
Affiliation(s)
- Erik M Volz
- Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, W2 1PG, UK
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, W2 1PG, UK
| |
Collapse
|
109
|
Ferrari A, Tinti F, Bertucci Maresca V, Velonà A, Cannas R, Thasitis I, Costa FO, Follesa MC, Golani D, Hemida F, Helyar SJ, Mancusi C, Mulas A, Serena F, Sion L, Stagioni M, Cariani A. Natural history and molecular evolution of demersal Mediterranean sharks and skates inferred by comparative phylogeographic and demographic analyses. PeerJ 2018; 6:e5560. [PMID: 30245927 PMCID: PMC6149499 DOI: 10.7717/peerj.5560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/09/2018] [Indexed: 11/22/2022] Open
Abstract
Background The unique and complex paleoclimatic and paleogeographic events which affected the Mediterranean Sea since late Miocene deeply influenced the distribution and evolution of marine organisms and shaped their genetic structure. Following the Messinian salinity crisis and the sea-level fluctuations during the Pleistocene, several Mediterranean marine species developed deep genetic differentiation, and some underwent rapid radiation. Here, we consider two of the most prioritized groups for conservation in the light of their evolutionary history: sharks and rays (elasmobranchs). This paper deals with a comparative multispecies analysis of phylogeographic structure and historical demography in two pairs of sympatric, phylogenetically- and ecologically-related elasmobranchs, two scyliorhinid catsharks (Galeus melastomus, Scyliorhinus canicula) and two rajid skates (Raja clavata, Raja miraletus). Sampling and experimental analyses were designed to primarily test if the Sicilian Channel can be considered as effective eco-physiological barrier for Mediterranean demersal sympatric elasmobranchs. Methods The phylogeography and the historical demography of target species were inferred by analysing the nucleotide variation of three mitochondrial DNA markers (i.e., partial sequence of COI, NADH2 and CR) obtained from a total of 248 individuals sampled in the Western and Eastern Mediterranean Sea as well as in the adjacent northeastern Atlantic Ocean. Phylogeographic analysis was performed by haplotype networking and testing spatial genetic differentiation of samples (i.e., analysis of molecular variance and of principal components). Demographic history of Mediterranean populations was reconstructed using mismatch distribution and Bayesian Skyline Plot analyses. Results No spatial genetic differentiation was identified in either catshark species, while phylogeographic structure of lineages was identified in both skates, with R. miraletus more structured than R. clavata. However, such structuring of skate lineages was not consistent with the separation between Western and Eastern Mediterranean. Sudden demographic expansions occurred synchronously during the upper Pleistocene (40,000–60,000 years ago) in both skates and G. melastomus, likely related to optimal environmental conditions. In contrast, S. canicula experienced a slow and constant increase in population size over the last 350,000 years. Discussion The comparative analysis of phylogeographic and historical demographic patterns for the Mediterranean populations of these elasmobranchs reveals that historical phylogeographic breaks have not had a large impact on their microevolution. We hypothesize that interactions between environmental and ecological/physiological traits may have been the driving force in the microevolution of these demersal elasmobranch species in the Mediterranean rather than oceanographic barriers.
Collapse
Affiliation(s)
- Alice Ferrari
- Department of Biological, Geological & Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Fausto Tinti
- Department of Biological, Geological & Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Victoria Bertucci Maresca
- Department of Biological, Geological & Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Velonà
- Department of Biological, Geological & Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Rita Cannas
- Department of Life Sciences and Environment, University of Cagliari, Cagliari, Italy
| | - Ioannis Thasitis
- Department of Fisheries and Marine Research, Ministry of Agriculture, Natural Resources and Environment, Nicosia, Cyprus
| | - Filipe Oliveira Costa
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | | | - Daniel Golani
- Department of Evolution, Systematics and Ecology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Farid Hemida
- Ecole Nationale Supérieure des Sciences de la Mer et de Aménagement du Littoral (ENSSMAL), Algiers, Algeria
| | - Sarah J Helyar
- School of Biological Sciences, Institute for Global Food Security, The Queen's University Belfast, Belfast, United Kingdom
| | - Cecilia Mancusi
- Regional Agency for Environmental Protection-Toscana (ARPAT), Livorno, Italy
| | - Antonello Mulas
- Department of Life Sciences and Environment, University of Cagliari, Cagliari, Italy
| | - Fabrizio Serena
- Institute Coastal Marine Environment, Italian National Research Council (CNR-IAMC), Mazara del Vallo, Italy
| | - Letizia Sion
- Department of Biology, University of Bari, Bari, Italy
| | - Marco Stagioni
- Department of Biological, Geological & Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Alessia Cariani
- Department of Biological, Geological & Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
110
|
Nakamura H, Teshima K, Tachida H. Effects of cyclic changes in population size on neutral genetic diversity. Ecol Evol 2018; 8:9362-9371. [PMID: 30377507 PMCID: PMC6194295 DOI: 10.1002/ece3.4436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/29/2023] Open
Abstract
Recurrent changes in population size are often observed in nature, influencing the efficiency of selection and consequently affecting organismal evolution. Thus, it is important to know whether such changes occurred in the past history of a focal population of evolutionary interests. Here, we focused on cyclic changes in population size and investigated the distributional properties of Tajima's D and its power to distinguish a cyclic change model compared with the standard neutral model, changing the frequency and magnitude of the cyclic change. With very low or very high frequencies of the cycle, the distribution of Tajima's D was similar to that in a constant size population, as demonstrated by previous theoretical works. Otherwise, its mean was negative or positive, and its variance was smaller or larger depending on the time of sampling. The detection rate of the cyclic change against the constancy in size by Tajima's D depended on the sample size, the number of loci, and the time of sampling in addition to the frequency and amplitude of the cycle. Using sequence data of several tens of loci, the detection rate was fairly high if the frequency was intermediate and the sampling was made when population size was large; otherwise, the detection rate was not high. We also found that cyclic change could be discriminated from simple expansion or shrinkage of a population by Tajima's D only if the frequency was in a limited range and the sampling was made when the population was large.
Collapse
Affiliation(s)
- Haruna Nakamura
- Graduate School of Systems Life SciencesKyushu UniversityFukuokaJapan
| | - Kosuke Teshima
- Department of BiologyFaculty of ScienceKyushu UniversityFukuokaJapan
| | - Hidenori Tachida
- Department of BiologyFaculty of ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
111
|
Yıldırım Y, Anderson MJ, Hansson B, Patel S, Millar CD, Rainey PB. Genetic structure of the grey side-gilled sea slug (Pleurobranchaea maculata) in coastal waters of New Zealand. PLoS One 2018; 13:e0202197. [PMID: 30114275 PMCID: PMC6095540 DOI: 10.1371/journal.pone.0202197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 07/30/2018] [Indexed: 01/09/2023] Open
Abstract
Pleurobranchaea maculata is a rarely studied species of the Heterobranchia found throughout the south and western Pacific-and recently recorded in Argentina-whose population genetic structure is unknown. Interest in the species was sparked in New Zealand following a series of dog deaths caused by ingestions of slugs containing high levels of the neurotoxin tetrodotoxin. Here we describe the genetic structure and demographic history of P. maculata populations from five principle locations in New Zealand based on extensive analyses of 12 microsatellite loci and the COI and CytB regions of mitochondrial DNA (mtDNA). Microsatellite data showed significant differentiation between northern and southern populations with population structure being associated with previously described regional variations in tetrodotoxin concentrations. However, mtDNA sequence data did not support such structure, revealing a star-shaped haplotype network with estimates of expansion time suggesting a population expansion in the Pleistocene era. Inclusion of publicly available mtDNA sequence sea slugs from Argentina did not alter the star-shaped network. We interpret our data as indicative of a single founding population that fragmented following geographical changes that brought about the present day north-south divide in New Zealand waters. Lack of evidence of cryptic species supports data indicating that differences in toxicity of individuals among regions are a consequence of differences in diet.
Collapse
Affiliation(s)
- Yeşerin Yıldırım
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Marti J. Anderson
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Selina Patel
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Craig D. Millar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), CNRS UMR 8231, PSL Research University, Paris, France
| |
Collapse
|
112
|
Chen J, Ni P, Tran Thi TN, Kamaldinov EV, Petukhov VL, Han J, Liu X, Šprem N, Zhao S. Selective constraints in cold-region wild boars may defuse the effects of small effective population size on molecular evolution of mitogenomes. Ecol Evol 2018; 8:8102-8114. [PMID: 30250687 PMCID: PMC6144961 DOI: 10.1002/ece3.4221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Spatial range expansion during population colonization is characterized by demographic events that may have significant effects on the efficiency of natural selection. Population genetics suggests that genetic drift brought by small effective population size (Ne) may undermine the efficiency of selection, leading to a faster accumulation of nonsynonymous mutations. However, it is still unknown whether this effect might be balanced or even reversed by strong selective constraints. Here, we used wild boars and local domestic pigs from tropical (Vietnam) and subarctic region (Siberia) as animal model to evaluate the effects of functional constraints and genetic drift on shaping molecular evolution. The likelihood-ratio test revealed that Siberian clade evolved significantly different from Vietnamese clades. Different datasets consistently showed that Siberian wild boars had lower Ka/Ks ratios than Vietnamese samples. The potential role of positive selection for branches with higher Ka/Ks was evaluated using branch-site model comparison. No signal of positive selection was found for the higher Ka/Ks in Vietnamese clades, suggesting the interclade difference was mainly due to the reduction in Ka/Ks for Siberian samples. This conclusion was further confirmed by the result from a larger sample size, among which wild boars from northern Asia (subarctic and nearby region) had lower Ka/Ks than those from southern Asia (temperate and tropical region). The lower Ka/Ks might be due to either stronger functional constraints, which prevent nonsynonymous mutations from accumulating in subarctic wild boars, or larger Ne in Siberian wild boars, which can boost the efficacy of purifying selection to remove functional mutations. The latter possibility was further ruled out by the Bayesian skyline plot analysis, which revealed that historical Ne of Siberian wild boars was smaller than that of Vietnamese wild boars. Altogether, these results suggest stronger functional constraints acting on mitogenomes of subarctic wild boars, which may provide new insights into their local adaptation of cold resistance.
Collapse
Affiliation(s)
- Jianhai Chen
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
| | - Pan Ni
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
| | - Thuy Nhien Tran Thi
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
- National Institute of Animal SciencesHanoiVietnam
| | - Evgeniy Varisovich Kamaldinov
- Federal State Budgetary Educational Institution of Higher EducationNovosibirsk State Agrarian UniversityNovosibirskRussia
| | - Valeriy Lavrentyevich Petukhov
- Federal State Budgetary Educational Institution of Higher EducationNovosibirsk State Agrarian UniversityNovosibirskRussia
| | - Jianlin Han
- International Livestock Research Institute (ILRI)NairobiKenya
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiangdong Liu
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
| | - Nikica Šprem
- Department of Fisheries, Beekeeping, Game Management and Special ZoologyFaculty of AgricultureUniversity of ZagrebZagrebCroatia
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
113
|
Miller EF, Manica A, Amos W. Global demographic history of human populations inferred from whole mitochondrial genomes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180543. [PMID: 30225046 PMCID: PMC6124094 DOI: 10.1098/rsos.180543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
The Neolithic transition has led to marked increases in census population sizes across the world, as recorded by a rich archaeological record. However, previous attempts to detect such changes using genetic markers, especially mitochondrial DNA (mtDNA), have mostly been unsuccessful. We use complete mtDNA genomes from over 1700 individuals, from the 1000 Genomes Project Phase 3, to explore changes in populations sizes in five populations for each of four major geographical regions, using a sophisticated coalescent-based Bayesian method (extended Bayesian skyline plots) and mutation rates calibrated with ancient DNA. Despite the power and sophistication of our analysis, we fail to find size changes that correspond to the Neolithic transitions of the study populations. However, we do detect a number of size changes, which tend to be replicated in most populations within each region. These changes are mostly much older than the Neolithic transition and could reflect either population expansion or changes in population structure. Given the amount of migration and population mixing that occurred after these ancient signals were generated, we caution that modern populations will often carry ghost signals of demographic events that occurred far away from their current location.
Collapse
|
114
|
Schweizer M, Liu Y, Olsson U, Shirihai H, Huang Q, Leader PJ, Copete JL, Kirwan GM, Chen G, Svensson L. Contrasting patterns of diversification in two sister species of martins (Aves: Hirundinidae): The Sand Martin Riparia riparia and the Pale Martin R. diluta. Mol Phylogenet Evol 2018. [DOI: 10.1016/j.ympev.2018.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
115
|
Yoder AD, Poelstra JW, Tiley GP, Williams RC. Neutral Theory Is the Foundation of Conservation Genetics. Mol Biol Evol 2018; 35:1322-1326. [DOI: 10.1093/molbev/msy076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Anne D Yoder
- Department of Biology, Duke University, Durham, NC
| | | | | | | |
Collapse
|
116
|
Murray GGR, Soares AER, Novak BJ, Schaefer NK, Cahill JA, Baker AJ, Demboski JR, Doll A, Da Fonseca RR, Fulton TL, Gilbert MTP, Heintzman PD, Letts B, McIntosh G, O'Connell BL, Peck M, Pipes ML, Rice ES, Santos KM, Sohrweide AG, Vohr SH, Corbett-Detig RB, Green RE, Shapiro B. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 2018; 358:951-954. [PMID: 29146814 DOI: 10.1126/science.aao0960] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Abstract
The extinct passenger pigeon was once the most abundant bird in North America, and possibly the world. Although theory predicts that large populations will be more genetically diverse, passenger pigeon genetic diversity was surprisingly low. To investigate this disconnect, we analyzed 41 mitochondrial and 4 nuclear genomes from passenger pigeons and 2 genomes from band-tailed pigeons, which are passenger pigeons' closest living relatives. Passenger pigeons' large population size appears to have allowed for faster adaptive evolution and removal of harmful mutations, driving a huge loss in their neutral genetic diversity. These results demonstrate the effect that selection can have on a vertebrate genome and contradict results that suggested that population instability contributed to this species's surprisingly rapid extinction.
Collapse
Affiliation(s)
- Gemma G R Murray
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - André E R Soares
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Ben J Novak
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Revive & Restore, Sausalito, CA 94965, USA
| | - Nathan K Schaefer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James A Cahill
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Allan J Baker
- Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - John R Demboski
- Department of Zoology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | - Andrew Doll
- Department of Zoology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | - Rute R Da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Tara L Fulton
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Environment and Climate Change Canada, 9250-49th Street, Edmonton, AB T6B 1K5, Canada
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,NTNU University Museum, 7491 Trondheim, Norway
| | - Peter D Heintzman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Tromsø University Museum, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Brandon Letts
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - George McIntosh
- Collections Department, Rochester Museum and Science Center, Rochester, NY 14607, USA
| | - Brendan L O'Connell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mark Peck
- Department of Zoology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | | | - Edward S Rice
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kathryn M Santos
- Collections Department, Rochester Museum and Science Center, Rochester, NY 14607, USA
| | | | - Samuel H Vohr
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Russell B Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,University of California Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,University of California Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA. .,University of California Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
117
|
Leonardi M, Librado P, Der Sarkissian C, Schubert M, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, Gamba C, Willerslev E, Orlando L. Evolutionary Patterns and Processes: Lessons from Ancient DNA. Syst Biol 2018; 66:e1-e29. [PMID: 28173586 PMCID: PMC5410953 DOI: 10.1093/sysbio/syw059] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 12/02/2022] Open
Abstract
Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution—time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data.
Collapse
Affiliation(s)
- Michela Leonardi
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Ahmed H Alfarhan
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Cristina Gamba
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark.,Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark.,Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, Toulouse, France
| |
Collapse
|
118
|
Ritchie AM, Lo N, Ho SYW. The Impact of the Tree Prior on Molecular Dating of Data Sets Containing a Mixture of Inter- and Intraspecies Sampling. Syst Biol 2018; 66:413-425. [PMID: 27798404 DOI: 10.1093/sysbio/syw095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/14/2016] [Indexed: 11/12/2022] Open
Abstract
In Bayesian phylogenetic analyses of genetic data, prior probability distributions need to be specified for the model parameters, including the tree. When Bayesian methods are used for molecular dating, available tree priors include those designed for species-level data, such as the pure-birth and birth-death priors, and coalescent-based priors designed for population-level data. However, molecular dating methods are frequently applied to data sets that include multiple individuals across multiple species. Such data sets violate the assumptions of both the speciation and coalescent-based tree priors, making it unclear which should be chosen and whether this choice can affect the estimation of node times. To investigate this problem, we used a simulation approach to produce data sets with different proportions of within- and between-species sampling under the multispecies coalescent model. These data sets were then analyzed under pure-birth, birth-death, constant-size coalescent, and skyline coalescent tree priors. We also explored the ability of Bayesian model testing to select the best-performing priors. We confirmed the applicability of our results to empirical data sets from cetaceans, phocids, and coregonid whitefish. Estimates of node times were generally robust to the choice of tree prior, but some combinations of tree priors and sampling schemes led to large differences in the age estimates. In particular, the pure-birth tree prior frequently led to inaccurate estimates for data sets containing a mixture of inter- and intraspecific sampling, whereas the birth-death and skyline coalescent priors produced stable results across all scenarios. Model testing provided an adequate means of rejecting inappropriate tree priors. Our results suggest that tree priors do not strongly affect Bayesian molecular dating results in most cases, even when severely misspecified. However, the choice of tree prior can be significant for the accuracy of dating results in the case of data sets with mixed inter- and intraspecies sampling. [Bayesian phylogenetic methods; model testing; molecular dating; node time; tree prior.].
Collapse
Affiliation(s)
- Andrew M Ritchie
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
119
|
Hospital Epidemiology of Methicillin-Resistant Staphylococcus aureus in a Tertiary Care Hospital in Moshi, Tanzania, as Determined by Whole Genome Sequencing. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2087693. [PMID: 29487865 PMCID: PMC5816877 DOI: 10.1155/2018/2087693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022]
Abstract
Objective To determine molecular epidemiology of methicillin-resistant S. aureus in Tanzania using whole genome sequencing. Methods DNA from 33 Staphylococcus species was recovered from subcultured archived Staphylococcus isolates. Whole genome sequencing was performed on Illumina Miseq using paired-end 2 × 250 bp protocol. Raw sequence data were analyzed using online tools. Results Full susceptibility to vancomycin and chloramphenicol was observed. Thirteen isolates (43.3%) resisted cefoxitin and other antimicrobials tested. Multilocus sequence typing revealed 13 different sequence types among the 30 S. aureus isolates, with ST-8 (n = seven, 23%) being the most common. Gene detection in S. aureus stains were as follows: mecA, 10 (33.3%); pvl, 5 (16.7%); tst, 2 (6.7%). The SNP difference among the six Tanzanian ST-8 MRSA isolates ranged from 24 to 196 SNPs and from 16 to 446 SNPs when using the USA300_FPR3757 or the USA500_2395 as a reference, respectively. The mutation rate was 1.38 × 10−11 SNPs/site/year or 1.4 × 10−6 SNPs/site/year as estimated by USA300_FPR3757 or the USA500_2395, respectively. Conclusion S. aureus isolates causing infections in hospitalized patients in Moshi are highly diverse and epidemiologically unrelated. Temporal phylogenetic analysis provided better resolution on transmission and introduction of MRSA and it may be important to include this in future routines.
Collapse
|
120
|
Salvador de Jesús-Bonilla V, García-París M, Ibarra-Cerdeña CN, Zaldívar-Riverón A. Geographic patterns of phenotypic diversity in incipient species of North American blister beetles (Coleoptera: Meloidae) are not determined by species niches, but driven by demography along the speciation process. INVERTEBR SYST 2018. [DOI: 10.1071/is17072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Epicauta stigmata complex is a group of blister beetles composed of three parapatric or sympatric species that occur in central Mexico to southern USA: E. stigmata, E. uniforma and E. melanochroa. These species are morphologically very similar, and are mainly distinguished by body colour differences. Here we assessed whether phenotypic divergence in coloration patterns define evolutionary units within the complex. We studied the phylogenetic relationships, demographic history and concordances between morphological and ecological traits in the group. The complex apparently had a demographic history of recent population expansion during the last glaciation period 75000 to 9500 years ago. The three species show no reciprocal monophyly, and thus their allospecificity was not confirmed. The current distribution of haplotypes and the genetic divergences in these taxa can be explained by either recent mitochondrial introgression events caused by hybridisation or by incomplete lineage sorting. Colour pattern differences in the complex are not likely a product of local selection acting over a common genetic background. We suggest that phenotypic divergence in colour patterns during an incipient speciation process might be seen as an enhancing factor of cohesion within each of the three evolutionary units.
Collapse
|
121
|
Pérez-Moreno JL, Balázs G, Wilkins B, Herczeg G, Bracken-Grissom HD. The role of isolation on contrasting phylogeographic patterns in two cave crustaceans. BMC Evol Biol 2017; 17:247. [PMID: 29216829 PMCID: PMC5721366 DOI: 10.1186/s12862-017-1094-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/24/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The underlying mechanisms and processes that prompt the colonisation of extreme environments, such as caves, constitute major research themes of evolutionary biology and biospeleology. The special adaptations required to survive in subterranean environments (low food availability, hypoxic waters, permanent darkness), and the geographical isolation of caves, nominate cave biodiversity as ideal subjects to answer long-standing questions concerning the interplay amongst adaptation, biogeography, and evolution. The present project aims to examine the phylogeographic patterns exhibited by two sympatric species of surface and cave-dwelling peracarid crustaceans (Asellus aquaticus and Niphargus hrabei), and in doing so elucidate the possible roles of isolation and exaptation in the colonisation and successful adaptation to the cave environment. RESULTS Specimens of both species were sampled from freshwater hypogean (cave) and epigean (surface) habitats in Hungary, and additional data from neighbouring countries were sourced from Genbank. Sequencing of mitochondrial and nuclear loci revealed, through haplotype network reconstruction (TCS) and phylogenetic inference, the genetic structure, phylogeographic patterns, and divergence-time estimates of A. aquaticus and N. hrabei surface and cave populations. Contrasting phylogeographic patterns were found between species, with A. aquaticus showing strong genetic differentiation between cave and surface populations and N. hrabei lacking any evidence of genetic structure mediated by the cave environment. Furthermore, N. hrabei populations show very low levels of genetic differentiation throughout their range, which suggests the possibility of recent expansion events over the last few thousand years. CONCLUSIONS Isolation by cave environment, rather than distance, is likely to drive the genetic structuring observed between immediately adjacent cave and surface populations of A. aquaticus, a predominantly surface species with only moderate exaptations to subterranean life. For N. hrabei, in which populations exhibit a fully 'cave-adapted' (troglomorphic) phenotype, the lack of genetic structure suggests that subterranean environments do not pose a dispersal barrier for this surface-cave species.
Collapse
Affiliation(s)
- Jorge L. Pérez-Moreno
- Department of Biological Sciences, Florida International University - Biscayne Bay Campus, 3000 NE 151 St., North Miami, FL 33181 USA
| | - Gergely Balázs
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, H-1117 Hungary
| | - Blake Wilkins
- Department of Biological Sciences, Florida International University - Biscayne Bay Campus, 3000 NE 151 St., North Miami, FL 33181 USA
| | - Gábor Herczeg
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, H-1117 Hungary
| | - Heather D. Bracken-Grissom
- Department of Biological Sciences, Florida International University - Biscayne Bay Campus, 3000 NE 151 St., North Miami, FL 33181 USA
| |
Collapse
|
122
|
Dong F, Hung CM, Li XL, Gao JY, Zhang Q, Wu F, Lei FM, Li SH, Yang XJ. Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna. BMC Evol Biol 2017; 17:244. [PMID: 29212454 PMCID: PMC5719578 DOI: 10.1186/s12862-017-1100-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glacial-interglacial cycles in the Pleistocene caused repeated range expansion and contraction of species in several regions in the world. However, it remains uncertain whether such climate oscillations had similar impact on East Asian biota, despite its widely recognized importance in global biodiversity. Here we use both molecular and ecological niche profiles on 11 East Asian avian species with various elevational ranges to reveal their response to the late Pleistocene climate changes. RESULTS The ecological niche models (ENM) consistently showed that these avian species might substantially contract their ranges to the south during the Last Interglacial period (LIG) and expanded their northern range margins through the Last Glacial Maximum (LGM), leading to the LGM ranges observed for all 11 species. Consistently, coalescent simulations based on 25-30 nuclear genes retrieved signatures of significant population growth through the last glacial period across all species studied. Climate statistics suggested that high climatic variability during the LIG and a relatively mild climate at the LGM potentially explained the historical population dynamics of these birds. CONCLUSIONS This is the first study based on multiple species and both lines of ecological niche profiles and genetic data to characterize the unique response of East Asian biota to late Pleistocene climate. The present study highlights regional differences in the evolutionary consequence of climate change during the last glacial cycle and implies that global warming might pose a great risk to species in this region given potentially higher climatic variation in the future analogous to that during the LIG.
Collapse
Affiliation(s)
- Feng Dong
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China.,Department of Life Science, National Taiwan Normal University, 88 Ting-chou Rd., Sec. 4, Taipei, 116, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Xin-Lei Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China
| | - Jian-Yun Gao
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China
| | - Qiang Zhang
- Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Fei Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China
| | - Fu-Min Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Shou-Hsien Li
- Department of Life Science, National Taiwan Normal University, 88 Ting-chou Rd., Sec. 4, Taipei, 116, Taiwan.
| | - Xiao-Jun Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China.
| |
Collapse
|
123
|
Vermeij GJ, Grosberg RK. Rarity and persistence. Ecol Lett 2017; 21:3-8. [PMID: 29110416 DOI: 10.1111/ele.12872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 09/19/2017] [Indexed: 01/09/2023]
Abstract
Rarity is a population characteristic that is usually associated with a high risk of extinction. We argue here, however, that chronically rare species (those with low population densities over many generations across their entire ranges) may have individual-level traits that make populations more resistant to extinction. The major obstacle to persistence at low density is successful fertilisation (union between egg and sperm), and chronically rare species are more likely to survive when (1) fertilisation occurs inside or close to an adult, (2) mate choice involves long-distance signals, (3) adults or their surrogate gamete dispersers are highly mobile, or (4) the two sexes are combined in a single individual. In contrast, external fertilisation and wind- or water-driven passive dispersal of gametes, or sluggish or sedentary adult life habits in the absence of gamete vectors, appear to be incompatible with sustained rarity. We suggest that the documented increase in frequency of these traits among marine genera over geological time could explain observed secular decreases in rates of background extinction. Unanswered questions remain about how common chronic rarity actually is, which traits are consistently associated with chronic rarity, and how chronically rare species are distributed among taxa, and among the world's ecosystems and regions.
Collapse
Affiliation(s)
- Geerat J Vermeij
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Richard K Grosberg
- Department of Evolution and Ecology, Coastal and Marine Sciences Institute, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
124
|
Shirley MH, Austin JD. Did Late Pleistocene climate change result in parallel genetic structure and demographic bottlenecks in sympatric Central African crocodiles, Mecistops and Osteolaemus? Mol Ecol 2017; 26:6463-6477. [PMID: 29024142 DOI: 10.1111/mec.14378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 01/24/2023]
Abstract
The mid-Holocene has had profound demographic impacts on wildlife on the African continent, although there is little known about the impacts on species from Central Africa. Understanding the impacts of climate change on codistributed species can enhance our understanding of ecosystem dynamics and for formulating restoration objectives. We took a multigenome comparative approach to examine the phylogeographic structure of two poorly known Central African crocodile species-Mecistops sp. aff. cataphractus and Osteolaemus tetraspis. In addition, we conducted coalescent-based demographic reconstructions to test the hypothesis that population decline was driven by climate change since the Last Glacial Maximum, vs. more recent anthropogenic pressures. Using a hierarchical Bayesian model to reconstruct demographic history, we show that both species had dramatic declines (>97%) in effective population size in the 'period following the Last Glacial Maximum 1,500-18,000 YBP. Identification of genetic structuring showed both species have similar regional structure corresponding to major geological features (i.e., hydrologic basin) and that small observed differences between them are best explained by the differences in their ecology and the likely impact that climate change had on their habitat needs. Our results support our hypothesis that climatic effects, presumably on forest and wetland habitat, had a congruent negative impact on both species.
Collapse
Affiliation(s)
- Matthew H Shirley
- Tropical Conservation Institute, Florida International University, Biscayne Bay Campus, North Miami, FL, USA.,Rare Species Conservatory Foundation, Loxahatchee, FL, USA
| | - James D Austin
- Department of Wildlife Ecology & Conservation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
125
|
Noguerales V, Cordero PJ, Ortego J. Inferring the demographic history of an oligophagous grasshopper: Effects of climatic niche stability and host-plant distribution. Mol Phylogenet Evol 2017; 118:343-356. [PMID: 29080673 DOI: 10.1016/j.ympev.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/09/2017] [Accepted: 10/22/2017] [Indexed: 11/19/2022]
Abstract
Understanding the consequences of past environmental changes on the abiotic and biotic components of the landscape and deciphering their impacts on the demographic trajectories of species is a major issue in evolutionary biogeography. In this study, we combine nuclear and mitochondrial genetic data to study the phylogeographical structure and lineage-specific demographic histories of the scrub-legume grasshopper (Chorthippus binotatus binotatus), a montane taxon distributed in the Iberian Peninsula and France that exclusively feeds on certain scrub-legume species. Genetic data and paleo-distribution modelling indicate the presence of four main lineages that seem to have diverged in allopatry and long-term persisted in Iberian and French refugia since the Mid Pleistocene. Comparisons of different demographic hypotheses in an Approximate Bayesian Computation (ABC) framework supported a population bottleneck in the northwestern French clade and paleo-distribution modelling indicate that the populations of this lineage have experienced more severe environmental fluctuations during the last 21 000 years than those from the Iberian Peninsula. Accordingly, we found that nuclear genetic diversity of the populations of scrub-legume grasshopper is positively associated with local stability of suitable habitats defined by both Pleistocene climate changes and historical distributional shifts of host-plant species. Overall, our study highlights the importance of integrating the potential effects of abiotic (i.e. climate and geography) and biotic components (i.e. inter-specific interactions) into the study of the evolutionary and demographic history of specialist taxa with narrow ecological requirements.
Collapse
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, E-13071 Ciudad Real, Spain.
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, E-13071 Ciudad Real, Spain
| | - Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, E-41092 Seville, Spain
| |
Collapse
|
126
|
Andersen LW, Jacobsen MW, Lydersen C, Semenova V, Boltunov A, Born EW, Wiig Ø, Kovacs KM. Walruses (Odobenus rosmarus rosmarus) in the Pechora Sea in the context of contemporary population structure of Northeast Atlantic walruses. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
127
|
Espinoza GJ, Poland JM, Bremer JRA. Genotyping live fish larvae: Non-lethal and noninvasive DNA isolation from 3-5 day old hatchlings. Biotechniques 2017; 63:181-186. [PMID: 29048270 DOI: 10.2144/000114598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 11/23/2022] Open
Abstract
Genotyping fish larvae is a valuable technique for numerous fields of study. While methods for collecting DNA from early stage larvae have been published, a non-lethal, non-invasive genotyping protocol for hatchlings that is amenable to high-throughput approaches is desirable. Here, we describe a method to individually genotype live, free-swimming, early fish larvae by characterizing their environmental DNA (eDNA). We demonstrate the utility of the method by assigning parentage to a sample (n = 50) of 3-5-day-old sheepshead minnow (Cyprinodon variegatus) larvae hatchlings, with very high rates of genotyping success (98%) and survival (92%) using mitochondrial and microsatellite DNA data. This method could be easily adapted to characterize early fish larvae from other model and non-model fish species, such as Danio rerio (zebrafish) and Medaka medaka.
Collapse
Affiliation(s)
- G Janelle Espinoza
- Department of Marine Biology, Texas A&M University, Galveston Campus, Galveston, TX
| | - J Michael Poland
- Department of Marine Biology, Texas A&M University, Galveston Campus, Galveston, TX
| | - Jaime R Alvarado Bremer
- Department of Marine Biology, Texas A&M University, Galveston Campus, Galveston, TX; Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
128
|
Patiño-Galindo JÁ, Torres-Puente M, Bracho MA, Alastrué I, Juan A, Navarro D, Galindo MJ, Ocete D, Ortega E, Gimeno C, Belda J, Domínguez V, Moreno R, González-Candelas F. The molecular epidemiology of HIV-1 in the Comunidad Valenciana (Spain): analysis of transmission clusters. Sci Rep 2017; 7:11584. [PMID: 28912478 PMCID: PMC5599654 DOI: 10.1038/s41598-017-10286-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
HIV infections are still a very serious concern for public heath worldwide. We have applied molecular evolution methods to study the HIV-1 epidemics in the Comunidad Valenciana (CV, Spain) from a public health surveillance perspective. For this, we analysed 1804 HIV-1 sequences comprising protease and reverse transcriptase (PR/RT) coding regions, sampled between 2004 and 2014. These sequences were subtyped and subjected to phylogenetic analyses in order to detect transmission clusters. In addition, univariate and multinomial comparisons were performed to detect epidemiological differences between HIV-1 subtypes, and risk groups. The HIV epidemic in the CV is dominated by subtype B infections among local men who have sex with men (MSM). 270 transmission clusters were identified (>57% of the dataset), 12 of which included ≥10 patients; 11 of subtype B (9 affecting MSMs) and one (n = 21) of CRF14, affecting predominately intravenous drug users (IDUs). Dated phylogenies revealed these large clusters to have originated from the mid-80s to the early 00 s. Subtype B is more likely to form transmission clusters than non-B variants and MSMs to cluster than other risk groups. Multinomial analyses revealed an association between non-B variants, which are not established in the local population yet, and different foreign groups.
Collapse
Affiliation(s)
- Juan Ángel Patiño-Galindo
- Unidad Mixta Infección y Salud Pública FISABIO-CSISP/Universidad de Valencia-I2SysBio, Valencia, 46180, Spain.,CIBER of Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Manoli Torres-Puente
- Unidad Mixta Infección y Salud Pública FISABIO-CSISP/Universidad de Valencia-I2SysBio, Valencia, 46180, Spain
| | - María Alma Bracho
- Unidad Mixta Infección y Salud Pública FISABIO-CSISP/Universidad de Valencia-I2SysBio, Valencia, 46180, Spain.,CIBER of Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | | | - Amparo Juan
- Unidad Prevención del SIDA y otras ITS, Valencia, 46017, Spain
| | - David Navarro
- Hospital Clínico Universitario, Valencia, 46010, Spain.,Dpto. Microbiología, Universidad de Valencia, 46080, Valencia, Spain
| | | | - Dolores Ocete
- Consorcio Hospital General Universitario, Valencia, 46014, Spain
| | - Enrique Ortega
- Consorcio Hospital General Universitario, Valencia, 46014, Spain
| | - Concepción Gimeno
- Dpto. Microbiología, Universidad de Valencia, 46080, Valencia, Spain.,Consorcio Hospital General Universitario, Valencia, 46014, Spain
| | - Josefina Belda
- Unidad Prevención del SIDA y otras ITS, Alicante, 03010, Spain
| | | | | | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO-CSISP/Universidad de Valencia-I2SysBio, Valencia, 46180, Spain. .,CIBER of Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
129
|
Genetic variation of complete mitochondrial genome sequences of the Sumatran rhinoceros (Dicerorhinus sumatrensis). CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
130
|
Franzo G, Massi P, Tucciarone CM, Barbieri I, Tosi G, Fiorentini L, Ciccozzi M, Lavazza A, Cecchinato M, Moreno A. Think globally, act locally: Phylodynamic reconstruction of infectious bronchitis virus (IBV) QX genotype (GI-19 lineage) reveals different population dynamics and spreading patterns when evaluated on different epidemiological scales. PLoS One 2017; 12:e0184401. [PMID: 28880958 PMCID: PMC5589226 DOI: 10.1371/journal.pone.0184401] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
Infectious bronchitis virus (IBV) represents one of the poultry industry major threats, particularly in high density producing countries. The emergence and spread of new IBV genotypes have frustrated the various disease control efforts implemented over time. Despite that, few comprehensive and large scale studies have been performed to understand the international and local spreading dynamics of this virus. In the present work, these phenomena were evaluated by implementing a Bayesian phylodynamic approach to reconstruct the epidemiological patterns and population history of the QX genotype (currently renamed GI-19 lineage), the most relevant IBV lineage of the Old-World. Our analysis, based on 807 partial S1 sequences of strains collected from 18 countries between 1993 and 2015, demonstrates that this genotype originated in China well before its first identification. After a prolonged local circulation, it started spreading to other European, Asian and Middle East countries in successive waves, which were mirrored by concomitant fluctuations in viral population size. Interestingly, the within-Europe spread was characterized by a higher estimated migration rate compared with the inter-continental one, potentially reflecting the closer geographic and economic relationships among these countries. Nevertheless, the colonization of new states by the GI-19 lineage appeared to occur mostly by single introduction events in both intra and inter-continental spread, likely because of epidemiological factor and health policy combination which seems to prevent the frequent introduction and mixing of different strains. On the other hand, the within Italy QX circulation reconstruction showed a much more intricate connection network among different locations, evidencing the difficulty in controlling IBV spread especially in highly densely poultry populated areas. The presence of several well supported epidemiological links among distantly related Italian regions testifies that animal transportation and indirect transmission routes rather than local airborne diffusion contribute to the QX success and persistence at local scale. Globally, the spreading dynamics and evolution of the QX genotype were reconstructed from its very origin to nowadays, demonstrating the need of more effective direct control measures, particularly within each country. Unfortunately, the incompleteness of available molecular epidemiology data represents an insurmountable limit which leaves many questions currently unsolved, thus highlighting the compulsoriness of a structured monitoring and data sharing system implementation.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Paola Massi
- Sezione di Forlì, Istituto sperimentale della Lombardia e Emilia Romagna, Forlì, Forlì Cesena, Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Ilaria Barbieri
- Department of Virology, Istituto sperimentale della Lombardia e Emilia Romagna, Brescia, Italy
| | - Giovanni Tosi
- Sezione di Forlì, Istituto sperimentale della Lombardia e Emilia Romagna, Forlì, Forlì Cesena, Italy
| | - Laura Fiorentini
- Sezione di Forlì, Istituto sperimentale della Lombardia e Emilia Romagna, Forlì, Forlì Cesena, Italy
| | - Massimo Ciccozzi
- Department of infectious, parasitic and immune-mediated diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Antonio Lavazza
- Department of Virology, Istituto sperimentale della Lombardia e Emilia Romagna, Brescia, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Ana Moreno
- Department of Virology, Istituto sperimentale della Lombardia e Emilia Romagna, Brescia, Italy
| |
Collapse
|
131
|
van Riemsdijk I, Arntzen JW, Bogaerts S, Franzen M, Litvinchuk SN, Olgun K, Wielstra B. The Near East as a cradle of biodiversity: A phylogeography of banded newts (genus Ommatotriton) reveals extensive inter- and intraspecific genetic differentiation. Mol Phylogenet Evol 2017; 114:73-81. [DOI: 10.1016/j.ympev.2017.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/04/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023]
|
132
|
Tseng SP, Yang CCS. Comment on Seri Masran and Ab Majid 2017. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1107-1108. [PMID: 28874021 DOI: 10.1093/jme/tjx136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Shu-Ping Tseng
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | |
Collapse
|
133
|
The effects of Quaternary sea-level fluctuations on the evolutionary history of an endemic ground lizard (Tropidurus hygomi). ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
134
|
The roles of barriers, refugia, and chromosomal clines underlying diversification in Atlantic Forest social wasps. Sci Rep 2017; 7:7689. [PMID: 28794485 PMCID: PMC5550474 DOI: 10.1038/s41598-017-07776-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Phylogeographic studies have sought to explain the genetic imprints of historical climatic changes and geographic barriers within the Brazilian Atlantic Forest (AF) biota, and consequently two processes of diversification (refugia and barriers) have been proposed. Additionally, there is evidence that eustatic changes influenced the biogeographic history of the AF. Here we evaluate these contrasting diversification processes using two AF social wasp species – the mid-montane Synoeca cyanea and the lowland Synoeca aff. septentrionalis. We analyzed several sources of data including multilocus DNA sequence, climatic niche models and chromosomal features. We find support for idiosyncratic phylogeographic patterns between these wasps, involving different levels of population structure and genetic diversity, contrary suitable climatic conditions during the last glaciation, and contrasting historical movements along the AF. Our data indicate that neotectonics and refugia played distinct roles in shaping the genetic structure of these wasps. However, we argue that eustatic changes influenced the demographic expansion but not population structure in AF biota. Notably, these wasps exhibited chromosomal clines, involving chromosome number and decreasing of GC content, latitudinally oriented along the AF. Together, these results reinforce the need to consider individual organismal histories and indicate that barriers and refugia are significant factors in understanding AF evolution.
Collapse
|
135
|
Picard C, Dallot S, Brunker K, Berthier K, Roumagnac P, Soubeyrand S, Jacquot E, Thébaud G. Exploiting Genetic Information to Trace Plant Virus Dispersal in Landscapes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:139-160. [PMID: 28525307 DOI: 10.1146/annurev-phyto-080516-035616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the past decade, knowledge of pathogen life history has greatly benefited from the advent and development of molecular epidemiology. This branch of epidemiology uses information on pathogen variation at the molecular level to gain insights into a pathogen's niche and evolution and to characterize pathogen dispersal within and between host populations. Here, we review molecular epidemiology approaches that have been developed to trace plant virus dispersal in landscapes. In particular, we highlight how virus molecular epidemiology, nourished with powerful sequencing technologies, can provide novel insights at the crossroads between the blooming fields of landscape genetics, phylogeography, and evolutionary epidemiology. We present existing approaches and their limitations and contributions to the understanding of plant virus epidemiology.
Collapse
Affiliation(s)
- Coralie Picard
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| | - Sylvie Dallot
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| | - Kirstyn Brunker
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | | - Philippe Roumagnac
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| | | | - Emmanuel Jacquot
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| | - Gaël Thébaud
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| |
Collapse
|
136
|
Decomposing the Site Frequency Spectrum: The Impact of Tree Topology on Neutrality Tests. Genetics 2017; 207:229-240. [PMID: 28679545 DOI: 10.1534/genetics.116.188763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2017] [Indexed: 01/09/2023] Open
Abstract
We investigate the dependence of the site frequency spectrum on the topological structure of genealogical trees. We show that basic population genetic statistics, for instance, estimators of θ or neutrality tests such as Tajima's D, can be decomposed into components of waiting times between coalescent events and of tree topology. Our results clarify the relative impact of the two components on these statistics. We provide a rigorous interpretation of positive or negative values of an important class of neutrality tests in terms of the underlying tree shape. In particular, we show that values of Tajima's D and Fay and Wu's H depend in a direct way on a peculiar measure of tree balance, which is mostly determined by the root balance of the tree. We present a new test for selection in the same class as Fay and Wu's H and discuss its interpretation and power. Finally, we determine the trees corresponding to extreme expected values of these neutrality tests and present formulas for these extreme values as a function of sample size and number of segregating sites.
Collapse
|
137
|
The Evolutionary Origin and Genetic Makeup of Domestic Horses. Genetics 2017; 204:423-434. [PMID: 27729493 DOI: 10.1534/genetics.116.194860] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022] Open
Abstract
The horse was domesticated only 5.5 KYA, thousands of years after dogs, cattle, pigs, sheep, and goats. The horse nonetheless represents the domestic animal that most impacted human history; providing us with rapid transportation, which has considerably changed the speed and magnitude of the circulation of goods and people, as well as their cultures and diseases. By revolutionizing warfare and agriculture, horses also deeply influenced the politico-economic trajectory of human societies. Reciprocally, human activities have circled back on the recent evolution of the horse, by creating hundreds of domestic breeds through selective programs, while leading all wild populations to near extinction. Despite being tightly associated with humans, several aspects in the evolution of the domestic horse remain controversial. Here, we review recent advances in comparative genomics and paleogenomics that helped advance our understanding of the genetic foundation of domestic horses.
Collapse
|
138
|
Eberle J, Rödder D, Beckett M, Ahrens D. Landscape genetics indicate recently increased habitat fragmentation in African forest-associated chafers. GLOBAL CHANGE BIOLOGY 2017; 23:1988-2004. [PMID: 28063178 DOI: 10.1111/gcb.13616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/22/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Today, indigenous forests cover less than 0.6% of South Africa's land surface and are highly fragmented. Most forest relicts are very small and typically occur in fire-protected gorges along the eastern Great Escarpment. Yet, they hold a unique and valuable fauna with high endemism and ancient phylogenetic lineages, fostered by long-term climatic stability and complex microclimates. Despite numerous studies on southern African vegetation cover, the current state of knowledge about the natural extension of indigenous forests is rather fragmentary. We use an integrated approach of population-level phylogeography and climatic niche modeling of forest-associated chafer species to assess connectivity and extent of forest habitats since the last glacial maximum. Current and past species distribution models ascertained potential fluctuations of forest distribution and supported a much wider potential current extension of forests based on climatic data. Considerable genetic admixture of mitochondrial and nuclear DNA among many populations and an increase in mean population mutation rate in Extended Bayesian Skyline Plots of all species indicated more extended or better connected forests in the recent past (<5 kya). Genetic isolation of certain populations, as revealed by population differentiation statistics (GST'), as well as landscape connectivity statistics and habitat succession scenarios suggests considerable loss of habitat connectivity. As major anthropogenic influence is likely, conservational actions need to be considered.
Collapse
Affiliation(s)
- Jonas Eberle
- Zoologisches Forschungsmuseum A. Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113, Bonn, Germany
| | - Dennis Rödder
- Zoologisches Forschungsmuseum A. Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113, Bonn, Germany
| | - Marc Beckett
- Zoologisches Forschungsmuseum A. Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113, Bonn, Germany
| | - Dirk Ahrens
- Zoologisches Forschungsmuseum A. Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113, Bonn, Germany
| |
Collapse
|
139
|
Budde KB, González-Martínez SC, Navascués M, Burgarella C, Mosca E, Lorenzo Z, Zabal-Aguirre M, Vendramin GG, Verdú M, Pausas JG, Heuertz M. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill. ANNALS OF BOTANY 2017; 119:1061-1072. [PMID: 28159988 PMCID: PMC5604561 DOI: 10.1093/aob/mcw286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. METHODS Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. KEY RESULTS Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. CONCLUSIONS An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits.
Collapse
Affiliation(s)
- Katharina B. Budde
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
- INRA, Université de Bordeaux, UMR 1202 BIOGECO, 33610 Cestas, France
- For correspondence. E-mail or
| | - Santiago C. González-Martínez
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
- INRA, Université de Bordeaux, UMR 1202 BIOGECO, 33610 Cestas, France
| | | | - Concetta Burgarella
- INRA, UMR 1334 AGAP, 34060 Montpellier, France
- Present address: IRD, UMR DIADE, BP 64501, Montpellier, France
| | - Elena Mosca
- Faculty of Science and Technology, Free University of Bolzano, piazza Università 1, 39100 Bolzano, Italy
| | - Zaida Lorenzo
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
| | - Mario Zabal-Aguirre
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
| | - Giovanni G. Vendramin
- National Research Council, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), 46113 Moncada (Valencia), Spain
| | - Juli G. Pausas
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), 46113 Moncada (Valencia), Spain
| | - Myriam Heuertz
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
- INRA, Université de Bordeaux, UMR 1202 BIOGECO, 33610 Cestas, France
- For correspondence. E-mail or
| |
Collapse
|
140
|
Rasigade JP, Barbier M, Dumitrescu O, Pichat C, Carret G, Ronnaux-Baron AS, Blasquez G, Godin-Benhaim C, Boisset S, Carricajo A, Jacomo V, Fredenucci I, Pérouse de Montclos M, Flandrois JP, Ader F, Supply P, Lina G, Wirth T. Strain-specific estimation of epidemic success provides insights into the transmission dynamics of tuberculosis. Sci Rep 2017; 7:45326. [PMID: 28349973 PMCID: PMC5368603 DOI: 10.1038/srep45326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/21/2017] [Indexed: 12/03/2022] Open
Abstract
The transmission dynamics of tuberculosis involves complex interactions of socio-economic and, possibly, microbiological factors. We describe an analytical framework to infer factors of epidemic success based on the joint analysis of epidemiological, clinical and pathogen genetic data. We derive isolate-specific, genetic distance-based estimates of epidemic success, and we represent success-related time-dependent concepts, namely epidemicity and endemicity, by restricting analysis to specific time scales. The method is applied to analyze a surveillance-based cohort of 1,641 tuberculosis patients with minisatellite-based isolate genotypes. Known predictors of isolate endemicity (older age, native status) and epidemicity (younger age, sputum smear positivity) were identified with high confidence (P < 0.001). Long-term epidemic success also correlated with the ability of Euro-American and Beijing MTBC lineages to cause active pulmonary infection, independent of patient age and country of origin. Our results demonstrate how important insights into the transmission dynamics of tuberculosis can be gained from active surveillance data.
Collapse
Affiliation(s)
- Jean-Philippe Rasigade
- Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France.,Laboratoire Biologie Intégrative des Populations, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France.,Centre International de Recherche en Infectiologie, CIRI, University of Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Maxime Barbier
- Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France.,Laboratoire Biologie Intégrative des Populations, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Oana Dumitrescu
- Centre International de Recherche en Infectiologie, CIRI, University of Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Catherine Pichat
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Gérard Carret
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | | | | | | | - Sandrine Boisset
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble, Grenoble, France.,Laboratoire TIMC-IMAG, UMR 5525 CNRS-UJF, UFR de Médecine, Université Grenoble Alpes, Grenoble, France
| | - Anne Carricajo
- Laboratoire des Agents Infectieux et d'Hygiène, CHU de Saint-Etienne, Saint-Etienne, France
| | | | | | | | - Jean-Pierre Flandrois
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France.,Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, University of Lyon, France
| | - Florence Ader
- Centre International de Recherche en Infectiologie, CIRI, University of Lyon, France.,Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Philip Supply
- INSERM U1019, CNRS-UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Gérard Lina
- Centre International de Recherche en Infectiologie, CIRI, University of Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Thierry Wirth
- Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France.,Laboratoire Biologie Intégrative des Populations, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|
141
|
Crispell J, Zadoks RN, Harris SR, Paterson B, Collins DM, de-Lisle GW, Livingstone P, Neill MA, Biek R, Lycett SJ, Kao RR, Price-Carter M. Using whole genome sequencing to investigate transmission in a multi-host system: bovine tuberculosis in New Zealand. BMC Genomics 2017; 18:180. [PMID: 28209138 PMCID: PMC5314462 DOI: 10.1186/s12864-017-3569-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
Background Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is an important livestock disease raising public health and economic concerns around the world. In New Zealand, a number of wildlife species are implicated in the spread and persistence of bTB in cattle populations, most notably the brushtail possum (Trichosurus vulpecula). Whole Genome Sequenced (WGS) M. bovis isolates sourced from infected cattle and wildlife across New Zealand were analysed. Bayesian phylogenetic analyses were conducted to estimate the substitution rate of the sampled population and investigate the role of wildlife. In addition, the utility of WGS was examined with a view to these methods being incorporated into routine bTB surveillance. Results A high rate of exchange was evident between the sampled wildlife and cattle populations but directional estimates of inter-species transmission were sensitive to the sampling strategy employed. A relatively high substitution rate was estimated, this, in combination with a strong spatial signature and a good agreement to previous typing methods, acts to endorse WGS as a typing tool. Conclusions In agreement with the current knowledge of bTB in New Zealand, transmission of M. bovis between cattle and wildlife was evident. Without direction, these estimates are less informative but taken in conjunction with the low prevalence of bTB in New Zealand’s cattle population it is likely that, currently, wildlife populations are acting as the main bTB reservoir. Wildlife should therefore continue to be targeted if bTB is to be eradicated from New Zealand. WGS will be a considerable aid to bTB eradication by greatly improving the discriminatory power of molecular typing data. The substitution rates estimated here will be an important part of epidemiological investigations using WGS data. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3569-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph Crispell
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, Scotland, G61 1QH, UK
| | - Ruth N Zadoks
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, Scotland, G61 1QH, UK
| | - Simon R Harris
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Brent Paterson
- TBfree New Zealand, PO Box 3412, Wellington, 6140, New Zealand
| | | | | | | | - Mark A Neill
- TBfree New Zealand, PO Box 3412, Wellington, 6140, New Zealand
| | - Roman Biek
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, Scotland, G61 1QH, UK
| | - Samantha J Lycett
- Infection and Immunity Division, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Rowland R Kao
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, Scotland, G61 1QH, UK.
| | | |
Collapse
|
142
|
Moodley Y, Russo IRM, Dalton DL, Kotzé A, Muya S, Haubensak P, Bálint B, Munimanda GK, Deimel C, Setzer A, Dicks K, Herzig-Straschil B, Kalthoff DC, Siegismund HR, Robovský J, O’Donoghue P, Bruford MW. Extinctions, genetic erosion and conservation options for the black rhinoceros (Diceros bicornis). Sci Rep 2017; 7:41417. [PMID: 28176810 PMCID: PMC5296875 DOI: 10.1038/srep41417] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/09/2016] [Indexed: 11/09/2022] Open
Abstract
The black rhinoceros is again on the verge of extinction due to unsustainable poaching in its native range. Despite a wide historic distribution, the black rhinoceros was traditionally thought of as depauperate in genetic variation, and with very little known about its evolutionary history. This knowledge gap has hampered conservation efforts because hunting has dramatically reduced the species' once continuous distribution, leaving five surviving gene pools of unknown genetic affinity. Here we examined the range-wide genetic structure of historic and modern populations using the largest and most geographically representative sample of black rhinoceroses ever assembled. Using both mitochondrial and nuclear datasets, we described a staggering loss of 69% of the species' mitochondrial genetic variation, including the most ancestral lineages that are now absent from modern populations. Genetically unique populations in countries such as Nigeria, Cameroon, Chad, Eritrea, Ethiopia, Somalia, Mozambique, Malawi and Angola no longer exist. We found that the historic range of the West African subspecies (D. b. longipes), declared extinct in 2011, extends into southern Kenya, where a handful of individuals survive in the Masai Mara. We also identify conservation units that will help maintain evolutionary potential. Our results suggest a complete re-evaluation of current conservation management paradigms for the black rhinoceros.
Collapse
Affiliation(s)
- Yoshan Moodley
- Department of Zoology, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria, Savoyenstr. 1A, 1160 Austria
| | - Isa-Rita M. Russo
- Cardiff School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Desiré L. Dalton
- National Zoological Gardens of South Africa, 232 Boom Street, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, 205 Nelson Mandela Drive, West Park, Bloemfontein, 9300 South Africa
| | - Antoinette Kotzé
- National Zoological Gardens of South Africa, 232 Boom Street, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, 205 Nelson Mandela Drive, West Park, Bloemfontein, 9300 South Africa
| | - Shadrack Muya
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, Kenyatta Avenue, Nairobi, 00200, Kenya
| | - Patricia Haubensak
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria, Savoyenstr. 1A, 1160 Austria
| | - Boglárka Bálint
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria, Savoyenstr. 1A, 1160 Austria
| | - Gopi K. Munimanda
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria, Savoyenstr. 1A, 1160 Austria
| | - Caroline Deimel
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria, Savoyenstr. 1A, 1160 Austria
| | - Andrea Setzer
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria, Savoyenstr. 1A, 1160 Austria
| | - Kara Dicks
- Department of Biological Sciences, Thomas Building, University of Chester, Chester, CH1 4BJ, United Kingdom
| | | | - Daniela C. Kalthoff
- Swedish Museum of Natural History, Frescativägen 40, Stockholm, 10405, Sweden
| | - Hans R. Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark
| | - Jan Robovský
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Paul O’Donoghue
- Department of Biological Sciences, Thomas Building, University of Chester, Chester, CH1 4BJ, United Kingdom
| | - Michael W. Bruford
- Cardiff School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| |
Collapse
|
143
|
Perez SI, Postillone MB, Rindel D. Domestication and human demographic history in South America. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:44-52. [PMID: 28109124 DOI: 10.1002/ajpa.23176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The early groups of hunter-gatherers who peopled South America faced significant ecological changes in their trophic niche for a relatively short period after the initial peopling. In particular, the incorporation of cultigens during the Holocene led to a wider trophic niche and probably to an increased carrying capacity of the environment. Here, we study the relationship between the incorporation of domestic resources during the Holocene and the demographic dynamics of human populations at a regional scale in South America. MATERIAL AND METHODS We employ mitochondrial DNA (mtDNA), radiocarbon data and Bayesian methods to estimate differences in population size, human occupation and explore the demographic changes of human populations in three regions (i.e., South-Central Andes, Northwest, and South Patagonia). We also use archaeological evidence to infer the main diet changes in these regions. RESULTS The absolute population size during the later Late Holocene was fifteen times larger in the South-Central Andes than in Northwest Patagonia, and two times larger in the latter region than in South Patagonia. The South-Central Andes display the earlier and more abrupt population growth, beginning about 9000 years BP, whereas Northwest Patagonia exhibits a more slow growth, beginning about 7000-7500 years BP. South Patagonia represents a later and slower population increase. DISCUSSION In this work we uncovered a well-supported pattern of the demographic change in the populations from South-Central Andes and Patagonia, obtained on the basis of different data and quantitative approaches, which suggests that the incorporation of domestic resources was paramount for the demographic expansion of these populations during the Holocene.
Collapse
Affiliation(s)
- S Ivan Perez
- División Antropología, (FCNyM, UNLP), CONICET, La Plata, Argentina
| | - María Bárbara Postillone
- Departamento de Ciencias Naturales y Antropológicas, (CEBBAD, UM), CONICET, Buenos Aires, Argentina
| | - Diego Rindel
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
144
|
Senczuk G, Colangelo P, De Simone E, Aloise G, Castiglia R. A combination of long term fragmentation and glacial persistence drove the evolutionary history of the Italian wall lizard Podarcis siculus. BMC Evol Biol 2017; 17:6. [PMID: 28056768 PMCID: PMC5216540 DOI: 10.1186/s12862-016-0847-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current distribution of genetic diversity is the result of a vast array of microevolutionary processes, including short-term demographic and ecological mechanisms and long-term allopatric isolation in response to Quaternary climatic fluctuations. We investigated past processes that drove the population differentiation and spatial genetic distribution of the Italian wall lizard Podarcis siculus by means of sequences of mitochondrial cytb (n = 277 from 115 localities) and nuclear mc1r and β-fibint7genes (n = 262 and n = 91, respectively) from all its distribution range. The pattern emerging from the genetic data was compared with current and past (last glacial maximum) species distribution modeling (SDM). RESULTS We identified seven deeply divergent parapatric clades which presumably remained isolated in different refugia scattered mainly throughout the Tyrrhenian coast. Conversely, the Adriatic coast showed only two haplogroups with low genetic variability. These results appear to agree with the SDM prediction at the last glacial maximum (LGM) indicating a narrow area of habitat suitability along the Tyrrhenian coast and much lower suitability along the Adriatic one. However, the considerable land exposure of the Adriatic coastline favored a glacial colonization of the Balkan Peninsula. CONCLUSIONS Our population-level historical demography showed a common trend consistent with glacial expansions and regional persistence during the last glacial maximum. This complex genetic signature appears to be inconsistent with the expectation of the expansion-contraction model and post-LGM (re)colonizations from southern refugia. Hence it is one of an increasing number of cases in which these assumptions are not met, indicating that long-term fragmentation and pre-LGM events such as glacial persistence were more prominent in shaping genetic variation in this temperate species.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma LA SAPIENZA, sede di Anatomia comparata, Rome, Italy.
| | - Paolo Colangelo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma LA SAPIENZA, sede di Anatomia comparata, Rome, Italy.,National Research Council, Institute of Ecosystem Study, Largo Tonnoli 50, 28922, Verbania Pallanza, Italy
| | - Emanuela De Simone
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma LA SAPIENZA, sede di Anatomia comparata, Rome, Italy
| | - Gaetano Aloise
- Museo di Storia Naturale della Calabria e Orto Botanico, Università della Calabria, CAP 87036, Rende, Cosenza, Italy
| | - Riccardo Castiglia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma LA SAPIENZA, sede di Anatomia comparata, Rome, Italy
| |
Collapse
|
145
|
Smith S, Sandoval-Castellanos E, Lagerholm VK, Napierala H, Sablin M, Von Seth J, Fladerer FA, Germonpré M, Wojtal P, Miller R, Stewart JR, Dalén L. Nonreceding hare lines: genetic continuity since the Late Pleistocene in European mountain hares (Lepus timidus). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
146
|
Haenel GJ. Introgression of mtDNA inUrosauruslizards: historical and ecological processes. Mol Ecol 2016; 26:606-623. [DOI: 10.1111/mec.13930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
|
147
|
Aimé C, Austerlitz F. Different kinds of genetic markers permit inference of Paleolithic and Neolithic expansions in humans. Eur J Hum Genet 2016; 25:360-365. [PMID: 28000700 DOI: 10.1038/ejhg.2016.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/12/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022] Open
Abstract
Recent population genetic studies have provided valuable insights on the demographic history of our species. However, some issues such as the dating of the first demographic expansions in human populations remain puzzling. Indeed, although a few genetic studies argued that the first human expansions were concomitant with the Neolithic transition, many others found signals of expansion events starting during the Palaeolithic. Here we performed a simulation study to show that these contradictory findings may result from the differences in the genetic markers used, especially if two successive expansion events occurred. For a large majority of replicates for each scenario tested, microsatellite data allow only detecting the recent expansion event in that case, whereas sequence data allow only detecting the ancient expansion. Combined with previous real data analyses, our results bring support to the ideas that (i) a first human expansions started during the Palaeolithic period, (ii) a second expansion event occurred later, concomitantly with the Neolithic transition.
Collapse
Affiliation(s)
- Carla Aimé
- UMR 7206, EcoAnthropologie et Ethnobiologie, CNRS/MNHN/Université Paris Diderot, Paris, France.,UMR 5554, Institut des Sciences de l'Évolution, CNRS-Université de Montpellier, Montpellier, France
| | - Frédéric Austerlitz
- UMR 7206, EcoAnthropologie et Ethnobiologie, CNRS/MNHN/Université Paris Diderot, Paris, France
| |
Collapse
|
148
|
Evolutionary history of a keystone pollinator parallels the biome occupancy of angiosperms in the Greater Cape Floristic Region. Mol Phylogenet Evol 2016; 107:530-537. [PMID: 27940332 DOI: 10.1016/j.ympev.2016.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022]
Abstract
The Greater Cape Floristic Region (GCFR) in South Africa has been extensively investigated for its phenomenal angiosperm diversity. A key emergent pattern is the occurrence of older plant lineages in the southern Fynbos biome and younger lineages in the northern Succulent Karoo biome. We know practically nothing, however, about the evolutionary history of the animals that pollinate this often highly-specialized flora. In this study, we explore the evolutionary history of an important GCFR fly pollinator, Megapalpus capensis, and ask whether it exhibits broadly congruent genetic structuring and timing of diversification to flowering plants within these biomes. We find that the oldest M. capensis lineages originated in Fynbos during the Miocene, while younger Succulent Karoo lineages diverged in the Pliocene and correspond to the proposed age of this recent biome. A strong signature of population expansion is also recovered for flies in this arid biome, consistent with recent colonization. Our first investigation into the evolutionary history of GCFR pollinators thus supports a recent origin of the SK biome, as inferred from angiosperm phylogenies, and suggests that plants and pollinators may have co-diverged within this remarkable area.
Collapse
|
149
|
Karcher MD, Palacios JA, Lan S, Minin VN. phylodyn: an R package for phylodynamic simulation and inference. Mol Ecol Resour 2016; 17:96-100. [PMID: 27801980 DOI: 10.1111/1755-0998.12630] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/01/2022]
Abstract
We introduce phylodyn, an r package for phylodynamic analysis based on gene genealogies. The package's main functionality is Bayesian nonparametric estimation of effective population size fluctuations over time. Our implementation includes several Markov chain Monte Carlo-based methods and an integrated nested Laplace approximation-based approach for phylodynamic inference that have been developed in recent years. Genealogical data describe the timed ancestral relationships of individuals sampled from a population of interest. Here, individuals are assumed to be sampled at the same point in time (isochronous sampling) or at different points in time (heterochronous sampling); in addition, sampling events can be modelled with preferential sampling, which means that the intensity of sampling events is allowed to depend on the effective population size trajectory. We assume the coalescent and the sequentially Markov coalescent processes as generative models of genealogies. We include several coalescent simulation functions that are useful for testing our phylodynamics methods via simulation studies. We compare the performance and outputs of various methods implemented in phylodyn and outline their strengths and weaknesses. r package phylodyn is available at https://github.com/mdkarcher/phylodyn.
Collapse
Affiliation(s)
- Michael D Karcher
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Julia A Palacios
- Department of Statistics, Stanford University, Stanford, CA, USA.,Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Shiwei Lan
- Department of Statistics, University of Warwick, Coventry, UK
| | - Vladimir N Minin
- Department of Statistics, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
150
|
Frantine-Silva W, Giangarelli DC, Penha RES, Suzuki KM, Dec E, Gaglianone MC, Alves-dos-Santos I, Sofia SH. Phylogeography and historical demography of the orchid bee Euglossa iopoecila: signs of vicariant events associated to Quaternary climatic changes. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0905-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|