101
|
Unver T, Wu Z, Sterck L, Turktas M, Lohaus R, Li Z, Yang M, He L, Deng T, Escalante FJ, Llorens C, Roig FJ, Parmaksiz I, Dundar E, Xie F, Zhang B, Ipek A, Uranbey S, Erayman M, Ilhan E, Badad O, Ghazal H, Lightfoot DA, Kasarla P, Colantonio V, Tombuloglu H, Hernandez P, Mete N, Cetin O, Van Montagu M, Yang H, Gao Q, Dorado G, Van de Peer Y. Genome of wild olive and the evolution of oil biosynthesis. Proc Natl Acad Sci U S A 2017; 114:E9413-E9422. [PMID: 29078332 PMCID: PMC5676908 DOI: 10.1073/pnas.1708621114] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
Collapse
Affiliation(s)
- Turgay Unver
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 İzmir, Turkey;
| | | | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Mine Turktas
- Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey
| | - Rolf Lohaus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ming Yang
- BGI Shenzhen, 518038 Shenzhen, China
| | - Lijuan He
- BGI Shenzhen, 518038 Shenzhen, China
| | | | | | | | | | - Iskender Parmaksiz
- Department of Molecular Biology and Genetics, Faculty of Science, Gaziosmanpasa University, 60250 Tokat, Turkey
| | - Ekrem Dundar
- Department of Molecular Biology and Genetics, Faculty of Science, Balikesir University, 10145 Balikesir, Turkey
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Arif Ipek
- Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey
| | - Serkan Uranbey
- Department of Field Crops, Faculty of Agriculture, Ankara University, 06120 Ankara, Turkey
| | - Mustafa Erayman
- Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey
| | - Emre Ilhan
- Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey
| | - Oussama Badad
- Laboratory of Plant Physiology, University Mohamed V, 10102 Rabat, Morocco
| | - Hassan Ghazal
- Polydisciplinary Faculty of Nador, University Mohamed Premier, 62700 Nador, Morocco
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
| | - Pavan Kasarla
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
| | - Huseyin Tombuloglu
- Institute for Research and Medical Consultation, University of Dammam, 34212 Dammam, Saudi Arabia
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, 14004 Córdoba, Spain
| | - Nurengin Mete
- Olive Research Institute of Bornova, 35100 Izmir, Turkey
| | - Oznur Cetin
- Olive Research Institute of Bornova, 35100 Izmir, Turkey
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Qiang Gao
- BGI Shenzhen, 518038 Shenzhen, China
| | - Gabriel Dorado
- Departamento Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
102
|
Sebastiani L, Busconi M. Recent developments in olive (Olea europaea L.) genetics and genomics: applications in taxonomy, varietal identification, traceability and breeding. PLANT CELL REPORTS 2017; 36:1345-1360. [PMID: 28434019 DOI: 10.1007/s00299-017-2145-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The latest results in DNA markers application and genomic studies in olive. Olive (Olea europaea L.) is among the most ancient tree crops worldwide and the source of oil beneficial for human health. Despite this, few data on olive genetics are available in comparison with other cultivated plant species. Molecular information is mainly linked to molecular markers and their application to the study of DNA variation in the Olea europaea complex. In terms of genomic research, efforts have been made in sequencing, heralding the era of olive genomic. The present paper represents an update of a previous review work published in this journal in 2011. The review is again mainly focused on DNA markers, whose application still constitutes a relevant percentage of the most recently published researches. Since the olive genomic era has recently started, the latest results in this field are also being discussed.
Collapse
Affiliation(s)
- L Sebastiani
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy.
| | - M Busconi
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
103
|
Haberman A, Bakhshian O, Cerezo-Medina S, Paltiel J, Adler C, Ben-Ari G, Mercado JA, Pliego-Alfaro F, Lavee S, Samach A. A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. PLANT, CELL & ENVIRONMENT 2017; 40:1263-1280. [PMID: 28103403 DOI: 10.1111/pce.12922] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 05/09/2023]
Abstract
Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors.
Collapse
Affiliation(s)
- Amnon Haberman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ortal Bakhshian
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Sergio Cerezo-Medina
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Málaga, 29071, Spain
| | - Judith Paltiel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Chen Adler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Jose Angel Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Málaga, 29071, Spain
| | - Fernando Pliego-Alfaro
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Málaga, 29071, Spain
| | - Shimon Lavee
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
104
|
Mousavi S, Mariotti R, Bagnoli F, Costantini L, Cultrera NGM, Arzani K, Pandolfi S, Vendramin GG, Torkzaban B, Hosseini-Mazinani M, Baldoni L. The eastern part of the Fertile Crescent concealed an unexpected route of olive (Olea europaea L.) differentiation. ANNALS OF BOTANY 2017; 119:1305-1318. [PMID: 28387783 PMCID: PMC5604562 DOI: 10.1093/aob/mcx027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/28/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Olive is considered a native plant of the eastern side of the Mediterranean basin, from where it should have spread westward along the Mediterranean shores, while little is known about its diffusion in the eastern direction. METHODS Genetic diversity levels and population genetic structure of a wide set of olive ecotypes and varieties collected from several provinces of Iran, representing a high percentage of the entire olive resources present in the area, was screened with 49 chloroplast and ten nuclear simple sequence repeat markers, and coupled with archaeo-botanical and historical data on Mediterranean olive varieties. Approximate Bayesian Computation was applied to define the demographic history of olives including Iranian germplasm, and species distribution modelling was performed to understand the impact of the Late Quaternary on olive distribution. KEY RESULTS The results of the present study demonstrated that: (1) the climatic conditions of the last glacial maximum had an important role on the actual olive distribution, (2) all Iranian olive samples had the same maternal inheritance as Mediterranean cultivars, and (3) the nuclear gene flow from the Mediterranean basin to the Iranian plateau was almost absent, as well as the contribution of subspecies cuspidata to the diversity of Iranian olives. CONCLUSIONS Based on this evidence, a new scenario for the origin and distribution of this important fruit crop has been traced. The evaluation of olive trees growing in the eastern part of the Levant highlighted a new perspective on the spread and distribution of olive, suggesting two routes of olive differentiation, one westward, spreading along the Mediterranean basin, and another moving towards the east and reaching the Iranian plateau before its domestication.
Collapse
Affiliation(s)
- Soraya Mousavi
- CNR - Institute for Agricultural and Forest Systems in the Mediterranean, via Madonna Alta, 128, 06128 Perugia, Italy
- Tarbiat Modares University, Department of Horticultural Science, Jalal Ale Ahmad Highway, PO Box 14115111, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran
- Co-first authors: These authors contributed equally to this work
| | - Roberto Mariotti
- CNR - Institute of Biosciences and Bioresources, via Madonna Alta, 130, 06128 Perugia, Italy
- Co-first authors: These authors contributed equally to this work
| | - Francesca Bagnoli
- CNR - Institute of Biosciences and Bioresources, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Costantini
- ISMEO - International Association of Mediterranean and Oriental Studies, Corso Vittorio Emanuele II, 244, 00186 Rome, Italy
| | - Nicolò G. M. Cultrera
- CNR - Institute of Biosciences and Bioresources, via Madonna Alta, 130, 06128 Perugia, Italy
| | - Kazem Arzani
- Tarbiat Modares University, Department of Horticultural Science, Jalal Ale Ahmad Highway, PO Box 14115111, Tehran, Iran
| | - Saverio Pandolfi
- CNR - Institute of Biosciences and Bioresources, via Madonna Alta, 130, 06128 Perugia, Italy
| | - Giovanni Giuseppe Vendramin
- CNR - Institute of Biosciences and Bioresources, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Bahareh Torkzaban
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran
| | - Mehdi Hosseini-Mazinani
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran
- For correspondence. E-mail or
| | - Luciana Baldoni
- CNR - Institute of Biosciences and Bioresources, via Madonna Alta, 130, 06128 Perugia, Italy
- For correspondence. E-mail or
| |
Collapse
|
105
|
Kates HR, Soltis PS, Soltis DE. Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Mol Phylogenet Evol 2017; 111:98-109. [PMID: 28288944 DOI: 10.1016/j.ympev.2017.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 11/28/2022]
Abstract
Phylogenetics can facilitate the study of plant domestication by resolving sister relationships between crops and their wild relatives, thereby identifying the ancestors of cultivated plants. Previous phylogenetic studies of the six Cucurbita crop lineages (pumpkins and squashes) and their wild relatives suggest histories of deep coalescence that complicate uncovering the genetic origins of the six crop taxa. We investigated the evolution of wild and domesticated Cucurbita using the most comprehensive and robust molecular-based phylogeny for Cucurbita to date based on 44 loci derived from introns of single-copy nuclear genes. We discovered novel relationships among Cucurbita species and recovered the first Cucurbita tree with well-supported resolution within species. Cucurbita comprises a clade of mesophytic annual species that includes all six crop taxa and a grade of xerophytic perennial species that represent the ancestral xerophytic habit of the genus. Based on phylogenetic resolution within-species we hypothesize that the magnitude of domestication bottlenecks varies among Cucurbita crop lineages. Our phylogeny clarifies how wild Cucurbita species are related to the domesticated taxa. We find close relationships between two wild species and crop lineages not previously identified. Expanded geographic sampling of key wild species is needed for improved understanding of the evolution of domesticated Cucurbita.
Collapse
Affiliation(s)
- Heather R Kates
- Univ Florida, Genet Inst, Gainesville, FL 32611, USA; Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611, USA.
| | - Pamela S Soltis
- Univ Florida, Genet Inst, Gainesville, FL 32611, USA; Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Univ Florida, Genet Inst, Gainesville, FL 32611, USA; Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611, USA; Univ Florida, Dept Biol, Gainesville, FL 32611, USA
| |
Collapse
|
106
|
Beghè D, Piotti A, Satovic Z, de la Rosa R, Belaj A. Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris. ANNALS OF BOTANY 2017; 119:671-679. [PMID: 28028015 PMCID: PMC5571374 DOI: 10.1093/aob/mcw246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/26/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Wild olive ( Olea europaea subsp. europaea var. sylvestris ) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations. METHODS The studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation. KEY RESULTS The results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed. CONCLUSIONS Knowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources.
Collapse
Affiliation(s)
- D. Beghè
- Department of Food Science, Parco Area delle Scienze, 95/a, 43124 Parma, Italy
- Institute of Tree and Timber (IVALSA), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - A. Piotti
- Institute of Biosciences and BioResources (IBBR), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Z. Satovic
- University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - R. de la Rosa
- Andalusian Institute of Agricultural Research and Training (IFAPA), Centro ‘Alameda del Obispo’, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - A. Belaj
- Andalusian Institute of Agricultural Research and Training (IFAPA), Centro ‘Alameda del Obispo’, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
107
|
Mousavi S, Mariotti R, Regni L, Nasini L, Bufacchi M, Pandolfi S, Baldoni L, Proietti P. The First Molecular Identification of an Olive Collection Applying Standard Simple Sequence Repeats and Novel Expressed Sequence Tag Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:1283. [PMID: 28769972 PMCID: PMC5515915 DOI: 10.3389/fpls.2017.01283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/07/2017] [Indexed: 05/10/2023]
Abstract
Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years' 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST (Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections, also based on recently developed markers.
Collapse
Affiliation(s)
- Soraya Mousavi
- Consiglio Nazionale delle Ricerche – Institute for Agricultural and Forest Systems in the MediterraneanPerugia, Italy
| | - Roberto Mariotti
- Consiglio Nazionale delle Ricerche – Institute of Biosciences and BioresourcesPerugia, Italy
| | - Luca Regni
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di PerugiaPerugia, Italy
| | - Luigi Nasini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di PerugiaPerugia, Italy
| | - Marina Bufacchi
- Consiglio Nazionale delle Ricerche – Institute for Agricultural and Forest Systems in the MediterraneanPerugia, Italy
| | - Saverio Pandolfi
- Consiglio Nazionale delle Ricerche – Institute of Biosciences and BioresourcesPerugia, Italy
| | - Luciana Baldoni
- Consiglio Nazionale delle Ricerche – Institute of Biosciences and BioresourcesPerugia, Italy
| | - Primo Proietti
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di PerugiaPerugia, Italy
- *Correspondence: Primo Proietti,
| |
Collapse
|
108
|
Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLoS Biol 2016; 14:e2000234. [PMID: 28027292 PMCID: PMC5189939 DOI: 10.1371/journal.pbio.2000234] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids—the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation. Isolated populations accumulate genetic differences across their genomes as they diverge, whereas gene flow between populations counteracts divergence and tends to restore genetic homogeneity. Speciation proceeds by the accumulation at specific loci of mutations that reduce the fitness of hybrids, therefore preventing gene flow—the so-called species barriers. Importantly, species barriers are expected to act locally within the genome, leading to the prediction of a mosaic pattern of genetic differentiation between populations at intermediate levels of divergence—the genic view of speciation. At the same time, linked selection also contributes to speed up differentiation in low-recombining and gene-dense regions. We used a modelling approach that accounts for both sources of genomic heterogeneity and explored a wide continuum of genomic divergence made by 61 pairs of species/populations in animals. Our analysis provides a unifying picture of the relationship between molecular divergence and ability to exchange genes. We show that the "grey zone" of speciation—the intermediate state in which species definition is controversial—spans from 0.5% to 2% of molecular divergence, with these thresholds being independent of species life history traits and ecology. Semi-isolated species, between which alleles can be exchanged at some but not all loci, are numerous, with the earliest species barriers being detected at divergences as low as 0.075%. These results have important implications regarding taxonomy, conservation biology, and the management of biodiversity.
Collapse
|
109
|
|
110
|
Barazani O, Keren-Keiserman A, Westberg E, Hanin N, Dag A, Ben-Ari G, Fragman-Sapir O, Tugendhaft Y, Kerem Z, Kadereit JW. Genetic variation of naturally growing olive trees in Israel: from abandoned groves to feral and wild? BMC PLANT BIOLOGY 2016; 16:261. [PMID: 27964727 PMCID: PMC5154132 DOI: 10.1186/s12870-016-0947-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/05/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Naturally growing populations of olive trees are found in the Mediterranean garrigue and maquis in Israel. Here, we used the Simple Sequence Repeat (SSR) genetic marker technique to investigate whether these represent wild var. sylvestris. Leaf samples were collected from a total of 205 trees at six sites of naturally growing olive populations in Israel. The genetic analysis included a multi-locus lineage (MLL) analysis, Rousset's genetic distances, Fst values, private alleles, other diversity values and a Structure analysis. The analyses also included scions and suckers of old cultivated olive trees, for which the dominance of one clone in scions (MLL1) and a second in suckers (MLL7) had been shown earlier. RESULTS The majority of trees from a Judean Mts. population and from one population from the Galilee showed close genetic similarity to scions of old cultivated trees. Different from that, site-specific and a high number of single occurrence MLLs were found in four olive populations from the Galilee and Carmel which also were genetically more distant from old cultivated trees, had relatively high genetic diversity values and higher numbers of private alleles. Whereas in two of these populations MLL7 (and partly MLL1) were found in low frequency, the two other populations did not contain these MLLs and were very similar in their genetic structure to suckers of old cultivated olive trees that originated from sexual reproduction. CONCLUSIONS The genetic distinctness from old cultivated olive trees, particularly of one population from Galilee and one from Carmel, suggests that trees at these sites might represent wild var. sylvestris. The similarity in genetic structure of these two populations with the suckers of old cultivated trees implies that wild trees were used as rootstocks. Alternatively, trees at these two sites may be remnants of old cultivated trees in which the scion-derived trunk died and was replaced by suckers. However, considering landscape and topographic environment at the two sites this second interpretation is less likely.
Collapse
Affiliation(s)
- Oz Barazani
- Institute of Plant Sciences, the Israel Plant Gene Bank, Agricultural Research Organization, Rishon LeZion, 75359 Israel
| | - Alexandra Keren-Keiserman
- Institute of Plant Sciences, the Israel Plant Gene Bank, Agricultural Research Organization, Rishon LeZion, 75359 Israel
- Herbarium, the National Natural History Collections, the Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - Erik Westberg
- Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Nir Hanin
- Institute of Plant Sciences, the Israel Plant Gene Bank, Agricultural Research Organization, Rishon LeZion, 75359 Israel
| | - Arnon Dag
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Gilat Research Center, Gilat, 85280 Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, Department of Fruit Trees Sciences, Agricultural Research Organization, Rishon LeZion, 75359 Israel
| | - Ori Fragman-Sapir
- Jerusalem Botanical Gardens, the Hebrew University, Giv’at Ram, Jerusalem, 9021904 Israel
| | - Yizhar Tugendhaft
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Gilat Research Center, Gilat, 85280 Israel
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Zohar Kerem
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Joachim W. Kadereit
- Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
111
|
Besnard G, Cuneo P. An ecological and evolutionary perspective on the parallel invasion of two cross-compatible trees. AOB PLANTS 2016; 8:plw056. [PMID: 27519914 PMCID: PMC5018386 DOI: 10.1093/aobpla/plw056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/01/2016] [Indexed: 05/29/2023]
Abstract
Invasive trees are generally seen as ecosystem-transforming plants that can have significant impacts on native vegetation, and often require management and control. Understanding their history and biology is essential to guide actions of land managers. Here, we present a summary of recent research into the ecology, phylogeography and management of invasive olives, which are now established outside of their native range as high ecological impact invasive trees. The parallel invasion of European and African olive in different climatic zones of Australia provides an interesting case study of invasion, characterized by early genetic admixture between domesticated and wild taxa. Today, the impact of the invasive olives on native vegetation and ecosystem function is of conservation concern, with European olive a declared weed in areas of South Australia, and African olive a declared weed in New South Wales and Pacific islands. Population genetics was used to trace the origins and invasion of both subspecies in Australia, indicating that both olive subspecies have hybridized early after introduction. Research also indicates that African olive populations can establish from a low number of founder individuals even after successive bottlenecks. Modelling based on distributional data from the native and invasive range identified a shift of the realized ecological niche in the Australian invasive range for both olive subspecies, which was particularly marked for African olive. As highly successful and long-lived invaders, olives offer further opportunities to understand the genetic basis of invasion, and we propose that future research examines the history of introduction and admixture, the genetic basis of adaptability and the role of biotic interactions during invasion. Advances on these questions will ultimately improve predictions on the future olive expansion and provide a solid basis for better management of invasive populations.
Collapse
Affiliation(s)
- Guillaume Besnard
- CNRS, UPS, ENFA, Laboratoire Evolution & Diversité Biologique, UMR 5174, 31062 Toulouse 4, France
| | - Peter Cuneo
- The Australian PlantBank, Royal Botanic Gardens and Domain Trust, The Australian Botanic Garden, Mount Annan, NSW 2567, Australia
| |
Collapse
|
112
|
Decroocq S, Cornille A, Tricon D, Babayeva S, Chague A, Eyquard JP, Karychev R, Dolgikh S, Kostritsyna T, Liu S, Liu W, Geng W, Liao K, Asma BM, Akparov Z, Giraud T, Decroocq V. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol Ecol 2016; 25:4712-29. [PMID: 27480465 DOI: 10.1111/mec.13772] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 12/01/2022]
Abstract
Studying domesticated species and their wild relatives allows understanding of the mechanisms of population divergence and adaptation, and identifying valuable genetic resources. Apricot is an important fruit in the Northern hemisphere, where it is threatened by the Plum pox virus (PPV), causing the sharka disease. The histories of apricot domestication and of its resistance to sharka are however still poorly understood. We used 18 microsatellite markers to genotype a collection of 230 wild trees from Central Asia and 142 cultivated apricots as representatives of the worldwide cultivated apricot germplasm; we also performed experimental PPV inoculation tests. The genetic markers revealed highest levels of diversity in Central Asian and Chinese wild and cultivated apricots, confirming an origin in this region. In cultivated apricots, Chinese accessions were differentiated from more Western accessions, while cultivated apricots were differentiated from wild apricots. An approximate Bayesian approach indicated that apricots likely underwent two independent domestication events, with bottlenecks, from the same wild population. Central Asian native apricots exhibited genetic subdivision and high frequency of resistance to sharka. Altogether, our results contribute to the understanding of the domestication history of cultivated apricot and point to valuable genetic diversity in the extant genetic resources of wild apricots.
Collapse
Affiliation(s)
- Stéphane Decroocq
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Amandine Cornille
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Tricon
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Sevda Babayeva
- Genetic Resources Institute of ANAS, Azadlig ave. 155, AZ1106, Baku, Azerbaijan
| | - Aurélie Chague
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Jean-Philippe Eyquard
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Raul Karychev
- Kazakh Research Institute of Horticulture and Viticulture, 238-a Gagarin Avenue, 480060, Almaty, Kazakhstan
| | - Svetlana Dolgikh
- Kazakh Research Institute of Horticulture and Viticulture, 238-a Gagarin Avenue, 480060, Almaty, Kazakhstan
| | - Tatiana Kostritsyna
- Botanical Garden of National Academy of Sciences, Akhunbaeva street 1a, 720064, Bishkek, Kyrgyzstan
| | - Shuo Liu
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.,Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou City, Liaoning, 115009, China
| | - Weisheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou City, Liaoning, 115009, China
| | - Wenjuan Geng
- College of Horticulture & Forestry Sciences, Xinjiang Agricultural University, 311 NongDaDong Road, 830052, Urumqi City, Xinjiang, China
| | - Kang Liao
- College of Horticulture & Forestry Sciences, Xinjiang Agricultural University, 311 NongDaDong Road, 830052, Urumqi City, Xinjiang, China
| | - Bayram M Asma
- Department of Horticulture, Inonu University, Malatya, 44210, Turkey
| | - Zeynal Akparov
- Genetic Resources Institute of ANAS, Azadlig ave. 155, AZ1106, Baku, Azerbaijan
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.
| | - Véronique Decroocq
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France. .,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.
| |
Collapse
|
113
|
Pasqualone A, Montemurro C, di Rienzo V, Summo C, Paradiso VM, Caponio F. Evolution and perspectives of cultivar identification and traceability from tree to oil and table olives by means of DNA markers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3642-3657. [PMID: 26991131 DOI: 10.1002/jsfa.7711] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/21/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
In recent years, an increasing number of typicality marks has been awarded to high-quality olive oils produced from local cultivars. In this case, quality control requires effective varietal checks of the starting materials. Moreover, accurate cultivar identification is essential in vegetative-propagated plants distributed by nurseries and is a pre-requisite to register new cultivars. Food genomics provides many tools for cultivar identification and traceability from tree to oil and table olives. The results of the application of different classes of DNA markers to olive with the purpose of checking cultivar identity and variability of plant material are extensively discussed in this review, with special regard to repeatability issues and polymorphism degree. The characterization of olive germplasm from all countries of the Mediterranean basin and from less studied geographical areas is described and innovative high-throughput molecular tools to manage reference collections are reviewed. Then the transferability of DNA markers to processed products - virgin olive oils and table olives - is overviewed to point out strengths and weaknesses, with special regard to (i) the influence of processing steps and storage time on the quantity and quality of residual DNA, (ii) recent advances to overcome the bottleneck of DNA extraction from processed products, (iii) factors affecting whole comparability of DNA profiles between fresh plant materials and end-products, (iv) drawbacks in the analysis of multi-cultivar versus single-cultivar end-products and (v) the potential of quantitative polymerase chain reaction (PCR)-based techniques. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonella Pasqualone
- Department of Soil, Plant, and Food Sciences, University of Bari 'Aldo Moro', Via Amendola 165/A, I-70126, Bari, Italy
| | - Cinzia Montemurro
- Department of Soil, Plant, and Food Sciences, University of Bari 'Aldo Moro', Via Amendola 165/A, I-70126, Bari, Italy
| | - Valentina di Rienzo
- Department of Soil, Plant, and Food Sciences, University of Bari 'Aldo Moro', Via Amendola 165/A, I-70126, Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant, and Food Sciences, University of Bari 'Aldo Moro', Via Amendola 165/A, I-70126, Bari, Italy
| | - Vito Michele Paradiso
- Department of Soil, Plant, and Food Sciences, University of Bari 'Aldo Moro', Via Amendola 165/A, I-70126, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant, and Food Sciences, University of Bari 'Aldo Moro', Via Amendola 165/A, I-70126, Bari, Italy
| |
Collapse
|
114
|
Nenadis N, Tsimidou MZ. Perspective of vibrational spectroscopy analytical methods in on-field/official control of olives and virgin olive oil. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600148] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology; School of Chemistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Maria Z. Tsimidou
- Laboratory of Food Chemistry and Technology; School of Chemistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
115
|
Meegahakumbura MK, Wambulwa MC, Thapa KK, Li MM, Möller M, Xu JC, Yang JB, Liu BY, Ranjitkar S, Liu J, Li DZ, Gao LM. Indications for Three Independent Domestication Events for the Tea Plant (Camellia sinensis (L.) O. Kuntze) and New Insights into the Origin of Tea Germplasm in China and India Revealed by Nuclear Microsatellites. PLoS One 2016; 11:e0155369. [PMID: 27218820 PMCID: PMC4878758 DOI: 10.1371/journal.pone.0155369] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
Background Tea is the world’s most popular non-alcoholic beverage. China and India are known to be the largest tea producing countries and recognized as the centers for the domestication of the tea plant (Camellia sinensis (L.) O. Kuntze). However, molecular studies on the origin, domestication and relationships of the main teas, China type, Assam type and Cambod type are lacking. Methodology/Principal Findings Twenty-three nuclear microsatellite markers were used to investigate the genetic diversity, relatedness, and domestication history of cultivated tea in both China and India. Based on a total of 392 samples, high levels of genetic diversity were observed for all tea types in both countries. The cultivars clustered into three distinct genetic groups (i.e. China tea, Chinese Assam tea and Indian Assam tea) based on STRUCTURE, PCoA and UPGMA analyses with significant pairwise genetic differentiation, corresponding well with their geographical distribution. A high proportion (30%) of the studied tea samples were shown to possess genetic admixtures of different tea types suggesting a hybrid origin for these samples, including the Cambod type. Conclusions We demonstrate that Chinese Assam tea is a distinct genetic lineage from Indian Assam tea, and that China tea sampled from India was likely introduced from China directly. Our results further indicate that China type tea, Chinese Assam type tea and Indian Assam type tea are likely the result of three independent domestication events from three separate regions across China and India. Our findings have important implications for the conservation of genetic stocks, as well as future breeding programs.
Collapse
Affiliation(s)
- M. K. Meegahakumbura
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- Coconut Research Institute, Lunuwila, Sri Lanka
| | - M. C. Wambulwa
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- World Agroforestry Centre, Nairobi, Kenya
| | - K. K. Thapa
- Department of Botany, Dinhata College, Dinhata– 736135, West Bengal, India
| | - M. M. Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
| | - M. Möller
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, United Kingdom
| | - J. C. Xu
- Centre for Mountain Ecosystem Studies and World Agroforestry Centre East and Central Asia Regional Office, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - J. B. Yang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - B. Y. Liu
- Tea Research Institute of Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - S. Ranjitkar
- Centre for Mountain Ecosystem Studies and World Agroforestry Centre East and Central Asia Regional Office, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - J. Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - D. Z. Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- * E-mail: (LMG); (DZL)
| | - L. M. Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- * E-mail: (LMG); (DZL)
| |
Collapse
|
116
|
Francis RM. pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 2016; 17:27-32. [PMID: 26850166 DOI: 10.1111/1755-0998.12509] [Citation(s) in RCA: 595] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 11/29/2022]
Abstract
The pophelper r package and web app are software tools to aid in population structure analyses. They can be used for the analyses and visualization of output generated from population assignment programs such as admixture, structure and tess. Some of the functions include parsing output run files to tabulate data, estimating K using the Evanno method, generating files for clumpp and functionality to create barplots. These functions can be streamlined into standard r analysis workflows. The latest version of the package is available on github (https://github.com/royfrancis/pophelper). An interactive web version of the pophelper package is available which covers the same functionalities as the r package version with features such as interactive plots, cluster alignment during plotting, sorting individuals and ordering of population groups. The interactive version is available at http://pophelper.com/.
Collapse
Affiliation(s)
- R M Francis
- Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
117
|
Gawroński P, Pawełkowicz M, Tofil K, Uszyński G, Sharifova S, Ahluwalia S, Tyrka M, Wędzony M, Kilian A, Bolibok-Brągoszewska H. DArT Markers Effectively Target Gene Space in the Rye Genome. FRONTIERS IN PLANT SCIENCE 2016; 7:1600. [PMID: 27833625 PMCID: PMC5080361 DOI: 10.3389/fpls.2016.01600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 05/02/2023]
Abstract
Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
| | - Katarzyna Tofil
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
| | | | - Saida Sharifova
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
- Department of Biotechnology, Genetic Resources Institute of Azerbaijan National Academy of SciencesBaku, Azerbaijan
| | - Shivaksh Ahluwalia
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
- Kusuma School of Biological Sciences, Indian Institute of TechnologyNew Delhi, India
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of TechnologyRzeszow, Poland
| | - Maria Wędzony
- Department of Genetics and Cytology, Pedagogical University of CracowCracow, Poland
| | | | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
- *Correspondence: Hanna Bolibok-Brągoszewska,
| |
Collapse
|
118
|
|
119
|
Besnard G, Rubio de Casas R. Single vs multiple independent olive domestications: the jury is (still) out. THE NEW PHYTOLOGIST 2016; 209:466-70. [PMID: 26555218 DOI: 10.1111/nph.13518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Guillaume Besnard
- CNRS-UPS-ENFA, EDB, UMR 5174, Bât. 4R1, 31062, Toulouse Cedex 9, France
| | - Rafael Rubio de Casas
- Estación Experimental de Zonas Áridas, EEZA-CSIC, Carretera de Sacramento s/n, 04120, Almería, Spain
- UMR 5175 CEFE-Centre d'Ecologie Fonctionnelle et Evolutive (CNRS), 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| |
Collapse
|
120
|
Díez CM, Gaut BS. The jury may be out, but it is important that it deliberates: a response to Besnard and Rubio de Casas about olive domestication. THE NEW PHYTOLOGIST 2016; 209:471-3. [PMID: 26599353 DOI: 10.1111/nph.13780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Concepción M Díez
- Departamento de Agronomía, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio C4, Campus de Rabanales, 14014, Córdoba, Spain
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
121
|
Oleuropein-Enriched Olive Leaf Extract Affects Calcium Dynamics and Impairs Viability of Malignant Mesothelioma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:908493. [PMID: 26693247 PMCID: PMC4674619 DOI: 10.1155/2015/908493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 02/05/2023]
Abstract
Malignant mesothelioma is a poor prognosis cancer in urgent need of alternative therapies. Oleuropein, the major phenolic of olive tree (Olea europaea L.), is believed to have therapeutic potentials for various diseases, including tumors. We obtained an oleuropein-enriched fraction, consisting of 60% w/w oleuropein, from olive leaves, and assessed its effects on intracellular Ca2+ and cell viability in mesothelioma cells. Effects of the oleuropein-enriched fraction on Ca2+ dynamics and cell viability were studied in the REN mesothelioma cell line, using fura-2 microspectrofluorimetry and MTT assay, respectively. Fura-2-loaded cells, transiently exposed to the oleuropein-enriched fraction, showed dose-dependent transient elevations of cytosolic Ca2+ concentration ([Ca2+]i). Application of standard oleuropein and hydroxytyrosol, and of the inhibitor of low-voltage T-type Ca2+ channels NNC-55-0396, suggested that the effect is mainly due to oleuropein acting through its hydroxytyrosol moiety on T-type Ca2+ channels. The oleuropein-enriched fraction and standard oleuropein displayed a significant antiproliferative effect, as measured on REN cells by MTT cell viability assay, with IC50 of 22 μg/mL oleuropein. Data suggest that our oleuropein-enriched fraction from olive leaf extract could have pharmacological application in malignant mesothelioma anticancer therapy, possibly by targeting T-type Ca2+ channels and thereby dysregulating intracellular Ca2+ dynamics.
Collapse
|
122
|
Gaut BS, Díez CM, Morrell PL. Genomics and the Contrasting Dynamics of Annual and Perennial Domestication. Trends Genet 2015; 31:709-719. [PMID: 26603610 DOI: 10.1016/j.tig.2015.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/08/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
Plant domestication modifies a wild species genetically for human use. Among thousands of domesticated plants, a major distinction is the difference between annual and perennial life cycles. The domestication of perennials is expected to follow different processes than annuals, with distinct genetic outcomes. Here we examine domestication from a population genetics perspective, with a focus on three issues: genetic bottlenecks during domestication, introgression as a source of local adaptation, and genetic load. These three issues have been studied nominally in major annual crops but even less extensively in perennials. Here we highlight lessons from annual plants, motivations to study these issues in perennial plants, and new approaches that may lead to further progress.
Collapse
Affiliation(s)
- Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA.
| | - Concepción M Díez
- Departamento de Agronomía, Universidad de Córdoba - Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio C4, Campus de Rabanales, 14014 Córdoba, Spain
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|