101
|
Abstract
In the past 15 years, the field of physiology has been radically challenged by landmark studies using novel tools of genetic engineering. Particular to our interest, the reciprocal interactions between the skeleton and the nervous system were shown to be major ones. The demonstration that brain, via multiple pathways, is a powerful regulator of bone growth, has shed light on an important central regulation of skeletal homeostasis. More recently, it was shown that bone might return the favor to the brain through the secretion of a bone-derived hormone, osteocalcin. The skeleton influences development and cognitive functions of the central nervous system at different stages throughout life suggesting an intimate dialogue between bone and brain.
Collapse
Affiliation(s)
- Alexandre Chamouni
- Centre de Médecine Moléculaire, Institut Necker-Enfants Malades (INEM), 75014, Paris, France
| | | | | |
Collapse
|
102
|
Abstract
Bone metabolism is regulated by the action of two skeletal cells: osteoblasts and osteoclasts. This process is controlled by many genetic, hormonal and lifestyle factors, but today more and more studies have allowed us to identify a neuronal regulation system termed 'bone-brain crosstalk', which highlights a direct relationship between bone tissue and the nervous system. The first documentation of an anatomic relationship between nerves and bone was made via a wood cut by Charles Estienne in Paris in 1545. His diagram demonstrated nerves entering and leaving the bones of a skeleton. Later, several studies were conducted on bone innervation and, as of today, many observations on the regulation of bone remodeling by neurons and neuropeptides that reside in the CNS have created a new research field, that is, neuroskeletal research.
Collapse
Affiliation(s)
- Alessia Metozzi
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Lorenzo Bonamassa
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Gemma Brandi
- b 2 Public Mental Health system 1-4 of Florence, Florence, Italy
| | - Maria Luisa Brandi
- c 3 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, AOUC Careggi, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| |
Collapse
|
103
|
Martinez VG, O'Driscoll L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem 2015; 61:471-82. [PMID: 25605682 DOI: 10.1373/clinchem.2014.231753] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Neuromedin U (NmU) belongs to the neuromedin family, comprising a series of neuropeptides involved in the gut-brain axis and including neuromedins B and C (bombesin-like), K (neurokinin B), L (neurokinin A or neurotensin), N, S, and U. CONTENT Although initially isolated from porcine spinal cord on the basis of their ability to induce uterine smooth muscle contraction, these peptides have now been found to be expressed in several different tissues and have been ascribed numerous functions, from appetite regulation and energy balance control to muscle contraction and tumor progression. NmU has been detected in several species to date, particularly in mammals (pig, rat, rabbit, dog, guinea pig, human), but also in amphibian, avian, and fish species. The NmU sequence is highly conserved across different species, indicating that this peptide is ancient and plays an important biological role. Here, we summarize the main structural and functional characteristics of NmU and describe its many roles, highlighting the jack-of-all-trades nature of this neuropeptide. SUMMARY NmU involvement in key processes has outlined the possibility that this neuropeptide could be a novel target for the treatment of obesity and cancer, among other disorders. Although the potential for NmU as a therapeutic target is obvious, the multiple functions of this molecule should be taken into account when designing an approach to targeting NmU and/or its receptors.
Collapse
Affiliation(s)
- Vanesa G Martinez
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
104
|
Dalbøge LS, Pedersen SL, van Witteloostuijn SB, Rasmussen JE, Rigbolt KTG, Jensen KJ, Holst B, Vrang N, Jelsing J. Synthesis and evaluation of novel lipidated neuromedin U analogs with increased stability and effects on food intake. J Pept Sci 2014; 21:85-94. [DOI: 10.1002/psc.2727] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Louise S. Dalbøge
- Gubra ApS; Agern Alle 1 2970 Hørsholm Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research; University of Copenhagen; Blegdamsvej 3B 2200 Copenhagen N Denmark
| | | | - Søren B. van Witteloostuijn
- Gubra ApS; Agern Alle 1 2970 Hørsholm Denmark
- Department of Chemistry; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Jakob E. Rasmussen
- Department of Chemistry; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | | | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Birgitte Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research; University of Copenhagen; Blegdamsvej 3B 2200 Copenhagen N Denmark
| | - Niels Vrang
- Gubra ApS; Agern Alle 1 2970 Hørsholm Denmark
| | | |
Collapse
|
105
|
Abstract
Bones are structures in vertebrates that provide support to organs, protect soft organs, and give them shape and defined features, functions that are essential for their survival. To perform these functions, bones are constantly renewed throughout life. The process through which bones are renewed is known as bone remodeling, an energy demanding process sensitive to changes in energy homeostasis of the organism. A close interplay takes place between the diversity of nutritional cues and metabolic signals with different elements of the hypothalamic circuits to co-ordinate energy metabolism with the regulation of bone mass. In this review, we focus on how mouse and human genetics have elucidated the roles of hormonal signals and neural circuits that originate in, or impinge on, the hypothalamus in the regulation of bone mass. This will help to understand the mechanisms whereby regulation of bone is gated and dynamically regulated by the hypothalamus.
Collapse
Affiliation(s)
- Kunal Sharan
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Vijay K Yadav
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Sanger Mouse Genetics Project, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
106
|
Telegdy G, Adamik A. Mediators involved in the hyperthermic action of neuromedin U in rats. ACTA ACUST UNITED AC 2014; 192-193:24-9. [PMID: 25108055 DOI: 10.1016/j.regpep.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Neuromedin U (NmU), first was isolated from the porcine spinal cord, has subsequently been demonstrated in a number of species, in which it is present in the periphery and also the brain. Two receptors have been identified: NmU1R is mainly present in peripheral tissues, and Nmu2R in the central nervous system. NmU, a potent endogenous anorectic, serves as a catabolic signaling molecule in the brain; it inhibits food uptake, increases locomotion, activates stress mechanism, having cardiovasscular effects and, causes hyperthermia. The mechanism of this hyperthermia is unknown. In the present experiments, the effects of NmU on the colon temperature following i.c.v administration were studied in rats. For an investigation of the possible role of receptors in mediating hyperthermia, the animals were treated simultaneously with CRF 9-41 and antalarmin, a CRH1 receptor inhibitors, astressin 2B, a CRH2 receptor antagonist, haloperidol a dopamine receptor antagonist, atropine a muscarinic cholinergic receptor antagonist, noraminophenazone a cyclooxygenase inhibitor or isatin, a prostaglandin receptor antagonist. NmU increased the colon temperature, maximal action being observed at 2-3h. CRF 9-41, antalarmin, astressin 2B haloperidol, atropine, noraminophenazone and isatin prevented the NmU-induced increase in colon temperature. The results demonstrated that, when injected into the lateral brain ventricle NmU increased the body temperature, mediated by CRHR1 and CRHR2, dopamine and muscarinic cholinergic receptors. The final pathway involves prostaglandin.
Collapse
Affiliation(s)
- G Telegdy
- Department of Pathophysiology, University of Szeged, Szeged, Hungary; Neuroscience Research Group of the Hungarian Academy of Science, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - A Adamik
- Neuroscience Research Group of the Hungarian Academy of Science, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
107
|
Takayama K, Mori K, Taketa K, Taguchi A, Yakushiji F, Minamino N, Miyazato M, Kangawa K, Hayashi Y. Discovery of Selective Hexapeptide Agonists to Human Neuromedin U Receptors Types 1 and 2. J Med Chem 2014; 57:6583-93. [DOI: 10.1021/jm500599s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kentaro Takayama
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | - Koji Taketa
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Fumika Yakushiji
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
108
|
Kawai T, Katayama Y, Guo L, Liu D, Suzuki T, Hayakawa K, Lee JM, Nagamine T, Hull JJ, Matsumoto S, Nagasawa H, Tanokura M, Nagata K. Identification of functionally important residues of the silkmoth pheromone biosynthesis-activating neuropeptide receptor, an insect ortholog of the vertebrate neuromedin U receptor. J Biol Chem 2014; 289:19150-63. [PMID: 24847080 DOI: 10.1074/jbc.m113.488999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of sex pheromone components in many lepidopteran insects is regulated by the interaction between pheromone biosynthesis-activating neuropeptide (PBAN) and the PBAN receptor (PBANR), a class A G-protein-coupled receptor. To identify functionally important amino acid residues in the silkmoth PBANR, a series of 27 alanine substitutions was generated using a PBANR chimera C-terminally fused with enhanced GFP. The PBANR mutants were expressed in Sf9 insect cells, and their ability to bind and be activated by a core PBAN fragment (C10PBAN(R2K)) was monitored. Among the 27 mutants, 23 localized to the cell surface of transfected Sf9 cells, whereas the other four remained intracellular. Reduced binding relative to wild type was observed with 17 mutants, and decreased Ca(2+) mobilization responses were observed with 12 mutants. Ala substitution of Glu-95, Glu-120, Asn-124, Val-195, Phe-276, Trp-280, Phe-283, Arg-287, Tyr-307, Thr-311, and Phe-319 affected both binding and Ca(2+) mobilization. The most pronounced effects were observed with the E120A mutation. A molecular model of PBANR indicated that the functionally important PBANR residues map to the 2nd, 3rd, 6th, and 7th transmembrane helices, implying that the same general region of class A G-protein-coupled receptors recognizes both peptidic and nonpeptidic ligands. Docking simulations suggest similar ligand-receptor recognition interactions for PBAN-PBANR and the orthologous vertebrate pair, neuromedin U (NMU) and NMU receptor (NMUR). The simulations highlight the importance of two glutamate residues, Glu-95 and Glu-120, in silkmoth PBANR and Glu-117 and Glu-142 in human NMUR1, in the recognition of the most functionally critical region of the ligands, the C-terminal residue and amide.
Collapse
Affiliation(s)
- Takeshi Kawai
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukie Katayama
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Linjun Guo
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Desheng Liu
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuya Suzuki
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kou Hayakawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jae Min Lee
- the Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, and
| | - Toshihiro Nagamine
- the Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, and
| | - J Joe Hull
- the United States Department of Agriculture-Arid Land Agricultural Research Center, Maricopa, Arizona 85138
| | - Shogo Matsumoto
- the Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, and
| | - Hiromichi Nagasawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| | - Koji Nagata
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
109
|
Benzon CR, Johnson SB, McCue DL, Li D, Green TA, Hommel JD. Neuromedin U receptor 2 knockdown in the paraventricular nucleus modifies behavioral responses to obesogenic high-fat food and leads to increased body weight. Neuroscience 2013; 258:270-9. [PMID: 24269937 DOI: 10.1016/j.neuroscience.2013.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022]
Abstract
Neuromedin U (NMU) is a highly conserved neuropeptide which regulates food intake and body weight. Transgenic mice lacking NMU are hyperphagic and obese, making NMU a novel target for understanding and treating obesity. Neuromedin U receptor 2 (NMUR2) is a high-affinity receptor for NMU found in discrete regions of the central nervous system, in particular the paraventricular nucleus of the hypothalamus (PVN), where it may be responsible for mediating the anorectic effects of NMU. We hypothesized that selective knock down of NMUR2 in the PVN of rats would increase their sensitivity to the reinforcing properties of food resulting in increased intake and preference for high-fat obesogenic food. To this end, we used viral-mediated RNAi to selectively knock down NMUR2 gene expression in the PVN. In rats fed a standard chow, NMUR2 knockdown produced no significant effect on food intake or body weight. However, when the same rats were fed a high-fat diet (45% fat), they consumed significantly more food, gained more body weight, and had increased feed efficiency relative to controls. Furthermore, NMUR2 knockdown rats demonstrated significantly greater binge-type food consumption of the high-fat diet and showed a greater preference for higher-fat food. These results demonstrate that NMUR2 signaling in the PVN regulates consumption and preference for high-fat foods without disrupting feeding behavior associated with non-obesogenic standard chow.
Collapse
Affiliation(s)
- C R Benzon
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, United States
| | - S B Johnson
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, United States
| | - D L McCue
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, United States
| | - D Li
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, United States
| | - T A Green
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, United States
| | - J D Hommel
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, United States.
| |
Collapse
|
110
|
Tanaka M, Telegdy G. Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice. Behav Brain Res 2013; 259:196-9. [PMID: 24239690 DOI: 10.1016/j.bbr.2013.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/31/2013] [Accepted: 11/02/2013] [Indexed: 11/18/2022]
Abstract
Neuromedin U (NmU) is a widely distributed and multifunctional peptide in the central nervous system and the peripheral tissues. Little is know about the mechanisms of NmU on brain functions. The rodent isoform of the NmU, NmU-23, has been shown to have anxiolytic effects involved in the β-adrenergic and cholinergic nervous systems in elevated plus maze test. NmU-23 was tested for antidepressant-like effects in modified forced swimming test (FST) in mice and furthermore, the involvement of the adrenergic, serotonergic, cholinergic, dopaminergic or gaba-ergic receptors in the antidepressant-like effect of NmU-23 was studied in modified mice FST. Mice were pretreated with a non-selective α-adrenergic receptor antagonist phenoxybenzamine, an α1/α2β-adrenergic receptor antagonist, prazosin, an α2-adrenergic receptor antagonist, yohimbine, a β-adrenergic receptor antagonist, propranolol, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, nonselective muscarinic acetylcholine receptor antagonist, atropine, D2,D3,D4 dopamine receptor antagonist, haloperidol or γ-aminobutyric acid subunit A (GABAA) receptor antagonist, bicuculline. NmU-23 showed the antidepressant-like effects by decreasing the immobility time and increasing the climbing and swimming time. Prazosin, haloperidol, and bicuculline prevented the effects of NmU-23 on the climbing and swimming time. Methysergide and cyproheptadine prevented the effects of NmU-23 on the immobility, swimming and climbing time. Atropine prevented the effects of NmU-23 on the climbing time. Phenoxybenzamine, yohimbine and propranolol did not change the effects of NmU-23. The results demonstrated that the antidepressant-like effect of NmU-23 is mediated, at least in part, by an interaction of the α2-adrenergic, 5-HT1-2 serotonergic, D2,D3,D4 dopamine receptor, muscarinic acetylcholine receptors and γ-aminobutyric acid subunit A (GABAA) receptor in a modified mouse FST.
Collapse
Affiliation(s)
- Masaru Tanaka
- Department of Pathophysiology, MTA-SZTE Neuroscience Research Group, Faculty of Medicine, University of Szeged, Semmelweis 1, 6701 Szeged, Hungary
| | - Gyula Telegdy
- Department of Pathophysiology, MTA-SZTE Neuroscience Research Group, Faculty of Medicine, University of Szeged, Semmelweis 1, 6701 Szeged, Hungary.
| |
Collapse
|
111
|
Development of a neuromedin U-human serum albumin conjugate as a long-acting candidate for the treatment of obesity and diabetes. Comparison with the PEGylated peptide. J Pept Sci 2013; 20:7-19. [DOI: 10.1002/psc.2582] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022]
|
112
|
Do DN, Strathe AB, Ostersen T, Jensen J, Mark T, Kadarmideen HN. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for humans obesity by comparative mapping. PLoS One 2013; 8:e71509. [PMID: 23977060 PMCID: PMC3747221 DOI: 10.1371/journal.pone.0071509] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023] Open
Abstract
This study was aimed at identifying genomic regions controlling feeding behavior in Danish Duroc boars and its potential implications for eating behavior in humans. Data regarding individual daily feed intake (DFI), total daily time spent in feeder (TPD), number of daily visits to feeder (NVD), average duration of each visit (TPV), mean feed intake per visit (FPV) and mean feed intake rate (FR) were available for 1130 boars. All boars were genotyped using the Illumina Porcine SNP60 BeadChip. The association analyses were performed using the GenABEL package in the R program. Sixteen SNPs were found to have moderate genome-wide significance (p<5E-05) and 76 SNPs had suggestive (p<5E-04) association with feeding behavior traits. MSI2 gene on chromosome (SSC) 14 was very strongly associated with NVD. Thirty-six SNPs were located in genome regions where QTLs have previously been reported for behavior and/or feed intake traits in pigs. The regions: 64–65 Mb on SSC 1, 124–130 Mb on SSC 8, 63–68 Mb on SSC 11, 32–39 Mb and 59–60 Mb on SSC 12 harbored several signifcant SNPs. Synapse genes (GABRR2, PPP1R9B, SYT1, GABRR1, CADPS2, DLGAP2 and GOPC), dephosphorylation genes (PPM1E, DAPP1, PTPN18, PTPRZ1, PTPN4, MTMR4 and RNGTT) and positive regulation of peptide secretion genes (GHRH, NNAT and TCF7L2) were highly significantly associated with feeding behavior traits. This is the first GWAS to identify genetic variants and biological mechanisms for eating behavior in pigs and these results are important for genetic improvement of pig feed efficiency. We have also conducted pig-human comparative gene mapping to reveal key genomic regions and/or genes on the human genome that may influence eating behavior in human beings and consequently affect the development of obesity and metabolic syndrome. This is the first translational genomics study of its kind to report potential candidate genes for eating behavior in humans.
Collapse
Affiliation(s)
- Duy Ngoc Do
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | |
Collapse
|
113
|
Anxiolytic action of neuromedin-U and neurotransmitters involved in mice. ACTA ACUST UNITED AC 2013; 186:137-40. [PMID: 23892031 DOI: 10.1016/j.regpep.2013.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/11/2013] [Accepted: 07/18/2013] [Indexed: 11/20/2022]
Abstract
Peptide Neuromedin-U (NmU) is widely distributed in the central nervous system and the peripheral tissues. Its physiological effects include the regulation of blood pressure, heart rate, and body temperature, and the inhibition of gastric acid secretion. The action of NmU in rats is mediated by two G-protein-coupled receptors, NmU-1R and NmU-2R. NmU-2R is present mainly in the brain, and NmU-1R mainly in the periphery. Despite the great variety of the physiological action of NmU, little is known about its possible effects in different forms of behavior, such as anxiety. In the present work, NmU-23 (the rodent form of the peptide) was tested for its effect on anxiety in elevated plus maze test in mice. For detection of the possible involvement of neurotransmitters, the mice were pretreated with receptor blockers: haloperidol (a D2, dopamine receptor antagonist), propranolol (a β-adrenergic receptor antagonist), atropine (a nonselective muscarinic acetylcholine receptor antagonist), phenoxybenzamine (a nonselective α-adrenergic receptor antagonist) or nitro-l-arginine (a nitric oxide synthase inhibitor). The peptide and nitro-l-arginine were administered into the lateral brain ventricle, while the receptor blockers were applied intraperitoneally. An NmU-23 dose 0.5μg elicited anxiolytic action, whereas this action is faded away when the dose was increased. For further testing therefore 0.5μg i.c.v. was used. Propranolol and atropine fully blocked the NmU-induced anxiolytic action, while haloperidol, phenoxybenzamine and nitro-l-arginine were ineffective. The results suggest that β-adrenergic and cholinergic mechanisms are involved in the anxiolytic action of NmU.
Collapse
|
114
|
Aizawa S, Sakata I, Nagasaka M, Higaki Y, Sakai T. Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin. PLoS One 2013; 8:e67118. [PMID: 23843987 PMCID: PMC3699551 DOI: 10.1371/journal.pone.0067118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
The pars tuberalis (PT) is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD), such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU) that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2) mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Mai Nagasaka
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Yuriko Higaki
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| |
Collapse
|
115
|
Zafeiriou DI, Ververi A, Dafoulis V, Kalyva E, Vargiami E. Autism spectrum disorders: the quest for genetic syndromes. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:327-366. [PMID: 23650212 DOI: 10.1002/ajmg.b.32152] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disabilities with various etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of ASD remains unclear. A number of genetic syndromes manifest ASD at higher than expected frequencies compared to the general population. These syndromes account for more than 10% of all ASD cases and include tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Williams, Duchenne, etc. Clinicians are increasingly required to recognize genetic disorders in individuals with ASD, in terms of providing proper care and prognosis to the patient, as well as genetic counseling to the family. Vice versa, it is equally essential to identify ASD in patients with genetic syndromes, in order to ensure correct management and appropriate educational placement. During investigation of genetic syndromes, a number of issues emerge: impact of intellectual disability in ASD diagnoses, identification of autistic subphenotypes and differences from idiopathic autism, validity of assessment tools designed for idiopathic autism, possible mechanisms for the association with ASD, etc. Findings from the study of genetic syndromes are incorporated into the ongoing research on autism etiology and pathogenesis; different syndromes converge upon common biological backgrounds (such as disrupted molecular pathways and brain circuitries), which probably account for their comorbidity with autism. This review paper critically examines the prevalence and characteristics of the main genetic syndromes, as well as the possible mechanisms for their association with ASD.
Collapse
|
116
|
Lin TY, Wu FJ, Lee WY, Hsiao CL, Luo CW. Ovarian regulation of neuromedin U and its local actions in the ovary, mediated through neuromedin U receptor 2. Am J Physiol Endocrinol Metab 2013; 304:E800-9. [PMID: 23423171 DOI: 10.1152/ajpendo.00548.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuromedin U (NMU) was originally identified as an anorexigenic peptide that modulates appetite as well as energy homeostasis through the brain-gut axis. Although growing evidence has linked NMU activity with the development of female reproductive organs, no direct expression of and function for NMU in these organs has been pinpointed. Using a superovulated rat model, we found that NMU is directly expressed in the ovary, where its transcript level is tightly regulated by gonadotropins. Ovarian microdissection and immunohistochemical staining showed clearly that NMU is expressed mainly in theca/interstitial cells and to a moderate extent in granulosa cells. Primary cell studies together with reporter assays indicated the Nmu mRNA level in these cells is strongly induced via cAMP signaling, whereas this increase in expression can be reversed by the degradation message residing within its 3'-untranslated region, which recruits cis-acting mRNA degradation mechanisms, such as the gonadotropin-induced zinc finger RNA-binding protein Zfp36l1. This study also demonstrated that NMUR2, but not NMUR1, is the dominant NMU receptor in the ovary, where its expression is restricted to theca/interstitial cells. Treatment with NMU led to induction of the early response c-Fos gene, phosphorylation of extracellular signal-regulated kinase 1/2, and promotion of progesterone production in both developing and mature theca/interstitial cells. Taken as a whole, this study demonstrates that NMU and NMU receptor 2 compose a novel autocrine system in theca/interstitial cells in which the intensity of signaling is tightly controlled by gonadotropins.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 155 Li-Nong St., Section 2, Beitou, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
117
|
Panetta R, Meury L, Cao CQ, Puma C, Mennicken F, Cassar PA, Laird J, Groblewski T. Functional genomics of the rat neuromedin U receptor 1 reveals a naturally occurring deleterious allele. Physiol Genomics 2013; 45:89-97. [DOI: 10.1152/physiolgenomics.00070.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neuromedin U (NMU) plays an important role in a number of physiological processes, but the relative contribution of its two known receptors, NMUR1 and NMUR2, is still poorly understood. Here we report the existence of a SNP T1022→A (Val341→Glu) in the third exon of the rat Nmur1 gene that leads to an inactive receptor. This SNP is present within the coding region of the highly conserved NPXXY motif found within all class A type G protein-coupled receptors and translates to an NMUR1 receptor that is not expressed on the cell surface. Genetic analysis of the Nmur1 gene in a population of Sprague-Dawley rats revealed that this strain is highly heterogeneous for the inactivating polymorphism. The loss of functional NMUR1 receptors in Sprague-Dawley rats homozygous for the inactive allele was confirmed by radioligand binding studies on native tissue expressing NMUR1. The physiological relevance of this functional genomics finding was examined in two nociceptive response models. The pronociceptive effects of NMU were abolished in rats lacking functional NMUR1 receptors. The existence of naturally occurring NMUR1-deficient rats provides a novel and powerful tool to investigate the physiological role of NMU and its receptors. Furthermore, it highlights the importance of verifying the NMUR1 single nucleotide polymorphism status for rats used in physiological, pharmacological or toxicological studies conducted with NMUR1 modulators.
Collapse
Affiliation(s)
- Rosemarie Panetta
- AstraZeneca Research and Development, CNS & Pain Innovative Medicines Science Unit, Montreal (Ville Saint-Laurent), Quebec, Canada; and
| | - Luc Meury
- AstraZeneca Research and Development, CNS & Pain Innovative Medicines Science Unit, Montreal (Ville Saint-Laurent), Quebec, Canada; and
| | - Chang Qing Cao
- AstraZeneca Research and Development, CNS & Pain Innovative Medicines Science Unit, Montreal (Ville Saint-Laurent), Quebec, Canada; and
| | - Carole Puma
- AstraZeneca Research and Development, CNS & Pain Innovative Medicines Science Unit, Montreal (Ville Saint-Laurent), Quebec, Canada; and
| | - Françoise Mennicken
- AstraZeneca Research and Development, CNS & Pain Innovative Medicines Science Unit, Montreal (Ville Saint-Laurent), Quebec, Canada; and
| | - Paul A. Cassar
- AstraZeneca Research and Development, CNS & Pain Innovative Medicines Science Unit, Montreal (Ville Saint-Laurent), Quebec, Canada; and
| | - Jennifer Laird
- AstraZeneca Research and Development, CNS & Pain Innovative Medicines Science Unit, Montreal (Ville Saint-Laurent), Quebec, Canada; and
- Department of Pharmacology & Experimental Therapeutics and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Thierry Groblewski
- AstraZeneca Research and Development, CNS & Pain Innovative Medicines Science Unit, Montreal (Ville Saint-Laurent), Quebec, Canada; and
| |
Collapse
|
118
|
GI functions of GPR39: novel biology. Curr Opin Pharmacol 2012; 12:647-52. [PMID: 22884904 DOI: 10.1016/j.coph.2012.07.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 01/20/2023]
Abstract
GPR39 is an orphan GPCR receptor belonging to the ghrelin/motilin receptor subfamily. The receptor is constitutively active and Zn(2+) is a physiological agonist of GPR39. The receptor is emerging as an important regulator of gastrointestinal motility and secretion. Although GPR39 does not seem to be involved in the regulation of food intake, contradictory results are available on the role of GPR39 in the regulation of body weight. A well-established stimulatory role for GPR39 has been defined in insulin secretion which makes the receptor an attractive target for the treatment of type 1 or 2 diabetes. GPR39 signaling also inhibits apoptosis and mediates neural synaptic signaling. Novel ligands of GPR39 are warranted to reveal the main physiological role of this receptor.
Collapse
|
119
|
Ingallinella P, Peier AM, Pocai A, Marco AD, Desai K, Zytko K, Qian Y, Du X, Cellucci A, Monteagudo E, Laufer R, Bianchi E, Marsh DJ, Pessi A. PEGylation of Neuromedin U yields a promising candidate for the treatment of obesity and diabetes. Bioorg Med Chem 2012; 20:4751-9. [DOI: 10.1016/j.bmc.2012.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/13/2022]
|
120
|
Iyer P, Maddala R, Pattabiraman PP, Rao PV. Connective tissue growth factor-mediated upregulation of neuromedin U expression in trabecular meshwork cells and its role in homeostasis of aqueous humor outflow. Invest Ophthalmol Vis Sci 2012; 53:4952-62. [PMID: 22761259 DOI: 10.1167/iovs.12-9681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Connective tissue growth factor (CTGF) is a matricellular protein presumed to be involved in the pathobiology of various fibrotic diseases, including glaucoma. We investigated the effects of Rho GTPase-dependent actin cytoskeletal integrity on CTGF expression and CTGF-induced changes in gene expression profile in human trabecular meshwork (HTM) cells. METHODS CTGF levels were quantified by immunoblotting and ELISA. CTGF-induced changes in gene expression, actin cytoskeleton, myosin light chain (MLC) phosphorylation, and extracellular matrix (ECM) proteins were evaluated in trabecular meshwork (TM) cells by cDNA microarray, q-PCR, fluorescence microscopy, and immunoblot analyses. The effects of neuromedin U (NMU) on aqueous humor (AH) outflow were determined in enucleated porcine eyes. RESULTS Expression of a constitutively active form of RhoA (RhoAV14), activation of Rho GTPase by bacterial toxin, or inhibition of Rho kinase by Y-27632 in HTM cells led to significant but contrasting changes in CTGF protein levels that were detectable in cell lysates and cell culture medium. Stimulation of HTM cells with CTGF for 24 hours induced actin stress fiber formation, and increased MLC phosphorylation, fibronectin, and laminin levels, and NMU expression. NMU independently induced actin stress fibers and MLC phosphorylation in TM cells, and decreased AH outflow facility in perfused porcine eyes. CONCLUSIONS These data revealed that CTGF influences ECM synthesis, actin cytoskeletal dynamics, and contractile properties in TM cells, and that the expression of CTGF is regulated closely by Rho GTPase. Moreover, NMU, whose expression is induced in response to CTGF, partially mimics the effects of CTGF on actomyosin organization in TM cells, and decreases AH outflow facility, revealing a potentially important role for this neuropeptide in the homeostasis of AH drainage.
Collapse
Affiliation(s)
- Padma Iyer
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
121
|
Zhang Y, Jiang D, Zhang Y, Jiang X, Wang F, Tao J. Neuromedin U type 1 receptor stimulation of A-type K+ current requires the βγ subunits of Go protein, protein kinase A, and extracellular signal-regulated kinase 1/2 (ERK1/2) in sensory neurons. J Biol Chem 2012; 287:18562-72. [PMID: 22493291 DOI: 10.1074/jbc.m111.322271] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although neuromedin U (NMU) has been implicated in analgesia, the detailed mechanisms still remain unclear. In this study, we identify a novel functional role of NMU type 1 receptor (NMUR1) in regulating the transient outward K(+) currents (I(A)) in small dorsal root ganglion (DRG) neurons. We found that NMU reversibly increased I(A) in a dose-dependent manner, instead the sustained delayed rectifier K(+) current (I(DR)) was not affected. This NMU-induced I(A) increase was pertussis toxin-sensitive and was totally reversed by NMUR1 knockdown. Intracellular application of GDPβS (guanosine 5'-O-(2-thiodiphosphate)), QEHA peptide, or a selective antibody raised against the Gα(o) or Gβ blocked the stimulatory effects of NMU. Pretreatment of the cells with the protein kinase A (PKA) inhibitor or ERK inhibitor abolished the NMU-induced I(A) response, whereas inhibition of phosphatidylinositol 3-kinase or PKC had no such effects. Exposure of DRG neurons to NMU markedly induced the phosphorylation of ERK (p-ERK), whereas p-JNK or p-p38 was not affected. Moreover, the NMU-induced p-ERK increase was attenuated by PKA inhibition and activation of PKA by foskolin would mimic the NMU-induced I(A) increase. Functionally, we observed a significant decrease of the firing rate of neuronal action potential induced by NMU and pretreatment of DRG neurons with 4-AP could abolish this effect. In summary, these results suggested that NMU increases I(A) via activation of NMUR1 that couples sequentially to the downstream activities of Gβγ of the G(o) protein, PKA, and ERK, which could contribute to its physiological functions including neuronal hypoexcitability in DRG neurons.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Neurobiology, Key Laboratory of Pain Research & Therapy, Medical College of Soochow University, Suzhou 215123, China
| | | | | | | | | | | |
Collapse
|
122
|
Rahman AA, Shahid IZ, Pilowsky PM. Differential cardiorespiratory and sympathetic reflex responses to microinjection of neuromedin U in rat rostral ventrolateral medulla. J Pharmacol Exp Ther 2012; 341:213-24. [PMID: 22262923 DOI: 10.1124/jpet.111.191254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The rostral ventrolateral medulla (RVLM) regulates sympathetic vasomotor outflow and reflexes. Intracerebroventricular neuromedin U (NMU) increases sympathetic nerve activity (SNA), mean arterial pressure (MAP), and heart rate (HR), but the central nuclei that mediate these effects are unknown. In urethane-anesthetized, vagotomized, and artificially ventilated male Sprague-Dawley rats (n = 36) the effects of bilateral microinjection of NMU (50 nl, each side) into RVLM on cardiorespiratory variables, somatosympathetic reflex, arterial baroreflex, and chemoreflex were investigated. Microinjection of NMU into RVLM elicited a hypertension, tachycardia, and an increase in splanchnic SNA (SSNA) and lumbar SNA (LSNA) at lower doses (25 and 50 pmol). At higher dose (100 pmol), NMU caused a biphasic response, a brief hypertension and sympathoexcitation followed by prolonged hypotension and sympathoinhibition. The peak excitatory and inhibitory response was found at 100 pmol NMU with an increase in MAP, HR, SSNA, and LSNA of 36 mm Hg, 20 beats per minute, 34%, and 89%, respectively, and a decrease of 33 mm Hg, 25 beats per minute, 42%, and 52%, respectively, from baseline. NMU, in the RVLM, also increased phrenic nerve amplitude and the expiratory period and reduced the inspiratory period. NMU (100 pmol) attenuated the somatosympathetic reflex and the sympathoexcitatory and respiratory responses to hypoxia and hypercapnia. After NMU injection in RVLM, the maximum gain of the SSNA baroreflex function curve was increased, but that of the LSNA was reduced. The present study provides functional evidence for a complex differential modulatory activity of NMU on the cardiovascular and reflex responses that are integrated in the RVLM.
Collapse
Affiliation(s)
- Ahmed A Rahman
- The Australian School of Advanced Medicine, L1, F10A, Macquarie University, Sydney, NSW 2109, Australia
| | | | | |
Collapse
|
123
|
Rahman AA, Shahid IZ, Pilowsky PM. Intrathecal neuromedin U induces biphasic effects on sympathetic vasomotor tone, increases respiratory drive and attenuates sympathetic reflexes in rat. Br J Pharmacol 2012; 164:617-31. [PMID: 21488865 DOI: 10.1111/j.1476-5381.2011.01436.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Neuromedin U (NMU) is a brain-gut peptide that plays regulatory roles in feeding, anxiety, smooth muscle contraction, blood flow, pain and adrenocortical function via two receptors, the NMU receptor 1 and NMU receptor 2. NMU has several known functions in the periphery, but its role in central cardiorespiratory regulation remains poorly understood. EXPERIMENTAL APPROACH Experiments were conducted on urethane-anaesthetized, vagotomized and artificially ventilated male Sprague-Dawley rats (n= 42) to determine if NMU modulates sympathetic vasomotor output at the spinal level or modulates baro-, chemo- and somato-sympathetic reflexes. KEY RESULTS Intrathecal (i.t.) injections of NMU (2.5-20 nmol) caused a dose-dependent biphasic response, initially a brief period of hypertension and sympatho-excitation followed by prolonged hypotension and sympatho-inhibition. Peak excitatory as well as inhibitory responses were observed at 20 nmol. NMU (20 nmol) initially increased mean arterial pressure and splanchnic sympathetic nerve activity by 24 mmHg and 27% and then reduced these by 37 mmHg and 47%, respectively. NMU also dose-dependently increased respiratory drive, as indicated by a rise in phrenic nerve amplitude, an increase in neural minute ventilation and a shortening of the inspiratory period. Both sympatho-excitatory peaks of the somato-sympathetic reflex were abolished by i.t. NMU. Pressor, sympatho-excitatory and tachycardiac responses to chemoreceptor activation (100% N₂) were blocked or significantly reduced following i.t. NMU. NMU also reduced barosensitivity. CONCLUSIONS The data demonstrate that NMU, acting in the spinal cord, differentially contributes to the control of sympathetic tone and adaptive sympathetic reflexes.
Collapse
Affiliation(s)
- A A Rahman
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
124
|
Rao SM, Auger JL, Gaillard P, Weissleder R, Wada E, Torres R, Kojima M, Benoist C, Mathis D, Binstadt BA. The neuropeptide neuromedin U promotes autoantibody-mediated arthritis. Arthritis Res Ther 2012; 14:R29. [PMID: 22314006 PMCID: PMC3392824 DOI: 10.1186/ar3732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/20/2011] [Accepted: 02/07/2012] [Indexed: 12/17/2022] Open
Abstract
Introduction Neuromedin U (NMU) is a neuropeptide with pro-inflammatory activity. The primary goal of this study was to determine if NMU promotes autoantibody-induced arthritis. Additional studies addressed the cellular source of NMU and sought to define the NMU receptor responsible for its pro-inflammatory effects. Methods Serum containing arthritogenic autoantibodies from K/BxN mice was used to induce arthritis in mice genetically lacking NMU. Parallel experiments examined whether NMU deficiency impacted the early mast-cell-dependent vascular leak response induced by these autoantibodies. Bone-marrow chimeric mice were generated to determine whether pro-inflammatory NMU is derived from hematopoietic cells or stromal cells. Mice lacking the known NMU receptors singly and in combination were used to determine susceptibility to serum-transferred arthritis and in vitro cellular responses to NMU. Results NMU-deficient mice developed less severe arthritis than control mice. Vascular leak was not affected by NMU deficiency. NMU expression by bone-marrow-derived cells mediated the pro-arthritogenic effect. Deficiency of all of the known NMU receptors, however, had no impact on arthritis severity and did not affect the ability of NMU to stimulate intracellular calcium flux. Conclusions NMU-deficient mice are protected from developing autoantibody-induced inflammatory arthritis. NMU derived from hematopoietic cells, not neurons, promotes the development of autoantibody-induced inflammatory arthritis. This effect is mediated by a receptor other than the currently known NMU receptors.
Collapse
Affiliation(s)
- Sindhuja M Rao
- Center for Immunology and Department of Pediatrics, University of Minnesota, Medical Biosciences Building, 2101 6th St SE Minneapolis, MN, 55414, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Chu CP, Xu CJ, Kannan H, Qiu DL. Corticotrophin-releasing factor inhibits neuromedin U mRNA expressing neuron in the rat hypothalamic paraventricular nucleus in vitro. Neurosci Lett 2012; 511:79-83. [PMID: 22306094 DOI: 10.1016/j.neulet.2012.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
In the present study, we examined the effects of corticotrophin-releasing factor (CRF) on neuromedin U (NMU) mRNA-expressing neurons in the rat paraventricular nucleus (PVN) by whole-cell patch-clamp recordings and single-cell reverse transcription-multiplex polymerase chain reaction (single-cell RT-mPCR) techniques. In total, of 116 PVN putative parvocellular neurons screened for NMU mRNA, 14.7% (17/116) of them expressed NMU mRNA. The electrophysiological properties observed in the NMU mRNA-expressing neurons were generation of a low-threshold Ca(2+) spike (LTS) and robust low voltage-activated (T-type) Ca(2+) currents. Under current-clamp conditions, CRF (100 nM) induced a reversible decrease in spike firing and significantly diminished the LTS in 88.2% (15/17) of NMU mRNA-expressing neurons. Extracellular application of 1 μM α-helical CRF-(9-14) (α-hCRF), a selective CRF receptor antagonist, completely blocked the CRF-induced decrease in spike firing in the NMU mRNA-expressing neurons. Under voltage-clamp conditions, CRF (100 nM) significantly decreased the peak value of the T-type Ca(2+) currents by 35.6±7.8%. These findings suggest that CRF decreases neuronal excitability and diminishes T-type Ca(2+) currents in a population of rat PVN NMU phenotype neurons in vitro.
Collapse
Affiliation(s)
- Chun-Ping Chu
- Cellular Function Research Center, Yanbian University, 977, GongYuan Road, Yanji City, Jilin Province 133002, China
| | | | | | | |
Collapse
|
126
|
Terhzaz S, Cabrero P, Robben JH, Radford JC, Hudson BD, Milligan G, Dow JAT, Davies SA. Mechanism and function of Drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedinU receptor. PLoS One 2012; 7:e29897. [PMID: 22253819 PMCID: PMC3256212 DOI: 10.1371/journal.pone.0029897] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/08/2011] [Indexed: 01/21/2023] Open
Abstract
The capa peptide receptor, capaR (CG14575), is a G-protein coupled receptor (GPCR) for the D. melanogaster capa neuropeptides, Drm-capa-1 and -2 (capa-1 and -2). To date, the capa peptide family constitutes the only known nitridergic peptides in insects, so the mechanisms and physiological function of ligand-receptor signalling of this peptide family are of interest. Capa peptide induces calcium signaling via capaR with EC₅₀ values for capa-1 = 3.06 nM and capa-2 = 4.32 nM. capaR undergoes rapid desensitization, with internalization via a b-arrestin-2 mediated mechanism but is rapidly re-sensitized in the absence of capa-1. Drosophila capa peptides have a C-terminal -FPRXamide motif and insect-PRXamide peptides are evolutionarily related to vertebrate peptide neuromedinU (NMU). Potential agonist effects of human NMU-25 and the insect -PRLamides [Drosophila pyrokinins Drm-PK-1 (capa-3), Drm-PK-2 and hugin-gamma [hugg]] against capaR were investigated. NMU-25, but not hugg nor Drm-PK-2, increases intracellular calcium ([Ca²⁺]i) levels via capaR. In vivo, NMU-25 increases [Ca²⁺]i and fluid transport by the Drosophila Malpighian (renal) tubule. Ectopic expression of human NMU receptor 2 in tubules of transgenic flies results in increased [Ca²⁺]i and fluid transport. Finally, anti-porcine NMU-8 staining of larval CNS shows that the most highly immunoreactive cells are capa-producing neurons. These structural and functional data suggest that vertebrate NMU is a putative functional homolog of Drm-capa-1 and -2. capaR is almost exclusively expressed in tubule principal cells; cell-specific targeted capaR RNAi significantly reduces capa-1 stimulated [Ca²⁺]i and fluid transport. Adult capaR RNAi transgenic flies also display resistance to desiccation. Thus, capaR acts in the key fluid-transporting tissue to regulate responses to desiccation stress in the fly.
Collapse
Affiliation(s)
- Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (S-AD); (ST)
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joris H. Robben
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jonathan C. Radford
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian D. Hudson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graeme Milligan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian A. T. Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Shireen-A. Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (S-AD); (ST)
| |
Collapse
|
127
|
Kono T, Hamasuna S, Korenaga H, Iizasa T, Nagamine R, Ida T, Sakai M. The role of neuromedin U during inflammatory response in the common carp. FISH & SHELLFISH IMMUNOLOGY 2012; 32:151-160. [PMID: 22122861 DOI: 10.1016/j.fsi.2011.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/02/2011] [Accepted: 11/09/2011] [Indexed: 05/31/2023]
Abstract
In the current study, we cloned and characterized the neuromedin U (NMU) gene from the common carp Cyprinus carpio L., and identified its participation in immune responses in the teleost. Five isoforms of the preproNMU genes were generated by alternative splicing and isolated from carp. The longest form of the carp preproNMU1 (isoform 1) cDNA was composed of 803 bp, and contained an 18 bp 5'-UTR, a 212 bp 3'-UTR and a 573 bp open reading frame, which translates into a peptide comprising 190 amino acid (aa) residues. The remaining carp preproNMU isoforms were composed of 175 (preproNMU2), 158 (preproNMU3), 150 (preproNMU4) and 133 (preproNMU5) aa residues. Isoforms 1-3 contained four processing signals (KR or RR), while isoforms 4 and 5 contained only two processing signals. High homology was demonstrated among fish and other vertebral NMU at the biologically active C-terminal region (aa position 175-182). Carp preproNMU transcript variants were identified in various tissues, and the expression pattern has been shown to change depending on feeding status. Moreover, it was shown that the expression of preproNMU3 and preproNMU5 was increased following treatment with bacterial or viral mimics. Finally, we investigated the functional aspect of carp NMU using a synthetic NMU peptide. The peptide was found to increase the expression of inflammation-related cytokine genes in intestinal cells within 1 h of treatment. In addition, the activation of phagocytic cells was also stimulated by the NMU peptide. The discovery of NMU in carp allows for a further understanding of immune regulation by biologically active substances.
Collapse
Affiliation(s)
- Tomoya Kono
- Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki 889-2192, Japan.
| | | | | | | | | | | | | |
Collapse
|
128
|
Frooninckx L, Van Rompay L, Temmerman L, Van Sinay E, Beets I, Janssen T, Husson SJ, Schoofs L. Neuropeptide GPCRs in C. elegans. Front Endocrinol (Lausanne) 2012; 3:167. [PMID: 23267347 PMCID: PMC3527849 DOI: 10.3389/fendo.2012.00167] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022] Open
Abstract
Like most organisms, the nematode Caenorhabditis elegans relies heavily on neuropeptidergic signaling. This tiny animal represents a suitable model system to study neuropeptidergic signaling networks with single cell resolution due to the availability of powerful molecular and genetic tools. The availability of the worm's complete genome sequence allows researchers to browse through it, uncovering putative neuropeptides and their cognate G protein-coupled receptors (GPCRs). Many predictions have been made about the number of C. elegans neuropeptide GPCRs. In this review, we report the state of the art of both verified as well as predicted C. elegans neuropeptide GPCRs. The predicted neuropeptide GPCRs are incorporated into the receptor classification system based on their resemblance to orthologous GPCRs in insects and vertebrates. Appointing the natural ligand(s) to each predicted neuropeptide GPCR (receptor deorphanization) is a crucial step during characterization. The development of deorphanization strategies resulted in a significant increase in the knowledge of neuropeptidergic signaling in C. elegans. Complementary localization and functional studies demonstrate that neuropeptides and their GPCRs represent a rich potential source of behavioral variability in C. elegans. Here, we review all neuropeptidergic signaling pathways that so far have been functionally characterized in C. elegans.
Collapse
Affiliation(s)
- Lotte Frooninckx
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liesbeth Van Rompay
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liesbet Temmerman
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Elien Van Sinay
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Isabel Beets
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Tom Janssen
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Steven J. Husson
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liliane Schoofs
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
- *Correspondence: Liliane Schoofs, Laboratory of Functional Genomics and Proteomics, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|
129
|
Malendowicz LK, Ziolkowska A, Rucinski M. Neuromedins U and S involvement in the regulation of the hypothalamo-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2012; 3:156. [PMID: 23227022 PMCID: PMC3514618 DOI: 10.3389/fendo.2012.00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/20/2012] [Indexed: 11/26/2022] Open
Abstract
We reviewed neuromedin U (NMU) and neuromedin S (NMS) involvement in the regulation of the hypothalamo-pituitary-adrenal (HPA) axis function. NMU and NMS are structurally related and highly conserved neuropeptides. They exert biological effects via two GPCR receptors designated as NMUR1 and NMUR2 which show differential expression. NMUR1 is expressed predominantly at the periphery, while NMUR2 in the central nervous system. Elements of the NMU/NMS and their receptors network are also expressed in the HPA axis and progress in molecular biology techniques provided new information on their actions within this system. Several lines of evidence suggest that within the HPA axis NMU and NMS act at both hypothalamic and adrenal levels. Moreover, new data suggest that NMU and NMS are involved in central and peripheral control of the stress response.
Collapse
Affiliation(s)
- Ludwik K. Malendowicz
- *Correspondence: Ludwik K. Malendowicz, Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swięcicki St., 60-781 Poznan, Poland. e-mail:
| | | | | |
Collapse
|
130
|
Cardoso JC, Félix RC, Fonseca VG, Power DM. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods. Front Endocrinol (Lausanne) 2012; 3:157. [PMID: 23264768 PMCID: PMC3524798 DOI: 10.3389/fendo.2012.00157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/22/2012] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.
Collapse
Affiliation(s)
- João C.R. Cardoso
- Molecular Comparative Endocrinology, Centre of Marine Sciences, Universidade do AlgarveFaro, Portugal
- *Correspondence: João C.R. Cardoso, Molecular Comparative Endocrinology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal. e-mail:
| | - Rute C. Félix
- Molecular Comparative Endocrinology, Centre of Marine Sciences, Universidade do AlgarveFaro, Portugal
| | - Vera G. Fonseca
- Molecular Comparative Endocrinology, Centre of Marine Sciences, Universidade do AlgarveFaro, Portugal
| | - Deborah M. Power
- Molecular Comparative Endocrinology, Centre of Marine Sciences, Universidade do AlgarveFaro, Portugal
| |
Collapse
|
131
|
Mori M, Mori K, Ida T, Sato T, Kojima M, Miyazato M, Kangawa K. Different distribution of neuromedin S and its mRNA in the rat brain: NMS peptide is present not only in the hypothalamus as the mRNA, but also in the brainstem. Front Endocrinol (Lausanne) 2012; 3:152. [PMID: 23264767 PMCID: PMC3524995 DOI: 10.3389/fendo.2012.00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/16/2012] [Indexed: 11/24/2022] Open
Abstract
Neuromedin S (NMS) is a neuropeptide identified as another endogenous ligand for two orphan G protein-coupled receptors, FM-3/GPR66 and FM-4/TGR-1, which have also been identified as types 1 and 2 receptors for neuromedin U structurally related to NMS. Although expression of NMS mRNA is found mainly in the brain, spleen, and testis, the distribution of its peptide has not yet been investigated. Using a newly prepared antiserum, we developed a highly sensitive radioimmunoassay for rat NMS. NMS peptide was clearly detected in the rat brain at a concentration of 68.3 ± 3.4 fmol/g wet weight, but it was hardly detected in the spleen and testis. A high content of NMS peptide was found in the hypothalamus, midbrain, and pons-medulla oblongata, whereas abundant expression of NMS mRNA was detected only in the hypothalamus. These differing distributions of the mRNA and peptide suggest that nerve fibers originating from hypothalamic NMS neurons project into the midbrain, pons, or medulla oblongata. In addition, abundant expression of type 2 receptor mRNA was detected not only in the hypothalamus, but also in the midbrain and pons-medulla oblongata. These results suggest novel, unknown physiological roles of NMS within the brainstem.
Collapse
Affiliation(s)
- Miwa Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research InstituteOsaka, Japan
- Miwa Mori and Kenji Mori have contributed equally to this work
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research InstituteOsaka, Japan
- Miwa Mori and Kenji Mori have contributed equally to this work
| | - Takanori Ida
- Interdisciplinary Research Organization, University of MiyazakiMiyazaki, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Sciences, Kurume UniversityFukuoka, Japan
| | - Masayasu Kojima
- Molecular Genetics, Institute of Life Sciences, Kurume UniversityFukuoka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research InstituteOsaka, Japan
- *Correspondence: Mikiya Miyazato, Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan. e-mail:
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research InstituteOsaka, Japan
| |
Collapse
|
132
|
Nixon JP, Kotz CM, Novak CM, Billington CJ, Teske JA. Neuropeptides controlling energy balance: orexins and neuromedins. Handb Exp Pharmacol 2012:77-109. [PMID: 22249811 DOI: 10.1007/978-3-642-24716-3_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this chapter, we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus-perifornical area and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways but is nonetheless a separate neural process that depends on interactions with other feeding-related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite-related neuromedin-producing neurons are in the hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding-related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the other various neuropeptides, neurotransmitters, neuromodulators, and neurohormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight.
Collapse
Affiliation(s)
- Joshua P Nixon
- Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
133
|
Yamamoto I, Nakao N, Kaiya H, Miyazato M, Tsushima N, Arai T, Tanaka M. Two chicken neuromedin U receptors: characterization of primary structure, biological activity and tissue distribution. Gen Comp Endocrinol 2011; 174:116-23. [PMID: 21878335 DOI: 10.1016/j.ygcen.2011.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 11/29/2022]
Abstract
Neuromedin U (NMU) is a bioactive peptide that is involved in a variety of physiological functions. Two of its receptors, NMUR1 and NMUR2, have been identified and characterized in mammals. In this study, we performed cDNA cloning of chicken NMUR1 and NMUR2, and characterized their primary structure, biological activity, and expression patterns in chicken tissues. The chicken NMUR1 and NMUR2 cDNAs encoded 438 and 395 amino acid sequences, respectively. Chicken NMUR1 showed 54.8%-56.5% sequence identity with human, rat, and mouse NMUR1, and NMUR2 shared 67.3%-70.1% sequence identity with mammalian orthologs. Both chicken receptors have typical characteristics of G-protein-coupled receptors with seven transmembrane domains and the D/ERY motif. An increase in intracellular Ca(2+) mobilization was observed in HEK293 cells transfected with chicken NMUR1 or NMUR2 cDNA and treated with chicken or rat NMU. Real-time PCR analysis revealed that NMUR1 mRNA was preferentially expressed in the intestinal tissues such as the duodenum, jejunum, ileum, cecum, and colon/rectum, and brain regions such as the midbrain and optic lobe, and the ovary in adult hens. NMUR2 mRNA was exclusively expressed in the brain regions such as the cerebrum and midbrain. These results indicate that NMUR1 and NMUR2 mRNAs, which encode functional receptor proteins, are expressed in chicken tissues with different distribution patterns.
Collapse
Affiliation(s)
- Ichiro Yamamoto
- Department of Veterinary Science, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
134
|
Harten SK, Esteban MA, Shukla D, Ashcroft M, Maxwell PH. Inactivation of the von Hippel-Lindau tumour suppressor gene induces Neuromedin U expression in renal cancer cells. Mol Cancer 2011; 10:89. [PMID: 21791076 PMCID: PMC3155908 DOI: 10.1186/1476-4598-10-89] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 07/26/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND 209 000 new cases of renal carcinoma are diagnosed each year worldwide and new therapeutic targets are urgently required. The great majority of clear cell renal cancer involves inactivation of VHL, which acts as a gatekeeper tumour suppressor gene in renal epithelial cells. However how VHL exerts its tumour suppressor function remains unclear. A gene expression microarray comparing RCC10 renal cancer cells expressing either VHL or an empty vector was used to identify novel VHL regulated genes. FINDINGS NMU (Neuromedin U) is a neuropeptide that has been implicated in energy homeostasis and tumour progression. Here we show for the first time that VHL loss-of-function results in dramatic upregulation of NMU expression in renal cancer cells. The effect of VHL inactivation was found to be mediated via activation of Hypoxia Inducible Factor (HIF). Exposure of VHL expressing RCC cells to either hypoxia or dimethyloxalylglycine resulted in HIF activation and increased NMU expression. Conversely, suppression of HIF in VHL defective RCC cells via siRNA of HIF-α subunits or expression of Type 2C mutant VHLs reduced NMU expression levels. We also show that renal cancer cells express a functional NMU receptor (NMUR1), and that NMU stimulates migration of renal cancer cells. CONCLUSIONS These findings suggest that NMU may act in an autocrine fashion, promoting progression of kidney cancer. Hypoxia and HIF expression are frequently observed in many non-renal cancers and are associated with a poor prognosis. Our study raises the possibility that HIF may also drive NMU expression in non-renal tumours.
Collapse
Affiliation(s)
- Sarah K Harten
- Division of Medicine, University College London, London, UK
- ACRF Centre for Cancer Epigenetics, Queensland Institute of Medical Research, Herston Road, Brisbane, Australia
| | - Miguel A Esteban
- South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, China
| | - Deepa Shukla
- Division of Medicine, University College London, London, UK
| | | | | |
Collapse
|
135
|
Peier AM, Desai K, Hubert J, Du X, Yang L, Qian Y, Kosinski JR, Metzger JM, Pocai A, Nawrocki AR, Langdon RB, Marsh DJ. Effects of peripherally administered neuromedin U on energy and glucose homeostasis. Endocrinology 2011; 152:2644-54. [PMID: 21586559 DOI: 10.1210/en.2010-1463] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neuromedin U (NMU) is a highly conserved peptide reported to modulate energy homeostasis. Pharmacological studies have shown that centrally administered NMU inhibits food intake, reduces body weight, and increases energy expenditure. NMU-deficient mice develop obesity, whereas transgenic mice overexpressing NMU become lean and hypophagic. Two high-affinity NMU receptors, NMUR1 and NMUR2, have been identified. NMUR1 is found primarily in the periphery and NMUR2 primarily in the brain, where it mediates the anorectic effects of centrally administered NMU. Given the broad expression pattern of NMU, we evaluated whether peripheral administration of NMU has effects on energy homeostasis. We observed that acute and chronic peripheral administration of NMU in rodents dose-dependently reduced food intake and body weight and that these effects required NMUR1. The anorectic effects of NMU appeared to be partly mediated by vagal afferents. NMU treatment also increased core body temperature and metabolic rate in mice, suggesting that peripheral NMU modulates energy expenditure. Additionally, peripheral administration of NMU significantly improved glucose excursion. Collectively, these data suggest that NMU functions as a peripheral regulator of energy and glucose homeostasis and the development of NMUR1 agonists may be an effective treatment for diabetes and obesity.
Collapse
Affiliation(s)
- Andrea M Peier
- Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Sakamoto T, Nakahara K, Maruyama K, Katayama T, Mori K, Miyazato M, Kangawa K, Murakami N. Neuromedin S regulates cardiovascular function through the sympathetic nervous system in mice. Peptides 2011; 32:1020-6. [PMID: 21356261 DOI: 10.1016/j.peptides.2011.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 11/20/2022]
Abstract
Intracerebroventricular (icv) injection of neuromedin S (NMS) in mice increased the heart rate in a dose-dependent manner. On the other hand, genetically NMS deficient mice (NMS-KO mice) exhibited a decreased heart rate and significant extension of the QRS and PR interval in the electrocardiogram complex. Although treatment with a parasympathetic nerve blocker, methylscopolamine, and a sympathetic nerve blocker, timolol, respectively increased and decreased the heart rate in both NMS-KO and wild-type mice, the extent of the decrease induced by timolol was smaller in NMS-KO than in wild-type mice. In addition, pretreatment with timolol completely inhibited the NMS-induced heart rate increase in wild-type mice. No expression of mRNA for NMS or the NMS receptor was evident in the heart by RT-PCR analysis. These results suggest that endogenous NMS may regulate cardiovascular function by activating the sympathetic nervous system.
Collapse
Affiliation(s)
- Takumi Sakamoto
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Klenke S, Siffert W. SNPs in genes encoding G proteins in pharmacogenetics. Pharmacogenomics 2011; 12:633-54. [DOI: 10.2217/pgs.10.203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heterotrimeric guanine-binding proteins (G proteins) transmit signals from the cell surface to intracellular signal cascades and are involved in various physiological and pathophysiological processes. Polymorphisms in the genes GNB3 (encoding the Gβ3 subunit), GNAS (encoding the Gαs subunit) and GNAQ (encoding the Gαq subunit) have been the primary focus of investigation. Polymorphisms in these genes could be associated with different complex phenotypes underlining that alterations in G-protein signaling can cause multiple disorders. G proteins present a point of convergence or ‘bottleneck’ between various receptors and effectors, thus making them a sensible tool for pharmacogenetic studies. The pharmacogenetic studies performed to date mostly demonstrate an association between G-protein polymorphisms and response to therapy or occurrence of adverse drug effects. Therefore, polymorphisms in genes encoding G-protein subunits may help to individualize drug treatment in various diseases with regard to both efficacy and safety.
Collapse
Affiliation(s)
| | - Winfried Siffert
- Institut für Pharmakogenetik, Universität Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
138
|
Ahnaou A, Drinkenburg WHIM. Neuromedin U(2) receptor signaling mediates alteration of sleep-wake architecture in rats. Neuropeptides 2011; 45:165-74. [PMID: 21296417 DOI: 10.1016/j.npep.2011.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
Growing evidence indicates that neuromedin U (NmU) neuropeptide system plays an integral role in mediating the stress response through the corticotrophin-releasing factor (CRF) pathways. Stress is often associated with alteration in sleep-wake architecture both in human and laboratory animals. Here, we investigated whether activation of the NmU₂ receptor, a major high affinity receptor for NmU predominantly expressed in the brain, affects sleep behavior in rats. Effects of single (acute) intracebroventricular (icv) infusion of 2.5 nmol of the full agonists porcine NmU8 and rat NmU23 were assessed on sleep-wake architecture in freely moving rats, which were chronically implanted with EEG and EMG electrodes. In addition, repeated once daily administration of NmU8 at 2.5 nmol during 8 consecutive days (sub-chronic) was studied. Acute icv infusion of NmU23 elicited a robust alteration in sleep-wake architecture, namely enhanced wakefulness and suppressed sleep during the first 4h after administration. Acute infusion NmU8 had no effect on spontaneous sleep-wake architecture. However, sub-chronic icv infusion of NmU8 increased the amount of rapid eye movement (REM) sleep and intermediate stage (IS), while decreased light sleep. Additionally, NmU8 increased transitions from sleep states towards wakefulness suggesting a disruption in sleep continuity. The present results show that central-activation of NmU₂ receptor markedly reduced sleep duration and disrupted the mechanisms underlying NREM-REM sleep transitions. Given that sleep-wakefulness cycle is strongly influenced by stress and the role of NmU/NmU₂ receptor signaling in stress response, the disruption in sleep pattern associated with peptides species may support at least some signs of stress.
Collapse
Affiliation(s)
- A Ahnaou
- Janssen Pharmaceutical Companies of Johnson & Johnson, Dept. of Neurosciences, A Division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | |
Collapse
|
139
|
Maruyama K, Kaiya H, Miyazato M, Konno N, Wakasugi T, Uchiyama M, Shioda S, Murakami N, Matsuda K. Isolation and characterisation of two cDNAs encoding the neuromedin U receptor from goldfish brain. J Neuroendocrinol 2011; 23:282-91. [PMID: 21182546 DOI: 10.1111/j.1365-2826.2010.02106.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracerebroventricular administration of neuromedin U (NMU) exerts an anorexigenic effect in a goldfish model. However, little is known about the NMU receptor and its signalling system in fish. In the present study, we isolated and cloned two cDNAs encoding different proteins comprising 429 and 388 amino acid residues from the goldfish brain based on the nucleotide sequences of human NMU receptor 1 (NMU-R1) and receptor 2 (NMU-R2). Hydropathy and phylogenetic analyses suggested that these two proteins were orthologues of NMU-R1 and -R2 of goldfish. We established two human embryonic kidney 293 cell lines stably expressing putative NMU-R1 and -R2, respectively, and showed that NMU induced an increase in intracellular calcium concentration ([Ca(2+)](i)) in these cells. We examined the presence of NMU-R1 and -R2 in the goldfish brain by western blotting analysis using affinity-purified antisera raised against peptide fragments derived from these receptors. NMU-R1-specific and NMU-R2-specific antisera detected a 49-kDa and 45-kDa immunopositive bands, respectively, in the brain extract. The mass of each band corresponded to that of the deduced respective primary structures. Reverse transcriptase-polymerase chain reaction analysis showed that NMU-R1 and -R2 transcripts were detected in several tissues. In particular, both mRNAs were strongly expressed in the goldfish brain. By contrast, NMU-R2 mRNA was also expressed in the gut. These results indicate for the first time that NMU-R orthologues exist in goldfish, and suggest physiological roles of NMU and its receptor system in fish.
Collapse
Affiliation(s)
- K Maruyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Wang F, Zhang Y, Jiang X, Zhang Y, Zhang L, Gong S, Liu C, Zhou L, Tao J. Neuromedin U inhibits T-type Ca2+ channel currents and decreases membrane excitability in small dorsal root ganglia neurons in mice. Cell Calcium 2011; 49:12-22. [DOI: 10.1016/j.ceca.2010.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/15/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
|
141
|
Valentinuzzi ME. Neuroendocrinology and its quantitative development: a bioengineering view. Biomed Eng Online 2010; 9:68. [PMID: 21050472 PMCID: PMC2992060 DOI: 10.1186/1475-925x-9-68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/04/2010] [Indexed: 11/28/2022] Open
Abstract
Biomedical engineering is clearly present in modern neuroendocrinology, and indeed has come to embrace it in many respects. First, we briefly review the origins of endocrinology until neuroendocrinology, after a long saga, was established in the 1950's decade with quantified results made possible by the radioimmunoassay technique (RIA), a development contributed by the physical sciences. However, instrumentation was only one face of the quantification process, for mathematical models aiding in the study of negative feedback loops, first rather shyly and now at a growing rate, became means building the edifice of mathematical neuroendocrinology while computer assisted techniques help unravel the associated genetic aspects or the nature itself of endocrine bursts by numerical deconvolution analysis. To end the note, attention is called to the pleiotropic characteristics of neuroendocrinology, which keeps branching off almost endlessly as bioengineering does too.
Collapse
Affiliation(s)
- Max E Valentinuzzi
- Instituto de Ingeniería Biomédica, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
142
|
Janssen T, Lindemans M, Meelkop E, Temmerman L, Schoofs L. Coevolution of neuropeptidergic signaling systems: from worm to man. Ann N Y Acad Sci 2010; 1200:1-14. [PMID: 20633129 DOI: 10.1111/j.1749-6632.2010.05506.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the general knowledge and repeated predictions of peptide G protein-coupled receptors following the elucidation of the Caenorhabditis elegans genome in 1998, only a few have been deorphanized so far. This was attributed to the apparent lack of coevolution between (neuro)peptides and their cognate receptors. To resolve this issue, we have used an in silico genomic data mining tool to identify the real putative peptide GPCRs in the C. elegans genome and then made a well-considered selection of orphan peptide GPCRs. To maximize our chances of a successful deorphanization, we adopted a combined reverse pharmacology approach. At this moment, we have successfully uncovered four C. elegans neuropeptide signaling systems that support the theory of receptor-ligand coevolution. All four systems are extremely well conserved within nematodes and show a high degree of similarity with their vertebrate and arthropod counterparts. Our data indicate that these four neuropeptide signaling systems have been well conserved during the course of evolution and that they were already well established prior to the divergence of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Tom Janssen
- Functional Genomics and Proteomics Unit, Department of Biology, KULeuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
143
|
Activation of neuromedin U type 1 receptor inhibits L-type Ca2+ channel currents via phosphatidylinositol 3-kinase-dependent protein kinase C epsilon pathway in mouse hippocampal neurons. Cell Signal 2010; 22:1660-8. [PMID: 20599609 DOI: 10.1016/j.cellsig.2010.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 06/10/2010] [Accepted: 06/21/2010] [Indexed: 11/24/2022]
Abstract
Neuromedin U (NMU) plays very important roles in the central nervous system. However, to date, any role of NMU in hippocampal neurons and the relevant mechanisms still remain unknown. In the present study, we report that NMU selectively inhibits L-type high-voltage-gated Ca(2+) channels (HVGCC) in mouse hippocampal neurons, in which NMU type 1 receptor (NMUR1), but not NMUR2, is endogenously expressed. In wild type mice, NMU (0.1 microM) reversibly inhibited HVGCC barium currents (I(Ba)) by approximately 28%, while in NMUR1(-/-) mice NMU had no significant effects. Intracellular infusion of GDP-beta-S or a selective antibody raised against the G(o)alpha, as well as pretreatment of the neurons with pertussis toxin, blocked the inhibitory effects of NMU, indicating the involvement of G(o)-protein. This NMUR1-mediated effect did not display the characteristics of a direct interaction between G-protein betagamma subunit (G(betagamma)) and L-type HVGCC, but was abolished by dialyzing cells with QEHA peptide or an antibody to the G(beta). The classical and novel protein kinase C (PKC) antagonist calphostin C, as well as phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, abolished NMU responses, whereas the classical PKC antagonist Gö6976 had no such effects. Cells dialyzed with a PKC epsilon isoform (PKCepsilon) specific inhibitor peptide, GAVSLLPT, abolished NMU responses. In contrast, in cells dialyzed with an inactive PKCepsilon control scramble peptide, LSGTLPAV, no significant effects were observed. In summary, these results suggest that NMU inhibits L-type HVGCC via activation of NMUR1 and downstream G(betagamma), PI3K, and a novel PKCepsilon signaling pathway.
Collapse
|
144
|
Harding MA, Theodorescu D. RhoGDI signaling provides targets for cancer therapy. Eur J Cancer 2010; 46:1252-9. [PMID: 20347589 PMCID: PMC11207191 DOI: 10.1016/j.ejca.2010.02.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/16/2010] [Indexed: 12/20/2022]
Abstract
Rho GDP-Dissociation Inhibitors (RhoGDIs) are important regulators of the Rho family of small GTPases. The expression of RhoGDIs is altered in a variety of cancers and they have been shown to mediate several processes during tumorigenesis and cancer progression. Using examples of RhoGDI-mediated signaling and expression patterns in endothelial cells as well as pancreatic, breast, and bladder cancer, the multitude of potential cancer therapeutic targets presented by a better understanding of their function is illustrated. Several novel therapeutic strategies are proposed for intervening in RhoGDI signaling, and potential complications arising from their implementation are discussed.
Collapse
Affiliation(s)
- Michael A Harding
- Department of Urology, University of Virginia, Charlottesville, Virginia, USA.
| | | |
Collapse
|
145
|
Budhiraja S, Chugh A. Neuromedin U: physiology, pharmacology and therapeutic potential. Fundam Clin Pharmacol 2009; 23:149-57. [PMID: 19645813 DOI: 10.1111/j.1472-8206.2009.00667.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuromedin U (NmU), a multifunctional neuropeptide, belongs to a family of neuropeptides, the neuromedins. It is ubiquitously distributed with highest levels found in the gastrointestinal tract and pituitary. The conservation of structural elements of NmU across species, the widespread distribution of NmU and its receptors throughout the body point to a fundamental role in key physiological processes. Two G protein coupled receptors for NmU have been cloned NmU R1 and NmU R2. NmU R1 is expressed pre-dominantly in the periphery especially the gastrointestinal tract whereas NmU R2 is expressed pre-dominantly in the central nervous system. Current evidence suggests a role of NmU in pain, in regulation of feeding and energy homeostasis, stress, cancer, immune mediated inflammatory diseases like asthma, inflammatory diseases, maintaining the biological clock, in the regulation of smooth muscle contraction in the gastrointestinal and genitourinary tract, and in the control of blood flow and blood pressure. With the development of drugs selectively acting on receptors and knockout animal models, exact pathophysiological roles of NmU will become clearer.
Collapse
Affiliation(s)
- S Budhiraja
- Department of Pharmacology, Pt. B. D. Sharma, PGIMS, Rohtak-124001, Haryana, India.
| | | |
Collapse
|
146
|
Maruyama K, Wada K, Ishiguro K, Shimakura SI, Wakasugi T, Uchiyama M, Shioda S, Matsuda K. Neuromedin U-induced anorexigenic action is mediated by the corticotropin-releasing hormone receptor-signaling pathway in goldfish. Peptides 2009; 30:2483-6. [PMID: 19699772 DOI: 10.1016/j.peptides.2009.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 01/15/2023]
Abstract
Our recent research has indicated that neuromedin U (NMU) orthologs exist in goldfish, and that NMU consisting of 21 amino acid residues (NMU-21) can potently inhibit food intake in goldfish, as is the case in rodents. However, the anorexigenic pathway of NMU-21 has not yet been clarified in this species. Corticotropin-releasing hormone (CRH), CRH-related peptides and alpha-melanocyte-stimulating hormone (alpha-MSH), which exert potent anorexigenic effects, are important mediators involved in feeding regulation in fish. We examined whether CRH or alpha-MSH mediates NMU-21-induced anorexigenic action in goldfish. We first investigated the effect of intracerebroventricular (ICV) administration of NMU-21 at 100 pmol/g body weight (BW), which is enough to suppress food intake, on expression levels of mRNA for CRH and proopiomelanocortin (POMC) in the hypothalamus. ICV-injected NMU-21 induced a significant increase in the expression level of CRH mRNA, but not that of POMC mRNA. We also examined the effects of ICV administration of the CRH 1/2 receptor antagonist, alpha-helical CRH((9-41)), and the melanocortin 4 receptor antagonist, HS024, on the anorexigenic action of ICV-injected NMU-21. The anorexigenic effect of NMU-21 was blocked by treatment with alpha-helical CRH((9-41)) at 400 pmol/g BW, but not HS024 at 200 pmol/g BW. These results suggest that the anorexigenic action of NMU-21 is mediated by the CRH 1 or 2 receptor-signaling pathway in goldfish.
Collapse
Affiliation(s)
- Keisuke Maruyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Yayou K, Kitagawa S, Ito S, Kasuya E, Sutoh M. Effects of intracerebroventricular administration of neuromedin U or neuromedin S in steers. Gen Comp Endocrinol 2009; 163:324-8. [PMID: 19442664 DOI: 10.1016/j.ygcen.2009.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 11/26/2022]
Abstract
Although neuromedin U (NMU) and neuromedin S (NMS) are reported to modulate stress responses mainly through corticotropin-releasing hormone system in rodents, the in vivo effects of centrally administered NMU or NMS on stress regulation have not been fully elucidated in cattle. We examined adrenocorticotropic hormone levels, body temperature, and behavioral responses to intracerebroventricularly (ICV) administered rat NMU or rat NMS in steers. ICV NMU and NMS (0.2, 2, and 20 nmol/200 microl) evoked a dose-related increase in plasma cortisol concentrations (CORT). There was a significant time-treatment interaction for the time course of CORT (p<0.001). ICV NMU evoked a dose-related increase in rectal temperature (RT). There was a significant time-treatment interaction for the change in RT from pre-injection value (p<0.05). There was a significant difference among treatments in the percentage of time spent lying (Friedman's test, chi(2)=15.6, p<0.01) and in the total number of head shaking (Friedman's test, chi(2)=14.49, p<0.01). A high dose of NMS tended to shorten the duration of lying and increase the number of head shaking. These findings indicate that both central NMU and NMS might participate in controlling the hypothalamo-pituitary-adrenal axis, that central NMU might participate in controlling body temperature, and that central NMS is likely to be involved in behavioral activation in cattle.
Collapse
Affiliation(s)
- K Yayou
- Laboratory of Neurobiology, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | |
Collapse
|
148
|
Egecioglu E, Ploj K, Xu X, Bjursell M, Salomé N, Andersson N, Ohlsson C, Taube M, Hansson C, Bohlooly-Y M, Morgan DGA, Dickson SL. Central NMU signaling in body weight and energy balance regulation: evidence from NMUR2 deletion and chronic central NMU treatment in mice. Am J Physiol Endocrinol Metab 2009; 297:E708-16. [PMID: 19584200 DOI: 10.1152/ajpendo.91022.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the role of the central neuromedin U (NMU) signaling system in body weight and energy balance regulation, we examined the effects of long-term intracerebroventricular (icv) infusion of NMU in C57Bl/6 mice and in mice lacking the gene encoding NMU receptor 2. In diet-induced obese male and female C57BL/6 mice, icv infusion of NMU (8 microg x day(-1) x mouse(-1)) for 7 days decreased body weight and total energy intake compared with vehicle treatment. However, these parameters were unaffected by NMU treatment in lean male and female C57BL/6 mice fed a standard diet. In addition, female (but not male) NMUR2-null mice had increased body weight and body fat mass when fed a high-fat diet but lacked a clear body weight phenotype when fed a standard diet compared with wild-type littermates. Furthermore, female (but not male) NMUR2-null mice fed a high-fat diet were protected from central NMU-induced body weight loss compared with littermate wild-type mice. Thus, we provide the first evidence that long-term central NMU treatment reduces body weight, food intake, and adiposity and that central NMUR2 signaling is required for these effects in female but not male mice.
Collapse
Affiliation(s)
- Emil Egecioglu
- Dept. of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Univ. of Gothenburg, Medicinaregatan, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Evidence for a novel vasospastic transmitter system, neuromedin U, in the equine digital circulation. Vet J 2009; 186:106-9. [PMID: 19683464 DOI: 10.1016/j.tvjl.2009.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 04/18/2009] [Accepted: 06/27/2009] [Indexed: 11/24/2022]
Abstract
The brain-gut peptide neuromedin U (NMU) is a ligand for the G-protein-coupled receptors, NMU1 and NMU2. In humans, an extended form of this peptide, NMU-25, and the structurally related peptide, neuromedin S (NMS), both produce potent vasoconstriction in isolated blood vessels. The aim of this study was to determine whether NMU fulfilled criteria for controlling vasoreactivity in the equine digital circulation. NMU receptors were characterised in the equine digital artery and vein based on the pharmacological criteria of specific, saturable and high affinity binding. Immunoreactive peptide was detected in the equine digital artery and vein using anti-NMS antisera. [(125)I]-NMU-25 binding sites were localised to the smooth muscle layer and NMU-25 potently constricted the digital vein. This provides evidence for NMU as a transmitter in the equine digital circulation.
Collapse
|
150
|
Abstract
Neuromedin U (NMU) is known to have potent actions on appetite and energy expenditure. Deletion of the NMU gene in mice leads to an obese phenotype, characterized by hyperphagia and decreased energy expenditure. Conversely, transgenic mice that overexpress proNMU exhibit reduced body weight and fat storage. Here, we show that central administration of NMU or the related peptide neuromedin S (NMS) dose-dependently decreases food intake, increases metabolic rate, and leads to significant weight loss in mice. The effects of NMU and NMS on both feeding and metabolism are almost completely lost in mice lacking the putative CNS receptor for NMU and NMS, NMUr2. However, NMUr2 knockout mice do not exhibit overt differences in body weight or energy expenditure compared with wild-type mice, suggesting that the dramatic phenotype of the NMU gene knockout mouse is not due simply to the loss of NMU/NMUr2 signaling. Putative proteolytic cleavage sites indicate that an additional peptide is produced from the NMU precursor protein, which is extremely well conserved between human, mouse, and rat. Here, we demonstrate that this peptide, proNMU(104-136), has a pronounced effect on energy balance in mice. Specifically, central administration of proNMU(104-136) causes a significant but transient ( approximately 4 h) increase in feeding, yet both food intake and body weight are decreased over the following 24 h. proNMU(104-136) administration also significantly increased metabolic rate. These results suggest that proNMU(104-136) is a novel modulator of energy balance and may contribute to the phenotype exhibited by NMU knockout mice.
Collapse
Affiliation(s)
- David A Bechtold
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|