101
|
Lee M, Shim HJ, Choi C, Kim DH. Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches. NANO LETTERS 2019; 19:2741-2749. [PMID: 31002760 DOI: 10.1021/acs.nanolett.8b04895] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neural interfacing probes are located between the nervous system and the implanted electronic device in order to acquire information on the complex neuronal activity and to reconstruct impaired neural connectivity. Despite remarkable advancement in recent years, conventional neural interfacing is still unable to completely accomplish these goals, especially in long-term brain interfacing. The major limitation arises from physical and mechanical differences between neural interfacing probes and neural tissues that cause local immune responses and production of scar cells near the interface. Therefore, neural interfaces should ideally be extremely soft and have the physical scale of cells to mitigate the boundary between biotic and abiotic systems. Soft materials for neural interfaces have been intensively investigated to improve both interfacing and long-term signal transmission. The design and fabrication of micro and nanoscale devices have drastically decreased the stiffness of probes and enabled single-neuron measurement. In this Mini Review, we discuss materials and design approaches for developing soft high-resolution neural probes intended for long-term brain interfacing and outline existent challenges for achieving next-generation neural interfacing probes.
Collapse
Affiliation(s)
- Mincheol Lee
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hyung Joon Shim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Changsoon Choi
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
102
|
Krukiewicz K, Fernandez J, Skorupa M, Więcławska D, Poudel A, Sarasua JR, Quinlan LR, Biggs MJP. Analysis of a poly(ε-decalactone)/silver nanowire composite as an electrically conducting neural interface biomaterial. BMC Biomed Eng 2019; 1:9. [PMID: 32903306 PMCID: PMC7422568 DOI: 10.1186/s42490-019-0010-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Advancement in polymer technologies, facilitated predominantly through chemical engineering approaches or through the identification and utilization of novel renewable resources, has been a steady focus of biomaterials research for the past 50 years. Aliphatic polyesters have been exploited in numerous biomedical applications including the formulation of soft-tissue sutures, bone fixation devices, cardiovascular stents etc. Biomimetic ‘soft’ polymer formulations are of interest in the design of biological interfaces and specifically, in the development of implantable neuroelectrode systems intended to interface with neural tissues. Critically, soft polymer formulations have been shown to address the challenges associated with the disregulation of mechanotransductive processes and micro-motion induced inflammation at the electrode/tissue interface. In this study, a polyester-based poly(ε-decalactone)/silver nanowire (EDL:Ag) composite was investigated as a novel electrically active biomaterial with neural applications. Neural interfaces were formulated through spin coating of a polymer/nanowire formulation onto the surface of a Pt electrode to form a biocompatible EDL matrix supported by a percolated network of silver nanowires. As-formed EDL:Ag composites were characterized by means of infrared spectroscopy, scanning electron microscopy and electrochemical methods, with their cytocompatibility assessed using primary cultures of a mixed neural population obtained from the ventral mesencephalon of Sprague-Dawley rat embryos. Results Electrochemical characterization of various EDL:Ag composites indicated EDL:Ag 10:1 as the most favourable formulation, exhibiting high charge storage capacity (8.7 ± 1.0 mC/cm2), charge injection capacity (84.3 ± 1.4 μC/cm2) and low impedance at 1 kHz (194 ± 28 Ω), outperforming both pristine EDL and bare Pt electrodes. The in vitro biological evaluation showed that EDL:Ag supported significant neuron viability in culture and to promote neurite outgrowth, which had the average length of 2300 ± 6 μm following 14 days in culture, 60% longer than pristine EDL and 120% longer than bare Pt control substrates. Conclusions EDL:Ag nanocomposites are shown to serve as robust neural interface materials, possessing favourable electrochemical characteristics together with high neural cytocompatibility.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Centre for Research in Medical Devices (CURAM), Galway Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, Ireland.,Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland
| | - Jorge Fernandez
- Polimerbio, S.L, Paseo Mikeletegi 83, 20009 Donostia-San Sebastian, Spain
| | - Małgorzata Skorupa
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland
| | - Daria Więcławska
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland
| | - Anup Poudel
- Centre for Research in Medical Devices (CURAM), Galway Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, Ireland
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), School of Engineering, Alameda de Urquijo s/n, 48013 Bilbao, Spain
| | - Leo R Quinlan
- Department of Physiology, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Manus J P Biggs
- Centre for Research in Medical Devices (CURAM), Galway Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, Ireland
| |
Collapse
|
103
|
Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural interfaces. Chem Soc Rev 2019; 48:1826-1852. [PMID: 30815657 DOI: 10.1039/c8cs00710a] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurological and psychiatric conditions pose an increasing socioeconomic burden on our aging society. Our ability to understand and treat these conditions relies on the development of reliable tools to study the dynamics of the underlying neural circuits. Despite significant progress in approaches and devices to sense and modulate neural activity, further refinement is required on the spatiotemporal resolution, cell-type selectivity, and long-term stability of neural interfaces. Guided by the principles of neural transduction and by the materials properties of the neural tissue, recent advances in neural interrogation approaches rely on flexible and multifunctional devices. Among these approaches, multimaterial fibers have emerged as integrated tools for sensing and delivering of multiple signals to and from the neural tissue. Fiber-based neural probes are produced by thermal drawing process, which is the manufacturing approach used in optical fiber fabrication. This technology allows straightforward incorporation of multiple functional components into microstructured fibers at the level of their macroscale models, preforms, with a wide range of geometries. Here we will introduce the multimaterial fiber technology, its applications in engineering fields, and its adoption for the design of multifunctional and flexible neural interfaces. We will discuss examples of fiber-based neural probes tailored to the electrophysiological recording, optical neuromodulation, and delivery of drugs and genes into the rodent brain and spinal cord, as well as their emerging use for studies of nerve growth and repair.
Collapse
Affiliation(s)
- Seongjun Park
- School of Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
104
|
Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev 2019; 48:1566-1595. [PMID: 30519703 DOI: 10.1039/c8cs00706c] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly conductive and intrinsically stretchable electrodes are vital components of soft electronics such as stretchable transistors and circuits, sensors and actuators, light-emitting diode arrays, and energy harvesting devices. Many kinds of conducting nanomaterials with outstanding electrical and mechanical properties have been integrated with elastomers to produce stretchable conductive nanocomposites. Understanding the characteristics of these nanocomposites and assessing the feasibility of their fabrication are therefore critical for the development of high-performance stretchable conductors and electronic devices. We herein summarise the recent advances in stretchable conductors based on the percolation networks of nanoscale conductive fillers in elastomeric media. After discussing the material-, dimension-, and size-dependent properties of conductive fillers and their implications, we highlight various techniques that are used to reduce the contact resistance between the conductive filler materials. Furthermore, we categorize elastomer matrices with different stretchabilities and mechanical properties based on their polymeric chain structures. Then, we discuss the fabrication techniques of stretchable conductive nanocomposites toward their use in soft electronics. Finally, we provide representative examples of stretchable device applications and conclude the review with a brief outlook for future research.
Collapse
Affiliation(s)
- Suji Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | | | | | | | | |
Collapse
|
105
|
Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802348. [PMID: 30272829 DOI: 10.1002/adma.201802348] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/09/2018] [Indexed: 06/08/2023]
Abstract
The ability to integrate complex electronic and optoelectronic functionalities within soft and thin fibers is one of today's key advanced manufacturing challenges. Multifunctional and connected fiber devices will be at the heart of the development of smart textiles and wearable devices. These devices also offer novel opportunities for surgical probes and tools, robotics and prostheses, communication systems, and portable energy harvesters. Among the various fiber-processing methods, the preform-to-fiber thermal drawing technique is a very promising process that is used to fabricate multimaterial fibers with complex architectures at micro- and nanoscale feature sizes. Recently, a series of scientific and technological breakthroughs have significantly advanced the field of multimaterial fibers, allowing a wider range of functionalities, better performance, and novel applications. Here, these breakthroughs, in the fundamental understanding of the fluid dynamics, rheology, and tailoring of materials microstructures at play in the thermal drawing process, are presented and critically discussed. The impact of these advances on the research landscape in this field and how they offer significant new opportunities for this rapidly growing scientific and technological platform are also discussed.
Collapse
Affiliation(s)
- Wei Yan
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Alexis Page
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Tung Nguyen-Dang
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yunpeng Qu
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Federica Sordo
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fabien Sorin
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
106
|
Emara MS, Pisanello M, Sileo L, De Vittorio M, Pisanello F. A Wireless Head-mountable Device with Tapered Optical Fiber-coupled Laser Diode for Light Delivery in Deep Brain Regions. IEEE Trans Biomed Eng 2018; 66:1996-2009. [PMID: 30452350 DOI: 10.1109/tbme.2018.2882146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Optogenetics sets new experimental paradigms that can reveal cell type-specific contributions on the neural basis of behavior. Since most of the available systems for this purpose are based on approaches that tether animals to a set of cables, recent research activities have been focused on minimizing external factors that can alter animal movements. Current wireless optogenetic systems are based on waveguide-coupled LED and implanted LEDs. However, each configuration separately suffers from significant limitations, such as low coupling efficiency, penetration depth and invasiveness of waveguide-coupled LED, and local heat generated by implanted μLEDs. This work presents a novel wireless head-mountable stimulating system for a wide-volume light delivery. The device couples the output of a semiconductor laser diode (LD) to a tapered optical fiber (TF) on a wireless platform. The LD-TF coupling was engineered by setting up far-field analysis, which allows the full exploitation of the mode division demultiplexing properties of TFs. The output delivered light along the tapered segment is capable of stimulating structures of depths up to ~2mm. TFs are tapered to a gradual taper angle (2° to 10°) that ends with a sharp tip (~500 nm) for smooth insertion and less invasiveness. Thus, the proposed system extends the capabilities of wireless optogenetic by offering a novel solution for wide volume light delivery in deep brain regions.
Collapse
|
107
|
Abstract
The optical method to determine oxygen saturation in blood is limited to only tissues that can be transilluminated. The status quo provides a single-point measurement and lacks 2D oxygenation mapping capability. We use organic printed optoelectronics in a flexible array configuration that senses reflected light from tissue. Our reflectance oximeter is used beyond conventional sensing locations and accurately measures oxygen saturation on the forehead. In a full system implementation, coupled with a mathematical model, we create 2D oxygenation maps of adult forearms under pressure-cuff–induced ischemia. Our skin-like flexible sensor system has the potential to transform oxygenation monitoring of tissues, wounds, skin grafts, and transplanted organs. Transmission-mode pulse oximetry, the optical method for determining oxygen saturation in blood, is limited to only tissues that can be transilluminated, such as the earlobes and the fingers. The existing sensor configuration provides only single-point measurements, lacking 2D oxygenation mapping capability. Here, we demonstrate a flexible and printed sensor array composed of organic light-emitting diodes and organic photodiodes, which senses reflected light from tissue to determine the oxygen saturation. We use the reflectance oximeter array beyond the conventional sensing locations. The sensor is implemented to measure oxygen saturation on the forehead with 1.1% mean error and to create 2D oxygenation maps of adult forearms under pressure-cuff–induced ischemia. In addition, we present mathematical models to determine oxygenation in the presence and absence of a pulsatile arterial blood signal. The mechanical flexibility, 2D oxygenation mapping capability, and the ability to place the sensor in various locations make the reflectance oximeter array promising for medical sensing applications such as monitoring of real-time chronic medical conditions as well as postsurgery recovery management of tissues, organs, and wounds.
Collapse
|
108
|
Choi S, Han SI, Jung D, Hwang HJ, Lim C, Bae S, Park OK, Tschabrunn CM, Lee M, Bae SY, Yu JW, Ryu JH, Lee SW, Park K, Kang PM, Lee WB, Nezafat R, Hyeon T, Kim DH. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. NATURE NANOTECHNOLOGY 2018; 13:1048-1056. [PMID: 30104619 DOI: 10.1038/s41565-018-0226-8] [Citation(s) in RCA: 451] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Wearable and implantable devices require conductive, stretchable and biocompatible materials. However, obtaining composites that simultaneously fulfil these requirements is challenging due to a trade-off between conductivity and stretchability. Here, we report on Ag-Au nanocomposites composed of ultralong gold-coated silver nanowires in an elastomeric block-copolymer matrix. Owing to the high aspect ratio and percolation network of the Ag-Au nanowires, the nanocomposites exhibit an optimized conductivity of 41,850 S cm-1 (maximum of 72,600 S cm-1). Phase separation in the Ag-Au nanocomposite during the solvent-drying process generates a microstructure that yields an optimized stretchability of 266% (maximum of 840%). The thick gold sheath deposited on the silver nanowire surface prevents oxidation and silver ion leaching, making the composite biocompatible and highly conductive. Using the nanocomposite, we successfully fabricate wearable and implantable soft bioelectronic devices that can be conformally integrated with human skin and swine heart for continuous electrophysiological recording, and electrical and thermal stimulation.
Collapse
Affiliation(s)
- Suji Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Hye Jin Hwang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chaehong Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Soochan Bae
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Cory M Tschabrunn
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mincheol Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Sun Youn Bae
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ji Woong Yu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Ji Ho Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Sang-Woo Lee
- Department of Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Reza Nezafat
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
109
|
Song KI, Park SE, Lee S, Kim H, Lee SH, Youn I. Compact Optical Nerve Cuff Electrode for Simultaneous Neural Activity Monitoring and Optogenetic Stimulation of Peripheral Nerves. Sci Rep 2018; 8:15630. [PMID: 30353118 PMCID: PMC6199280 DOI: 10.1038/s41598-018-33695-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023] Open
Abstract
Optogenetic stimulation of the peripheral nervous system is a novel approach to motor control, somatosensory transduction, and pain processing. Various optical stimulation tools have been developed for optogenetic stimulation using optical fibers and light-emitting diodes positioned on the peripheral nerve. However, these tools require additional sensors to monitor the limb or muscle status. We present herein a novel optical nerve cuff electrode that uses a single cuff electrode to conduct to simultaneously monitor neural activity and optogenetic stimulation of the peripheral nerve. The proposed optical nerve cuff electrode is designed with a polydimethylsiloxane substrate, on which electrodes can be positioned to record neural activity. We confirm that the illumination intensity and the electrical properties of the optical nerve cuff electrode are suitable for optical stimulation with simultaneous neural activity monitoring in Thy1::ChR2 transgenic mice. With the proposed electrode, the limb status is monitored with continuous streaming signals during the optical stimulation of anesthetized and moving animals. In conclusion, this optical nerve cuff electrode provides a new optical modulation tool for peripheral nervous system studies.
Collapse
Affiliation(s)
- Kang-Il Song
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sunghee Estelle Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seul Lee
- Department of Dentistry, Graduate School, Kyunghee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyungmin Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Lee
- Brain Science Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Inchan Youn
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea. .,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
110
|
Mehrali M, Bagherifard S, Akbari M, Thakur A, Mirani B, Mehrali M, Hasany M, Orive G, Das P, Emneus J, Andresen TL, Dolatshahi‐Pirouz A. Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700931. [PMID: 30356969 PMCID: PMC6193179 DOI: 10.1002/advs.201700931] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/24/2018] [Indexed: 05/22/2023]
Abstract
At the crossroads of chemistry, electronics, mechanical engineering, polymer science, biology, tissue engineering, computer science, and materials science, electrical devices are currently being engineered that blend directly within organs and tissues. These sophisticated devices are mediators, recorders, and stimulators of electricity with the capacity to monitor important electrophysiological events, replace disabled body parts, or even stimulate tissues to overcome their current limitations. They are therefore capable of leading humanity forward into the age of cyborgs, a time in which human biology can be hacked at will to yield beings with abilities beyond their natural capabilities. The resulting advances have been made possible by the emergence of conformal and soft electronic materials that can readily integrate with the curvilinear, dynamic, delicate, and flexible human body. This article discusses the recent rapid pace of development in the field of cybernetics with special emphasis on the important role that flexible and electrically active materials have played therein.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Sara Bagherifard
- Department of Mechanical EngineeringPolitecnico di Milano20156MilanItaly
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Ashish Thakur
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Bahram Mirani
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Mohammad Mehrali
- Process and Energy DepartmentDelft University of TechnologyLeeghwaterstraat 392628CBDelftThe Netherlands
| | - Masoud Hasany
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
| | - Paramita Das
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Jenny Emneus
- Technical University of DenmarkDTU Nanotech2800KgsDenmark
| | - Thomas L. Andresen
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | | |
Collapse
|
111
|
Mondello SE, Sunshine MD, Fischedick AE, Dreyer SJ, Horwitz GD, Anikeeva P, Horner PJ, Moritz CT. Optogenetic surface stimulation of the rat cervical spinal cord. J Neurophysiol 2018; 120:795-811. [DOI: 10.1152/jn.00461.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical intraspinal microstimulation (ISMS) at various sites along the cervical spinal cord permits forelimb muscle activation, elicits complex limb movements and may enhance functional recovery after spinal cord injury. Here, we explore optogenetic spinal stimulation (OSS) as a less invasive and cell type-specific alternative to ISMS. To map forelimb muscle activation by OSS in rats, adeno-associated viruses (AAV) carrying the blue-light sensitive ion channels channelrhodopsin-2 (ChR2) and Chronos were injected into the cervical spinal cord at different depths and volumes. Following an AAV incubation period of several weeks, OSS-induced forelimb muscle activation and movements were assessed at 16 sites along the dorsal surface of the cervical spinal cord. Three distinct movement types were observed. We find that AAV injection volume and depth can be titrated to achieve OSS-based activation of several movements. Optical stimulation of the spinal cord is thus a promising method for dissecting the function of spinal circuitry and targeting therapies following injury. NEW & NOTEWORTHY Optogenetics in the spinal cord can be used both for therapeutic treatments and to uncover basic mechanisms of spinal cord physiology. For the first time, we describe the methodology and outcomes of optogenetic surface stimulation of the rat spinal cord. Specifically, we describe the evoked responses of forelimbs and address the effects of different adeno-associated virus injection paradigms. Additionally, we are the first to report on the limitations of light penetration through the rat spinal cord.
Collapse
Affiliation(s)
- S. E. Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
- Center for Sensorimotor Neural Engineering, Seattle, Washington
| | - M. D. Sunshine
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
- Center for Sensorimotor Neural Engineering, Seattle, Washington
| | - A. E. Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - S. J. Dreyer
- Center for Sensorimotor Neural Engineering, Seattle, Washington
- Department of Bioengineering, University of Illinois, Chicago, Illinois
| | - G. D. Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - P. Anikeeva
- Center for Sensorimotor Neural Engineering, Seattle, Washington
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - P. J. Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, Texas
| | - C. T. Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
- University of Washington Institute for Neuroengineering, University of Washington, Seattle, Washington
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington
- Center for Sensorimotor Neural Engineering, Seattle, Washington
| |
Collapse
|
112
|
Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine. MATERIALS 2018; 11:ma11081283. [PMID: 30044416 PMCID: PMC6117721 DOI: 10.3390/ma11081283] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 11/17/2022]
Abstract
Optical fibers and waveguides in general effectively control and modulate light propagation, and these tools have been extensively used in communication, lighting and sensing. Recently, they have received increasing attention in biomedical applications. By delivering light into deep tissue via these devices, novel applications including biological sensing, stimulation and therapy can be realized. Therefore, implantable fibers and waveguides in biocompatible formats with versatile functionalities are highly desirable. In this review, we provide an overview of recent progress in the exploration of advanced optical fibers and waveguides for biomedical applications. Specifically, we highlight novel materials design and fabrication strategies to form implantable fibers and waveguides. Furthermore, their applications in various biomedical fields such as light therapy, optogenetics, fluorescence sensing and imaging are discussed. We believe that these newly developed fiber and waveguide based devices play a crucial role in advanced optical biointerfaces.
Collapse
|
113
|
Baek P, Voorhaar L, Barker D, Travas-Sejdic J. Molecular Approach to Conjugated Polymers with Biomimetic Properties. Acc Chem Res 2018; 51:1581-1589. [PMID: 29897228 DOI: 10.1021/acs.accounts.7b00596] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The field of bioelectronics involves the fascinating interplay between biology and human-made electronics. Applications such as tissue engineering, biosensing, drug delivery, and wearable electronics require biomimetic materials that can translate the physiological and chemical processes of biological systems, such as organs, tissues. and cells, into electrical signals and vice versa. However, the difference in the physical nature of soft biological elements and rigid electronic materials calls for new conductive or electroactive materials with added biomimetic properties that can bridge the gap. Soft electronics that utilize organic materials, such as conjugated polymers, can bring many important features to bioelectronics. Among the many advantages of conjugated polymers, the ability to modulate the biocompatibility, solubility, functionality, and mechanical properties through side chain engineering can alleviate the issues of mechanical mismatch and provide better interface between the electronics and biological elements. Additionally, conjugated polymers, being both ionically and electrically conductive through reversible doping processes provide means for direct sensing and stimulation of biological processes in cells, tissues, and organs. In this Account, we focus on our recent progress in molecular engineering of conjugated polymers with tunable biomimetic properties, such as biocompatibility, responsiveness, stretchability, self-healing, and adhesion. Our approach is general and versatile, which is based on functionalization of conjugated polymers with long side chains, commonly polymeric or biomolecules. Applications for such materials are wide-ranging, where we have demonstrated conductive, stimuli-responsive antifouling, and cell adhesive biointerfaces that can respond to external stimuli such as temperature, salt concentration, and redox reactions, the processes that in turn modify and reversibly switch the surface properties. Furthermore, utilizing the advantageous chemical, physical, mechanical and functional properties of the grafts, we progressed into grafting of the long side chains onto conjugated polymers in solution, with the vision of synthesizing solution-processable conjugated graft copolymers with biomimetic functionalities. Examples of the developed materials to date include rubbery and adhesive photoluminescent plastics, biomolecule-functionalized electrospun biosensors, thermally and dually responsive photoluminescent conjugated polymers, and tunable self-healing, adhesive, and stretchable strain sensors, advanced functional biocidal polymers, and filtration membranes. As outlined in these examples, the applications of these biomimetic, conjugated polymers are still in the development stage toward truly printable, organic bioelectronic devices. However, in this Account, we advocate that molecular engineering of conjugated polymers is an attractive approach to a versatile class of organic electronics with both ionic and electrical conductivity as well as mechanical properties required for next-generation bioelectronics.
Collapse
Affiliation(s)
- Paul Baek
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Lenny Voorhaar
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Barker
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
114
|
Abstract
Glial cell types were classified less than 100 years ago by del Rio-Hortega. For instance, he correctly surmised that microglia in pathologic central nervous system (CNS) were "voracious monsters" that helped clean the tissue. Although these historical predictions were remarkably accurate, innovative technologies have revealed novel molecular, cellular, and dynamic physiologic aspects of CNS glia. In this review, we integrate recent findings regarding the roles of glia and glial interactions in healthy and injured spinal cord. The three major glial cell types are considered in healthy CNS and after spinal cord injury (SCI). Astrocytes, which in the healthy CNS regulate neurotransmitter and neurovascular dynamics, respond to SCI by becoming reactive and forming a glial scar that limits pathology and plasticity. Microglia, which in the healthy CNS scan for infection/damage, respond to SCI by promoting axon growth and remyelination-but also with hyperactivation and cytotoxic effects. Oligodendrocytes and their precursors, which in healthy tissue speed axon conduction and support axonal function, respond to SCI by differentiating and producing myelin, but are susceptible to death. Thus, post-SCI responses of each glial cell can simultaneously stimulate and stifle repair. Interestingly, potential therapies could also target interactions between these cells. Astrocyte-microglia cross-talk creates a feed-forward loop, so shifting the response of either cell could amplify repair. Astrocytes, microglia, and oligodendrocytes/precursors also influence post-SCI cell survival, differentiation, and remyelination, as well as axon sparing. Therefore, optimizing post-SCI responses of glial cells-and interactions between these CNS cells-could benefit neuroprotection, axon plasticity, and functional recovery.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
- Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
115
|
Shabahang S, Kim S, Yun SH. Light-Guiding Biomaterials for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1706635. [PMID: 31435205 PMCID: PMC6703841 DOI: 10.1002/adfm.201706635] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 05/20/2023]
Abstract
Optical techniques used in medical diagnosis, surgery, and therapy require efficient and flexible delivery of light from light sources to target tissues. While this need is currently fulfilled by glass and plastic optical fibers, recent emergence of biointegrated approaches, such as optogenetics and implanted devices, call for novel waveguides with certain biophysical and biocompatible properties and desirable shapes beyond what the conventional optical fibers can offer. To this end, exploratory efforts have begun to harness various transparent biomaterials to develop waveguides that can serve existing applications better and enable new applications in future photomedicine. Here, we review the recent progress in this new area of research for developing biomaterial-based optical waveguides. We begin with a survey of biological light-guiding structures found in plants and animals, a source of inspiration for biomaterial photonics engineering. We describe natural and synthetic polymers and hydrogels that offer appropriate optical properties, biocompatibility, biodegradability, and mechanical flexibility have been exploited for light-guiding applications. Finally, we briefly discuss perspectives on biomedical applications that may benefit from the unique properties and functionalities of light-guiding biomaterials.
Collapse
Affiliation(s)
- Soroush Shabahang
- Wellman Center for Photomedicine, Massachusetts General Hospital,
Department of Dermatology, Harvard Medical School. 65 Landsdowne Street,
Cambridge, MA 02139, USA
| | - Seonghoon Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital,
Department of Dermatology, Harvard Medical School. 65 Landsdowne Street,
Cambridge, MA 02139, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital,
Department of Dermatology, Harvard Medical School. 65 Landsdowne Street,
Cambridge, MA 02139, USA
| |
Collapse
|
116
|
Xu H, Yin L, Liu C, Sheng X, Zhao N. Recent Advances in Biointegrated Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800156. [PMID: 29806115 DOI: 10.1002/adma.201800156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/06/2018] [Indexed: 05/09/2023]
Abstract
With recent progress in the design of materials and mechanics, opportunities have arisen to improve optoelectronic devices, circuits, and systems in curved, flexible, stretchable, and biocompatible formats, thereby enabling integration of customized optoelectronic devices and biological systems. Here, the core material technologies of biointegrated optoelectronic platforms are discussed. An overview of the design and fabrication methods to form semiconductor materials and devices in flexible and stretchable formats is presented, strategies incorporating various heterogeneous substrates, interfaces, and encapsulants are discussed, and their applications in biomimetic, wearable, and implantable systems are highlighted.
Collapse
Affiliation(s)
- Huihua Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information technology, Sun Yat-Sen University, Guangzhou, 510275, China
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Lan Yin
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xing Sheng
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
117
|
Canales A, Park S, Kilias A, Anikeeva P. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Acc Chem Res 2018; 51:829-838. [PMID: 29561583 DOI: 10.1021/acs.accounts.7b00558] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional devices for modulation and probing of neuronal activity during free behavior facilitate studies of functions and pathologies of the nervous system. Probes composed of stiff materials, such as metals and semiconductors, exhibit elastic and chemical mismatch with the neural tissue, which is hypothesized to contribute to sustained tissue damage and gliosis. Dense glial scars have been found to encapsulate implanted devices, corrode their surfaces, and often yield poor recording quality in long-term experiments. Motivated by the hypothesis that reducing the mechanical stiffness of implanted probes may improve their long-term reliability, a variety of probes based on soft materials have been developed. In addition to enabling electrical neural recording, these probes have been engineered to take advantage of genetic tools for optical neuromodulation. With the emergence of optogenetics, it became possible to optically excite or inhibit genetically identifiable cell types via expression of light-sensitive opsins. Optogenetics experiments often demand implantable multifunctional devices to optically stimulate, deliver viral vectors and drugs, and simultaneously record electrophysiological signals from the specified cells within the nervous system. Recent advances in microcontact printing and microfabrication techniques have equipped flexible probes with microscale light-emitting diodes (μLEDs), waveguides, and microfluidic channels. Complementary to these approaches, fiber drawing has emerged as a scalable route to integration of multiple functional features within miniature and flexible neural probes. The thermal drawing process relies on the fabrication of macroscale models containing the materials of interest, which are then drawn into microstructured fibers with predefined cross-sectional geometries. We have recently applied this approach to produce fibers integrating conductive electrodes for extracellular recording of single- and multineuron potentials, low-loss optical waveguides for optogenetic neuromodulation, and microfluidic channels for drug and viral vector delivery. These devices allowed dynamic investigation of the time course of opsin expression across multiple brain regions and enabled pairing of optical stimulation with local pharmacological intervention in behaving animals. Neural probes designed to interface with the spinal cord, a viscoelastic tissue undergoing repeated strain during normal movement, rely on the integration of soft and flexible materials to avoid injury and device failure. Employing soft substrates, such as parylene C and poly-(dimethylsiloxane), for electrode and μLED arrays permitted stimulation and recording of neural activity on the surface of the spinal cord. Similarly, thermally drawn flexible and stretchable optoelectronic fibers that resemble the fibrous structure of the spinal cord were implanted without any significant inflammatory reaction in the vicinity of the probes. These fibers enabled simultaneous recording and optogenetic stimulation of neural activity in the spinal cord. In this Account, we review the applications of multifunctional fibers and other integrated devices for optoelectronic probing of neural circuits and discuss engineering directions that may facilitate future studies of nerve repair and accelerate the development of bioelectronic medical devices.
Collapse
Affiliation(s)
- Andres Canales
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Antje Kilias
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Biomicrotechnology, Institute for Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
118
|
Tian B, Xu S, Rogers JA, Cestellos-Blanco S, Yang P, Carvalho-de-Souza JL, Bezanilla F, Liu J, Bao Z, Hjort M, Cao Y, Melosh N, Lanzani G, Benfenati F, Galli G, Gygi F, Kautz R, Gorodetsky AA, Kim SS, Lu TK, Anikeeva P, Cifra M, Krivosudský O, Havelka D, Jiang Y. Roadmap on semiconductor-cell biointerfaces. Phys Biol 2018; 15:031002. [PMID: 29205173 PMCID: PMC6599646 DOI: 10.1088/1478-3975/aa9f34] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.
Collapse
Affiliation(s)
- Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Budai D, Vizvári AD, Bali ZK, Márki B, Nagy LV, Kónya Z, Madarász D, Henn-Mike N, Varga C, Hernádi I. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology. PLoS One 2018; 13:e0193836. [PMID: 29513711 PMCID: PMC5841794 DOI: 10.1371/journal.pone.0193836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Optical microelectrodes (optrodes) are used in neuroscience to transmit light into the brain of a genetically modified animal to evoke and record electrical activity from light-sensitive neurons. Our novel micro-optrode solution integrates a light-transmitting 125 micrometer optical fiber and a 9 micrometer carbon monofilament to form an electrical lead element, which is contained in a borosilicate glass sheathing coaxial arrangement ending with a micrometer-sized carbon tip. This novel unit design is stiff and slender enough to be used for targeting deep brain areas, and may cause less tissue damage compared with previous models. The center-positioned carbon fiber is less prone to light-induced artifacts than side-lit metal microelectrodes previously presented. The carbon tip is capable of not only recording electrical signals of neuronal origin but can also provide valuable surface area for electron transfer, which is essential in electrochemical (voltammetry, amperometry) or microbiosensor applications. We present details of design and manufacture as well as operational examples of the newly developed single micro-optrode, which includes assessments of 1) carbon tip length-impedance relationship, 2) light transmission capabilities, 3) photoelectric artifacts in carbon fibers, 4) responses to dopamine using fast-scan cyclic voltammetry in vivo, and 5) optogenetic stimulation and spike or local field potential recording from the rat brain transfected with channelrhodopsin-2. With this work, we demonstrate that our novel carbon tipped single micro-optrode may open up new avenues for use in optogenetic stimulation when needing to be combined with extracellular recording, electrochemical, or microbiosensor measurements performed on a millisecond basis.
Collapse
Affiliation(s)
- Dénes Budai
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Attila D. Vizvári
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Zsolt K. Bali
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| | - Balázs Márki
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Lili V. Nagy
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Hungary
| | - Dániel Madarász
- Department of Applied and Environmental Chemistry, University of Szeged, Hungary
| | - Nóra Henn-Mike
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- NAP-B Entorhinal Microcircuits Research Group, Department of Physiology, University of Pécs, Hungary
| | - Csaba Varga
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- NAP-B Entorhinal Microcircuits Research Group, Department of Physiology, University of Pécs, Hungary
| | - István Hernádi
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| |
Collapse
|
120
|
Rudmann L, Alt MT, Ashouri Vajari D, Stieglitz T. Integrated optoelectronic microprobes. Curr Opin Neurobiol 2018; 50:72-82. [PMID: 29414738 DOI: 10.1016/j.conb.2018.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
Abstract
Optogenetics opened not only new exciting opportunities to interrogate the nervous system but also requires adequate probes to facilitate these wishes. Therefore, a multidisciplinary effort is essential to match these technical opportunities with biological needs in order to establish a stable and functional material-tissue interface. This in turn can address an optical intervention of the genetically modified, light sensitive cells in the nervous system and recording of electrical signals from single cells and neuronal networks that result in behavioral changes. In this review, we present the state of the art of optoelectronic probes and assess advantages and challenges of the different design approaches. At first, we discuss mechanisms and processes at the material-tissue interface that influence the performance of optoelectronic probes in acute and chronic implantations. We classify optoelectronic probes by their property of delivering light to the tissue: by waveguides or by integrated light sources at the sites of intervention. Both approaches are discussed with respect to size, spatial resolution, opportunity to integrate electrodes for electrical recording and potential interactions with the target tissue. At last, we assess translational aspects of the state of the art. Long-term stability of probes and the opportunity to integrate them into fully implantable, wireless systems are a prerequisite for chronic applications and a transfer from fundamental neuroscientific studies into treatment options for diseases and clinical trials.
Collapse
Affiliation(s)
- L Rudmann
- Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
| | - M T Alt
- Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
| | - D Ashouri Vajari
- Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
| | - T Stieglitz
- Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany.
| |
Collapse
|
121
|
Lee Y, Kim J, Koo JH, Kim TH, Kim DH. Nanomaterials for bioelectronics and integrated medical systems. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0236-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
122
|
Ordaz JD, Wu W, Xu XM. Optogenetics and its application in neural degeneration and regeneration. Neural Regen Res 2017; 12:1197-1209. [PMID: 28966628 PMCID: PMC5607808 DOI: 10.4103/1673-5374.213532] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/30/2022] Open
Abstract
Neural degeneration and regeneration are important topics in neurological diseases. There are limited options for therapeutic interventions in neurological diseases that provide simultaneous spatial and temporal control of neurons. This drawback increases side effects due to non-specific targeting. Optogenetics is a technology that allows precise spatial and temporal control of cells. Therefore, this technique has high potential as a therapeutic strategy for neurological diseases. Even though the application of optogenetics in understanding brain functional organization and complex behaviour states have been elaborated, reviews of its therapeutic potential especially in neurodegeneration and regeneration are still limited. This short review presents representative work in optogenetics in disease models such as spinal cord injury, multiple sclerosis, epilepsy, Alzheimer's disease and Parkinson's disease. It is aimed to provide a broader perspective on optogenetic therapeutic potential in neurodegeneration and neural regeneration.
Collapse
Affiliation(s)
- Josue D. Ordaz
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|