101
|
Loss of the response regulator CtrA causes pleiotropic effects on gene expression but does not affect growth phase regulation in Rhodobacter capsulatus. J Bacteriol 2010; 192:2701-10. [PMID: 20363938 DOI: 10.1128/jb.00160-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus has been extensively studied for its metabolic versatility as well as for production of a gene transfer agent called RcGTA. Production of RcGTA is highest in the stationary phase of growth and requires the response regulator protein CtrA. The CtrA protein in Caulobacter crescentus has been thoroughly studied for its role as an essential, master regulator of the cell cycle. Although the CtrA protein in R. capsulatus shares a high degree of sequence similarity with the C. crescentus protein, it is nonessential and clearly plays a different role in this bacterium. We have used transcriptomic and proteomic analyses of wild-type and ctrA mutant cultures to identify the genes dysregulated by the loss of CtrA in R. capsulatus. We have also characterized gene expression differences between the logarithmic and stationary phases of growth. Loss of CtrA has pleiotropic effects, with dysregulation of expression of approximately 6% of genes in the R. capsulatus genome. This includes all flagellar motility genes and a number of other putative regulatory proteins but does not appear to include any genes involved in the cell cycle. Quantitative proteomic data supported 88% of the CtrA transcriptome results. Phylogenetic analysis of CtrA sequences supports the hypothesis of an ancestral ctrA gene within the alphaproteobacteria, with subsequent diversification of function in the major alphaproteobacterial lineages.
Collapse
|
102
|
Leroy Q, Raoult D. Review of microarray studies for host-intracellular pathogen interactions. J Microbiol Methods 2010; 81:81-95. [PMID: 20188126 DOI: 10.1016/j.mimet.2010.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/17/2022]
Abstract
Obligate intracellular bacteria are privileged soldiers on the battlefield that represent host-pathogen interactions. Microarrays are a powerful technology that can increase our knowledge about how bacteria respond to and interact with their hosts. This review summarizes the limitations inherent to host-pathogen interaction studies and essential strategies to improve microarray investigations of intracellular bacteria. We have compiled the comparative genomic and gene expression analyses of obligate intracellular bacteria currently available from microarrays. In this review we explore ways in which microarrays can be used to identify polymorphisms in different obligate intracellular bacteria such as Coxiella burnetii, Chlamydia trachomatis, Ehrlichia chaffeensis, Rickettsia prowazekii and Tropheryma whipplei. These microarray studies reveal that, while genomic content is highly conserved in obligate intracellular bacteria, genetic polymorphisms can potentially occur to increase bacterial pathogenesis. Additionally, changes in the gene expression of C. trachomatis throughout its life cycle, as well as changes in the gene expression profile of the pathogens R. prowazekii, Rickettsia rickettsii, Rickettsia typhi, T. whipplei and C. trachomatis following environmental changes, are discussed. Finally, an in vivo model of Rickettsia conorii within the skin is discussed. The gene expression analyses highlight the capacity of obligate intracellular bacteria to adapt to environmental changes and potentially to thwart the host response.
Collapse
Affiliation(s)
- Quentin Leroy
- Université de la Méditerranée, URMITE IRD-CNRS 6236, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France
| | | |
Collapse
|
103
|
Lin H, Moghe G, Ouyang S, Iezzoni A, Shiu SH, Gu X, Buell CR. Comparative analyses reveal distinct sets of lineage-specific genes within Arabidopsis thaliana. BMC Evol Biol 2010; 10:41. [PMID: 20152032 PMCID: PMC2829037 DOI: 10.1186/1471-2148-10-41] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 02/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background The availability of genome and transcriptome sequences for a number of species permits the identification and characterization of conserved as well as divergent genes such as lineage-specific genes which have no detectable sequence similarity to genes from other lineages. While genes conserved among taxa provide insight into the core processes among species, lineage-specific genes provide insights into evolutionary processes and biological functions that are likely clade or species specific. Results Comparative analyses using the Arabidopsis thaliana genome and sequences from 178 other species within the Plant Kingdom enabled the identification of 24,624 A. thaliana genes (91.7%) that were termed Evolutionary Conserved (EC) as defined by sequence similarity to a database entry as well as two sets of lineage-specific genes within A. thaliana. One of the A. thaliana lineage-specific gene sets share sequence similarity only to sequences from species within the Brassicaceae family and are termed Conserved Brassicaceae-Specific Genes (914, 3.4%, CBSG). The other set of A. thaliana lineage-specific genes, the Arabidopsis Lineage-Specific Genes (1,324, 4.9%, ALSG), lack sequence similarity to any sequence outside A. thaliana. While many CBSGs (76.7%) and ALSGs (52.9%) are transcribed, the majority of the CBSGs (76.1%) and ALSGs (94.4%) have no annotated function. Co-expression analysis indicated significant enrichment of the CBSGs and ALSGs in multiple functional categories suggesting their involvement in a wide range of biological functions. Subcellular localization prediction revealed that the CBSGs were significantly enriched in proteins targeted to the secretory pathway (412, 45.1%). Among the 107 putatively secreted CBSGs with known functions, 67 encode a putative pollen coat protein or cysteine-rich protein with sequence similarity to the S-locus cysteine-rich protein that is the pollen determinant controlling allele specific pollen rejection in self-incompatible Brassicaceae species. Overall, the ALSGs and CBSGs were more highly methylated in floral tissue compared to the ECs. Single Nucleotide Polymorphism (SNP) analysis showed an elevated ratio of non-synonymous to synonymous SNPs within the ALSGs (1.99) and CBSGs (1.65) relative to the EC set (0.92), mainly caused by an elevated number of non-synonymous SNPs, indicating that they are fast-evolving at the protein sequence level. Conclusions Our analyses suggest that while a significant fraction of the A. thaliana proteome is conserved within the Plant Kingdom, evolutionarily distinct sets of genes that may function in defining biological processes unique to these lineages have arisen within the Brassicaceae and A. thaliana.
Collapse
Affiliation(s)
- Haining Lin
- Department of Plant Biology, Michigan State University, 166 Plant Biology Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Sahni SK, Rydkina E. Progress in the functional analysis of rickettsial genes through directed mutagenesis of Rickettsia prowazekii phospholipase D. Future Microbiol 2010; 4:1249-53. [PMID: 19995185 DOI: 10.2217/fmb.09.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Driskell LO, Yu X-J, Zhang L et al.: Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D. Infect. Immun. 77(8), 3244–3248 (2009). Rickettsioses have afflicted humans worldwide throughout the course of history. Rickettsia prowazekii is the etiological agent of epidemic typhus, a disease transmitted by body lice and capable of massive outbreaks under conditions of compromised hygiene, such as famine, mass migration and war. Fastidious growth requirements and an obligately intracellular lifestyle, preferably within the cytoplasm of the host cell, pose a number of challenges in genetic manipulation of rickettsiae. Driskell et al. describe the successful application of a combination of molecular approaches to generate, isolate and characterize a R. prowazekii mutant lacking a 93-bp sequence of the pld gene responsible for phospholipase D activity. In initial studies, this Δpld mutant of R. prowazekii is shown to be capable of infecting macrophage-like RAW 264.7 cells in culture and quickly escaping from the phagosome into the cytosol. However, in guinea pigs infected by intraperitoneal inoculation, the pld deletion mutant exhibits attenuation of virulence and the ability to induce protective immune responses against virulent R. prowazekii. The fundamental importance of this study lies in the generation of a site-directed gene mutant for subsequent evaluation of the target gene’s function(s) in rickettsial pathogenesis and immune defense mechanisms. The results also lend support to the possibility that rickettsiae may either possess multiple phosholipases with different substrate specificities or as yet unknown alternative mechanisms for quick phagosomal escape into the host cytoplasm. Studies aimed at detailed characterization of the combinatorial mutant generated in this study and possibly other complete knockouts for genes with putative functions using relevant in vitro and in vivo models of infection are necessary to further elucidate their roles in the biology of rickettsiae.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| | | |
Collapse
|
105
|
Wide dispersal and possible multiple origins of low-copy-number plasmids in rickettsia species associated with blood-feeding arthropods. Appl Environ Microbiol 2010; 76:1718-31. [PMID: 20097813 DOI: 10.1128/aem.02988-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Plasmids are mobile genetic elements of bacteria that can impart important adaptive traits, such as increased virulence or antibiotic resistance. We report the existence of plasmids in Rickettsia (Rickettsiales; Rickettsiaceae) species, including Rickettsia akari, "Candidatus Rickettsia amblyommii," R. bellii, R. rhipicephali, and REIS, the rickettsial endosymbiont of Ixodes scapularis. All of the rickettsiae were isolated from humans or North and South American ticks. R. parkeri isolates from both continents did not possess plasmids. We have now demonstrated plasmids in nearly all Rickettsia species that we have surveyed from three continents, which represent three of the four major proposed phylogenetic groups associated with blood-feeding arthropods. Gel-based evidence consistent with the existence of multiple plasmids in some species was confirmed by cloning plasmids with very different sequences from each of two "Ca. Rickettsia amblyommii" isolates. Phylogenetic analysis of rickettsial ParA plasmid partitioning proteins indicated multiple parA gene origins and plasmid incompatibility groups, consistent with possible multiple plasmid origins. Phylogenetic analysis of potentially host-adaptive rickettsial small heat shock proteins showed that hsp2 genes were plasmid specific and that hsp1 genes, found only on plasmids of "Ca. Rickettsia amblyommii," R. felis, R. monacensis, and R. peacockii, were probably acquired independently of the hsp2 genes. Plasmid copy numbers in seven Rickettsia species ranged from 2.4 to 9.2 per chromosomal equivalent, as determined by real-time quantitative PCR. Plasmids may be of significance in rickettsial evolution and epidemiology by conferring genetic plasticity and host-adaptive traits via horizontal gene transfer that counteracts the reductive genome evolution typical of obligate intracellular bacteria.
Collapse
|
106
|
Smith DR. Unparalleled GC content in the plastid DNA of Selaginella. PLANT MOLECULAR BIOLOGY 2009; 71:627-639. [PMID: 19774466 DOI: 10.1007/s11103-009-9545-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/21/2009] [Indexed: 05/26/2023]
Abstract
One of the more conspicuous features of plastid DNA (ptDNA) is its low guanine and cytosine (GC) content. As of February 2009, all completely-sequenced plastid genomes have a GC content below 43% except for the ptDNA of the lycophyte Selaginella uncinata, which is 55% GC. The forces driving the S. uncinata ptDNA towards G and C are undetermined, and it is unknown if other Selaginella species have GC-biased plastid genomes. This study presents the complete ptDNA sequence of Selaginella moellendorffii and compares it with the previously reported S. uncinata plastid genome. Partial ptDNA sequences from 103 different Selaginella species are also described as well as a significant proportion of the S. moellendorffii mitochondrial genome. Moreover, S. moellendorffii express sequence tags are data-mined to estimate levels of plastid and mitochondrial RNA editing. Overall, these data are used to show that: (1) there is a genus-wide GC bias in Selaginella ptDNA, which is most pronounced in South American articulate species; (2) within the Lycopsida class (and among plants in general), GC-biased ptDNA is restricted to the Selaginella genus; (3) the cause of this GC bias is arguably a combination of reduced AT-mutation pressure relative to other plastid genomes and a large number of C-to-U RNA editing sites; and (4) the mitochondrial DNA (mtDNA) of S. moellendorffii is also GC biased (even more so than the ptDNA) and is arguably the most GC-rich organelle genome observed to date-the high GC content of the mtDNA also appears to be influenced by RNA editing. Ultimately, these findings provide convincing support for the earlier proposed theory that the GC content of land-plant organelle DNA is positively correlated and directly connected to levels of organelle RNA editing.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
107
|
Maruyama F, Kobata M, Kurokawa K, Nishida K, Sakurai A, Nakano K, Nomura R, Kawabata S, Ooshima T, Nakai K, Hattori M, Hamada S, Nakagawa I. Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics 2009; 10:358. [PMID: 19656368 PMCID: PMC2907686 DOI: 10.1186/1471-2164-10-358] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 08/05/2009] [Indexed: 11/20/2022] Open
Abstract
Background Streptococcus mutans is the major pathogen of dental caries, and it occasionally causes infective endocarditis. While the pathogenicity of this species is distinct from other human pathogenic streptococci, the species-specific evolution of the genus Streptococcus and its genomic diversity are poorly understood. Results We have sequenced the complete genome of S. mutans serotype c strain NN2025, and compared it with the genome of UA159. The NN2025 genome is composed of 2,013,587 bp, and the two strains show highly conserved core-genome. However, comparison of the two S. mutans strains showed a large genomic inversion across the replication axis producing an X-shaped symmetrical DNA dot plot. This phenomenon was also observed between other streptococcal species, indicating that streptococcal genetic rearrangements across the replication axis play an important role in Streptococcus genetic shuffling. We further confirmed the genomic diversity among 95 clinical isolates using long-PCR analysis. Genomic diversity in S. mutans appears to occur frequently between insertion sequence (IS) elements and transposons, and these diversity regions consist of restriction/modification systems, antimicrobial peptide synthesis systems, and transporters. S. mutans may preferentially reject the phage infection by clustered regularly interspaced short palindromic repeats (CRISPRs). In particular, the CRISPR-2 region, which is highly divergent between strains, in NN2025 has long repeated spacer sequences corresponding to the streptococcal phage genome. Conclusion These observations suggest that S. mutans strains evolve through chromosomal shuffling and that phage infection is not needed for gene acquisition. In contrast, S. pyogenes tolerates phage infection for acquisition of virulence determinants for niche adaptation.
Collapse
Affiliation(s)
- Fumito Maruyama
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Ishii Y, Oshima K, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Namba S. Process of reductive evolution during 10 years in plasmids of a non-insect-transmissible phytoplasma. Gene 2009; 446:51-7. [PMID: 19631261 DOI: 10.1016/j.gene.2009.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/01/2009] [Accepted: 07/14/2009] [Indexed: 11/18/2022]
Abstract
A non-insect-transmissible phytoplasma strain (OY-NIM) was obtained from insect-transmissible strain OY-M by plant grafting using no insect vectors. In this study, we analyzed for the gene structure of plasmids during its maintenance in plant tissue culture for 10 years. OY-M strain has one plasmid encoding orf3 gene which is thought to be involved in insect transmissibility. The gradual loss of OY-NIM plasmid sequence was observed in subsequent steps: first, the promoter region of orf3 was lost, followed by the loss of then a large region including orf3, and finally the entire plasmid was disappeared. In contrast, no mutation was found in a pseudogene on OY-NIM chromosome in the same period, indicating that OY-NIM plasmid evolved more rapidly than the chromosome-encoded gene tested. Results revealed an actual evolutionary process of OY plasmid, and provide a model for the stepwise process in reductive evolution of plasmids by environmental adaptation. Furthermore, this study indicates the great plasticity of plasmids throughout the evolution of phytoplasma.
Collapse
Affiliation(s)
- Yoshiko Ishii
- Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Giles TN, Fisher DJ, Graham DE. Independent inactivation of arginine decarboxylase genes by nonsense and missense mutations led to pseudogene formation in Chlamydia trachomatis serovar L2 and D strains. BMC Evol Biol 2009; 9:166. [PMID: 19607664 PMCID: PMC2720952 DOI: 10.1186/1471-2148-9-166] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/16/2009] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Chlamydia have reduced genomes that reflect their obligately parasitic lifestyle. Despite their different tissue tropisms, chlamydial strains share a large number of common genes and have few recognized pseudogenes, indicating genomic stability. All of the Chlamydiaceae have homologs of the aaxABC gene cluster that encodes a functional arginine:agmatine exchange system in Chlamydia (Chlamydophila)pneumoniae. However, Chlamydia trachomatis serovar L2 strains have a nonsense mutation in their aaxB genes, and C. trachomatis serovar A and B strains have frameshift mutations in their aaxC homologs, suggesting that relaxed selection may have enabled the evolution of aax pseudogenes. Biochemical experiments were performed to determine whether the aaxABC genes from C. trachomatis strains were transcribed, and mutagenesis was used to identify nucleotide substitutions that prevent protein maturation and activity. Molecular evolution techniques were applied to determine the relaxation of selection and the scope of aax gene inactivation in the Chlamydiales. RESULTS The aaxABC genes were co-transcribed in C. trachomatis L2/434, during the mid-late stage of cellular infection. However, a stop codon in the aaxB gene from this strain prevented the heterologous production of an active pyruvoyl-dependent arginine decarboxylase. Replacing that ochre codon with its ancestral tryptophan codon rescued the activity of this self-cleaving enzyme. The aaxB gene from C. trachomatis D/UW-3 was heterologously expressed as a proenzyme that failed to cleave and form the catalytic pyruvoyl cofactor. This inactive protein could be rescued by replacing the arginine-115 codon with an ancestral glycine codon. The aaxC gene from the D/UW-3 strain encoded an active arginine:agmatine antiporter protein, while the L2/434 homolog was unexpectedly inactive. Yet the frequencies of nonsynonymous versus synonymous nucleotide substitutions show no signs of relaxed selection, consistent with the recent inactivation of these genes. CONCLUSION The ancestor of the Chlamydiaceae had a functional arginine:agmatine exchange system that is decaying through independent, parallel processes in the C. trachomatis lineage. Differences in arginine metabolism among Chlamydiaceae species may be partly associated with their tissue tropism, possibly due to the protection conferred by a functional arginine-agmatine exchange system against host nitric oxide production and innate immunity. The independent loss of AaxB activity in all sequenced C. trachomatis strains indicates continual gene inactivation and illustrates the difficulty of recognizing recent bacterial pseudogenes from sequence comparison, transcriptional profiling or the analysis of nucleotide substitution rates.
Collapse
Affiliation(s)
- Teresa N Giles
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
110
|
Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 2009; 1:239-57. [PMID: 20333194 PMCID: PMC2817414 DOI: 10.1093/gbe/evp019] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2009] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei.
Collapse
Affiliation(s)
- Hui Cai
- Department of Food Science, University of Wisconsin, USA
| | | | | | | | | |
Collapse
|
111
|
Rikihisa Y, Lin M, Niu H, Cheng Z. Type IV secretion system of Anaplasma phagocytophilum and Ehrlichia chaffeensis. Ann N Y Acad Sci 2009; 1166:106-11. [PMID: 19538269 DOI: 10.1111/j.1749-6632.2009.04527.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intracellular bacterial pathogens Ehrlichia chaffeensis and Anaplasma phagocytophilum have evolved to infect leukocytes and hijack biological compounds and processes of these host defensive cells. Bacterial type IV secretion (T4S) system transports macromolecules across the membrane in an ATP-dependent manner and is increasingly recognized as a virulence factor delivery mechanism that allows pathogens to modulate eukaryotic cell functions for their own benefit. Genes encoding T4S system homologous to those of a plant pathogen Agrobacterium tumefaciens have been identified in E. chaffeensis and A. phagocytophilum. Upon interaction with new host cells, E. chaffeensis and A. phagocytophilum genes encoding the T4S apparatus are upregulated. The delivered macromolecules are referred to as T4S substrates, or effectors, because they affect and alter basic host cellular processes, resulting in disease development. Recently, A. phagocytophilum 160-kDa AnkA protein was to be delivered by T4S system into the host cytoplasm. Thus, dynamic signal transduction events are likely induced by T4S substrates in the host cells for successful establishment of intracellular infection. Further studies on Ehrlichia and Anaplasma T4S effectors cognate host cell molecules will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward treatment, diagnosis, and control of ehrlichiosis and anaplasmosis.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
112
|
Abstract
One century after the first description of rickettsiae as human pathogens, the rickettsiosis remained poorly understood diseases. These microorganisms are indeed characterized by a strictly intracellular location which has, for long, prohibited their detailed study. Within the last ten years, the completion of the genome sequences of several strains allowed gaining a better knowledge about the molecular mechanisms involved in rickettsia pathogenicity. Here, we summarized available data concerning the critical steps of rickettsia-host cell interactions that should contribute to tissue injury and diseases, that is, adhesion, phagosomal escape, motility, and intracellular survival of the bacteria.
Collapse
Affiliation(s)
- Premanand Balraj
- Unité des Rickettsies, URMITE IRD-CNRS 6236, Faculté de Médecine, Marseille, France
| | | | | |
Collapse
|
113
|
Emelyanov VV. Mitochondrial Porin VDAC 1 Seems to Be Functional in Rickettsial Cells. Ann N Y Acad Sci 2009; 1166:38-48. [DOI: 10.1111/j.1749-6632.2009.04513.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
114
|
Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Hackstadt T. Limited transcriptional responses of Rickettsia rickettsii exposed to environmental stimuli. PLoS One 2009; 4:e5612. [PMID: 19440298 PMCID: PMC2680988 DOI: 10.1371/journal.pone.0005612] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/24/2009] [Indexed: 11/18/2022] Open
Abstract
Rickettsiae are strict obligate intracellular pathogens that alternate between arthropod and mammalian hosts in a zoonotic cycle. Typically, pathogenic bacteria that cycle between environmental sources and mammalian hosts adapt to the respective environments by coordinately regulating gene expression such that genes essential for survival and virulence are expressed only upon infection of mammals. Temperature is a common environmental signal for upregulation of virulence gene expression although other factors may also play a role. We examined the transcriptional responses of Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, to a variety of environmental signals expected to be encountered during its life cycle. R. rickettsii exposed to differences in growth temperature (25 degrees C vs. 37 degrees C), iron limitation, and host cell species displayed nominal changes in gene expression under any of these conditions with only 0, 5, or 7 genes, respectively, changing more than 3-fold in expression levels. R. rickettsii is not totally devoid of ability to respond to temperature shifts as cold shock (37 degrees C vs. 4 degrees C) induced a change greater than 3-fold in up to 56 genes. Rickettsiae continuously occupy a relatively stable environment which is the cytosol of eukaryotic cells. Because of their obligate intracellular character, rickettsiae are believed to be undergoing reductive evolution to a minimal genome. We propose that their relatively constant environmental niche has led to a minimal requirement for R. rickettsii to respond to environmental changes with a consequent deletion of non-essential transcriptional response regulators. A minimal number of predicted transcriptional regulators in the R. rickettsii genome is consistent with this hypothesis.
Collapse
Affiliation(s)
- Damon W. Ellison
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tina R. Clark
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel E. Sturdevant
- Genomics Unit, Research Technology Section, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Genomics Unit, Research Technology Section, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ted Hackstadt
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
115
|
Sahni SK, Rydkina E. Host-cell interactions with pathogenic Rickettsia species. Future Microbiol 2009; 4:323-39. [PMID: 19327117 DOI: 10.2217/fmb.09.6] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathogenic Rickettsia species are Gram-negative, obligate intracellular bacteria responsible for the spotted fever and typhus groups of diseases around the world. It is now well established that a majority of sequelae associated with human rickettsioses are the outcome of the pathogen's affinity for endothelium lining the blood vessels, the consequences of which are vascular inflammation, insult to vascular integrity and compromised vascular permeability, collectively termed 'Rickettsial vasculitis'. Signaling mechanisms leading to transcriptional activation of target cells in response to Rickettsial adhesion and/or invasion, differential activation of host-cell signaling due to infection with spotted fever versus typhus subgroups of Rickettsiae, and their contributions to the host's immune responses and determination of cell fate are the major subtopics of this review. Also included is a succinct analysis of established in vivo models and their use for understanding Rickettsial interactions with host cells and pathogenesis of vasculotropic rickettsioses. Continued progress in these important but relatively under-explored areas of bacterial pathogenesis research should further highlight unique aspects of Rickettsial interactions with host cells, elucidate the biological basis of endothelial tropism and reveal novel chemotherapeutic and vaccination strategies for debilitating Rickettsial diseases.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | |
Collapse
|
116
|
Fournier PE, El Karkouri K, Leroy Q, Robert C, Giumelli B, Renesto P, Socolovschi C, Parola P, Audic S, Raoult D. Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 2009; 10:166. [PMID: 19379498 PMCID: PMC2694212 DOI: 10.1186/1471-2164-10-166] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 04/20/2009] [Indexed: 11/13/2022] Open
Abstract
Background The Rickettsia genus includes 25 validated species, 17 of which are proven human pathogens. Among these, the pathogenicity varies greatly, from the highly virulent R. prowazekii, which causes epidemic typhus and kills its arthropod host, to the mild pathogen R. africae, the agent of African tick-bite fever, which does not affect the fitness of its tick vector. Results We evaluated the clonality of R. africae in 70 patients and 155 ticks, and determined its genome sequence, which comprises a circular chromosome of 1,278,540 bp including a tra operon and an unstable 12,377-bp plasmid. To study the genetic characteristics associated with virulence, we compared this species to R. prowazekii, R. rickettsii and R. conorii. R. africae and R. prowazekii have, respectively, the less and most decayed genomes. Eighteen genes are present only in R. africae including one with a putative protease domain upregulated at 37°C. Conclusion Based on these data, we speculate that a loss of regulatory genes causes an increase of virulence of rickettsial species in ticks and mammals. We also speculate that in Rickettsia species virulence is mostly associated with gene loss. The genome sequence was deposited in GenBank under accession number [GenBank: NZ_AAUY01000001].
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité des rickettsies, IFR 48 CNRS UMR 6020, Faculté de médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, Marseille cedex 05, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol Direct 2009; 4:13. [PMID: 19361336 PMCID: PMC2688493 DOI: 10.1186/1745-6150-4-13] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome size and gene content in bacteria are associated with their lifestyles. Obligate intracellular bacteria (i.e., mutualists and parasites) have small genomes that derived from larger free-living bacterial ancestors; however, the different steps of bacterial specialization from free-living to intracellular lifestyle have not been studied comprehensively. The growing number of available sequenced genomes makes it possible to perform a statistical comparative analysis of 317 genomes from bacteria with different lifestyles. RESULTS Compared to free-living bacteria, host-dependent bacteria exhibit fewer rRNA genes, more split rRNA operons and fewer transcriptional regulators, linked to slower growth rates. We found a function-dependent and non-random loss of the same 100 orthologous genes in all obligate intracellular bacteria. Thus, we showed that obligate intracellular bacteria from different phyla are converging according to their lifestyle. Their specialization is an irreversible phenomenon characterized by translation modification and massive gene loss, including the loss of transcriptional regulators. Although both mutualists and parasites converge by genome reduction, these obligate intracellular bacteria have lost distinct sets of genes in the context of their specific host associations: mutualists have significantly more genes that enable nutrient provisioning whereas parasites have genes that encode Types II, IV, and VI secretion pathways. CONCLUSION Our findings suggest that gene loss, rather than acquisition of virulence factors, has been a driving force in the adaptation of parasites to eukaryotic cells. This comparative genomic analysis helps to explore the strategies by which obligate intracellular genomes specialize to particular host-associations and contributes to advance our knowledge about the mechanisms of bacterial evolution.
Collapse
Affiliation(s)
- Vicky Merhej
- Faculty of Medicine, Unit for Research on Emergent and Tropical Infectious Diseases, CNRS-IRD UMR 6236 IFR48, University of the Mediterranean, Marseilles, France.
| | | | | | | |
Collapse
|
118
|
Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ, Setubal JC, Sobral BS, Azad AF. An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLoS One 2009; 4:e4833. [PMID: 19279686 PMCID: PMC2653234 DOI: 10.1371/journal.pone.0004833] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 01/28/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bacterial type IV secretion systems (T4SSs) comprise a diverse transporter family functioning in conjugation, competence, and effector molecule (DNA and/or protein) translocation. Thirteen genome sequences from Rickettsia, obligate intracellular symbionts/pathogens of a wide range of eukaryotes, have revealed a reduced T4SS relative to the Agrobacterium tumefaciens archetype (vir). However, the Rickettsia T4SS has not been functionally characterized for its role in symbiosis/virulence, and none of its substrates are known. RESULTS Superimposition of T4SS structural/functional information over previously identified Rickettsia components implicate a functional Rickettsia T4SS. virB4, virB8 and virB9 are duplicated, yet only one copy of each has the conserved features of similar genes in other T4SSs. An extraordinarily duplicated VirB6 gene encodes five hydrophobic proteins conserved only in a short region known to be involved in DNA transfer in A. tumefaciens. virB1, virB2 and virB7 are newly identified, revealing a Rickettsia T4SS lacking only virB5 relative to the vir archetype. Phylogeny estimation suggests vertical inheritance of all components, despite gene rearrangements into an archipelago of five islets. Similarities of Rickettsia VirB7/VirB9 to ComB7/ComB9 proteins of epsilon-proteobacteria, as well as phylogenetic affinities to the Legionella lvh T4SS, imply the Rickettsiales ancestor acquired a vir-like locus from distantly related bacteria, perhaps while residing in a protozoan host. Modern modifications of these systems likely reflect diversification with various eukaryotic host cells. CONCLUSION We present the rvh (Rickettsiales vir homolog) T4SS, an evolutionary conserved transporter with an unknown role in rickettsial biology. This work lays the foundation for future laboratory characterization of this system, and also identifies the Legionella lvh T4SS as a suitable genetic model.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Socolovschi C, Mediannikov O, Raoult D, Parola P. The relationship between spotted fever group Rickettsiae and ixodid ticks. Vet Res 2009; 40:34. [PMID: 19358804 PMCID: PMC2695030 DOI: 10.1051/vetres/2009017] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 04/09/2009] [Indexed: 11/14/2022] Open
Abstract
Spotted fever group Rickettsiae are predominantly transmitted by ticks. Rickettsiae have developed many strategies to adapt to different environmental conditions, including those within their arthropod vectors and vertebrate hosts. The tick-Rickettsiae relationship has been a point of interest for many researchers, with most studies concentrating on the role of ticks as vectors. Unfortunately, less attention has been directed towards the relationship of Rickettsiae with tick cells, tissues, and organs. This review summarizes our current understanding of the mechanisms involved in the relationship between ticks and Rickettsiae and provides an update on the recent methodological improvements that have allowed for comprehensive studies at the molecular level.
Collapse
Affiliation(s)
| | | | | | - Philippe Parola
- Unité de Recherche en Maladies Infectieuses et Tropicales Émergentes (URMITE), UMR CNRS-IRD 6236, WHO Collaborative Center for Rickettsial diseases and other arthropod-borne bacterial diseases, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| |
Collapse
|
120
|
Renvoisé A, Raoult D. L’actualité des rickettsioses. Med Mal Infect 2009; 39:71-81. [DOI: 10.1016/j.medmal.2008.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 11/13/2008] [Indexed: 11/28/2022]
|
121
|
Dark MJ, Herndon DR, Kappmeyer LS, Gonzales MP, Nordeen E, Palmer GH, Knowles DP, Brayton KA. Conservation in the face of diversity: multistrain analysis of an intracellular bacterium. BMC Genomics 2009; 10:16. [PMID: 19134224 PMCID: PMC2649000 DOI: 10.1186/1471-2164-10-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 01/11/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND With the recent completion of numerous sequenced bacterial genomes, notable advances have been made in understanding the level of conservation between various species. However, relatively little is known about the genomic diversity among strains. We determined the complete genome sequence of the Florida strain of Anaplasma marginale, and near complete (>96%) sequences for an additional three strains, for comparative analysis with the previously fully sequenced St. Maries strain genome. RESULTS These comparisons revealed that A. marginale has a closed-core genome with few highly plastic regions, which include the msp2 and msp3 genes, as well as the aaap locus. Comparison of the Florida and St. Maries genome sequences found that SNPs comprise 0.8% of the longer Florida genome, with 33.5% of the total SNPs between all five strains present in at least two strains and 3.0% of SNPs present in all strains except Florida. Comparison of genomes from three strains of Mycobacterium tuberculosis, Bacillus anthracis, and Nessieria meningiditis, as well as four Chlamydophila pneumoniae strains found that 98.8%-100% of SNPs are unique to each strain, suggesting A. marginale, with 76.0%, has an intermediate level of strain-specific SNPs. Comparison of genomes from other organisms revealed variation in diversity that did not segregate with the environmental niche the bacterium occupies, ranging from 0.00% to 8.00% of the larger pairwise-compared genome. CONCLUSION Analysis of multiple A. marginale strains suggests intracellular bacteria have more variable SNP retention rates than previously reported, and may have closed-core genomes in response to the host organism environment and/or reductive evolution.
Collapse
Affiliation(s)
- Michael J Dark
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
| | - David R Herndon
- Animal Disease Research Unit, U.S. Department of Agriculture/Agriculture Research Service, Pullman, WA 99164-7030, USA
| | - Lowell S Kappmeyer
- Animal Disease Research Unit, U.S. Department of Agriculture/Agriculture Research Service, Pullman, WA 99164-7030, USA
| | - Mikel P Gonzales
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Elizabeth Nordeen
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
| | - Guy H Palmer
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
| | - Donald P Knowles
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, U.S. Department of Agriculture/Agriculture Research Service, Pullman, WA 99164-7030, USA
| | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
| |
Collapse
|
122
|
Renesto P, Rovery C, Schrenzel J, Leroy Q, Huyghe A, Li W, Lepidi H, François P, Raoult D. Rickettsia conorii transcriptional response within inoculation eschar. PLoS One 2008; 3:e3681. [PMID: 18997861 PMCID: PMC2577010 DOI: 10.1371/journal.pone.0003681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/20/2008] [Indexed: 02/07/2023] Open
Abstract
Background Rickettsia conorii, the causative agent of the Mediterranean spotted fever, is transmitted to humans by the bite of infected ticks Rhipicephalus sanguineus. The skin thus constitutes an important barrier for the entry and propagation of R. conorii. Given this, analysis of the survival strategies used by the bacterium within infected skin is critical for our understanding of rickettsiosis. Methodology/Principal Findings Here, we report the first genome-wide analysis of R. conorii gene expression from infected human skin biopsies. Our data showed that R. conorii exhibited a striking transcript signature that is remarkably conserved across patients, regardless of genotype. The expression profiles obtained using custom Agilent microarrays were validated by quantitative RT-PCR. Within eschars, the amount of detected R. conorii transcripts was of 55%, this value being of 74% for bacteria grown in Vero cells. In such infected host tissues, approximately 15% (n = 211) of the total predicted R. conorii ORFs appeared differentially expressed compared to bacteria grown in standard laboratory conditions. These genes are mostly down-regulated and encode proteins essential for bacterial replication. Some of the strategies displayed by rickettsiae to overcome the host defense barriers, thus avoiding killing, were also pointed out. The observed up-regulation of rickettsial genes associated with DNA repair is likely to correspond to a DNA-damaging agent enriched environment generated by the host cells to eradicate the pathogens. Survival of R. conorii within eschars also involves adaptation to osmotic stress, changes in cell surface proteins and up-regulation of some virulence factors. Interestingly, in contrast to down-regulated transcripts, we noticed that up-regulated ones rather exhibit a small nucleotide size, most of them being exclusive for the spotted fever group rickettsiae. Conclusion/Significance Because eschar is a site for rickettsial introduction, the pattern of rickettsial gene expression observed here may define how rickettsiae counteract the host defense.
Collapse
Affiliation(s)
- Patricia Renesto
- Unité des Rickettsies, IRD-CNRS UMR 6236, Faculté de Médecine, Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Gatsos X, Perry AJ, Anwari K, Dolezal P, Wolynec PP, Likić VA, Purcell AW, Buchanan SK, Lithgow T. Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev 2008; 32:995-1009. [PMID: 18759741 PMCID: PMC2635482 DOI: 10.1111/j.1574-6976.2008.00130.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/23/2008] [Accepted: 07/18/2008] [Indexed: 11/17/2022] Open
Abstract
The assembly of beta-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of beta-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating beta-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent. The Alphaproteobacteria in particular seem prone to gene loss and show the presence or absence of specific components mediating the assembly of beta-barrels: some components of the pathway appear to be missing from whole groups of bacteria (e.g. Skp, YfgL and NlpB), other proteins are conserved but are missing characteristic domains (e.g. SurA). This comparative analysis is also revealing important structural signatures that are vague unless multiple members from a protein family are considered as a group (e.g. tetratricopeptide repeat (TPR) motifs in YfiO, beta-propeller signatures in YfgL). Given that the process of the beta-barrel assembly is conserved, analysis of outer membrane biogenesis in Alphaproteobacteria, the bacterial group that gave rise to mitochondria, also promises insight into the assembly of beta-barrel proteins in eukaryotes.
Collapse
Affiliation(s)
- Xenia Gatsos
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Andrew J Perry
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Khatira Anwari
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Pavel Dolezal
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - P Peter Wolynec
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Vladimir A Likić
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Trevor Lithgow
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| |
Collapse
|
124
|
Phylogenetic Relationships and Functional Genes: Distribution of a Gene (mnxG) encoding a putative manganese-oxidizing enzyme in Bacillus species. Appl Environ Microbiol 2008; 74:7265-71. [PMID: 18849460 DOI: 10.1128/aem.00540-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several Bacillus and Paenibacillus species were isolated from Fe and Mn oxide minerals precipitating at a deep subsurface oxic-anoxic interface at Henderson Molybdenum Mine, Empire, CO. The isolates were investigated for their Mn(II)-oxidizing potential and interrogated for possession of the mnxG gene, a gene that codes for a putative Mn(II)-oxidizing enzyme in Bacillus species. Seven of eight Bacillus species were capable of Mn(II) oxidation; however, the mnxG gene was detected in only one isolate. Using sequences of known Bacillus species both with and without amplifiable mnxG genes and Henderson Mine isolates, the 16S rRNA and mnxG gene phylogenies were compared to determine if 16S rRNA sequences could be used to predict the presence or absence of an amplifiable mnxG gene within the genomes of the isolates. We discovered a strong correspondence between 16S rRNA sequence similarity and the presence/absence of an amplifiable mnxG gene in the isolates. The data revealed a complex phylogenetic distribution of the mnxG gene in which vertical inheritance and gene loss influence the distribution of the gene among the Bacillus species included in this study. Comparisons of 16S rRNA and functional gene phylogenies can be used as a tool to aid in unraveling the history and dispersal of the mnxG gene within the Bacillus clade.
Collapse
|
125
|
Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, Wincker P, Couloux A, Claverie JM, Raoult D, Drancourt M. The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii. PLoS Genet 2008; 4:e1000185. [PMID: 18787695 PMCID: PMC2525819 DOI: 10.1371/journal.pgen.1000185] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 07/31/2008] [Indexed: 01/22/2023] Open
Abstract
In an effort to understand how a tick-borne pathogen adapts to the body louse, we sequenced and compared the genomes of the recurrent fever agents Borrelia recurrentis and B. duttonii. The 1,242,163–1,574,910-bp fragmented genomes of B. recurrentis and B. duttonii contain a unique 23-kb linear plasmid. This linear plasmid exhibits a large polyT track within the promoter region of an intact variable large protein gene and a telomere resolvase that is unique to Borrelia. The genome content is characterized by several repeat families, including antigenic lipoproteins. B. recurrentis exhibited a 20.4% genome size reduction and appeared to be a strain of B. duttonii, with a decaying genome, possibly due to the accumulation of genomic errors induced by the loss of recA and mutS. Accompanying this were increases in the number of impaired genes and a reduction in coding capacity, including surface-exposed lipoproteins and putative virulence factors. Analysis of the reconstructed ancestral sequence compared to B. duttonii and B. recurrentis was consistent with the accelerated evolution observed in B. recurrentis. Vector specialization of louse-borne pathogens responsible for major epidemics was associated with rapid genome reduction. The correlation between gene loss and increased virulence of B. recurrentis parallels that of Rickettsia prowazekii, with both species being genomic subsets of less-virulent strains. Borreliae are vector-borne spirochetes that are responsible for Lyme disease and recurrent fevers. We completed the genome sequences of the tick-borne Borrelia duttonii and the louse-borne B. recurrentis. The former of these is responsible for emerging infections that mimic malaria in Africa and in travellers, and the latter is responsible for severe recurrent fever in poor African populations. Diagnostic tools for these pathogens remain poor with regard to sensitivity and specificity due, in part, to the lack of genomic sequences. In this study, we show that the genomic content of B. recurrentis is a subset of that of B. duttonii, the genes of which are undergoing a decay process. These phenomena are common to all louse-borne pathogens compared to their tick-borne counterparts. In B. recurrentis, this process may be due to the inactivation of genes encoding DNA repair mechanisms, implying the accumulation of errors in the genome. The increased virulence of B. recurrentis could not be traced back to specific virulence factors, illustrating the lack of correlation between the virulence of a pathogen and so-called virulence genes. Knowledge of these genomes will allow for the development of new molecular tools that provide a more-accurate, sensitive, and specific diagnosis of these emerging infections.
Collapse
Affiliation(s)
- Magali Lescot
- Structural and Genomic Information Laboratory, CNRS UPR2589, IFR88, Parc Scientifique de Luminy, Marseille, France
| | - Stéphane Audic
- Structural and Genomic Information Laboratory, CNRS UPR2589, IFR88, Parc Scientifique de Luminy, Marseille, France
| | - Catherine Robert
- Unité des Rickettsies, UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Thi Tien Nguyen
- Unité des Rickettsies, UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Guillaume Blanc
- Structural and Genomic Information Laboratory, CNRS UPR2589, IFR88, Parc Scientifique de Luminy, Marseille, France
| | - Sally J. Cutler
- School of Health and Bioscience, University of East London, Stratford, London, United Kingdom
| | | | | | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, CNRS UPR2589, IFR88, Parc Scientifique de Luminy, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies, UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Michel Drancourt
- Unité des Rickettsies, UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
126
|
|
127
|
Abstract
Mediterranean spotted fever (MSF) was first described in 1910. Twenty years later, it was recognized as a rickettsial disease transmitted by the brown dog tick. In contrast to Rocky Mountain spotted fever (RMSF), MSF was thought to be a benign disease; however, the first severe case that resulted in death was reported in France in the 1980s. We have noted important changes in the epidemiology of MSF in the last 10 years, with emergence and reemergence of MSF in several countries. Advanced molecular tools have allowed Rickettsia conorii conorii to be classified as a subspecies of R. conorii. New clinical features, such as multiple eschars, have been recently reported. Moreover, MSF has become more severe than RMSF; the mortality rate was as high as 32% in Portugal in 1997. Whether Rhipicephalus sanguineus is the only vector and reservoir for R. conorii conorii is a question not yet answered.
Collapse
|
128
|
Davids W, Fuxelius HH, Andersson SGE. The Journey to smORFland. Comp Funct Genomics 2008; 4:537-41. [PMID: 18629011 PMCID: PMC2447293 DOI: 10.1002/cfg.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 08/06/2003] [Accepted: 08/06/2003] [Indexed: 11/12/2022] Open
Abstract
The genome sequences completed so far contain more than 20 000 genes with unknown function and no similarity to genes in other genomes. The origin and evolution of the
orphan genes is an enigma. Here, we discuss the suggestion that some orphan genes
may represent pseudogenes or short fragments of genes that were functional in the
genome of a common ancestor. These may be the remains of unsuccessful duplication
or horizontal gene transfer events, in which the acquired sequences have entered the
fragmentation process and thereby lost their similarity to genes in other species. This
scenario is supported by a recent case study of orphan genes in several closely related
species of Rickettsia, where full-length ancestral genes were reconstructed from sets
of short, overlapping orphan genes. One of these was found to display similarity to
genes encoding proteins with ankyrin-repeat domains.
Collapse
Affiliation(s)
- Wagied Davids
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, Uppsala 752 36, Sweden
| | | | | |
Collapse
|
129
|
RickA expression is not sufficient to promote actin-based motility of Rickettsia raoultii. PLoS One 2008; 3:e2582. [PMID: 18612416 PMCID: PMC2440523 DOI: 10.1371/journal.pone.0002582] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 05/27/2008] [Indexed: 11/28/2022] Open
Abstract
Background Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG). The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. Methodology/Principal Findings Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading) of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. Conclusion/Significance These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus.
Collapse
|
130
|
Hao W, Golding GB. High rates of lateral gene transfer are not due to false diagnosis of gene absence. Gene 2008; 421:27-31. [PMID: 18601986 DOI: 10.1016/j.gene.2008.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 05/20/2008] [Accepted: 06/03/2008] [Indexed: 11/26/2022]
Abstract
Methods for assessing gene presence and absence have been widely used to study bacterial genome evolution. A recent report by Zhaxybayeva et al. [Zhaxybayeva, O., Nesbo, C. L., and Doolittle, W. F., 2007. Systematic overestimation of gene gain through false diagnosis of gene absence. Genome. Biol. 8, 402] suggests that false diagnosis of gene absence or the presence of undetected truncated genes leads to a systematic overestimation of gene gain. Here (1) we argue that these annotation errors can cause more complicated effects and are not necessarily systematic, (2) we argue that current annotations (supplemented with BLAST searches) are the best way to consistently score gene presence/absence and (3) that genome wide estimates of gene gain/loss are not strongly affected by small differences in gene annotations but that the number of related gene families is strongly affected. We have estimated the rates of gene insertions/deletions using a variety of cutoff thresholds and match lengths as a way in which to alter the recognition of genes and gene fragments. The results reveal that different cutoffs for match length only cause a small variation of the estimated insertion/deletion rates. The rates of gene insertions/deletions on recent branches remain relatively high regardless of the thresholds for match length. Lastly (4), the dynamic process of gene truncation needs to be further considered in genome comparison studies. The data presented suggest that gene truncation tends to take place preferentially in recently transferred genes, which supports a fast turnover of recent laterally transferred genes. The presence of truncated genes or false diagnosis of gene absence therefore does not significantly affect the estimation of gene insertions/deletions rates, but there are several other factors that bias the results toward an under-estimation of the rate of gene insertion/deletion. All of these factors need to be considered.
Collapse
Affiliation(s)
- Weilong Hao
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | |
Collapse
|
131
|
Nakayama K, Yamashita A, Kurokawa K, Morimoto T, Ogawa M, Fukuhara M, Urakami H, Ohnishi M, Uchiyama I, Ogura Y, Ooka T, Oshima K, Tamura A, Hattori M, Hayashi T. The Whole-genome sequencing of the obligate intracellular bacterium Orientia tsutsugamushi revealed massive gene amplification during reductive genome evolution. DNA Res 2008; 15:185-99. [PMID: 18508905 PMCID: PMC2575882 DOI: 10.1093/dnares/dsn011] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Scrub typhus (‘Tsutsugamushi’ disease in Japanese) is a mite-borne infectious disease. The causative agent is Orientia tsutsugamushi, an obligate intracellular bacterium belonging to the family Rickettsiaceae of the subdivision alpha-Proteobacteria. In this study, we determined the complete genome sequence of O. tsutsugamushi strain Ikeda, which comprises a single chromosome of 2 008 987 bp and contains 1967 protein coding sequences (CDSs). The chromosome is much larger than those of other members of Rickettsiaceae, and 46.7% of the sequence was occupied by repetitive sequences derived from an integrative and conjugative element, 10 types of transposable elements, and seven types of short repeats of unknown origins. The massive amplification and degradation of these elements have generated a huge number of repeated genes (1196 CDSs, categorized into 85 families), many of which are pseudogenes (766 CDSs), and also induced intensive genome shuffling. By comparing the gene content with those of other family members of Rickettsiacea, we identified the core gene set of the family Rickettsiaceae and found that, while much more extensive gene loss has taken place among the housekeeping genes of Orientia than those of Rickettsia, O. tsutsugamushi has acquired a large number of foreign genes. The O. tsutsugamushi genome sequence is thus a prominent example of the high plasticity of bacterial genomes, and provides the genetic basis for a better understanding of the biology of O. tsutsugamushi and the pathogenesis of ‘Tsutsugamushi’ disease.
Collapse
Affiliation(s)
- Keisuke Nakayama
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 2008; 6:375-86. [PMID: 18414502 DOI: 10.1038/nrmicro1866] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
133
|
Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, Dharmanolla C, Rainey D, Soneja J, Shallom JM, Vishnubhat ND, Wattam R, Purkayastha A, Czar M, Crasta O, Setubal JC, Azad AF, Sobral BS. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 2008; 3:e2018. [PMID: 19194535 PMCID: PMC2635572 DOI: 10.1371/journal.pone.0002018] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/07/2008] [Indexed: 11/19/2022] Open
Abstract
Background Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular α-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). Methodology/Principal Findings We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (∼1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. Conclusion/Significance Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Bertin PN, Médigue C, Normand P. Advances in environmental genomics: towards an integrated view of micro-organisms and ecosystems. MICROBIOLOGY-SGM 2008; 154:347-359. [PMID: 18227239 DOI: 10.1099/mic.0.2007/011791-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial genome sequencing has, for the first time, made accessible all the components needed for both the elaboration and the functioning of a cell. Associated with other global methods such as protein and mRNA profiling, genomics has considerably extended our knowledge of physiological processes and their diversity not only in human, animal and plant pathogens but also in environmental isolates. At a higher level of complexity, the so-called meta approaches have recently shown great promise in investigating microbial communities, including uncultured micro-organisms. Combined with classical methods of physico-chemistry and microbiology, these endeavours should provide us with an integrated view of how micro-organisms adapt to particular ecological niches and participate in the dynamics of ecosystems.
Collapse
Affiliation(s)
- Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, Université Louis Pasteur, UMR7156 CNRS, Strasbourg, France
| | | | - Philippe Normand
- Ecologie Microbienne, Université Claude Bernard - Lyon 1, UMR5557 CNRS, Villeurbanne, France
| |
Collapse
|
135
|
Larionov S, Loskutov A, Ryadchenko E. Chromosome evolution with naked eye: palindromic context of the life origin. CHAOS (WOODBURY, N.Y.) 2008; 18:013105. [PMID: 18377056 DOI: 10.1063/1.2826631] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Based on the representation of the DNA sequence as a two-dimensional (2D) plane walk, we consider the problem of identification and comparison of functional and structural organizations of chromosomes of different organisms. According to the characteristic design of 2D walks we identify telomere sites, palindromes of various sizes and complexity, areas of ribosomal RNA, transposons, as well as diverse satellite sequences. As an interesting result of the application of the 2D walk method, a new duplicated gigantic palindrome in the X human chromosome is detected. A schematic mechanism leading to the formation of such a duplicated palindrome is proposed. Analysis of a large number of the different genomes shows that some chromosomes (or their fragments) of various species appear as imperfect gigantic palindromes, which are disintegrated by many inversions and the mutation drift on different scales. A spread occurrence of these types of sequences in the numerous chromosomes allows us to develop a new insight of some accepted points of the genome evolution in the prebiotic phase.
Collapse
Affiliation(s)
- Sergei Larionov
- Physics Faculty, Moscow State University, Moscow 119899, Russia
| | | | | |
Collapse
|
136
|
Fuxelius HH, Darby AC, Cho NH, Andersson SGE. Visualization of pseudogenes in intracellular bacteria reveals the different tracks to gene destruction. Genome Biol 2008; 9:R42. [PMID: 18302730 PMCID: PMC2374718 DOI: 10.1186/gb-2008-9-2-r42] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/13/2008] [Accepted: 02/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudogenes reveal ancestral gene functions. Some obligate intracellular bacteria, such as Mycobacterium leprae and Rickettsia spp., carry substantial fractions of pseudogenes. Until recently, horizontal gene transfers were considered to be rare events in obligate host-associated bacteria. RESULTS We present a visualization tool that displays the relationships and positions of degraded and partially overlapping gene sequences in multiple genomes. With this tool we explore the origin and deterioration patterns of the Rickettsia pseudogenes and find that variably present genes and pseudogenes tend to have been acquired more recently, are more divergent in sequence, and exhibit a different functional profile compared with genes conserved across all species. Overall, the origin of only one-quarter of the variable genes and pseudogenes can be traced back to the common ancestor of Rickettsia and the outgroup genera Orientia and Wolbachia. These sequences contain only a few disruptive mutations and show a broad functional distribution profile, much like the core genes. The remaining genes and pseudogenes are extensively degraded or solely present in a single species. Their functional profile was heavily biased toward the mobile gene pool and genes for components of the cell wall and the lipopolysaccharide. CONCLUSION Reductive evolution of the vertically inherited genomic core accounts for 25% of the predicted genes in the variable segments of the Rickettsia genomes, whereas 75% stems from the flux of the mobile gene pool along with genes for cell surface structures. Thus, most of the variably present genes and pseudogenes in Rickettsia have arisen from recent acquisitions.
Collapse
Affiliation(s)
- Hans-Henrik Fuxelius
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, S-752 36 Uppsala, Sweden.
| | | | | | | |
Collapse
|
137
|
Massung RF, Hiratzka SL, Brayton KA, Palmer GH, Lee KN. Succinate dehydrogenase gene arrangement and expression in Anaplasma phagocytophilum. Gene 2008; 414:41-8. [PMID: 18378408 DOI: 10.1016/j.gene.2008.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/11/2008] [Indexed: 11/29/2022]
Abstract
DNA sequencing of the region directly downstream of the Anaplasma phagocytophilum (strain MRK) 16S rRNA gene identified homologues of sdhC and sdhD; however, further sequencing by gene walking failed to identify additional sdh gene homologues. The sequence downstream of sdhD identified a partial gene, pep1, predicted to encode a protein >35.3 kDa with 26.3% identity to a hypothetical Ehrlichia canis protein with no known function. The recently completed sequence of the A. phagocytophilum genome confirmed our findings and indicated that the sdhA and sdhB genes are duplicated in a tandem orientation, and located distant from the sdhC and sdhD genes. The expression of the A. phagocytophilum 16S rRNA, sdhC, and sdhD genes was examined by reverse transcriptase PCR which showed that these three genes are expressed as an operon. The pep1 gene was expressed independent of the 16S-sdhCD operon from a promoter between sdhD and pep1. Further analysis of the sdhA and sdhB genes suggested the tandem duplication of the genes in conserved and may be unique to the species A. phagocytophilum. While the conservation of the A. phagocytophilum Sdh proteins, including the residues required for heme- and quinone-binding by SdhC and SdhD, suggests these subunits form an active enzymatic complex, the unusual genomic arrangement and expression pattern of these genes support previous studies (rRNA, ftsZ) indicating that gene rearrangement and operon fragmentation are common in the genomes of Anaplasma and other obligate intracellular bacteria. OMB DISCLAIMER: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the CDC or the Department of Health and Human Services.
Collapse
|
138
|
Abstract
The exit of intracellular pathogens from host cells is an important step in the infectious cycle, but is poorly understood. It has recently emerged that microbial exit is a process that can be directed by organisms from within the cell, and is not simply a consequence of the physical or metabolic burden that is imposed on the host cell. This Review summarizes our current knowledge on the diverse mechanisms that are used by intracellular pathogens to exit cells. An integrated understanding of the diversity that exists for microbial exit pathways represents a new horizon in the study of host-pathogen interactions.
Collapse
|
139
|
Marri PR, Golding GB. Gene amelioration demonstrated: the journey of nascent genes in bacteria. Genome 2008; 51:164-8. [DOI: 10.1139/g07-105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene amelioration is the hypothesis that genes acquired via lateral gene transfer will, over time, acquire the molecular characteristics of the host genome. Species for which multiple strains have been sequenced permit a demonstration that this hypothesis is correct. We use 7 sequenced genomes of Streptococcus pyogenes and 6 sequenced genomes of Staphylococcus aureus to illustrate the action of amelioration on these genomes.
Collapse
Affiliation(s)
| | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
140
|
Provorov NA, Vorobyov NI, Andronov EE. Macro- and microevolution of bacteria in symbiotic systems. RUSS J GENET+ 2008. [DOI: 10.1134/s102279540801002x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
141
|
Gupta RS, Mok A. Phylogenomics and signature proteins for the alpha proteobacteria and its main groups. BMC Microbiol 2007; 7:106. [PMID: 18045498 PMCID: PMC2241609 DOI: 10.1186/1471-2180-7-106] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 11/28/2007] [Indexed: 01/11/2023] Open
Abstract
Background Alpha proteobacteria are one of the largest and most extensively studied groups within bacteria. However, for these bacteria as a whole and for all of its major subgroups (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales), very few or no distinctive molecular or biochemical characteristics are known. Results We have carried out comprehensive phylogenomic analyses by means of Blastp and PSI-Blast searches on the open reading frames in the genomes of several α-proteobacteria (viz. Bradyrhizobium japonicum, Brucella suis, Caulobacter crescentus, Gluconobacter oxydans, Mesorhizobium loti, Nitrobacter winogradskyi, Novosphingobium aromaticivorans, Rhodobacter sphaeroides 2.4.1, Silicibacter sp. TM1040, Rhodospirillum rubrum and Wolbachia (Drosophila) endosymbiont). These studies have identified several proteins that are distinctive characteristics of all α-proteobacteria, as well as numerous proteins that are unique repertoires of all of its main orders (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales) and many families (viz. Rickettsiaceae, Anaplasmataceae, Rhodospirillaceae, Acetobacteraceae, Bradyrhiozobiaceae, Brucellaceae and Bartonellaceae). Many other proteins that are present at different phylogenetic depths in α-proteobacteria provide important information regarding their evolution. The evolutionary relationships among α-proteobacteria as deduced from these studies are in excellent agreement with their branching pattern in the phylogenetic trees and character compatibility cliques based on concatenated sequences for many conserved proteins. These studies provide evidence that the major groups within α-proteobacteria have diverged in the following order: (Rickettsiales(Rhodospirillales (Sphingomonadales (Rhodobacterales (Caulobacterales-Parvularculales (Rhizobiales)))))). We also describe two conserved inserts in DNA Gyrase B and RNA polymerase beta subunit that are distinctive characteristics of the Sphingomonadales and Rhodosprilllales species, respectively. The results presented here also provide support for the grouping of Hyphomonadaceae and Parvularcula species with the Caulobacterales and the placement of Stappia aggregata with the Rhizobiaceae group. Conclusion The α-proteobacteria-specific proteins and indels described here provide novel and powerful means for the taxonomic, biochemical and molecular biological studies on these bacteria. Their functional studies should prove helpful in identifying novel biochemical and physiological characteristics that are unique to these bacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton L8N3Z5, Canada.
| | | |
Collapse
|
142
|
Abstract
Rocky Mountain spotted fever (RMSF) is a life-threatening disease caused by Rickettsia rickettsii, an obligately intracellular bacterium that is spread to human beings by ticks. More than a century after its first clinical description, this disease is still among the most virulent human infections identified, being potentially fatal even in previously healthy young people. The diagnosis of RMSF is based on the patient's history and a physical examination, and often presents a dilemma for clinicians because of the non-specific presentation of the disease in its early course. Early empirical treatment is essential to prevent severe complications or a fatal outcome, and treatment should be initiated even in unconfirmed cases. Because there is no vaccine available against RMSF, avoidance of tick-infested areas is still the best way to prevent the infection.
Collapse
|
143
|
Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect Immun 2007; 76:542-50. [PMID: 18025092 DOI: 10.1128/iai.00952-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rickettsia rickettsii is an obligate intracellular pathogen that is the causative agent of Rocky Mountain spotted fever. To identify genes involved in the virulence of R. rickettsii, the genome of an avirulent strain, R. rickettsii Iowa, was sequenced and compared to the genome of the virulent strain R. rickettsii Sheila Smith. R. rickettsii Iowa is avirulent in a guinea pig model of infection and displays altered plaque morphology with decreased lysis of infected host cells. Comparison of the two genomes revealed that R. rickettsii Iowa and R. rickettsii Sheila Smith share a high degree of sequence identity. A whole-genome alignment comparing R. rickettsii Iowa to R. rickettsii Sheila Smith revealed a total of 143 deletions for the two strains. A subsequent single-nucleotide polymorphism (SNP) analysis comparing Iowa to Sheila Smith revealed 492 SNPs for the two genomes. One of the deletions in R. rickettsii Iowa truncates rompA, encoding a major surface antigen (rickettsial outer membrane protein A [rOmpA]) and member of the autotransporter family, 660 bp from the start of translation. Immunoblotting and immunofluorescence confirmed the absence of rOmpA from R. rickettsii Iowa. In addition, R. rickettsii Iowa is defective in the processing of rOmpB, an autotransporter and also a major surface antigen of spotted fever group rickettsiae. Disruption of rompA and the defect in rOmpB processing are most likely factors that contribute to the avirulence of R. rickettsii Iowa. Genomic differences between the two strains do not significantly alter gene expression as analysis of microarrays revealed only four differences in gene expression between R. rickettsii Iowa and R. rickettsii strain R. Although R. rickettsii Iowa does not cause apparent disease, infection of guinea pigs with this strain confers protection against subsequent challenge with the virulent strain R. rickettsii Sheila Smith.
Collapse
|
144
|
Fournier PE, Drancourt M, Raoult D. Bacterial genome sequencing and its use in infectious diseases. THE LANCET. INFECTIOUS DISEASES 2007; 7:711-23. [DOI: 10.1016/s1473-3099(07)70260-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
145
|
Blanc G, Ogata H, Robert C, Audic S, Claverie JM, Raoult D. Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome. Genome Res 2007; 17:1657-64. [PMID: 17916642 DOI: 10.1101/gr.6742107] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rickettsia massiliae is a tick-borne obligate intracellular alpha-proteobacteria causing spotted fever in humans. Here, we present the sequence of its genome, comprising a 1.3-Mb circular chromosome and a 15.3-kb plasmid. The chromosome exhibits long-range colinearity with the other Spotted Fever Group Rickettsia genomes, except for a large fragment specific to R. massiliae that contains 14 tra genes presumably involved in pilus formation and conjugal DNA transfer. We demonstrate that the tra region was acquired recently by lateral gene transfer (LGT) from a species related to Rickettsia bellii. Further analysis of the genomic sequences identifies additional candidates of LGT between Rickettsia. Our study indicates that recent LGT between obligate intracellular Rickettsia is more common than previously thought.
Collapse
Affiliation(s)
- Guillaume Blanc
- Structural and Genomic Information Laboratory, CNRS-UPR 2589, Institut de Biologie Structurale et Microbiologie, IFR 88, Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
146
|
La MV, François P, Rovery C, Robineau S, Barbry P, Schrenzel J, Raoult D, Renesto P. Development of a method for recovering rickettsial RNA from infected cells to analyze gene expression profiling of obligate intracellular bacteria. J Microbiol Methods 2007; 71:292-7. [PMID: 17964675 DOI: 10.1016/j.mimet.2007.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/24/2007] [Accepted: 09/28/2007] [Indexed: 01/18/2023]
Abstract
The Rickettsia genus is composed of Gram-negative bacteria responsible for Typhus and spotted fevers. Because of the limitations imposed by their obligate intracellular location, the molecular mechanisms responsible for their pathogenicity remain poorly understood. Several rickettsial genomes are now available, thus providing the foundation for a new era of post-genomic research. Here, using Rickettsia conorii as model, we developed a suitable method for microarray-based transcriptome analysis of rickettsiae. Total RNA was extracted from infected Vero cells using a protocol preserving its integrity, as observed by Bioanalyzer (Agilent) profiles. By a subtractive hybridization method, the samples were subsequently depleted of eukaryotic RNA that represents up to 90% of the whole extract and that hampers fluorochrome labeling of rickettsial nucleic acids. To obtain the amount of material required for microarray hybridization, the bacterial RNA was then amplified using random primers. Hybridizations were carried out on microarrays specific for R. conorii but containing a limited number of selected targets. Our results show that this method yielded reproducible signals. Transcriptional changes observed following exposure of R. conorii to a nutrient stress were verified by real-time quantitative PCR and by quantitative reverse transcription PCR starting from amplified cDNA and total RNA as templates, respectively. We conclude that this approach has great potential for the study of mechanisms behind the virulence and intracellular survival of members of the genus Rickettsia.
Collapse
Affiliation(s)
- My-Van La
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27, Bd Jean Moulin, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Fuxelius HH, Darby A, Min CK, Cho NH, Andersson SGE. The genomic and metabolic diversity of Rickettsia. Res Microbiol 2007; 158:745-53. [PMID: 18031998 DOI: 10.1016/j.resmic.2007.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 08/15/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
Abstract
Comparative genomics of Rickettsia and Orientia has revealed an exciting interplay between reductive evolutionary forces acting on metabolic genes in all species and proliferation of mobile genetic elements in some species. These contradictory evolutionary forces highlight the influence of chance, adaptation and host-cell exploitation during the evolution of intracellular bacteria.
Collapse
Affiliation(s)
- Hans-Henrik Fuxelius
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, S-752 36 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
148
|
Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SGE. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet 2007; 23:511-20. [PMID: 17822801 DOI: 10.1016/j.tig.2007.08.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/17/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
The Rickettsiales, a genetically diverse group of the alpha-Proteobacteria, include major mammalian pathogens, such as the agents of epidemic typhus, scrub typhus, ehrlichioses and heartwater disease. Sequenced genomes of this bacterial order have provided exciting insights into reductive genome evolution, antigenic variation and host cell manipulation. Recent results suggest that human pathogens emerged relatively late in the evolution of the Rickettsiales. Surprisingly, there is no association between pathogenicity and the acquisition of novel virulence genes. Here, we explore the genomic differences between members of the Rickettsiales and ask what are the changes that enable infectious agents to emerge from seemingly harmless bacteria.
Collapse
Affiliation(s)
- Alistair C Darby
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, S-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
149
|
Ren Q, Paulsen IT. Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol 2007; 12:165-79. [PMID: 17587866 DOI: 10.1159/000099639] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The recent advancements in genome sequencing make it possible for the comparative analyses of essential cellular processes like transport in organisms across the three domains of life. Membrane transporters play crucial roles in fundamental cellular processes and functions in prokaryotic systems. Between 3 and 16% of open reading frames in prokaryotic genomes were predicted to encode membrane transport proteins, emphasizing the importance of transporters in their lifestyles. Hierarchical clustering of phylogenetic profiles of transporter families, which are derived from the presence or absence of a certain transporter family, showed distinct clustering patterns for obligate intracellular organisms, plant/soil-associated microbes and autotrophs. Obligate intracellular organisms possess the fewest types and number of transporters presumably due to their relatively stable living environment, while plant/soil-associated organisms generally encode the largest variety and number of transporters. A group of autotrophs are clustered together largely due to their absence of transporters for carbohydrate and organic nutrients and the presence of transporters for inorganic nutrients. Inside of each group, organisms are further clustered by their phylogenetic properties. These findings strongly suggest the correlation of transporter profiles to both evolutionary history and the overall physiology and lifestyles of the organisms.
Collapse
Affiliation(s)
- Qinghu Ren
- The Institute for Genomic Research, Rockville, MD 20850, USA
| | | |
Collapse
|
150
|
Rydkina E, Sahni A, Silverman DJ, Sahni SK. Comparative analysis of host-cell signalling mechanisms activated in response to infection with Rickettsia conorii and Rickettsia typhi. J Med Microbiol 2007; 56:896-906. [PMID: 17577053 DOI: 10.1099/jmm.0.47050-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-negative intracellular bacteria Rickettsia conorii and Rickettsia typhi are the aetiological agents of Mediterranean spotted fever and endemic typhus, respectively, in humans. Infection of endothelial cells (ECs) lining vessel walls, and the resultant vascular inflammation and haemostatic alterations are salient pathogenetic features of both of these rickettsial diseases. An important consideration, however, is that dramatic differences in the intracellular motility and accumulation patterns for spotted fever versus typhus group rickettsiae have been documented, suggesting the possibility of unique and potentially different interactions with host cells. This study characterized and compared R. conorii- and R. typhi-mediated effects on cultured human ECs. The DNA-binding activity of nuclear transcription factor-kappaB (NF-kappaB) and the phosphorylation status of stress-activated p38 kinase were determined as indicators of NF-kappaB and p38 activation. R. conorii infection resulted in a biphasic activation of NF-kappaB, with an early increase in DNA-binding activity at 3 h, followed by a later peak at 24 h. The activated NF-kappaB species were composed mainly of RelA p65-p50 heterodimers and p50 homodimers. R. typhi infection of ECs resulted in only early activation of NF-kappaB at 3 h, composed primarily of p65-p50 heterodimers. Whilst R. conorii infection induced increased phosphorylation of p38 kinase (threefold mean induction) with the maximal response at 3 h, a considerably less-intense response peaking at about 6 h post-infection was found with R. typhi. Furthermore, mRNA expression of the chemokines interleukin (IL)-8 and monocyte chemoattractant protein-1 in ECs infected with either Rickettsia species was higher than the corresponding controls, but there were distinct differences in the secretion patterns for IL-8, suggesting the possibility of involvement of post-transcriptional control mechanisms or differences in the release from intracellular storage sites. Thus, the intensity and kinetics of host-cell responses triggered by spotted fever and typhus species exhibit distinct variations that could subsequently lead to differences in the extent of endothelial activation and inflammation and serve as important determinants of pathogenesis.
Collapse
Affiliation(s)
- Elena Rydkina
- Hematology-Oncology Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Abha Sahni
- Hematology-Oncology Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - David J Silverman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sanjeev K Sahni
- Hematology-Oncology Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|