101
|
Kemp M, Bae B, Yu JP, Ghosh M, Leffak M, Nair SK. Structure and function of the c-myc DNA-unwinding element-binding protein DUE-B. J Biol Chem 2007; 282:10441-8. [PMID: 17264083 DOI: 10.1074/jbc.m609632200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Local zones of easily unwound DNA are characteristic of prokaryotic and eukaryotic replication origins. The DNA-unwinding element of the human c-myc replication origin is essential for replicator activity and is a target of the DNA-unwinding element-binding protein DUE-B in vivo. We present here the 2.0A crystal structure of DUE-B and complementary biochemical characterization of its biological activity. The structure corresponds to a dimer of the N-terminal domain of the full-length protein and contains many of the structural elements of the nucleotide binding fold. A single magnesium ion resides in the putative active site cavity, which could serve to facilitate ATP hydrolytic activity of this protein. The structure also demonstrates a notable similarity to those of tRNA-editing enzymes. Consistent with this structural homology, the N-terminal core of DUE-B is shown to display both D-aminoacyl-tRNA deacylase activity and ATPase activity. We further demonstrate that the C-terminal portion of the enzyme is disordered and not essential for dimerization. However, this region is essential for DNA binding in vitro and becomes ordered in the presence of DNA.
Collapse
Affiliation(s)
- Michael Kemp
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
Regions of metazoan genomes replicate at defined times within S phase. This observation suggests that replication origins fire with a defined timing pattern that remains the same from cycle to cycle. However, an alterative model based on the stochastic firing of origins may also explain replication timing. This model assumes varying origin efficiency instead of a strict origin-timing programme. Here, we discuss the evidence for both models.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Pharmacology Department, University of Massachusetts Medical School, 364 Plantation Street, LRB904, Worcester, MA 01605, USA.
| |
Collapse
|
103
|
Abstract
The origin recognition complex (ORC), a heteromeric six-subunit protein, is a central component for eukaryotic DNA replication. The ORC binds to DNA at replication origin sites in an ATP-dependent manner and serves as a scaffold for the assembly of other key initiation factors. Sequence rules for ORC-DNA binding appear to vary widely. In budding yeast the ORC recognizes specific ori elements, however, in higher eukaryotes origin site selection does not appear to depend on the specific DNA sequence. In metazoans, during cell cycle progression, one or more of the ORC subunits can be modified in such a way that ORC activity is inhibited until mitosis is complete and a nuclear membrane is assembled. In addition to its well-documented role in the initiation of DNA replication, the ORC is also involved in other cell functions. Some of these activities directly link cell cycle progression with DNA replication, while other functions seem distinct from replication. The function of ORCs in the establishment of transcriptionally repressed regions is described for many species and may be a conserved feature common for both unicellular eukaryotes and metazoans. ORC subunits were found at centrosomes, at the cell membranes, at the cytokinesis furrows of dividing cells, as well as at the kinetochore. The exact mechanism of these localizations remains to be determined, however, latest results support the idea that ORC proteins participate in multiple aspects of the chromosome inheritance cycle. In this review, we discuss the participation of ORC proteins in various cell functions, in addition to the canonical role of ORC in initiating DNA replication.
Collapse
Affiliation(s)
- Igor N Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
104
|
Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 2006; 7:276. [PMID: 17067396 PMCID: PMC1657020 DOI: 10.1186/1471-2164-7-276] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 10/26/2006] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Eukaryotic replication origins exhibit different initiation efficiencies and activation times within S-phase. Although local chromatin structure and function influences origin activity, the exact mechanisms remain poorly understood. A key to understanding the exact features of chromatin that impinge on replication origin function is to define the precise locations of the DNA sequences that control origin function. In S. cerevisiae, Autonomously Replicating Sequences (ARSs) contain a consensus sequence (ACS) that binds the Origin Recognition Complex (ORC) and is essential for origin function. However, an ACS is not sufficient for origin function and the majority of ACS matches do not function as ORC binding sites, complicating the specific identification of these sites. RESULTS To identify essential origin sequences genome-wide, we utilized a tiled oligonucleotide array (NimbleGen) to map the ORC and Mcm2p binding sites at high resolution. These binding sites define a set of potential Autonomously Replicating Sequences (ARSs), which we term nimARSs. The nimARS set comprises 529 ORC and/or Mcm2p binding sites, which includes 95% of known ARSs, and experimental verification demonstrates that 94% are functional. The resolution of the analysis facilitated identification of potential ACSs (nimACSs) within 370 nimARSs. Cross-validation shows that the nimACS predictions include 58% of known ACSs, and experimental verification indicates that 82% are essential for ARS activity. CONCLUSION These findings provide the most comprehensive, accurate, and detailed mapping of ORC binding sites to date, adding to the emerging picture of the chromatin organization of the budding yeast genome.
Collapse
|
105
|
Gray SJ, Liu G, Altman AL, Small LE, Fanning E. Discrete functional elements required for initiation activity of the Chinese hamster dihydrofolate reductase origin beta at ectopic chromosomal sites. Exp Cell Res 2006; 313:109-20. [PMID: 17078947 PMCID: PMC1810229 DOI: 10.1016/j.yexcr.2006.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 01/06/2023]
Abstract
The Chinese hamster dihydrofolate reductase (DHFR) DNA replication initiation region, the 5.8 kb ori-beta, can function as a DNA replicator at random ectopic chromosomal sites in hamster cells. We report a detailed genetic analysis of the DiNucleotide Repeat (DNR) element, one of several sequence elements necessary for ectopic ori-beta activity. Deletions within ori-beta identified a 132 bp core region within the DNR element, consisting mainly of dinucleotide repeats, and a downstream region that are required for ori-beta initiation activity at non-specific ectopic sites in hamster cells. Replacement of the DNR element with Xenopus or mouse transcriptional elements from rDNA genes restored full levels of initiation activity, but replacement with a nucleosome positioning element or a viral intron sequence did not. The requirement for the DNR element and three other ori-beta sequence elements was conserved when ori-beta activity was tested at either random sites or at a single specific ectopic chromosomal site in human cells. These results confirm the importance of specific cis-acting elements in directing the initiation of DNA replication in mammalian cells, and provide new evidence that transcriptional elements can functionally substitute for one of these elements in ori-beta.
Collapse
Affiliation(s)
- Steven J. Gray
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Guoqi Liu
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Amy L. Altman
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Lawrence E. Small
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Ellen Fanning
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
- * To whom correspondence should be addressed: Department of Biological Sciences, Vanderbilt University, VU Station B 351634 Nashville, TN 37235-1634 Tel: (615) 343-5677 Fax: (615) 343-6707
| |
Collapse
|
106
|
Yabuuchi H, Yamada Y, Uchida T, Sunathvanichkul T, Nakagawa T, Masukata H. Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO J 2006; 25:4663-74. [PMID: 16990792 PMCID: PMC1589995 DOI: 10.1038/sj.emboj.7601347] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/18/2006] [Indexed: 12/31/2022] Open
Abstract
Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature-sensitive fission yeast mutants. The psf3-1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull-down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7-Dbf4 kinase (DDK) but not cyclin-dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.
Collapse
Affiliation(s)
- Hayato Yabuuchi
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoshiki Yamada
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tomonori Uchida
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | - Takuro Nakagawa
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hisao Masukata
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. Tel.: +81 6 6850 5432; Fax: +81 6 6850 5440; E-mail:
| |
Collapse
|
107
|
Minami H, Takahashi J, Suto A, Saitoh Y, Tsutsumi KI. Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin. Mol Cell Biol 2006; 26:8770-80. [PMID: 16982680 PMCID: PMC1636824 DOI: 10.1128/mcb.00949-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A region encompassing the rat aldolase B gene (aldB) promoter acts as a chromosomal origin of DNA replication (origin) in rat aldolase B-nonexpressing hepatoma cells. To examine replicator function of the aldB origin, we constructed recombinant mouse cell lines in which the rat aldB origin and the mutant derivatives were inserted into the same position at the mouse chromosome 8 by cre-mediated recombination. Nascent strand abundance assays revealed that the rat origin acts as a replicator at the ectopic mouse locus. Mutation of site C in the rat origin, which binds an Orc1-binding protein AlF-C in vitro, resulted in a significant reduction of the replicator activity in the mouse cells. Chromatin immunoprecipitation (ChIP) assays indicated that the reduction of replicator activity was paralleled with the reduced binding of AlF-C and Orc1, suggesting that sequence-specific binding of AlF-C to the ectopic rat origin leads to enhanced replicator activity in cooperation with Orc1. Involvement of AlF-C in replication in vivo was further examined for the aldB origin at its original rat locus and for a different rat origin identified in the present study, which contained an AlF-C-binding site. ChIP assays revealed that both replication origins bind AlF-C and Orc1. We think that the results presented here may represent one mode of origin recognition in mammalian cells.
Collapse
Affiliation(s)
- Hiroyuki Minami
- Cryobiosystem Research Center, Iwate University, Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | | | |
Collapse
|
108
|
Gibson DG, Bell SP, Aparicio OM. Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in Saccharomyces cerevisiae. Genes Cells 2006; 11:557-73. [PMID: 16716188 DOI: 10.1111/j.1365-2443.2006.00967.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chromosomal replication initiates through the assembly of a prereplicative complex (pre-RC) at individual replication origins in the G1-phase, followed by activation of these complexes in the S-phase. In Saccharomyces cerevisiae, the origin recognition complex (ORC) binds replication origins throughout the cell cycle and participates in pre-RC assembly. Whether the ORC plays an additional role subsequent to pre-RC assembly in replication initiation or any other essential cell cycle process is not clear. To study the function of the ORC during defined cell cycle periods, we performed cell cycle execution point analyses with strains containing a conditional mutation in the ORC1, ORC2 or ORC5 subunit of ORC. We found that the ORC is essential for replication initiation, but is dispensable for replication elongation or later cell cycle events. Defective initiation in ORC mutant cells results in incomplete replication and mitotic arrest enforced by the DNA damage and spindle assembly checkpoint pathways. The involvement of the spindle assembly checkpoint implies a defect in kinetochore-spindle attachment or sister chromatid cohesion due to incomplete replication and/or DNA damage. Remarkably, under semipermissive conditions for ORC1 function, the spindle checkpoint alone suffices to block proliferation, suggesting this checkpoint is highly sensitive to replication initiation defects. We discuss the potential significance of these overlapping checkpoints and the impact of our findings on previously postulated role(s) of ORCs in other cell cycle functions.
Collapse
Affiliation(s)
- Daniel G Gibson
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | |
Collapse
|
109
|
Gerhardt J, Jafar S, Spindler MP, Ott E, Schepers A. Identification of new human origins of DNA replication by an origin-trapping assay. Mol Cell Biol 2006; 26:7731-46. [PMID: 16954389 PMCID: PMC1636883 DOI: 10.1128/mcb.01392-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metazoan genomes contain thousands of replication origins, but only a limited number have been characterized so far. We developed a two-step origin-trapping assay in which human chromatin fragments associated with origin recognition complex (ORC) in vivo were first enriched by chromatin immunoprecipitation. In a second step, these fragments were screened for transient replication competence in a plasmid-based assay utilizing the Epstein-Barr virus latent origin oriP. oriP contains two elements, an origin (dyad symmetry element [DS]) and the family of repeats, that when associated with the viral protein EBNA1 facilitate extrachromosomal stability. Insertion of the ORC-binding human DNA fragments in oriP plasmids in place of DS enabled us to screen functionally for their abilities to restore replication. Using the origin-trapping assay, we isolated and characterized five previously unknown human origins. The assay was validated with nascent strand abundance assays that confirm these origins as active initiation sites in their native chromosomal contexts. Furthermore, ORC and MCM2-7 components localized at these origins during G(1) phase of the cell cycle but were not detected during mitosis. This finding extends the current understanding of origin-ORC dynamics by suggesting that replication origins must be reestablished during the early stages of each cell division cycle and that ORC itself participates in this process.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
110
|
Woodward AM, Göhler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. ACTA ACUST UNITED AC 2006; 173:673-83. [PMID: 16754955 PMCID: PMC2063885 DOI: 10.1083/jcb.200602108] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In late mitosis and early G1, replication origins are licensed for subsequent use by loading complexes of the minichromosome maintenance proteins 2–7 (Mcm2–7). The number of Mcm2–7 complexes loaded onto DNA greatly exceeds the number of replication origins used during S phase, but the function of the excess Mcm2–7 is unknown. Using Xenopus laevis egg extracts, we show that these excess Mcm2–7 complexes license additional dormant origins that do not fire during unperturbed S phases because of suppression by a caffeine-sensitive checkpoint pathway. Use of these additional origins can allow complete genome replication in the presence of replication inhibitors. These results suggest that metazoan replication origins are actually comprised of several candidate origins, most of which normally remain dormant unless cells experience replicative stress. Consistent with this model, using Caenorhabditis elegans, we show that partial RNAi-based knockdown of MCMs that has no observable effect under normal conditions causes lethality upon treatment with low, otherwise nontoxic, levels of the replication inhibitor hydroxyurea.
Collapse
Affiliation(s)
- Anna M Woodward
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Donato JJ, Chung SCC, Tye BK. Genome-wide hierarchy of replication origin usage in Saccharomyces cerevisiae. PLoS Genet 2006; 2:e141. [PMID: 16965179 PMCID: PMC1560401 DOI: 10.1371/journal.pgen.0020141] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 07/25/2006] [Indexed: 12/02/2022] Open
Abstract
Replication origins in a genome are inherently different in their base sequence and in their response to temporal and cell cycle regulation signals for DNA replication. To investigate the chromosomal determinants that influence the efficiency of initiation of DNA replication genome-wide, we made use of a reverse strategy originally used for the isolation of replication initiation mutants in Saccharomyces cerevisiae. In yeast, replication origins isolated from chromosomes support the autonomous replication of plasmids. These replication origins, whether in the context of a chromosome or a plasmid, will initiate efficiently in wild-type cells but show a dramatically contrasted efficiency of activation in mutants defective in the early steps of replication initiation. Serial passages of a genomic library of autonomously replicating sequences (ARSs) in such a mutant allowed us to select for constitutively active ARSs. We found a hierarchy of preferential initiation of ARSs that correlates with local transcription patterns. This preferential usage is enhanced in mutants defective in the assembly of the prereplication complex (pre-RC) but not in mutants defective in the activation of the pre-RC. Our findings are consistent with an interference of local transcription with the assembly of the pre-RC at a majority of replication origins. The length of S phase regulated by the rate of DNA synthesis varies dramatically during the development of metazoans. Key to this regulation is the number of replication origins utilized in different developmental stages. A fundamental question is whether there is a hierarchy in the usage of replication origins under different conditions and if so, what are the determinants for preferential usage. In Saccharomyces cerevisiae, replication origins isolated in DNA fragments are known as autonomously replicating sequences (ARSs). To gain insight into the determinants that regulate replication origin usage, genomic ARSs that are preferentially used under adverse conditions for replication initiation were identified. One of the determinants appears to be the local transcription pattern. Transcriptional activity directed towards an ARS correlates with reduced efficiency of replication initiation of that ARS. This transcriptional interference appears to be targeted at the assembly of the prereplication complex. These results are consistent with the deregulated initiation patterns observed in early developing Xenopus embryos that are devoid of transcription. Other yet-to-be-identified factors are also important in determining the efficiency of replication origin usage.
Collapse
Affiliation(s)
- Justin J Donato
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Shau Chee C Chung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bik K Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
112
|
Singh N, Chevé G, Avery MA, McCurdy CR. Comparative protein modeling of 1-deoxy-D-xylulose-5-phosphate reductoisomerase enzyme from Plasmodium falciparum: a potential target for antimalarial drug discovery. J Chem Inf Model 2006; 46:1360-70. [PMID: 16711755 DOI: 10.1021/ci050523w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Pf-DXR) is a potential target for antimalarial chemotherapy. The three-dimensional model (3D) of this enzyme was determined by means of comparative modeling through multiple alignment followed by intensive optimization, minimization, and validation. The resulting model demonstrates a reasonable topology as gauged from the Ramachandran plot and acceptable three-dimensional structure compatibility as assessed by the Profiles-3D score. The modeled monomeric subunit consists of three domains: (1) N-terminal NADPH binding domain, (2) connective or linker domain (with most of the active site residues located in this domain), and (3) a C-terminal domain. This structure proved to be consistent with known DXR crystal structures from other species. The predicted active site compared favorably with those of the templates and appears to have an active site with a highly conserved architecture. Additionally, the model explains several site-directed mutagenesis data. Besides using several protein structure-checking programs to validate the model, a set of known inhibitors of DXR were also docked into the active site of the modeled Pf-DXR. The docked scores correlated reasonably well with experimental pIC50 values with a regression coefficient (R2) equal to 0.84. Results of the current study should prove useful in the early design and development of inhibitors by either de novo drug design or virtual screening of large small-molecule databases leading to development of new antimalarial agents.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Medicinal Chemistry, Laboratory for Applied Drug Design and Synthesis, University of Mississippi, University, Mississippi 38677-1848, USA
| | | | | | | |
Collapse
|
113
|
Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CCA, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RIS, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MRJ, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ESI, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, et alGregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CCA, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RIS, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MRJ, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ESI, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NSW, McLaren S, Milne S, Mistry S, Moore MJF, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WDH, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E. The DNA sequence and biological annotation of human chromosome 1. Nature 2006; 441:315-21. [PMID: 16710414 DOI: 10.1038/nature04727] [Show More Authors] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Accepted: 03/13/2006] [Indexed: 11/08/2022]
Abstract
The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.
Collapse
Affiliation(s)
- S G Gregory
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Meinke G, Bullock PA, Bohm A. Crystal structure of the simian virus 40 large T-antigen origin-binding domain. J Virol 2006; 80:4304-12. [PMID: 16611889 PMCID: PMC1472039 DOI: 10.1128/jvi.80.9.4304-4312.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The origins of replication of DNA tumor viruses have a highly conserved feature, namely, multiple binding sites for their respective initiator proteins arranged as inverted repeats. In the 1.45-angstroms crystal structure of the simian virus 40 large T-antigen (T-ag) origin-binding domain (obd) reported herein, T-ag obd monomers form a left-handed spiral with an inner channel of 30 angstroms having six monomers per turn. The inner surface of the spiral is positively charged and includes residues known to bind DNA. Residues implicated in hexamerization of full-length T-ag are located at the interface between adjacent T-ag obd monomers. These data provide a high-resolution model of the hexamer of origin-binding domains observed in electron microscopy studies and allow the obd's to be oriented relative to the hexamer of T-ag helicase domains to which they are connected.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral, Tumor/chemistry
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Replication Origin/genetics
- Simian virus 40/chemistry
- Simian virus 40/genetics
Collapse
Affiliation(s)
- Gretchen Meinke
- Tufts University School of Medicine, Department of Biochemistry, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
115
|
Mesner LD, Crawford EL, Hamlin JL. Isolating apparently pure libraries of replication origins from complex genomes. Mol Cell 2006; 21:719-26. [PMID: 16507369 DOI: 10.1016/j.molcel.2006.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/16/2005] [Accepted: 01/12/2006] [Indexed: 01/23/2023]
Abstract
Because of the complexity of higher eukaryotic genomes and the lack of a reliable autonomously replicating sequence (ARS) assay for isolating potential replicators, the identification of origins has proven to be extremely challenging and time consuming. We have developed a new origin-trapping method based on the partially circular nature of restriction fragments containing replication bubbles and have prepared a library of approximately 1,000 clones from early S phase CHO cells. When 15 randomly selected clones were analyzed by a stringent two-dimensional (2D) gel replicon mapping method, all were shown to correspond to active, early firing origins. Furthermore, most of these appear to derive from broad zones of potential sites, and the five that were analyzed in a time-course study are all inefficient. This bubble-trapping scheme will allow the construction of comprehensive origin libraries from any complex genome so that their natures and distributions vis-a-vis other chromosomal markers can be established.
Collapse
Affiliation(s)
- Larry D Mesner
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, 22908, USA
| | | | | |
Collapse
|
116
|
Sasaki T, Ramanathan S, Okuno Y, Kumagai C, Shaikh SS, Gilbert DM. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol Cell Biol 2006; 26:1051-62. [PMID: 16428457 PMCID: PMC1347040 DOI: 10.1128/mcb.26.3.1051-1062.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chinese hamster ovary (CHO) cells select specific replication origin sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). Origin selection is sensitive to transcription but not protein synthesis inhibitors, implicating a pretranslational role for transcription in origin specification. We have constructed a DNA array covering 121 kb surrounding the DHFR locus, to comprehensively investigate replication initiation and transcription in this region. When nuclei isolated within the first 3 h of G1 phase were stimulated to initiate replication in Xenopus egg extracts, replication initiated without any detectable preference for specific sites. At the ODP, initiation became suppressed from within the Msh3, DHFR, and 2BE2121 transcription units. Active transcription was mostly confined to these transcription units, and inhibition of transcription by alpha-amanitin resulted in the initiation of replication within transcription units, indicating that transcription is necessary to limit initiation events to the intergenic region. However, the resumption of DHFR transcription after mitosis took place prior to the ODP and so is not on its own sufficient to suppress initiation of replication. Together, these results demonstrate a remarkable flexibility in sequence selection for initiating replication and implicate transcription as one important component of origin specification at the ODP.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
117
|
Takeda DY, Shibata Y, Parvin JD, Dutta A. Recruitment of ORC or CDC6 to DNA is sufficient to create an artificial origin of replication in mammalian cells. Genes Dev 2006; 19:2827-36. [PMID: 16322558 PMCID: PMC1315390 DOI: 10.1101/gad.1369805] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Origins of replication are expected to recruit initiation proteins like origin recognition complex (ORC) and Cdc6 in eukaryotes and provide a platform for unwinding DNA. Here we test whether localization of initiation proteins onto DNA is sufficient for origin function. Different components of the ORC complex and Cdc6 stimulated prereplicative complex (pre-RC) formation and replication initiation when fused to the GAL4 DNA-binding domain and recruited to plasmid DNA containing a tandem array of GAL4-binding sites. Replication occurred once per cell cycle and was inhibited by Geminin, indicating that the plasmid was properly licensed during the cell cycle. The GAL4 fusion protein recruits other polypeptides of the ORC-Cdc6 complex, and nascent strand abundance was highest near the GAL4-binding sites. Therefore, the artificial origin recapitulates many of the regulatory features of physiological origins and is valuable for studies on replication initiation in mammalian cells. We demonstrated the utility of this system by showing the functional importance of the ATPase domains of human Cdc6 and Orc1 and the dispensability of the N-terminal segments of Orc1 and Orc2 in this assay. Artificial recruitment of a eukaryotic cellular replication initiation factor to a DNA sequence can create a functional origin of replication, providing a robust genetic assay for these factors and a novel approach to generating episomal vectors for gene therapy.
Collapse
Affiliation(s)
- David Y Takeda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
118
|
Norio P, Kosiyatrakul S, Yang Q, Guan Z, Brown NM, Thomas S, Riblet R, Schildkraut CL. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 2006; 20:575-87. [PMID: 16307921 DOI: 10.1016/j.molcel.2005.10.029] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 09/06/2005] [Accepted: 10/25/2005] [Indexed: 01/02/2023]
Abstract
In mammalian cells, the replication of tissue-specific gene loci is believed to be under developmental control. Here, we provide direct evidence of the existence of developmentally regulated origins of replication in both cell lines and primary cells. By using single-molecule analysis of replicated DNA (SMARD), we identified various groups of coregulated origins that are activated within the Igh locus. These origin clusters can span hundreds of kilobases and are activated sequentially during B cell development, concomitantly with developmentally regulated changes in chromatin structure and transcriptional activity. Finally, we show that the changes in DNA replication initiation that take place during B cell development, within the D-J-C-3'RR region, occur on both alleles (expressed and nonexpressed).
Collapse
Affiliation(s)
- Paolo Norio
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
There has been remarkable progress in the last 20 years in defining the molecular mechanisms that regulate initiation of DNA synthesis in eukaryotic cells. Replication origins in the DNA nucleate the ordered assembly of protein factors to form a prereplication complex (preRC) that is poised for DNA synthesis. Transition of the preRC to an active initiation complex is regulated by cyclin-dependent kinases and other signaling molecules, which promote further protein assembly and activate the mini chromosome maintenance helicase. We will review these mechanisms and describe the state of knowledge about the proteins involved. However, we will also consider an additional layer of complexity. The DNA in the cell is packaged with histone proteins into chromatin. Chromatin structure provides an additional layer of heritable information with associated epigenetic modifications. Thus, we will begin by describing chromatin structure, and how the cell generally controls access to the DNA. Access to the DNA requires active chromatin remodeling, specific histone modifications, and regulated histone deposition. Studies in transcription have revealed a variety of mechanisms that regulate DNA access, and some of these are likely to be shared with DNA replication. We will briefly describe heterochromatin as a model for an epigenetically inherited chromatin state. Next, we will describe the mechanisms of replication initiation and how these are affected by constraints of chromatin. Finally, chromatin must be reassembled with appropriate modifications following passage of the replication fork, and our third major topic will be the reassembly of chromatin and its associated epigenetic marks. Thus, in this chapter, we seek to bring together the studies of replication initiation and the studies of chromatin into a single holistic narrative.
Collapse
Affiliation(s)
- Angel P Tabancay
- Molecular and Computational Biology Section University of Southern California Los Angeles, California 90089, USA
| | | |
Collapse
|
120
|
Ying CY, Gautier J. The ATPase activity of MCM2-7 is dispensable for pre-RC assembly but is required for DNA unwinding. EMBO J 2005; 24:4334-44. [PMID: 16369567 PMCID: PMC1356333 DOI: 10.1038/sj.emboj.7600892] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 11/08/2005] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes have six minichromosome maintenance (MCM) proteins that are essential for DNA replication. The contribution of ATPase activity of MCM complexes to their function in replication is poorly understood. We have established a cell-free system competent for replication in which all MCM proteins are supplied by purified recombinant Xenopus MCM complexes. Recombinant MCM2-7 complex was able to assemble onto chromatin, load Cdc45 onto chromatin, and restore DNA replication in MCM-depleted extracts. Using mutational analysis in the Walker A motif of MCM6 and MCM7 of MCM2-7, we show that ATP binding and/or hydrolysis by MCM proteins is dispensable for chromatin loading and pre-replicative complex (pre-RC) assembly, but is required for origin unwinding during DNA replication. Moreover, this ATPase-deficient mutant complex did not support DNA replication in MCM-depleted extracts. Altogether, these results both demonstrate the ability of recombinant MCM proteins to perform all replication roles of MCM complexes, and further support the model that MCM2-7 is the replicative helicase. These data establish that mutations affecting the ATPase activity of the MCM complex uncouple its role in pre-RC assembly from DNA replication.
Collapse
Affiliation(s)
- Carol Y Ying
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, Room 1602A, 701 W 168th Street, New York, NY 10032, USA. Tel.: +1 212 305 9586; Fax: +1 212 923 2090; E-mail:
| |
Collapse
|
121
|
Patel PK, Arcangioli B, Baker SP, Bensimon A, Rhind N. DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 2005; 17:308-16. [PMID: 16251353 PMCID: PMC1345668 DOI: 10.1091/mbc.e05-07-0657] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across the genome. We have addressed these questions by determining the location of firing origins on individual fission yeast DNA molecules using DNA combing. We show that the firing of replication origins is stochastic, leading to a random distribution of replication initiation. Furthermore, origin firing is independent between cell cycles; there is no epigenetic mechanism causing an origin that fires in one cell cycle to preferentially fire in the next. Thus, the fission yeast strategy for the initiation of replication is different from models of eukaryotic replication that propose coordinated origin firing.
Collapse
Affiliation(s)
- Prasanta K Patel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
122
|
Grimes BR, Monaco ZL. Artificial and engineered chromosomes: developments and prospects for gene therapy. Chromosoma 2005; 114:230-41. [PMID: 16133351 DOI: 10.1007/s00412-005-0017-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/05/2005] [Accepted: 07/05/2005] [Indexed: 01/15/2023]
Abstract
At the gene therapy session of the ICCXV Chromosome Conference (2004), recent advances in the construction of engineered chromosomes and de novo human artificial chromosomes were presented. The long-term aims of these studies are to develop vectors as tools for studying genome and chromosome function and for delivering genes into cells for therapeutic applications. There are two primary advantages of chromosome-based vector systems over most conventional vectors for gene delivery. First, the transferred DNA can be stably maintained without the risks associated with insertion, and second, large DNA segments encompassing genes and their regulatory elements can be introduced, leading to more reliable transgene expression. There is clearly a need for safe and effective gene transfer vectors to correct genetic defects. Among the topics discussed at the gene therapy session and the main focus of this review are requirements for de novo human artificial chromosome formation, assembly of chromatin on de novo human artificial chromosomes, advances in vector construction, and chromosome transfer to cells and animals.
Collapse
Affiliation(s)
- Brenda R Grimes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut St, IB130, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
123
|
Masai H, You Z, Arai KI. Control of DNA replication: regulation and activation of eukaryotic replicative helicase, MCM. IUBMB Life 2005; 57:323-35. [PMID: 16036617 DOI: 10.1080/15216540500092419] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA replication is a key event of cell proliferation and the final target of signal transduction induced by growth factor stimulation. It is also strictly regulated during the ongoing cell cycle so that it occurs only once during S phase and that all the genetic materials are faithfully duplicated. DNA replication may be arrested or temporally inhibited due to a varieties of internal and external causes. Cells have developed intricate mechanisms to cope with the arrested replication forks to minimize the adversary effect on the stable maintenance of genetic materials. Helicases play a central role in DNA replication. In eukaryotes, MCM (minichromosome maintenance) protein complex plays essential roles as a replicative helicase. MCM4-6-7 complex possesses intrinsic DNA helicase activity which translocates on single-stranded DNA form 3' to 5'. Mammalian MCM4-6-7 helicase and ATPase activities are specifically stimulated by the presence of thymine-rich single-stranded DNA sequences onto which it is loaded. The activation appears to depend on the thymine content of this single-strand, and sequences derived from human replication origins can serve as potent activators of the MCM helicase. MCM is a prime target of Cdc7 kinase, known to be essential for activation of replication origins. We will discuss how the MCM may be activated at the replication origins by template DNA, phosphorylation, and interaction with other replicative proteins, and will present a model of how activation of MCM helicase by specific sequences may contribute to selection of replication initiation sites in higher eukaryotes.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | |
Collapse
|
124
|
Skory CD. Inhibition of non-homologous end joining and integration of DNA upon transformation of Rhizopus oryzae. Mol Genet Genomics 2005; 274:373-83. [PMID: 16133163 DOI: 10.1007/s00438-005-0028-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Accepted: 06/27/2005] [Indexed: 01/12/2023]
Abstract
Site-directed integration of DNA in the fungus Rhizopus has long been problematic because linearized plasmids used for transformation tend to replicate in high-molecular-weight concatenated structures, and rarely integrate into the chromosome. This work examines the methods that might interfere with the multimerization process, select against plasmids that had recircularized, and encourage strand invasion, hopefully leading to plasmid integration. In vitro methods were used to determine if the structure of the double-strand break had any effect on the ability to rejoin plasmid ends. In cell-free extracts, little difference in end-joining activity was found between linearized plasmids with 5' overhangs, 3' overhangs, or blunt ends. In addition, dephosphorylation of ends had no effect. Transformation of plasmids prepared in the same ways confirmed that they were easily religated in vivo, with almost all prototrophic isolates retaining autonomously replicated plasmids. It was possible to block religation by modifying the free ends of the linearized plasmids using oligonucleotide adapters which were blocked at the 3'-OH position and contained phosphorothioate nucleotides to make them nuclease-resistant. However, gene replacement, with repair of the auxotrophic mutation in the host chromosome, was the predominant event observed upon the transformation of these plasmids. The highest rates of integration were obtained with a plasmid containing a truncated, non-functional pyrG gene. Autonomous replication of this plasmid did not support prototrophic growth, but homologous recombination into the chromosome restored the function of the endogenous pyrG gene. All of the transformants obtained with this selective construct were found to have integrated the plasmid, with multicopy insertion being common.
Collapse
Affiliation(s)
- Christopher D Skory
- Bioproducts and Biocatalysis Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA
| |
Collapse
|
125
|
Hu J, Renne R. Characterization of the minimal replicator of Kaposi's sarcoma-associated herpesvirus latent origin. J Virol 2005; 79:2637-42. [PMID: 15681465 PMCID: PMC546548 DOI: 10.1128/jvi.79.4.2637-2642.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) binds to two sites within the 801-bp-long terminal repeat (TR) and is the only viral protein required for episomal maintenance. While two or more copies of TR are required for long-term maintenance, a single TR confers LANA-dependent origin activity on plasmid DNA. Deletion mapping revealed a 71-bp-long minimal replicator containing two distinctive sequence elements: LANA binding sites (LBS1/2) and an adjacent 29- to 32-bp-long GC-rich sequence which we termed the replication element. Furthermore, the transcription factor Sp1 can bind to TR outside the minimal replicator and contributes to TR's previously reported enhancer activity.
Collapse
Affiliation(s)
- Jianhong Hu
- Division of Hematology/Oncology and Department of Molecular Genetics and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
126
|
Todorovic V, Giadrossi S, Pelizon C, Mendoza-Maldonado R, Masai H, Giacca M. Human Origins of DNA Replication Selected from a Library of Nascent DNA. Mol Cell 2005; 19:567-75. [PMID: 16109380 DOI: 10.1016/j.molcel.2005.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/24/2005] [Accepted: 07/05/2005] [Indexed: 11/25/2022]
Abstract
The identification of metazoan origins of DNA replication has so far been hampered by the lack of a suitable genetic screening and by the cumbersomeness of the currently available mapping procedures. Here we describe the construction of a library of nascent DNA, representative of all cellular origin sequences, and its utilization as a screening probe for origin identification in large genomic regions. The procedure developed was successfully applied to the human 5q31.1 locus, encoding for the IL-3 and GM-CSF genes. Two novel origins were identified and subsequently characterized by competitive PCR mapping, located approximately 3.5 kb downstream of the GM-CSF gene. The two origins (GM-CSF Ori1 and Ori2) were shown to interact with different members of the DNA prereplication complex. This observation reinforces the universal paradigm that initiation of DNA replication takes place at, or in close proximity to, the binding sites of the trans-acting initiator proteins.
Collapse
Affiliation(s)
- Vesna Todorovic
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano, 99, 34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
127
|
Brodie Of Brodie EB, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A. From DNA sequence analysis to modeling replication in the human genome. PHYSICAL REVIEW LETTERS 2005; 94:248103. [PMID: 16090582 DOI: 10.1103/physrevlett.94.248103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Indexed: 05/03/2023]
Abstract
We explore the large-scale behavior of nucleotide compositional strand asymmetries along human chromosomes. As we observe for 7 of 9 origins of replication experimentally identified so far, the (TA+GC) skew displays rather sharp upward jumps, with a linear decreasing profile in between two successive jumps. We present a model of replication with well positioned replication origins and random terminations that accounts for the observed characteristic serrated skew profiles. We succeed in identifying 287 pairs of putative adjacent replication origins with an origin spacing approximately 1-2 Mbp that are likely to correspond to replication foci observed in interphase nuclei and recognized as stable structures that persist throughout subsequent cell generations.
Collapse
Affiliation(s)
- E B Brodie Of Brodie
- Laboratoire Joliot-Curie (CNRS), Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
During the last decade, chimeric RNA-DNA oligonucleotides (RDOs) and single-stranded oligodeoxynucleotides have been used to make permanent and specific sequence changes in the genome, with the ultimate goal of curing human genetic disorders caused by mutations. There have been large variations observed in the rate of gene repair in these studies. This has been due, at least in part, to the lack of standardized assay conditions and the paucity of mechanistic studies in the early developmental stages. Previously, it was proposed that strand pairing is the rate-limiting step and mismatch DNA repair is involved in the gene repair process. We propose an alternative model, in which an oligonucleotide is assimilated to the target DNA during active transcription, leading to formation of a transient D-loop. The trafficking of RNA polymerase is interrupted by the D-loop, and the stalled RNA polymerase complex may signal for recruitment of DNA repair proteins, including transcription-coupled DNA repair and nucleotide-excision repair. Thus, oligonucleotides can be considered as a class of DNA-damaging agents that cause a transient but major structural change in DNA. Understanding of the recognition and repair pathways to process this unusual DNA structure may have relevance in physiologic processes, transcription, and DNA replication.
Collapse
Affiliation(s)
- Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
129
|
Wang J, Sugden B. Origins of bidirectional replication of Epstein-Barr virus: models for understanding mammalian origins of DNA synthesis. J Cell Biochem 2005; 94:247-56. [PMID: 15546145 DOI: 10.1002/jcb.20324] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epstein-Barr virus (EBV), provides unique advantages to understand origins of replication in higher eukaryotes. EBV establishes itself efficiently in infected B lymphocytes, where it exists as a 165 kb, circular chromosome which is duplicated once per cell cycle (Adams [1987] J Virol 61:1743-1746). Five to twenty copies of the EBV chromosome are usually present in each cell, increasing the signal/noise ratio for mapping and analyzing its replication origins. Remarkably only one viral protein is required for the synthesis and partitioning of the viral chromosomes: EBV nuclear antigen-1, or EBNA1. EBV uses distinct origins related to the ARS1 origin of Saccharomyces cerevisiae and to that of the dihydrofolate reductase (DHFR) locus in Chinese hamster ovary (CHO) cells [Bogan et al., 2000]. We shall review the properties and the regulation of these two kinds of origins in EBV and relate them to their cellular cousins.
Collapse
Affiliation(s)
- Jindong Wang
- Laboratory of Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
130
|
Abstract
Initiation and completion of DNA replication defines the beginning and ending of S phase of the cell cycle. Successful progression through S phase requires that replication be properly regulated and monitored to ensure that the entire genome is duplicated exactly once, without errors, in a timely fashion. Given the immense size and complexity of eukaryotic genomes, this presents a significant challenge for the cell. As a result, DNA replication has evolved into a tightly regulated process involving the coordinated action of numerous factors that function in all phases of the cell cycle. We will review our current understanding of these processes from the formation of prereplicative complexes in preparation for S phase to the series of events that culminate in the loading of DNA polymerases during S phase. We will incorporate structural data from archaeal and bacterial replication proteins and discuss their implications for understanding the mechanism of action of their corresponding eukaryotic homologues. We will also describe the concept of replication licensing which protects against genomic instability by limiting initiation events to once per cell cycle. Lastly, we will review our knowledge of checkpoint pathways that maintain the integrity of stalled forks and relay defects in replication to the rest of the cell cycle.
Collapse
Affiliation(s)
- David Y Takeda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
131
|
Miyake Y, Mizuno T, Yanagi KI, Hanaoka F. Novel Splicing Variant of Mouse Orc1 Is Deficient in Nuclear Translocation and Resistant for Proteasome-mediated Degradation. J Biol Chem 2005; 280:12643-52. [PMID: 15634681 DOI: 10.1074/jbc.m413280200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication is controlled by the stepwise assembly of the pre-replicative complex and the replication apparatus. Loading of the origin recognition complex (ORC) onto the chromatin is a prerequisite for the assembly of the pre-replicative complex. To define the physiological functions of the mammalian ORC, we cloned ORC subunit cDNAs from mouse NIH3T3 cells and found novel variant forms of Orc1, Orc2, and Orc3 each derived from alternative RNA splicing. The variant form of Orc1, Orc1B, lacks 35 amino acid residues in exon 5; the variant of Orc2, Orc2B, lacks 48 amino acid residues in exon 2. In the Orc3 variant, Orc3B, only 1 amino acid residue is deleted in exon 15. Reverse transcription-PCR analysis showed that the full-length Orc1-3 subunits, Orc1A, Orc2A, and Orc3A, as well as Orc2B and Orc3B, were widely expressed in various mouse cell lines and mouse tissues. In contrast, Orc1B was only expressed in the thymus and at an early embryonic stage. Overexpression of these Orc subunits in cultured cells revealed that Orc1A, Orc2A, Orc3A, Orc2B, and Orc3B are localized in the nucleus, whereas Orc1B remains exclusively in the cytoplasm. Moreover, fusion of the 35 amino acids spliced fragment from mOrc1A with beta-galactosidase resulted in its translocation into the nucleus. When Orc1B is expressed transiently, its degradation occurs in a proteasome-independent manner, whereas Orc1A is rapidly degraded by the ubiquitin-proteasome pathway. Taken together, we conclude that mouse Orc1, Orc2, and Orc3 each exist in two alternative-splicing variants and that naturally occurring Orc1B lacks a functional domain that is essential for nuclear translocation and proteasome-dependent degradation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Southern
- Blotting, Western
- COS Cells
- Cell Cycle
- Cell Line
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Exons
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Mice
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Mutation
- NIH 3T3 Cells
- Origin Recognition Complex
- Plasmids/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Protein Structure, Tertiary
- Protein Transport
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
- Transfection
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Yasuyuki Miyake
- Cellular Physiology Laboratory, RIKEN Discovery Research Institute, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
132
|
Abstract
Developmentally regulated gene amplification serves to increase the number of templates for transcription, yielding greatly increased protein and/or RNA product for gene(s) at the amplified loci. It is observed with genes that are very actively transcribed and during narrow windows of developmental time where copious amounts of those particular gene products are required. Amplification results from repeated firing of origins at a few genomic loci, while the rest of the genome either does not replicate, or replicates to a lesser extent. As such, amplification is a striking exception to the once-and-only-once rule of DNA replication and may be informative as to that mechanism. Drosophila amplifies eggshell (chorion) genes in the follicle cells of the ovary to allow for rapid eggshell synthesis. Sciara amplifies multiple genes in larval salivary gland cells that encode proteins secreted in the saliva for the pupal case. Finally, Tetrahymena amplifies its rRNA genes several thousand-fold in the creation of the transcriptionally active macronucleus. Due to the ease of molecular and genetic analysis with these systems, the study of origin regulation has advanced rapidly. Comparisons reveal an evolutionarily conserved trans-regulatory apparatus and a similar organization of sequence-specific cis-regulatory replicator and origin elements. The studies indicate a regulatory role for chromatin structure and transcriptionally active genes near the origins.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-1340, USA.
| |
Collapse
|
133
|
Kusic J, Kojic S, Divac A, Stefanovic D. Noncanonical DNA elements in the lamin B2 origin of DNA replication. J Biol Chem 2005; 280:9848-54. [PMID: 15611042 DOI: 10.1074/jbc.m408310200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA replication origins of eukaryotes lack linear replicator elements but contain short (dT)(n) (dA)(n) sequences that could build mutually equivalent unorthodox structures. Here we report that the lamin B2 origin of DNA replication adopts an alternative form characterized by unpaired regions CTTTTTTTTTTCC/GGAAAAAAAAAAG (3900-3912) and CCTTTTTTTTC/GAAAAAAAAGG (4141-4151). Both unpaired regions are resistant to DNase and except in central parts of their homopyrimidine strands are sensitive to single strand-specific chemicals. Interactions that protect central pyrimidines probably stabilize the bubble-like areas. Because DNA fragments containing either one or both bubbles migrate in TBM (89 mm Tris base, 89 mm boric acid, and 2 mm MgCl(2)) PAGE even faster than expected from their linear size, interacting regions are expected to belong to the same molecule. In an origin fragment containing a single bubble, free homopyrimidine strand can only interact with Hoogsteen hydrogen bonding surfaces from a complementary double stranded sequence. Indeed, this origin fragment reacts with triplex preferring antibody. In competition binding experiments control double stranded DNA or single stranded (dT)(40) do not affect origin-antibody interaction, whereas TAT and GGC triplexes exert competitive effect. Because the chosen fragment does not contain potential GGC forming sequences, these experiments confirm that the lamin B2 origin adopts a structure partly composed of intramolecular TAT triads.
Collapse
Affiliation(s)
- Jelena Kusic
- Institute of Molecular Genetics and Genetic Engineering, 11010 Belgrade, Serbia and Montenegro
| | | | | | | |
Collapse
|
134
|
Zhou J, Chau CM, Deng Z, Shiekhattar R, Spindler MP, Schepers A, Lieberman PM. Cell cycle regulation of chromatin at an origin of DNA replication. EMBO J 2005; 24:1406-17. [PMID: 15775975 PMCID: PMC1142536 DOI: 10.1038/sj.emboj.7600609] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 02/08/2005] [Indexed: 01/01/2023] Open
Abstract
Selection and licensing of mammalian DNA replication origins may be regulated by epigenetic changes in chromatin structure. The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) uses the cellular licensing machinery to regulate replication during latent infection of human cells. We found that the minimal replicator sequence of OriP, referred to as the dyad symmetry (DS), is flanked by nucleosomes. These nucleosomes were subject to cell cycle-dependent chromatin remodeling and histone modifications. Restriction enzyme accessibility assay indicated that the DS-bounded nucleosomes were remodeled in late G1. Remarkably, histone H3 acetylation of DS-bounded nucleosomes decreased during late G1, coinciding with nucleosome remodeling and MCM3 loading, and preceding the onset of DNA replication. The ATP-dependent chromatin-remodeling factor SNF2h was also recruited to DS in late G1, and formed a stable complex with HDAC2 at DS. siRNA depletion of SNF2h reduced G1-specific nucleosome remodeling, histone deacetylation, and MCM3 loading at DS. We conclude that an SNF2h-HDAC1/2 complex coordinates G1-specific chromatin remodeling and histone deacetylation with the DNA replication initiation process at OriP.
Collapse
Affiliation(s)
- Jing Zhou
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Zhong Deng
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Mark-Peter Spindler
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Aloys Schepers
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Paul M Lieberman
- The Wistar Institute, Philadelphia, PA, USA
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA. Tel.: +1 215 898 9491; Fax: +1 215 898 0663; E-mail:
| |
Collapse
|
135
|
Aladjem MI, Fanning E. The replicon revisited: an old model learns new tricks in metazoan chromosomes. EMBO Rep 2005; 5:686-91. [PMID: 15229645 PMCID: PMC1299096 DOI: 10.1038/sj.embor.7400185] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 05/12/2004] [Indexed: 01/09/2023] Open
Abstract
The origins of DNA replication were proposed in the replicon model to be specified genetically by replicator elements that coordinate the initiation of DNA synthesis with gene expression and cell growth. Recent studies have identified DNA sequences in mammalian cells that fulfil the genetic criteria for replicators and are beginning to uncover the sequence requirements for the initiation of DNA replication. Mammalian replicators are com- posed of non-redundant modules that cooperate to direct initiation to specific chromosomal sites. Conversely, replicators do not show strong sequence similarity, and their ability to initiate replication depends on the chromosomal context and epigenetic factors, as well as their primary sequence. Here, we review the properties of metazoan replicators, and discuss the genetic and epigenetic factors that determine where and when DNA replication is initiated.
Collapse
Affiliation(s)
- Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, DSB, National Cancer Institute, National Institutes of Health, Building 37, Room 5056, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA
- Tel: +1 301 435 4255; Fax: +1 301 402 9752;
| | - Ellen Fanning
- Department of Biological Sciences and Vanderbilt–Ingram Cancer Center, Vanderbilt University Station B-351634, Vanderbilt University, Nashville, Tennessee 327232-1634, USA
- Tel: +1 615 343 5677; Fax: +1 615 343 6707;
| |
Collapse
|
136
|
Yoon K. Montagna symposium on epidermal stem cells oligonucleotide-directed gene correction in epidermis. J Investig Dermatol Symp Proc 2005; 9:276-83. [PMID: 15369224 DOI: 10.1111/j.1087-0024.2004.09303.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligonucleotide-directed gene alteration produces a targeted DNA sequence change in the genome of mammalian cells. The advantage of this approach is that expression of the corrected gene is regulated in the same way as a normal gene. Reliable, sensitive, and standardized assays played a critical role in the measurement of gene correction frequency among different cell types and in evaluating the structure-activity relationship of oligonucleotides. Mechanistic studies using these assays have become critical for understanding the gene repair process and setting realistic expectations on the capability of this technology. The epidermis is an ideal tissue where oligonucleotides can be administered locally and the treated sites can be monitored easily. But given the low frequency of gene correction, general selection procedures and amplification of corrected cells via epidermal stem cells are ultimately needed to make the gene repair technology practical. Recent data suggest that the in vivo application of oligonucleotides may be capable of gene correction in epidermal stem cells and the subsequent expansion of the corrected cells may result in an apparent high-level and long-lasting gene repair. Advances in oligonucleotide delivery and targeting of epidermal stem cells will be required for potential application of oligonucleotides toward treatment of genodermatoses.
Collapse
Affiliation(s)
- Kyonggeun Yoon
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
137
|
Evers A, Klabunde T. Structure-based Drug Discovery Using GPCR Homology Modeling: Successful Virtual Screening for Antagonists of the Alpha1A Adrenergic Receptor. J Med Chem 2005; 48:1088-97. [PMID: 15715476 DOI: 10.1021/jm0491804] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we describe homology modeling of the alpha1A receptor based on the X-ray structure of bovine rhodopsin. The protein model has been generated by applying ligand-supported homology modeling, using mutational and ligand SAR data to guide the protein modeling procedure. We performed a virtual screening of the company's compound collection to test how well this model is suited to identify alpha1A antagonists. We applied a hierarchical virtual screening procedure guided by 2D filters and three-dimensional pharmacophore models. The ca. 23,000 filtered compounds were docked into the alpha1A homology model with GOLD and scored with PMF. From the top-ranked compounds, 80 diverse compounds were tested in a radioligand displacement assay. 37 compounds revealed K(i) values better than 10 microM; the most active compound binds with 1.4 nM to the alpha1A receptor. Our findings suggest that rhodopsin-based homology models may be used as the structural basis for GPCR lead finding and compound optimization.
Collapse
Affiliation(s)
- Andreas Evers
- Aventis Pharma Deutschland GmBH, Ein Unternehmen der Sanofi-Aventis Gruppe, DI&A Chemistry, Computational Chemistry, Industriepark Höchst, Building G838, D-65926 Frankfurt am Main, Germany.
| | | |
Collapse
|
138
|
Abstract
Eukaryotic DNA replication begins at numerous but often poorly characterized sequences called origins, which are distributed fairly regularly along chromosomes. The elusive and idiosyncratic nature of origins in higher eukaryotes is now understood as resulting from a strong epigenetic influence on their specification, which provides flexibility in origin selection and allows for tailoring the dynamics of chromosome replication to the specific needs of cells. By contrast, the factors that assemble in trans to make these origins competent for replication and the kinases that trigger initiation are well conserved. Genome-wide and single-molecule approaches are being developed to elucidate the dynamics of chromosome replication. The notion that a well-coordinated progression of replication forks is crucial for many aspects of the chromosome cycle besides simply duplication begins to be appreciated.
Collapse
Affiliation(s)
- Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 and University Montpellier 2, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
139
|
Cohen SM, Hatada S, Brylawski BP, Smithies O, Kaufman DG, Cordeiro-Stone M. Complementation of replication origin function in mouse embryonic stem cells by human DNA sequences. Genomics 2005; 84:475-84. [PMID: 15498455 DOI: 10.1016/j.ygeno.2004.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 04/14/2004] [Indexed: 11/25/2022]
Abstract
A functional origin of replication was mapped to the transcriptional promoter and exon 1 of the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in the mouse and human genomes. This origin was lost in mouse embryonic stem (ES) cells with a spontaneous deletion (approximately 36 kb) at the 5' end of the HPRT locus. Restoration of HPRT activity by homologous recombination with human/mouse chimeric sequences reconstituted replication origin activity in two independent ES cell lines. Quantitative PCR analyses of abundance of genetic markers in size-fractionated nascent DNA indicated that initiation of DNA replication coincided with the site of insertion in the mouse genome of the 335 bp of human DNA containing the HPRT exon 1 and a truncated promoter. The genetic information contained in the human sequence and surrounding mouse DNA was analyzed for cis-acting elements that might contribute to selection and functional activation of a mammalian origin of DNA replication.
Collapse
Affiliation(s)
- Stephanie M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA.
| | | | | | | | | | | |
Collapse
|
140
|
Kemp MG, Ghosh M, Liu G, Leffak M. The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res 2005; 33:325-36. [PMID: 15653633 PMCID: PMC546162 DOI: 10.1093/nar/gki177] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic chromatin structure limits the initiation of DNA replication spatially to chromosomal origin zones and temporally to the ordered firing of origins during S phase. Here, we show that the level of histone H4 acetylation correlates with the frequency of replication initiation as measured by the abundance of short nascent DNA strands within the human c-myc and lamin B2 origins, but less well with the frequency of initiation across the β-globin locus. Treatment of HeLa cells with trichostatin A (TSA) reversibly increased the acetylation level of histone H4 globally and at these initiation sites. At all three origins, TSA treatment transiently promoted a more dispersive pattern of initiations, decreasing the abundance of nascent DNA at previously preferred initiation sites while increasing the nascent strand abundance at lower frequency genomic initiation sites. When cells arrested in late G1 were released into TSA, they completed S phase more rapidly than untreated cells, possibly due to the earlier initiation from late-firing origins, as exemplified by the β-globin origin. Thus, TSA may modulate replication origin activity through its effects on chromatin structure, by changing the selection of initiation sites, and by advancing the time at which DNA synthesis can begin at some initiation sites.
Collapse
Affiliation(s)
| | | | | | - Michael Leffak
- To whom correspondence should be addressed. Tel: +1 937 775 3125; Fax: +1 937 775 3730;
| |
Collapse
|
141
|
Ghosh M, Liu G, Randall G, Bevington J, Leffak M. Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity. Mol Cell Biol 2005; 24:10193-207. [PMID: 15542830 PMCID: PMC529035 DOI: 10.1128/mcb.24.23.10193-10207.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The observation that transcriptionally active genes generally replicate early in S phase and observations of the interaction between transcription factors and replication proteins support the thesis that promoter elements may have a role in DNA replication. To test the relationship between transcription and replication we constructed HeLa cell lines in which inducible green fluorescent protein (GFP)-encoding genes replaced the proximal approximately 820-bp promoter region of the c-myc gene. Without the presence of an inducer, basal expression occurred from the GFP gene in either orientation and origin activity was restored to the mutant c-myc replicator. In contrast, replication initiation was repressed upon induction of transcription. When basal or induced transcription complexes were slowed by the presence of alpha-amanitin, origin activity depended on the orientation of the transcription unit. To test mechanistically whether basal transcription or transcription factor binding was sufficient for replication rescue by the uninduced GFP genes, a GAL4p binding cassette was used to replace all regulatory sequences within approximately 1,400 bp 5' to the c-myc gene. In these cells, expression of a CREB-GAL4 fusion protein restored replication origin activity. These results suggest that transcription factor binding can enhance replication origin activity and that high levels of expression or the persistence of transcription complexes can repress it.
Collapse
Affiliation(s)
- M Ghosh
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
142
|
Obado SO, Taylor MC, Wilkinson SR, Bromley EV, Kelly JM. Functional mapping of a trypanosome centromere by chromosome fragmentation identifies a 16-kb GC-rich transcriptional "strand-switch" domain as a major feature. Genome Res 2005; 15:36-43. [PMID: 15632088 PMCID: PMC540271 DOI: 10.1101/gr.2895105] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 10/21/2004] [Indexed: 11/25/2022]
Abstract
Trypanosomatids are an ancient family that diverged from the main eukaryotic lineage early in evolution, which display several unique features of gene organization and expression. Although genome sequencing is now complete, the nature of centromeres in these and other parasitic protozoa has not been resolved. Here, we report the functional mapping of a centromere in the American trypanosome, Trypanosoma cruzi, a parasite with an unusual mechanism of genetic exchange that involves the generation of aneuploidy by nuclear hybridization. Using a telomere-associated chromosome fragmentation approach, we show that the region required for the mitotic stability of chromosome 3 encompasses a transcriptional "strand-switch" domain constituted by a 16-kb GC-rich island. The domain contains several degenerate retrotransposon-like insertions, but atypically, lacks the arrays of satellite repeats normally associated with centromeric regions. This unusual type of organization may represent a paradigm for centromeres in T. cruzi and other primitive eukaryotes.
Collapse
Affiliation(s)
- Samson O Obado
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | | | | | | |
Collapse
|
143
|
Abstract
The chromosomes of eukaryotic cells possess many potential DNA replication origins, of which a subset is selected in response to the cellular environment, such as the developmental stage, to act as active replication start sites. The mechanism of origin selection is not yet fully understood. In this review, we summarize recent observations regarding replication origins and initiator proteins in various organisms. These studies suggest that the DNA-binding specificities of the initiator proteins that bind to the replication origins and promote DNA replication are primarily responsible for origin selection. We particularly focus on the importance of transcription factors in the origin selection process. We propose that transcription factors are general regulators of the formation of functional complexes on the chromosome, including the replication initiation complex. We discuss the possible mechanisms by which transcription factors influence the selection of particular origins.
Collapse
Affiliation(s)
- Hidetsugu Kohzaki
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Japan.
| | | |
Collapse
|
144
|
Dai J, Chuang RY, Kelly TJ. DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci U S A 2004; 102:337-42. [PMID: 15623550 PMCID: PMC539312 DOI: 10.1073/pnas.0408811102] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Origins of DNA replication in Schizosaccharomyces pombe lack a specific consensus sequence analogous to the Saccharomyces cerevisiae autonomously replicating sequence (ARS) consensus, raising the question of how they are recognized by the replication machinery. Because all well characterized S. pombe origins are located in intergenic regions, we analyzed the sequence properties and biological activity of such regions. The AT content of intergenes is very high ( approximately 70%), and runs of A's or T's occur with a significantly greater frequency than expected. Additionally, the two DNA strands in intergenes display compositional asymmetry that strongly correlates with the direction of transcription of flanking genes. Importantly, the sequence properties of known S. pombe origins of DNA replication are similar to those of intergenes in general. In functional studies, we assayed the in vivo origin activity of 26 intergenes in a 68-kb region of S. pombe chromosome 2. We also assayed the origin activity of sets of randomly chosen intergenes with the same length or AT content. Our data demonstrate that at least half of intergenes have potential origin activity and that the relative ability of an intergene to function as an origin is governed primarily by AT content and length. We propose a stochastic model for initiation of DNA replication in the fission yeast. In this model, the number of AT tracts in a given sequence is the major determinant of its probability of binding SpORC and serving as a replication origin. A similar model may explain some features of origins of DNA replication in metazoans.
Collapse
Affiliation(s)
- Jianli Dai
- Department of Molecular Biology and Genetics, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
145
|
Ghosh D. Nonparametric methods for analyzing replication origins in genomewide data. Funct Integr Genomics 2004; 5:28-31. [PMID: 15599787 DOI: 10.1007/s10142-004-0122-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 08/13/2004] [Accepted: 08/16/2004] [Indexed: 11/25/2022]
Abstract
Due to the advent of high-throughput genomic technology, it has become possible to monitor cellular activities on a genomewide basis. With these new methods, scientists can begin to address important biological questions. One such question involves the identification of replication origins, which are regions in the chromosomes where DNA replication is initiated. One hypothesis is that their locations are nonrandom throughout the genome. In this article, we analyze data from a recent yeast study in which candidate replication origins were profiled using cDNA microarrays to test this hypothesis. We find no evidence for such clustering.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Biostatistics, School of Public Health, University of Michigan, 1420 Washington Heights, Room M4057, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
146
|
Stedman W, Deng Z, Lu F, Lieberman PM. ORC, MCM, and histone hyperacetylation at the Kaposi's sarcoma-associated herpesvirus latent replication origin. J Virol 2004; 78:12566-75. [PMID: 15507644 PMCID: PMC525046 DOI: 10.1128/jvi.78.22.12566-12575.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The viral genome of Kaposi's sarcoma-associated herpesvirus (KSHV) persists as an extrachromosomal plasmid in latently infected cells. The KSHV latency-associated nuclear antigen (LANA) stimulates plasmid maintenance and DNA replication by binding to an approximately 150-bp region within the viral terminal repeats (TR). We have used chromatin immunoprecipitation assays to demonstrate that LANA binds specifically to the replication origin sequence within the KSHV TR in latently infected cells. The latent replication origin within the TR was also bound by LANA-associated proteins CBP, double-bromodomain-containing protein 2 (BRD2), and the origin recognition complex 2 protein (ORC2) and was enriched in hyperacetylated histones H3 and H4 relative to other regions of the latent genome. Cell cycle analysis indicated that the minichromosome maintenance complex protein, MCM3, bound TR in late-G(1)/S-arrested cells, which coincided with the loss of histone H3 K4 methylation. Micrococcal nuclease studies revealed that TRs are embedded in a highly ordered nucleosome array that becomes disorganized in late G(1)/S phase. ORC binding to TR was LANA dependent when reconstituted in transfected plasmids. DNA affinity purification confirmed that LANA, CBP, BRD2, and ORC2 bound TR specifically and identified the histone acetyltransferase HBO1 (histone acetyltransferase binding to ORC1) as a potential TR binding protein. Disruption of ORC2, MCM5, and HBO1 expression by small interfering RNA reduced LANA-dependent DNA replication of TR-containing plasmids. These findings are the first demonstration that cellular replication and origin licensing factors are required for KSHV latent cycle replication. These results also suggest that the KSHV latent origin of replication is a unique chromatin environment containing histone H3 hyperacetylation within heterochromatic tandem repeats.
Collapse
Affiliation(s)
- William Stedman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104-4268, USA
| | | | | | | |
Collapse
|
147
|
Abstract
After 40 years of searching for the eukaryotic replicator sequence, it is time to abandon the concept of 'the' replicator as a single genetic entity. Here I propose a 'relaxed replicon model' in which a positive initiator-replicator interaction is facilitated by a combination of several complex features of chromatin. An important question for the future is whether the positions of replication origins are simply a passive result of local chromatin structure or are actively localized to coordinate replication with other chromosomal activities.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NewYork 13210, USA.
| |
Collapse
|
148
|
Beall EL, Bell M, Georlette D, Botchan MR. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev 2004; 18:1667-80. [PMID: 15256498 PMCID: PMC478189 DOI: 10.1101/gad.1206604] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene amplification at the chorion loci in Drosophila ovarian follicle cells is a model for the developmental regulation of DNA replication. Previously, we showed that the Drosophila homolog of the Myb oncoprotein family (DmMyb) is tightly associated with four additional proteins and that DmMyb is required for this replication-mediated amplification. Here we used targeted mutagenesis to generate a mutant in the largest subunit of the DmMyb complex, the Aly and Lin-9 family member, Myb-interacting protein 130 (Mip130). We found that mip130 mutant females are sterile and display inappropriate bromodeoxyuridine (BrdU) incorporation throughout the follicle cell nuclei at stages undergoing gene amplification. Whereas mutations in Dm-myb are lethal, mutations in mip130 are viable. Surprisingly, Dm-myb mip130 double mutants are also viable and display the same phenotypes as mip130 mutants alone. This suggests that Mip130 activity without DmMyb counteraction may be responsible for the Dm-myb mutant lethality. RNA interference (RNAi) to selectively remove each DmMyb complex member revealed that DmMyb protein levels are dependent upon the presence of several of the complex members. Together, these data support a model in which DmMyb activates a repressive complex containing Mip130 into a complex competent to support replication at specific loci in a temporally and developmentally proscribed manner.
Collapse
Affiliation(s)
- Eileen L Beall
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
149
|
Chang VK, Donato JJ, Chan CS, Tye BK. Mcm1 promotes replication initiation by binding specific elements at replication origins. Mol Cell Biol 2004; 24:6514-24. [PMID: 15226450 PMCID: PMC434236 DOI: 10.1128/mcb.24.14.6514-6524.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Minichromosome maintenance protein 1 (Mcm1) is required for efficient replication of autonomously replicating sequence (ARS)-containing plasmids in yeast cells. Reduced DNA binding activity in the Mcm1-1 mutant protein (P97L) results in selective initiation of a subset of replication origins and causes instability of ARS-containing plasmids. This plasmid instability in the mcm1-1 mutant can be overcome for a subset of ARSs by the inclusion of flanking sequences. Previous work showed that Mcm1 binds sequences flanking the minimal functional domains of ARSs. Here, we dissected two conserved telomeric X ARSs, ARS120 (XARS6L) and ARS131a (XARS7R), that replicate with different efficiencies in the mcm1-1 mutant. We found that additional Mcm1 binding sites in the C domain of ARS120 that are missing in ARS131a are responsible for efficient replication of ARS120 in the mcm1-1 mutant. Mutating a conserved Mcm1 binding site in the C domain diminished replication efficiency in ARS120 in wild-type cells, and increasing the number of Mcm1 binding sites stimulated replication efficiency. Our results suggest that threshold occupancy of Mcm1 in the C domain of telomeric ARSs is required for efficient initiation. We propose that origin usage in Saccharomyces cerevisiae may be regulated by the occupancy of Mcm1 at replication origins.
Collapse
Affiliation(s)
- Victoria K Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
150
|
Fowler CB, Pogozheva ID, LeVine H, Mosberg HI. Refinement of a homology model of the mu-opioid receptor using distance constraints from intrinsic and engineered zinc-binding sites. Biochemistry 2004; 43:8700-10. [PMID: 15236578 DOI: 10.1021/bi036067r] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Publication of the rhodopsin X-ray structure has facilitated the development of homology models of other G protein-coupled receptors. However, possible shifts of transmembrane (TM) alpha helices, expected variations in helical distortions, and differences in loop size necessitate experimental verification of these comparative models. To refine a rhodopsin-based homology model of the mu-opioid receptor (MOR), we experimentally determined structural-distance constraints from intrinsic and engineered metal-binding sites in the rat MOR. Investigating the relatively high intrinsic affinity of MOR for Zn(2+) (IC(50) approximately 30microM), we observed that mutation of His(319) (TM7) abolished Zn(2+) inhibition of ligand binding, while mutation of Asp(216) (extracellular loop 2) decreased the effect of Zn(2+), suggesting these residues participate in the intrinsic Zn(2+)-binding center of MOR. To verify the relative orientation of TM5 and TM6 and to examine whether a rhodopsin-like alpha aneurism is present in TM5, we engineered Zn(2+)-binding centers by mutating residues of TM5 and TM6 to Cys or His, making use of the native His(297) in TM6 as an additional Zn(2+)-coordination site. Inhibition of opioid ligand binding by Zn(2+) suggests that residues Ile(234) and Phe(237) in TM5 face the binding-site crevice and form a metal-binding center with His(297) and Val(300) in TM6. This observation is inconsistent with a rhodopsin-like structure, which would locate Ile(234) on the lipid-exposed side of TM5, too distant from other residues making up the Zn(2+)-binding site. Subsequent distance geometry refinement of the MOR model indicates that the rhodopsin-like alpha aneurism is likely absent in TM2 but present in TM5.
Collapse
Affiliation(s)
- Carol B Fowler
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | |
Collapse
|