101
|
Pilakouta N, Killen SS, Kristjánsson BK, Skúlason S, Lindström J, Metcalfe NB, Parsons KJ. Geothermal stickleback populations prefer cool water despite multigenerational exposure to a warm environment. Ecol Evol 2023; 13:e9654. [PMID: 36644700 PMCID: PMC9831902 DOI: 10.1002/ece3.9654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Given the threat of climate change to biodiversity, a growing number of studies are investigating the potential for organisms to adapt to rising temperatures. Earlier work has predicted that physiological adaptation to climate change will be accompanied by a shift in temperature preferences, but empirical evidence for this is lacking. Here, we test whether exposure to different thermal environments has led to changes in preferred temperatures in the wild. Our study takes advantage of a "natural experiment" in Iceland, where freshwater populations of threespine sticklebacks (Gasterosteus aculeatus) are found in waters warmed by geothermal activity year-round (warm habitats), adjacent to populations in ambient-temperature lakes (cold habitats). We used a shuttle-box approach to measure temperature preferences of wild-caught sticklebacks from three warm-cold population pairs. Our prediction was that fish from warm habitats would prefer higher water temperatures than those from cold habitats. We found no support for this, as fish from both warm and cold habitats had an average preferred temperature of 13°C. Thus, our results challenge the assumption that there will be a shift in ectotherm temperature preferences in response to climate change. In addition, since warm-habitat fish can persist at relatively high temperatures despite a lower-temperature preference, we suggest that preferred temperature alone may be a poor indicator of a population's adaptive potential to a novel thermal environment.
Collapse
Affiliation(s)
- Natalie Pilakouta
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - Shaun S. Killen
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | | | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | - Jan Lindström
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Neil B. Metcalfe
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Kevin J. Parsons
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
102
|
Schaubeck A, Cao D, Cavaleri V, Mun S, Jeon SJ. Carapace microbiota in American lobsters ( Homarus americanus) associated with epizootic shell disease and the green gland. Front Microbiol 2023; 14:1093312. [PMID: 37089549 PMCID: PMC10113626 DOI: 10.3389/fmicb.2023.1093312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 04/25/2023] Open
Abstract
Epizootic Shell Disease (ESD) has posed a great threat, both ecologically and economically, to the American lobster population of Long Island Sound since its emergence in the late 1990s. Because of the polymicrobial nature of carapace infections, causative agents for ESD remain unclear. In this study, we aimed to identify carapace microbiota associated with ESD and its potential impact on the microbiota of internal organs (green gland, hepatopancreas, intestine, and testis) using high-throughput 16S rRNA gene sequencing. We found that lobsters with ESD harbored specific carapace microbiota characterized by high abundance of Aquimarina, which was significantly different from healthy lobsters. PICRUSt analysis showed that metabolic pathways such as amino acid metabolism were enriched in the carapace microbiota of lobsters with ESD. Aquimarina, Halocynthiibacter, and Tenacibaculum were identified as core carapace bacteria associated with ESD. Particularly, Aquimarina and Halocynthiibacter were detected in the green gland, hepatopancreas, and testis of lobsters with ESD, but were absent from all internal organs tested in healthy lobsters. Hierarchical clustering analysis revealed that the carapace microbiota of lobsters with ESD was closely related to the green gland microbiota, whereas the carapace microbiota of healthy lobsters was more similar to the testis microbiota. Taken together, our findings suggest that ESD is associated with alterations in the structure and function of carapace microbiota, which may facilitate the invasion of bacteria into the green gland.
Collapse
Affiliation(s)
- Anna Schaubeck
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Dianjun Cao
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Vincent Cavaleri
- Division of Marine Resources, New York State Department of Environmental Conservation, East Setauket, NY, United States
| | - Seyoung Mun
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Soo Jin Jeon
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| |
Collapse
|
103
|
Pilakouta N, O'Donnell PJ, Crespel A, Levet M, Claireaux M, Humble JL, Kristjánsson BK, Skúlason S, Lindström J, Metcalfe NB, Killen SS, Parsons KJ. A warmer environment can reduce sociability in an ectotherm. GLOBAL CHANGE BIOLOGY 2023; 29:206-214. [PMID: 36259414 PMCID: PMC10092372 DOI: 10.1111/gcb.16451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/25/2022] [Indexed: 05/05/2023]
Abstract
The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a 'natural experiment' of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations.
Collapse
Affiliation(s)
- Natalie Pilakouta
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - Patrick J. O'Donnell
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Amélie Crespel
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Marie Levet
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- Department of Biological SciencesUniversity of MontrealMontrealCanada
| | - Marion Claireaux
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- Norwegian Institute of Marine ResearchBergenNorway
| | - Joseph L. Humble
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | | | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | - Jan Lindström
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Neil B. Metcalfe
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Shaun S. Killen
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Kevin J. Parsons
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
104
|
Manlik O, Mundra S, Schmid‐Hempel R, Schmid‐Hempel P. Impact of climate change on parasite infection of an important pollinator depends on host genotypes. GLOBAL CHANGE BIOLOGY 2023; 29:69-80. [PMID: 36176231 PMCID: PMC10092497 DOI: 10.1111/gcb.16460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 05/20/2023]
Abstract
Climate change is predicted to affect host-parasite interactions, and for some hosts, parasite infection is expected to increase with rising temperatures. Global population declines of important pollinators already have been attributed to climate change and parasitism. However, the role of climate in driving parasite infection and the genetic basis for pollinator hosts to respond often remain obscure. Based on decade-long field data, we investigated the association between climate and Nosema bombi (Microsporidia) infection of buffed-tailed bumblebees (Bombus terrestris), and whether host genotypes play a role. For this, we genotyped 876 wild bumblebee queens and screened for N. bombi infection of those queens between 2000 and 2010. We recorded seven climate parameters during those 11 years and tested for correlations between climate and infection prevalence. Here we show that climatic factors drive N. bombi infection and that the impact of climate depends on mitochondrial DNA cytochrome oxidase I (COI) haplotypes of the host. Infection prevalence was correlated with climatic variables during the time when queens emerge from hibernation. Remarkably, COI haplotypes best predict this association between climatic factors and infection. In particular, two host haplotypes ("A" and "B") displayed phenotypic plasticity in response to climatic variation: Temperature was positively correlated with infection of host haplotype B, but not haplotype A. The likelihood of infection of haplotype A was associated with moisture, conferring greater resistance to parasite infection during wetter years. In contrast, infection of haplotype B was unrelated to moisture. To the best of our knowledge, this is the first study that identifies specific host genotypes that confer differential parasite resistance under variable climatic conditions. Our results underscore the importance of mitochondrial haplotypes to ward off parasites in a changing climate. More broadly, this also suggests that COI may play a pertinent role in climate change adaptations of insect pollinators.
Collapse
Affiliation(s)
- Oliver Manlik
- Biology Department, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Sunil Mundra
- Biology Department, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - Regula Schmid‐Hempel
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - Paul Schmid‐Hempel
- ETH Zurich, Institute of Integrative Biology (IBZ), ETH‐Zentrum CHNZurichSwitzerland
| |
Collapse
|
105
|
Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar Drugs 2022; 21:23. [PMID: 36662196 PMCID: PMC9867177 DOI: 10.3390/md21010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Collapse
Affiliation(s)
- Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
106
|
Giari L, Castaldelli G, Timi JT. Ecology and effects of metazoan parasites of fish in transitional waters. Parasitology 2022; 149:1829-1841. [PMID: 35946119 PMCID: PMC11010487 DOI: 10.1017/s0031182022001068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
Given the abundance, heterogeneity and ubiquity of parasitic organisms, understanding how they influence biodiversity, evolution, health and ecosystem functionality is crucial, especially currently when anthropogenic pressures are altering host–parasite balances. This review describes the features, roles and impacts of metazoan parasites of fish occurring in transitional waters (TW). These aquatic ecosystems are highly productive and widespread around the globe and represent most favourable theatres for parasitism given the availability of hosts (invertebrates, fishes and birds) and an increased probability of parasite transmission, especially of those having complex life cycles. Fascinating examples of how parasitism can influence different hierarchical levels of biological systems, from host individuals and populations to entire aquatic communities, through effects on food webs come from this kind of ecosystem. Edible fish of commercial value found in TW can harbour some parasite species, significantly reducing host health, marketability and food safety, with possible economic and public health consequences. Many TW are historically exploited by humans as sources of relevant ecosystem services, including fisheries and aquaculture, and they are highly vulnerable ecosystems. Alteration of TW can be revealed through the study of parasite communities, contributing, as bioindicators, for assessing environmental changes, health and restoration. Fish parasites can provide much information about TW, but this potential appears to be not fully exploited. More studies are necessary to quantify the ecological, economic and medical impacts fish parasites can have on these important ecosystems.
Collapse
Affiliation(s)
- Luisa Giari
- Department of Environment and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Environment and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy
| | - Juan Tomás Timi
- Laboratorio de Ictioparasitología, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, 7600 Mar del Plata, Argentina
| |
Collapse
|
107
|
Thongthaisong P, Kasada M, Grossart H, Wollrab S. Critical role of parasite-mediated energy pathway on community response to nutrient enrichment. Ecol Evol 2022; 12:e9622. [PMID: 36523515 PMCID: PMC9748242 DOI: 10.1002/ece3.9622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/30/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
Parasites form an integral part of food webs, however, they are often ignored in classic food web theory or limited to the investigation of trophic transmission pathways. Specifically, direct consumption of parasites by nonhost predators is rarely considered, while it can contribute substantially to energy flow in food webs. In aquatic systems, chytrids constitute a major group of fungal parasites whose free-living infective stages (zoospores) form a highly nutritional food source to zooplankton. Thereby, the consumption of zoospores can create an energy pathway from otherwise inedible phytoplankton to zooplankton ("mycoloop"). This parasite-mediated energy pathway might be of special importance during phytoplankton blooms dominated by inedible or toxic primary producers like cyanobacteria, which are on the rise with eutrophication and global warming. We theoretically investigated community dynamics and energy transfer in a food web consisting of an edible nonhost and an inedible host phytoplankton species, a parasitic fungus, and a zooplankton species grazing on edible phytoplankton and fungi. Food web dynamics were investigated along a nutrient gradient contrasting nonadaptive zooplankton species representative for filter feeders like cladocerans and zooplankton with the ability to actively adapt their feeding preferences like many copepod species. Overall, the importance of the mycoloop for zooplankton increases with nutrient availability. This increase is smooth for nonadaptive consumers. For adaptive consumers, we observe an abrupt shift from an almost exclusive preference for edible phytoplankton at low nutrient levels to a strong preference for parasitic fungi at high nutrient levels. The model predicts that parasitic fungi could contribute up to 50% of the zooplankton diet in nutrient-rich environments, which agrees with empirical observations on zooplankton gut content from eutrophic systems during blooms of inedible diatoms or cyanobacteria. Our findings highlight the role of parasite-mediated energy pathways for predictions of energy flow and community composition under current and future environmental change.
Collapse
Affiliation(s)
- Patch Thongthaisong
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Institute for Biochemistry and BiologyPotsdam UniversityPotsdamGermany
| | - Minoru Kasada
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Hans‐Peter Grossart
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Institute for Biochemistry and BiologyPotsdam UniversityPotsdamGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Sabine Wollrab
- Department of Plankton and Microbial EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| |
Collapse
|
108
|
Fu H, Tian J, Shi C, Li Q, Liu S. Ecological significance of G protein-coupled receptors in the Pacific oyster (Crassostrea gigas): Pervasive gene duplication and distinct transcriptional response to marine environmental stresses. MARINE POLLUTION BULLETIN 2022; 185:114269. [PMID: 36368080 DOI: 10.1016/j.marpolbul.2022.114269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Marine ecosystems with ocean warming and industry pollution threaten the survival and adaptation of organisms. G protein-coupled receptors (GPCRs) play critical roles in various physiological and toxicological processes in vertebrates and invertebrates. The Pacific oyster (Crassostrea gigas) was widely used to study the adaptation of marine molluscs to coastal environments. In this work, we identified a total of 586 GPCRs in C. gigas genome. The C. gigas GPCRs were divided into five classes (including class A, B, C, E and F) with different degrees of expansion. Meta-analysis of multiple RNA-seq datasets revealed that transcriptional expression patterns of GPCRs in C. gigas were distinct in response to high temperature, salinity, air exposure, heavy metal, ostreid herpes virus 1 (OsHV-1) and Vibrio challenge. This work for the first time characterized the GPCR gene family and provided insights into the potential roles of GPCRs in adaptation of marine molluscs to stressful coastal environment.
Collapse
Affiliation(s)
- Huiru Fu
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Jing Tian
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chenyu Shi
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shikai Liu
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
109
|
Figueiredo C, Grilo TF, Oliveira R, Ferreira IJ, Gil F, Lopes C, Brito P, Ré P, Caetano M, Diniz M, Raimundo J. Gadolinium ecotoxicity is enhanced in a warmer and acidified changing ocean as shown by the surf clam Spisula solida through a multibiomarker approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106346. [PMID: 36327686 DOI: 10.1016/j.aquatox.2022.106346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Humans have exhaustively combusted fossil fuels, and released pollutants into the environment, at continuously faster rates resulting in global average temperature increase and seawater pH decrease. Climate change is forecasted to exacerbate the effects of pollutants such as the emergent rare earth elements. Therefore, the objective of this study was to assess the combined effects of rising temperature (Δ = + 4 °C) and decreasing pH (Δ = - 0.4 pH units) on the bioaccumulation and elimination of gadolinium (Gd) in the bioindicator bivalve species Spisula solida (Surf clam). We exposed surf clams to 10 µg L-1 of GdCl3 for seven days, under warming, acidification, and their combination, followed by a depuration phase lasting for another 7 days and investigated the Gd bioaccumulation and oxidative stress-related responses after 1, 3 and 7 days of exposure and the elimination phase. Gadolinium accumulated after just one day with values reaching the highest after 7 days. Gadolinium was not eliminated after 7 days, and elimination is further hampered under climate change scenarios. Warming and acidification, and their interaction did not significantly impact Gd concentration. However, there was a significant interaction on clam's biochemical response. The augmented total antioxidant capacity and lipid peroxidation values show that the significant impacts of Gd on the oxidative stress response are enhanced under warming while the increased superoxide dismutase and catalase values demonstrate the combined impact of Gd, warming & acidification. Ultimately, lipid damage was greater in clams exposed to warming & Gd, which emphasizes the enhanced toxic effects of Gd in a changing ocean.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal; Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; Department of Chemistry, Department of Life Sciences, School of Science and Technology, UCIBIO, Applied Molecular Biosciences Unit, NOVA University Lisbon, Caparica 2819-516, Portugal.
| | - Tiago F Grilo
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Rui Oliveira
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal
| | - Inês João Ferreira
- Chemistry Department, LAQV-REQUIMTE, NOVA School of Science and Technology, Caparica 2829-516, Portugal
| | - Fátima Gil
- Aquário Vasco da Gama, Rua Direita do Dafundo, Cruz Quebrada 1495-718, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Pedro Brito
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Pedro Ré
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Mário Diniz
- Department of Chemistry, Department of Life Sciences, School of Science and Technology, UCIBIO, Applied Molecular Biosciences Unit, NOVA University Lisbon, Caparica 2819-516, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2819-516, Portugal
| | - Joana Raimundo
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; Aquário Vasco da Gama, Rua Direita do Dafundo, Cruz Quebrada 1495-718, Portugal
| |
Collapse
|
110
|
Rezvi HUA, Tahjib‐Ul‐Arif M, Azim MA, Tumpa TA, Tipu MMH, Najnine F, Dawood MFA, Skalicky M, Brestič M. Rice and food security: Climate change implications and the future prospects for nutritional security. Food Energy Secur 2022. [DOI: 10.1002/fes3.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Md. Tahjib‐Ul‐Arif
- Department of Biochemistry and Molecular Biology Bangladesh Agricultural University Mymensingh Bangladesh
| | - Md. Abdul Azim
- Biotechnology Division Bangladesh Sugarcrop Research Institute Pabna Bangladesh
| | - Toufica Ahmed Tumpa
- Department of Entomology Bangladesh Agricultural University Mymensingh Bangladesh
| | | | - Farhana Najnine
- Food Science and Engineering South China University of Technology Guangdong Guangzhou China
| | - Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science Assiut University Assiut Egypt
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague Prague Czech Republic
| | - Marián Brestič
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague Prague Czech Republic
- Institute of Plant and Environmental Sciences Faculty of Agrobiology and Food Resources Slovak University of Agriculture Nitra Slovakia
| |
Collapse
|
111
|
Mithöfer A, Riemann M, Faehn CA, Mrazova A, Jaakola L. Plant defense under Arctic light conditions: Can plants withstand invading pests? FRONTIERS IN PLANT SCIENCE 2022; 13:1051107. [PMID: 36507393 PMCID: PMC9729949 DOI: 10.3389/fpls.2022.1051107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Global warming is predicted to change the growth conditions for plants and crops in regions at high latitudes (>60° N), including the Arctic. This will be accompanied by alterations in the composition of natural plant and pest communities, as herbivorous arthropods will invade these regions as well. Interactions between previously non-overlapping species may occur and cause new challenges to herbivore attack. However, plants growing at high latitudes experience less herbivory compared to plants grown at lower latitudes. We hypothesize that this finding is due to a gradient of constitutive chemical defense towards the Northern regions. We further hypothesize that higher level of defensive compounds is mediated by higher level of the defense-related phytohormone jasmonate. Because its biosynthesis is light dependent, Arctic summer day light conditions can promote jasmonate accumulation and, hence, downstream physiological responses. A pilot study with bilberry (Vaccinium myrtillus) plants grown under different light regimes supports the hypothesis.
Collapse
Affiliation(s)
- Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Corine A. Faehn
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Anna Mrazova
- Institute of Entomology, Biology Centre of Czech Academy of Science, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Laura Jaakola
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
112
|
Brusch GA, Le Galliard J, Viton R, Gavira RSB, Clobert J, Lourdais O. Reproducing in a changing world: combined effects of thermal conditions by day and night and of water constraints during pregnancy in a cold‐adapted ectotherm. OIKOS 2022. [DOI: 10.1111/oik.09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- George A. Brusch
- Biological Sciences, California State Univ. San Marcos San Marcos CA USA
| | - Jean‐François Le Galliard
- Sorbonne Univ., CNRS, IRD, INRAe, Inst. d'Écologie et des Sciences de l'Environnement (IEES) Paris Cedex 5 France
- Ecole Normale Supérieure, PSL Univ., Dépt de Biologie, CNRS, UMS 3194, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP‐Ecotron IleDeFrance) Saint‐Pierre‐lès‐Nemours France
| | - Robin Viton
- Centre d'Etudes Biologiques de Chizé, CNRS Villiers en Bois France
| | | | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321 Saint Girons France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS Villiers en Bois France
- School of Life Sciences, Arizona State Univ. Tempe AZ USA
| |
Collapse
|
113
|
Cristescu RH, Strickland K, Schultz AJ, Kruuk LEB, de Villiers D, Frère CH. Susceptibility to a sexually transmitted disease in a wild koala population shows heritable genetic variance but no inbreeding depression. Mol Ecol 2022; 31:5455-5467. [PMID: 36043238 PMCID: PMC9826501 DOI: 10.1111/mec.16676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
The koala, one of the most iconic Australian wildlife species, is facing several concomitant threats that are driving population declines. Some threats are well known and have clear methods of prevention (e.g., habitat loss can be reduced with stronger land-clearing control), whereas others are less easily addressed. One of the major current threats to koalas is chlamydial disease, which can have major impacts on individual survival and reproduction rates and can translate into population declines. Effective management strategies for the disease in the wild are currently lacking, and, to date, we know little about the determinants of individual susceptibility to disease. Here, we investigated the genetic basis of variation in susceptibility to chlamydia using one of the most intensively studied wild koala populations. We combined data from veterinary examinations, chlamydia testing, genetic sampling and movement monitoring. Out of our sample of 342 wild koalas, 60 were found to have chlamydia. Using genotype information on 5007 SNPs to investigate the role of genetic variation in determining disease status, we found no evidence of inbreeding depression, but a heritability of 0.11 (95% CI: 0.06-0.23) for the probability that koalas had chlamydia. Heritability of susceptibility to chlamydia could be relevant for future disease management, as it suggests adaptive potential for the population.
Collapse
Affiliation(s)
- Romane H. Cristescu
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Kasha Strickland
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Anthony J. Schultz
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQueenslandAustralia,Icelandic Museum of Natural History (Náttúruminjasafn Íslands)ReykjavikIceland
| | - Loeske E. B. Kruuk
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK,Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | - Céline H. Frère
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
114
|
Meo SA, Alsomali AH, Almushawah AA, Halepoto DM. Seasonal variations impact on SARS-CoV-2 incidence and mortality in southern and northern hemispheres: Two years pandemic period based study. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102335. [PMID: 36157716 PMCID: PMC9491009 DOI: 10.1016/j.jksus.2022.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/24/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Objectives The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) infection is a highly challenging problem in the world. The impact of weather conditions on the spread of SARS-CoV-2 has been hypothesized, but the level of understanding remains lacking. This study investigates the impact of seasonal variations on SARS-CoV-2 incidence and mortality in the Southern and Northern hemispheres. Methods We enlisted all the countries from both hemispheres and then randomly selected 20 countries, 10 countries from each hemisphere. After that, we recorded the SARS-CoV-2 daily cases and deaths in these selected countries from the Worldometer for the period of two years from December 31, 2019, to December 31, 2021. Results During the study period, in 10 selected countries of the Northern hemisphere, the number of SARS-CoV-2 cases was 18381.6 ± 419.7 and deaths 300.4 ± 6.4. However, the number of cases in the southern hemisphere is 6282.9 ± 205.8, and mortality was 210.0 ± 7.7. In the Northern hemisphere, the number of SARS-CoV-2 cases (p = 0.001) and deaths (p = 0.001) significantly increased compared to the southern hemisphere. The maximum number of cases and deaths occurred during the winter (18806.4 ± 785.3) and autumn (17034.1 ± 538.4) periods in both the hemisphere compared to spring and summer. Similarly, the number of deaths increased in winter (391.0 ± 13.4, p = 0.001) and autumn (308.6 ± 11.6) compared to spring and summer in both hemispheres. Conclusions The highest occurrence of SARS-CoV-2 cases and deaths was found during the winter and autumn seasons, while the lowest was found in the spring and summer during the study period of two years. The health officials inform the public about the seasonal occurrence of the SARS-CoV-2 outbreak and take priority preventive measures to minimize the disease burden.
Collapse
Affiliation(s)
- Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Dost Muhammad Halepoto
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
115
|
Glidden CK, Field LC, Bachhuber S, Hennessey SM, Cates R, Cohen L, Crockett E, Degnin M, Feezell MK, Fulton‐Bennett HK, Pires D, Poirson BN, Randell ZH, White E, Gravem SA. Strategies for managing marine disease. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2643. [PMID: 35470930 PMCID: PMC9786832 DOI: 10.1002/eap.2643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The incidence of emerging infectious diseases (EIDs) has increased in wildlife populations in recent years and is expected to continue to increase with global environmental change. Marine diseases are relatively understudied compared with terrestrial diseases but warrant parallel attention as they can disrupt ecosystems, cause economic loss, and threaten human livelihoods. Although there are many existing tools to combat the direct and indirect consequences of EIDs, these management strategies are often insufficient or ineffective in marine habitats compared with their terrestrial counterparts, often due to fundamental differences between marine and terrestrial systems. Here, we first illustrate how the marine environment and marine organism life histories present challenges and opportunities for wildlife disease management. We then assess the application of common disease management strategies to marine versus terrestrial systems to identify those that may be most effective for marine disease outbreak prevention, response, and recovery. Finally, we recommend multiple actions that will enable more successful management of marine wildlife disease emergencies in the future. These include prioritizing marine disease research and understanding its links to climate change, improving marine ecosystem health, forming better monitoring and response networks, developing marine veterinary medicine programs, and enacting policy that addresses marine and other wildlife diseases. Overall, we encourage a more proactive rather than reactive approach to marine wildlife disease management and emphasize that multidisciplinary collaborations are crucial to managing marine wildlife health.
Collapse
Affiliation(s)
- Caroline K. Glidden
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
- Present address:
Department of BiologyStanford UniversityStanfordCaliforniaUSA
| | - Laurel C. Field
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Silke Bachhuber
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | | | - Robyn Cates
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Lesley Cohen
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Elin Crockett
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Michelle Degnin
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Maya K. Feezell
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | | | - Devyn Pires
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | | | - Zachary H. Randell
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Erick White
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Sarah A. Gravem
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
116
|
ENVIRONMENTAL FACTOR INVESTIGATION OF EXUDATIVE CLOACITIS IN KĀKĀPŌ (STRIGOPS HABROPTILUS) ON WHENUA HOU (CODFISH ISLAND), NEW ZEALAND. J Wildl Dis 2022; 58:769-781. [PMID: 36302364 DOI: 10.7589/jwd-d-21-00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/13/2022] [Indexed: 12/02/2022]
Abstract
Kākāpō (Strigops habroptilus) are critically endangered nocturnal parrots endemic to New Zealand. Exudative cloacitis is a disease only affecting the breeding population of Kākāpō on Whenua Hou (Codfish Island), for which a consistent primary pathogenic organism involved has not been identified. This epidemiological study was conducted to identify the environmental factors contributing to the initiation of this disease in Kākāpō by 1) producing and describing a case series; 2) mapping the geographic distribution of exudative cloacitis cases; 3) investigating the chemical characteristics of Kākāpō roosting sites; and 4) assessing the effects of climatic factors on the incidence of exudative cloacitis each year. Soil samples from the Kākāpō roost sites and other areas of the Whenua Hou were examined for pH, ammonium, and moisture contents. From 2002 to 2017, 22 sporadic cases of exudative cloacitis have been diagnosed and the disease distribution on Whenua Hou overlaps the Kākāpō distribution. A mixed group of adults and juveniles was affected and there was no evidence of spatial or temporal clustering of the disease. Current findings on the chemical characteristics of Kākāpō roosting sites do not show any evidence that these factors are involved in the initiation of the exudative cloacitis. Nevertheless, the results suggest that the ammonium and moisture levels of the roosts are worthy of more detailed study in future cases. We were not able to demonstrate any significant influence of broad measures of climate on the incidence of exudative cloacitis on Whenua Hou. Prospective data collection would help for a complete epidemiological investigation of this disease in future cases.
Collapse
|
117
|
MacKnight NJ, Dimos BA, Beavers KM, Muller EM, Brandt ME, Mydlarz LD. Disease resistance in coral is mediated by distinct adaptive and plastic gene expression profiles. SCIENCE ADVANCES 2022; 8:eabo6153. [PMID: 36179017 PMCID: PMC9524840 DOI: 10.1126/sciadv.abo6153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infectious diseases are an increasing threat to coral reefs, resulting in altered community structure and hindering the functional contributions of disease-susceptible species. We exposed seven reef-building coral species from the Caribbean to white plague disease and determined processes involved in (i) lesion progression, (ii) within-species gene expression plasticity, and (iii) expression-level adaptation among species that lead to differences in disease risk. Gene expression networks enriched in immune genes and cytoskeletal arrangement processes were correlated to lesion progression rates. Whether or not a coral developed a lesion was mediated by plasticity in genes involved in extracellular matrix maintenance, autophagy, and apoptosis, while resistant coral species had constitutively higher expression of intracellular protein trafficking. This study offers insight into the process involved in lesion progression and within- and between-species dynamics that lead to differences in disease risk that is evident on current Caribbean reefs.
Collapse
Affiliation(s)
- Nicholas J. MacKnight
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Bradford A. Dimos
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Kelsey M. Beavers
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Erinn M. Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Marilyn E. Brandt
- University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Laura D. Mydlarz
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
- Corresponding author.
| |
Collapse
|
118
|
Twumasi C, Jones O, Cable J. Spatial and temporal parasite dynamics: microhabitat preferences and infection progression of two co-infecting gyrodactylids. PARASITES & VECTORS 2022; 15:336. [PMID: 36153606 PMCID: PMC9508750 DOI: 10.1186/s13071-022-05471-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/03/2022] [Indexed: 11/20/2022]
Abstract
Background Mathematical modelling of host-parasite systems has seen tremendous developments and broad applications in theoretical and applied ecology. The current study focuses on the infection dynamics of a gyrodactylid-fish system. Previous experimental studies have explored the infrapopulation dynamics of co-infecting ectoparasites, Gyrodactylus turnbulli and G. bullatarudis, on their fish host, Poecilia reticulata, but questions remain about parasite microhabitat preferences, host survival and parasite virulence over time. Here, we use more advanced statistics and a sophisticated mathematical model to investigate these questions based on empirical data to add to our understanding of this gyrodactylid-fish system. Methods A rank-based multivariate Kruskal-Wallis test coupled with its post-hoc tests and graphical summaries were used to investigate the spatial and temporal parasite distribution of different gyrodactylid strains across different host populations. By adapting a multi-state Markov model that extends the standard survival models, we improved previous estimates of survival probabilities. Finally, we quantified parasite virulence of three different strains as a function of host mortality and recovery across different fish stocks and sexes. Results We confirmed that the captive-bred G. turnbulli and wild G. bullatarudis strains preferred the caudal and rostral regions respectively across different fish stocks; however, the wild G. turnbulli strain changed microhabitat preference over time, indicating microhabitat preference of gyrodactylids is host and time dependent. The average time of host infection before recovery or death was between 6 and 14 days. For this gyrodactylid-fish system, a longer period of host infection led to a higher chance of host recovery. Parasite-related mortalities are host, sex and time dependent, whereas fish size is confirmed to be the key determinant of host recovery. Conclusion From existing empirical data, we provided new insights into the gyrodactylid-fish system. This study could inform the modelling of other host-parasite interactions where the entire infection history of the host is of interest by adapting multi-state Markov models. Such models are under-utilised in parasitological studies and could be expanded to estimate relevant epidemiological traits concerning parasite virulence and host survival. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05471-9.
Collapse
|
119
|
Samuel MD, Poje JE, Rocke TE, Metzger ME. Potential Effects of Environmental Conditions on Prairie Dog Flea Development and Implications for Sylvatic Plague Epizootics. ECOHEALTH 2022; 19:365-377. [PMID: 36125583 DOI: 10.1007/s10393-022-01615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Fleas are common ectoparasites of vertebrates worldwide and vectors of many pathogens causing disease, such as sylvatic plague in prairie dog colonies. Development of fleas is regulated by environmental conditions, especially temperature and relative humidity. Development rates are typically slower at low temperatures and faster at high temperatures, which are bounded by lower and upper thresholds where development is reduced. Prairie dogs and their associated fleas (mostly Oropsylla spp) live in burrows that moderate outside environmental conditions, remaining cooler in summer and warmer in winter. We found burrow microclimates were characterized by stable daily temperatures and high relative humidity, with temperatures increasing from spring through summer. We previously showed temperature increases corresponded with increasing off-host flea abundance. To evaluate how changes in temperature could affect future prairie dog flea development and abundance, we used development rates of O. montana (a species related to prairie dog fleas), determined how prairie dog burrow microclimates are affected by ambient weather, and combined these results to develop a predictive model. Our model predicts burrow temperatures and flea development rates will increase during the twenty-first century, potentially leading to higher flea abundance and an increased probability of plague epizootics if Y. pestis is present.
Collapse
Affiliation(s)
- Michael D Samuel
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Julia E Poje
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tonie E Rocke
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI, 53711, USA
| | - Marco E Metzger
- Department of Entomology, University of California, Riverside, CA, 92521, USA
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, Ontario, CA, 91764, USA
| |
Collapse
|
120
|
Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P. Fungal communities in soils under global change. Stud Mycol 2022; 103:1-24. [PMID: 36760734 PMCID: PMC9886077 DOI: 10.3114/sim.2022.103.01] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Soil fungi play indispensable roles in all ecosystems including the recycling of organic matter and interactions with plants, both as symbionts and pathogens. Past observations and experimental manipulations indicate that projected global change effects, including the increase of CO2 concentration, temperature, change of precipitation and nitrogen (N) deposition, affect fungal species and communities in soils. Although the observed effects depend on the size and duration of change and reflect local conditions, increased N deposition seems to have the most profound effect on fungal communities. The plant-mutualistic fungal guilds - ectomycorrhizal fungi and arbuscular mycorrhizal fungi - appear to be especially responsive to global change factors with N deposition and warming seemingly having the strongest adverse effects. While global change effects on fungal biodiversity seem to be limited, multiple studies demonstrate increases in abundance and dispersal of plant pathogenic fungi. Additionally, ecosystems weakened by global change-induced phenomena, such as drought, are more vulnerable to pathogen outbreaks. The shift from mutualistic fungi to plant pathogens is likely the largest potential threat for the future functioning of natural and managed ecosystems. However, our ability to predict global change effects on fungi is still insufficient and requires further experimental work and long-term observations. Citation: Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P (2022). Fungal communities in soils under global change. Studies in Mycology 103: 1-24. doi: 10.3114/sim.2022.103.01.
Collapse
Affiliation(s)
- P. Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic,*Corresponding author: Petr Baldrian,
| | - L. Bell-Dereske
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| | - C. Lepinay
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| | - T. Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| | - P. Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
121
|
Granroth‐Wilding HMV, Candolin U. No strong associations between temperature and the host-parasite interaction in wild stickleback. JOURNAL OF FISH BIOLOGY 2022; 101:453-463. [PMID: 35598110 PMCID: PMC9545309 DOI: 10.1111/jfb.15107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
As climate change progresses, thermal stress is expected to alter the way that host organisms respond to infections by pathogens and parasites, with consequences for the fitness and therefore population processes of both host and parasite. The authors used a correlational natural experiment to examine how temperature differences shape the impact of the cestode parasite Schistocephalus solidus on its host, the three-spined stickleback (Gasterosteus aculeatus). Previous laboratory work has found that high temperatures benefit S. solidus while being detrimental to the stickleback. The present study sought to emulate this design in the wild, repeatedly sampling naturally infected and uninfected fish at matched warmer and cooler locations in the Baltic Sea. In this wild study, the authors found little evidence that temperature was associated with the host-parasite interaction. Although infection reduced host condition and reproductive status overall, these effects did not vary with temperature. Host fitness indicators correlated to some extent with temperature, with cooler capture sites associated with larger size but warmer sites with improved reproductive potential. Parasite fitness (prevalence or size) was not correlated with temperature at the capture site. These mismatches between laboratory and field outcomes illustrate how findings from well-controlled laboratory experiments may not fully reflect processes in more variable natural settings. Nonetheless, the findings of this study indicate that temperature can influence host fitness regardless of infection, with potential consequences for both host demography and parasite transmission dynamics in this complex system.
Collapse
Affiliation(s)
- Hanna M. V. Granroth‐Wilding
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Ulrika Candolin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
122
|
Ujszegi J, Bertalan R, Ujhegyi N, Verebélyi V, Nemesházi E, Mikó Z, Kásler A, Herczeg D, Szederkényi M, Vili N, Gál Z, Hoffmann OI, Bókony V, Hettyey A. "Heat waves" experienced during larval life have species-specific consequences on life-history traits and sexual development in anuran amphibians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155297. [PMID: 35439501 DOI: 10.1016/j.scitotenv.2022.155297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Extreme temperatures during heat waves can induce mass-mortality events, but can also exert sublethal negative effects by compromising life-history traits and derailing sexual development. Ectothermic animals may, however, also benefit from increased temperatures via enhanced physiological performance and the suppression of cold-adapted pathogens. Therefore, it is crucial to address how the intensity and timing of naturally occurring or human-induced heat waves affect life-history traits and sexual development in amphibians, to predict future effects of climate change and to minimize risks arising from the application of elevated temperature in disease mitigation. We raised agile frog (Rana dalmatina) and common toad (Bufo bufo) tadpoles at 19 °C and exposed them to a simulated heat wave of 28 or 30 °C for six days during one of three ontogenetic periods (early, mid or late larval development). In agile frogs, exposure to 30 °C during early larval development increased mortality. Regardless of timing, all heat-treatments delayed metamorphosis, and exposure to 30 °C decreased body mass at metamorphosis. Furthermore, exposure to 30 °C during any period and to 28 °C late in development caused female-to-male sex reversal, skewing sex ratios strongly towards males. In common toads, high temperature only slightly decreased survival and did not influence phenotypic sex ratio, while it reduced metamorph mass and length of larval development. Juvenile body mass measured 2 months after metamorphosis was not adversely affected by temperature treatments in either species. Our results indicate that heat waves may have devastating effects on amphibian populations, and the severity of these negative consequences, and sensitivity can vary greatly between species and with the timing and intensity of heat. Finally, thermal treatments against cold-adapted pathogens have to be executed with caution, taking into account the thermo-sensitivity of the species and the life stage of animals to be treated.
Collapse
Affiliation(s)
- János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary.
| | - Réka Bertalan
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Department of Ecology, Institute for Biology, University of Veterinary Medicine, Budapest, Hungary; Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Herczeg
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Márk Szederkényi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nóra Vili
- Department of Ecology, Institute for Biology, University of Veterinary Medicine, Budapest, Hungary
| | - Zoltán Gál
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Orsolya I Hoffmann
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Department of Ecology, Institute for Biology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary; Department of Ecology, Institute for Biology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
123
|
Gicquel M, East ML, Hofer H, Benhaiem S. Early-life adversity predicts performance and fitness in a wild social carnivore. J Anim Ecol 2022; 91:2074-2086. [PMID: 35971285 DOI: 10.1111/1365-2656.13785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Studies on humans indicate that encountering multiple sources of adversity in childhood increases the risk of poor long-term health and premature death. Far less is known about cumulative effects of adversity during early life in wildlife. Focusing on the spotted hyena Crocuta crocuta, a social mammal with small litters, extensive maternal care, slow development and access to resources determined by social rank, we determined the contribution of ecological, maternal, social and demographic factors during early life on performance and fitness, and tested whether the impact of early-life adversity is cumulative. Using longitudinal data from 666 female hyenas in the Serengeti National Park, we determined the early growth rate, survival to adulthood, age at first reproduction (AFR), lifetime reproductive success (LRS) and longevity. We fitted multivariate models in which we tested the effects of environmental factors on these performance measures. We then constructed a cumulative adversity index and fitted models to test the effect of this index on each performance measure. Finally, the value of cumulative adversity models was tested by comparing them to multivariate and single-effect models in which the effect of each environmental factor was considered separately. High maternal rank decreased the AFR of daughters. Singleton and dominant cubs had higher growth rate than subordinate cubs, and singletons also had a higher survival chance to adulthood than subordinates. Daughters of prime age mothers had a higher growth rate, longevity and LRS. Little and heavy rainfall decreased survival to adulthood. Increasing numbers of lactating female clan members decreased growth rate, survival to adulthood and LRS. Cumulative adversity negatively affected short-term performance and LRS. Multivariate models outperformed cumulative adversity and single-effect models for all measures except for AFR and longevity, for which single-effect models performed better. Our results suggest that in some wildlife populations the combination of specific conditions in early life may matter more than the accumulation of adverse conditions as such.
Collapse
Affiliation(s)
- Morgane Gicquel
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marion L East
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Heribert Hofer
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.,Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
124
|
Morphologic and physiologic characteristics of green sea turtle (Chelonia mydas) hatchlings in southeastern Florida, USA. J Comp Physiol B 2022; 192:751-764. [DOI: 10.1007/s00360-022-01450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
|
125
|
Transgenerational plasticity alters parasite fitness in changing environments. Parasitology 2022; 149:1515-1520. [PMID: 36043359 PMCID: PMC10090760 DOI: 10.1017/s0031182022001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transgenerational plasticity can help organisms respond rapidly to changing environments. Most prior studies of transgenerational plasticity in host–parasite interactions have focused on the host, leaving us with a limited understanding of transgenerational plasticity of parasites. We tested whether exposure to elevated temperatures while spores are developing can modify the ability of those spores to infect new hosts, as well as the growth and virulence of the next generation of parasites in the new host. We exposed Daphnia dentifera to its naturally co-occurring fungal parasite Metschnikowia bicuspidata, rearing the parasite at cooler (20°C) or warmer (24°C) temperatures and then, factorially, using those spores to infect at 20 and 24°C. Infections by parasites reared at warmer past temperatures produced more mature spores, but only when the current infections were at cooler temperatures. Moreover, the percentage of mature spores was impacted by both rearing and current temperatures, and was highest for infections with spores reared in a warmer environment that infected hosts in a cooler environment. In contrast, virulence was influenced only by current temperatures. These results demonstrate transgenerational plasticity of parasites in response to temperature changes, with fitness impacts that are dependent on both past and current environments.
Collapse
|
126
|
Maina LGM, Maingi N, Ng'ang'a CJ, Waruiru RM, Gakuya F. Diversity, prevalence, and intensity of gastrointestinal helminth infections in migratory, resident, and sedentary plains zebras (Equus quagga) in Masai Mara National Reserve and Lake Nakuru National Park, Kenya. Vet Parasitol Reg Stud Reports 2022; 33:100750. [PMID: 35820722 DOI: 10.1016/j.vprsr.2022.100750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/20/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The diversity, prevalence and intensity of parasitic infections are influenced by factors such as movement patterns and land area available to the host. Zebras are known to harbour various genera of gastrointestinal helminths and facilitate parasite movement across large geographic areas through migration. Despite the harmful effects of helminths and their consequences on host population dynamics, little is known regarding helminth infection patterns in migratory, resident, and sedentary zebras. This study compared the diversity, prevalence, and intensity of helminth infections in zebras with different host movement patterns and space availability. Faecal samples were collected from migratory, resident, and sedentary groups of zebras between 2014 and 2015 and screened for helminth infection. They were infected by diverse groups of helminths including nematodes, trematodes and cestodes with the most prevalent being strongyle type nematodes. No significant difference in the diversity and prevalence was observed between the "three groups". Larvae were also recovered and identified species, cyathostomes, Strongylus edentatus, S.vulgaris, S. equinus, and Trichostronglus in order of abundance. The intensity of infection with the strongyle type nematodes, was highest in the migratory, then sedentary and lowest in resident zebras. It is plausible that the migratory zebras have higher energy demands and poor nutrition, resulting in reduced immune function hence high nematode burdens. Similarly, the sedentary population had high nematode burdens possibly due to high pasture contamination and depressed immunity due to the artificially restricted movement. The latter observation is particularly important in the design and size of sanctuaries in relation to parasitism.
Collapse
Affiliation(s)
- L G M Maina
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, P.O. Box 29053-00625, Kangemi, Kenya.
| | - N Maingi
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, P.O. Box 29053-00625, Kangemi, Kenya
| | - C J Ng'ang'a
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, P.O. Box 29053-00625, Kangemi, Kenya
| | - R M Waruiru
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, P.O. Box 29053-00625, Kangemi, Kenya
| | - F Gakuya
- Department of Veterinary Science and Laboratories, Wildlife Research and Training Institute, P.O. Box 842-20117, Naivasha, Kenya
| |
Collapse
|
127
|
Peacock SJ, Kutz SJ, Hoar BM, Molnár PK. Behaviour is more important than thermal performance for an Arctic host-parasite system under climate change. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220060. [PMID: 36016913 PMCID: PMC9399711 DOI: 10.1098/rsos.220060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/02/2022] [Indexed: 05/10/2023]
Abstract
Climate change is affecting Arctic ecosystems, including parasites. Predicting outcomes for host-parasite systems is challenging due to the complexity of multi-species interactions and the numerous, interacting pathways by which climate change can alter dynamics. Increasing temperatures may lead to faster development of free-living parasite stages but also higher mortality. Interactions between behavioural plasticity of hosts and parasites will also influence transmission processes. We combined laboratory experiments and population modelling to understand the impacts of changing temperatures on barren-ground caribou (Rangifer tarandus) and their common helminth (Ostertagia gruehneri). We experimentally determined the thermal performance curves for mortality and development of free-living parasite stages and applied them in a spatial host-parasite model that also included behaviour of the parasite (propensity for arrested development in the host) and host (long-distance migration). Sensitivity analyses showed that thermal responses had less of an impact on simulated parasite burdens than expected, and the effect differed depending on parasite behaviour. The propensity for arrested development and host migration led to distinct spatio-temporal patterns in infection. These results emphasize the importance of considering behaviour-and behavioural plasticity-when projecting climate-change impacts on host-parasite systems.
Collapse
Affiliation(s)
- Stephanie J. Peacock
- Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB Canada, T2N 4Z6
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON Canada, M1C 1A4
| | - Susan J. Kutz
- Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB Canada, T2N 4Z6
| | - Bryanne M. Hoar
- Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB Canada, T2N 4Z6
| | - Péter K. Molnár
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON Canada, M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON Canada, M5S 3B2
| |
Collapse
|
128
|
Matsumura E, Morinaga K, Fukuda K. Host Specificity and Seasonal Variation in the Colonization of Tubakia sensu lato Associated with Evergreen Oak Species in Eastern Japan. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02067-9. [PMID: 35857039 DOI: 10.1007/s00248-022-02067-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Foliar fungal endophytes are ubiquitous and hyperdiverse, and tend to be host-specific among dominant forest tree species. The fungal genus Tubakia sensu lato is comprised of foliar pathogens and endophytes that exhibit host preference for Quercus and other Fagaceae species. To clarify interspecific differences in ecological characteristics among Tubakia species, we examined the endophyte communities of seven evergreen Quercus spp. at three sites in eastern Japan during summer and winter. Host tree species was the most significant factor affecting endophyte community composition. Tubakia species found at the study sites were divided into five specialists and three generalists according to their relative abundance in each host species and their host ranges. Specialists were dominant on their own host in summer, and their abundance declined in winter. To test the hypothesis that generalists are more widely adapted to their environment than specialists, we compared their spore germination rates at different temperatures. Spores of generalist Tubakia species were more tolerant of colder temperatures than were spores of specialist Tubakia species, supporting our hypothesis. Seasonal and site variations among Tubakia species were also consistent with our hypothesis. Host identity and ecology were significantly associated with endophyte community structure.
Collapse
Affiliation(s)
- Emi Matsumura
- Department of Natural Environmental Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, 277-8563, Japan.
- Department of Forest Science, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kenta Morinaga
- Department of Natural Environmental Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, 277-8563, Japan
| | - Kenji Fukuda
- Department of Natural Environmental Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, 277-8563, Japan
- Department of Forest Science, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
129
|
Bowen L, Manlove K, Roug A, Waters S, LaHue N, Wolff P. Using transcriptomics to predict and visualize disease status in bighorn sheep ( Ovis canadensis). CONSERVATION PHYSIOLOGY 2022; 10:coac046. [PMID: 35795016 PMCID: PMC9252122 DOI: 10.1093/conphys/coac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Increasing risk of pathogen spillover coupled with overall declines in wildlife population abundance in the Anthropocene make infectious disease a relevant concern for species conservation worldwide. While emerging molecular tools could improve our diagnostic capabilities and give insight into mechanisms underlying wildlife disease risk, they have rarely been applied in practice. Here, employing a previously reported gene transcription panel of common immune markers to track physiological changes, we present a detailed analysis over the course of both acute and chronic infection in one wildlife species where disease plays a critical role in conservation, bighorn sheep (Ovis canadensis). Differential gene transcription patterns distinguished between infection statuses over the course of acute infection and differential correlation (DC) analyses identified clear changes in gene co-transcription patterns over the early stages of infection, with transcription of four genes-TGFb, AHR, IL1b and MX1-continuing to increase even as transcription of other immune-associated genes waned. In a separate analysis, we considered the capacity of the same gene transcription panel to aid in differentiating between chronically infected animals and animals in other disease states outside of acute disease events (an immediate priority for wildlife management in this system). We found that this transcription panel was capable of accurately identifying chronically infected animals in the test dataset, though additional data will be required to determine how far this ability extends. Taken together, our results showcase the successful proof of concept and breadth of potential utilities that gene transcription might provide to wildlife disease management, from direct insight into mechanisms associated with differential disease response to improved diagnostic capacity in the field.
Collapse
Affiliation(s)
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Annette Roug
- Centre for Veterinary Wildlife Studies, Faculty of Veterinary Medicine, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Shannon Waters
- U.S. Geological Survey, Western Ecological Research Center, Davis, CA, 95616, USA
| | - Nate LaHue
- Nevada Department of Wildlife, Reno, NV, 89512, USA
| | | |
Collapse
|
130
|
Holland OJ, Toomey M, Ahrens C, Hoffmann AA, Croft LJ, Sherman CDH, Miller AD. Whole genome resequencing reveals signatures of rapid selection in a virus-affected commercial fishery. Mol Ecol 2022; 31:3658-3671. [PMID: 35555938 PMCID: PMC9327721 DOI: 10.1111/mec.16499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Infectious diseases are recognized as one of the greatest global threats to biodiversity and ecosystem functioning. Consequently, there is a growing urgency to understand the speed at which adaptive phenotypes can evolve and spread in natural populations to inform future management. Here we provide evidence of rapid genomic changes in wild Australian blacklip abalone (Haliotis rubra) following a major population crash associated with an infectious disease. Genome scans on H. rubra were performed using pooled whole genome resequencing data from commercial fishing stocks varying in historical exposure to haliotid herpesvirus-1 (HaHV-1). Approximately 25,000 single nucleotide polymorphism loci associated with virus exposure were identified, many of which mapped to genes known to contribute to HaHV-1 immunity in the New Zealand pāua (Haliotis iris) and herpesvirus response pathways in haliotids and other animal systems. These findings indicate genetic changes across a single generation in H. rubra fishing stocks decimated by HaHV-1, with stock recovery potentially determined by rapid evolutionary changes leading to virus resistance. This is a novel example of apparently rapid adaptation in natural populations of a nonmodel marine organism, highlighting the pace at which selection can potentially act to counter disease in wildlife communities.
Collapse
Affiliation(s)
- Owen J. Holland
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Madeline Toomey
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Collin Ahrens
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical ScienceRoyal Botanic GardenSydneyNew South WalesAustralia
| | - Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Laurence J. Croft
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Craig D. H. Sherman
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
| | - Adam D. Miller
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
131
|
Han L, Quan Z, Wu Y, Hao P, Wang W, Li Y, Zhang X, Liu P, Gao C, Wang H, Wang L, Zhang W, Yin D, Chang Y, Ding J. Expression Regulation Mechanisms of Sea Urchin (Strongylocentrotus intermedius) Under the High Temperature: New Evidence for the miRNA-mRNA Interaction Involvement. Front Genet 2022; 13:876308. [PMID: 35846155 PMCID: PMC9277089 DOI: 10.3389/fgene.2022.876308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
In the context of global warming and continuous high temperatures in the northern part of China during summer, the mortality rate of our main breeding species, Strongylocentrotus intermedius, reached 80% in 2020. How sea urchins respond to high temperatures is of great concern to academia and industry. In this study, we examined the antioxidant enzyme activities of different color tube-footed sea urchins under heat stress and compared their transcriptome and microRNA (miRNA) profiles using RNA-Seq. The results showed that the antioxidant enzyme activities of sea urchins were altered by thermal stress, and the changes in peroxidase activities of red tube-footed sea urchins were particularly significant. Investigations revealed that 1,079 differentially expressed genes (DEGs), 11 DE miRNAs, and 104 “DE miRNA-DEG” pairs in total were detected in sea urchins under high temperature stress. Several mRNA and miRNAs were significantly changed (e.g. HSP70, DnaJ11, HYAL, CALR, miR-184-p5, miR-92a, miR-92c, and miR-124-p5), suggesting these genes and miRNAs exerted important functions in response to high temperature. At the transcriptional level, red tube-footed sea urchins were found to be more sensitive to high temperature and could respond to high temperature rapidly. DE miRNA-mRNA network showed that miR-92b-3p and PC-5p-7420 were the most corresponding miRNAs. Five mRNAs (DnaJ11, SAR1B, CALR, HYOU1, TUBA) may be potential markers of sea urchin response to high temperature. Possible interaction between miRNA-mRNA could be linked to protein folding in the endoplasmic reticulum, Phagosomes, and calcium transport. This study provides a theoretical basis for the molecular mechanism of sea urchin heat tolerance and information that will aid in the selection and breeding of sea urchins with high temperature tolerance.
Collapse
Affiliation(s)
| | - Zijiao Quan
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yanglei Wu
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenpei Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Peng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Chuang Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Heng Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
- *Correspondence: Jun Ding,
| |
Collapse
|
132
|
Cleary AC, Callesen TA, Berge J, Gabrielsen TM. Parasite–copepod interactions in Svalbard: diversity, host specificity, and seasonal patterns. Polar Biol 2022. [DOI: 10.1007/s00300-022-03060-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractCopepods of the genera Calanus and Pseudocalanus are important components of Arctic marine ecosystems. Despite the key roles of these zooplankters, little is known about the organisms they interact with most intimately, their parasites and symbionts. We applied metabarcode sequencing to uncover eukaryotic parasites present within these two copepod genera from three areas around the high Arctic archipelago of Svalbard. Ten distinct parasite groups were observed: four different Apostome ciliates, four different dinoflagellates (Chytriodinium sp., Ellobiopsis sp., Thalassomyces sp., and Hematodinium sp.), a Paradinium sp., and a trematode. Apostome ciliates closely related to Pseudocollinia spp. were the most commonly observed parasite, with overall infection rates of 21.5% in Calanus and 12.5% in Pseudocalanus. Infection by these ciliates varied seasonally, with no infections observed in early winter, but infection rates exceeding 75% in spring. Host specificity varied between parasites, with significant differences in infection rate between the two host copepod genera for four parasites (two ciliates, Chytriodinium, and a trematode). The diverse assemblage of parasites observed in these copepods, and the frequency of infection, with over one in five copepod individuals infected, suggest parasites may be playing a greater role in Arctic plankton communities than generally acknowledged.
Collapse
|
133
|
Estimation of Daily and Instantaneous Near-Surface Air Temperature from MODIS Data Using Machine Learning Methods in the Jingjinji Area of China. REMOTE SENSING 2022. [DOI: 10.3390/rs14081916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Meteorologically observed air temperature (Ta) is limited due to low density and uneven distribution that leads to uncertain accuracy. Therefore, remote sensing data have been widely used to estimate near-surface Ta on various temporal scales due to their spatially continuous characteristics. However, few studies have focused on instantaneous Ta when satellites overpass. This study aims to produce both daily and instantaneous Ta datasets at 1 km resolution for the Jingjinji area, China during 2018–2019, using machine learning methods based on remote sensing data, dense meteorological observation station data, and auxiliary data (such as elevation and normalized difference vegetation index). Newly released Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 surface Downward Shortwave Radiation (DSR) was introduced to improve the accuracy of Ta estimation. Five machine learning algorithms were implemented and compared so that the optimal one could be selected. The random forest (RF) algorithm outperformed the others (such as decision tree, feedforward neural network, generalized linear model) and RF obtained the highest accuracy in model validation with a daily root mean square error (RMSE) of 1.29 °C, mean absolute error (MAE) of 0.94 °C, daytime instantaneous RMSE of 1.88 °C, MAE of 1.35 °C, nighttime instantaneous RMSE of 2.47 °C, and MAE of 1.83 °C. The corresponding R2 was 0.99 for daily average, 0.98 for daytime instantaneous, and 0.95 for nighttime instantaneous. Analysis showed that land surface temperature (LST) was the most important factor contributing to model accuracy, followed by solar declination and DSR, which implied that DSR should be prioritized when estimating Ta. Particularly, these results outperformed most models presented in previous studies. These findings suggested that RF could be used to estimate daily instantaneous Ta at unprecedented accuracy and temporal scale with proper training and very dense station data. The estimated dataset could be very useful for local climate and ecology studies, as well as for nature resources exploration.
Collapse
|
134
|
In vitro hemocyte phagocytosis activation after experimental infection of common octopus, Octopus vulgaris (Cuvier, 1797) with Photobacterium damselae subsp. piscicida or Vibrio alginolyticus at different temperatures and infection routes. J Invertebr Pathol 2022; 191:107754. [DOI: 10.1016/j.jip.2022.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
|
135
|
Crandall G, Jensen PC, White SJ, Roberts S. Characterization of the Gene Repertoire and Environmentally Driven Expression Patterns in Tanner Crab (Chionoecetes bairdi). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:216-225. [PMID: 35262806 DOI: 10.1007/s10126-022-10100-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Tanner crab (Chionoecetes bairdi) is an economically important species that is threatened by ocean warming and bitter crab disease, which is caused by an endoparasitic dinoflagellate, Hematodinium. Little is known about disease transmission or its link to host mortality, or how ocean warming will affect pathogenicity or host susceptibility. To provide a transcriptomic resource for the Tanner crab, we generated a suite of RNA-seq libraries encompassing pooled hemolymph samples from crab displaying differing infection statuses and maintained at different temperatures (ambient (7.5˚C), elevated (10˚C), or decreased (4˚C)). After assembling a transcriptome and performing a multifactor differential gene expression analysis, we found genes influenced by temperature in relation to infection and detected some of those genes over time at the individual level using RNA-seq data from one crab. Biological processes associated with those genes include lipid storage, transcription, response to oxidative stress, cell adhesion, and morphogenesis. Alteration in lipid storage and transcription provide insight into how temperature impacts energy allocation in Hematodinium infected crabs. Alteration in expression patterns in genes associated with morphogenesis could suggest that hemocytes were changing morphology and/or type in response to temperature. This project provides insight into how Hematodinium infection could influence crab physiology as oceans warm.
Collapse
Affiliation(s)
- Grace Crandall
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Pamela C Jensen
- Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA, 98115, USA
| | - Samuel J White
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
136
|
Mishra C, Samelius G, Khanyari M, Srinivas PN, Low M, Esson C, Venkatachalam S, Johansson Ö. Increasing risks for emerging infectious diseases within a rapidly changing High Asia. AMBIO 2022; 51:494-507. [PMID: 34292521 PMCID: PMC8297435 DOI: 10.1007/s13280-021-01599-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The cold and arid mountains and plateaus of High Asia, inhabited by a relatively sparse human population, a high density of livestock, and wildlife such as the iconic snow leopard Panthera uncia, are usually considered low risk for disease outbreaks. However, based on current knowledge about drivers of disease emergence, we show that High Asia is rapidly developing conditions that favor increased emergence of infectious diseases and zoonoses. This is because of the existing prevalence of potentially serious pathogens in the system; intensifying environmental degradation; rapid changes in local ecological, socio-ecological, and socio-economic factors; and global risk intensifiers such as climate change and globalization. To better understand and manage the risks posed by diseases to humans, livestock, and wildlife, there is an urgent need for establishing a disease surveillance system and improving human and animal health care. Public health must be integrated with conservation programs, more ecologically sustainable development efforts and long-term disease surveillance.
Collapse
Affiliation(s)
- Charudutt Mishra
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nature Conservation Foundation, 3076/5, IV Cross Gokulam Park, Mysore, India
| | - Gustaf Samelius
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nordens Ark, Åby Säteri, 456 93 Hunnebostrand, Sweden
| | - Munib Khanyari
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nature Conservation Foundation, 3076/5, IV Cross Gokulam Park, Mysore, India
- Interdisciplinary Center for Conservation Sciences, Oxford, University UK
- Department of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Carol Esson
- 41 Walnut Close, Speewah, Queensland, 4881 Australia
| | - Suri Venkatachalam
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nature Conservation Foundation, 3076/5, IV Cross Gokulam Park, Mysore, India
| | - Örjan Johansson
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, 73091 Riddarhyttan, Sweden
| |
Collapse
|
137
|
Biological Approaches Promise Innovative and Sustainable Management of Powdery Mildew in Lebanese Squash. SUSTAINABILITY 2022. [DOI: 10.3390/su14052811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Biological management techniques act as a promising and sustainable alternative to alleviate pathogen-induced losses, improve ecosystem functions, and reinforce the resilience of agricultural systems. Lebanese squash production has been threatened by powdery mildew disease caused by the fungus Podosphaera xanthii. Very few studies, even unpublished ones, stress the evaluation of biological control approaches in the Lebanese agriculture sector. Here, we have aimed to evaluate the effect of five safe biological treatments (olive soap, sodium bicarbonate, garlic extract, horsetail, and compost tea) in the management of powdery mildew on Lebanese squash in organic open field conditions. Plants were treated after the first spots of powdery mildew appeared on leaves. We then examined the leaves to evaluate disease incidence and severity, and to compare the ability of the five treatments to reduce powdery mildew disease and incidence, in comparison with the untreated control. Plants treated with sodium bicarbonate and garlic extract were the least affected by powdery mildew regarding disease incidence and severity, while tea compost proved to be the least effective product. Organic management of vegetable crops is extremely important in order to ensure global food security and reduce pesticide applications.
Collapse
|
138
|
Schampera C, Agha R, Manzi F, Wolinska J. Parasites do not adapt to elevated temperature, as evidenced from experimental evolution of a phytoplankton-fungus system. Biol Lett 2022; 18:20210560. [PMID: 35168375 PMCID: PMC8847893 DOI: 10.1098/rsbl.2021.0560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Global warming is predicted to impact the prevalence and severity of infectious diseases. However, empirical data supporting this statement usually stem from experiments in which parasite fitness and disease outcome are measured directly after temperature increase. This might exclude the possibility of parasite adaptation. To incorporate the adaptive response of parasites into predictions of disease severity in a warmer world, we undertook an experimental evolution assay in which a fungal parasite of phytoplankton was maintained at elevated or control temperatures for six months, corresponding to 100–200 parasite generations. Host cultures were maintained at the respective temperatures and provided as substrate, but were not under parasite pressure. A reciprocal infection experiment conducted after six-month serial passages revealed no evidence of parasite adaptation. In fact, parasite fitness at elevated temperatures was inferior in parasite populations reared at elevated temperatures compared with those maintained under control temperature. However, this effect was reversed after parasites were returned to control temperatures for a few (approx. 10) generations. The absence of parasite adaptation to elevated temperatures suggests that, in phytoplankton–fungus systems, disease outcome under global warming will be largely determined by both host and parasite thermal ecology.
Collapse
Affiliation(s)
- Charlotte Schampera
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Ramsy Agha
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Florent Manzi
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität (FU) Berlin, Berlin, Germany
| | - Justyna Wolinska
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität (FU) Berlin, Berlin, Germany
| |
Collapse
|
139
|
Monk JD, Smith JA, Donadío E, Perrig PL, Crego RD, Fileni M, Bidder O, Lambertucci SA, Pauli JN, Schmitz OJ, Middleton AD. Cascading effects of a disease outbreak in a remote protected area. Ecol Lett 2022; 25:1152-1163. [PMID: 35175672 DOI: 10.1111/ele.13983] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Disease outbreaks induced by humans increasingly threaten wildlife communities worldwide. Like predators, pathogens can be key top-down forces in ecosystems, initiating trophic cascades that may alter food webs. An outbreak of mange in a remote Andean protected area caused a dramatic population decline in a mammalian herbivore (the vicuña), creating conditions to test the cascading effects of disease on the ecological community. By comparing a suite of ecological measurements to pre-disease baseline records, we demonstrate that mange restructured tightly linked trophic interactions previously driven by a mammalian predator (the puma). Following the mange outbreak, scavenger (Andean condor) occurrence in the ecosystem declined sharply and plant biomass and cover increased dramatically in predation refuges where herbivory was historically concentrated. The evidence shows that a disease-induced trophic cascade, mediated by vicuña density, could supplant the predator-induced trophic cascade, mediated by vicuña behaviour, thereby transforming the Andean ecosystem.
Collapse
Affiliation(s)
- Julia D Monk
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California - Davis, Davis, California, USA
| | - Emiliano Donadío
- Fundación Rewilding Argentina, Los Antiguos, Santa Cruz, Argentina
| | - Paula L Perrig
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA - CONICET, Universidad Nacional del Comahue, Bariloche, Argentina.,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ramiro D Crego
- Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, Front Royal, Virginia, USA
| | - Martin Fileni
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Owen Bidder
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, California, USA
| | - Sergio A Lambertucci
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA - CONICET, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Oswald J Schmitz
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Arthur D Middleton
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, California, USA
| |
Collapse
|
140
|
Evaluation of Clove Extract for Drug Therapy of Ciliate Infection in Coral ( Goniopora columna). BIOLOGY 2022; 11:biology11020280. [PMID: 35205146 PMCID: PMC8869591 DOI: 10.3390/biology11020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary In recent years, studies have found that coral infectious diseases are gradually spreading. Ciliate disease poses a serious threat to corals, and infected corals will fester and die within a short period of time. Clove is a traditional Chinese medicine. In this study, Clove extract was used to evaluate the treatment of ciliate diseases to achieve safety and to reduce the stress response of corals. Studies have shown that 1500 ppm clove extract can effectively treat ciliate parasitism, and does not affect coral zooxanthellae, chlorophyll a, or stress response. This extract has been successfully applied to a Taiwan coral king coral farm, which will have great significance for large-scale coral aquaculture. Abstract In recent years, ciliate infections have caused serious casualties to corals in the ocean. Infected corals die within a short period of time, which not only poses a threat to wild coral reefs, but also has a major impact on large scale aquaculture of coral. Clove is a kind of Chinese medicine with antifungal, antibacterial, antiviral, insecticidal, and other functions. Clove is a natural product. If it can be used in the treatment of coral ciliates, it will reduce this threat to the environment. The clove extract was diluted with sterile seawater to 500 ppm, 1500 ppm, 2500 ppm, 5000 ppm, 7500 ppm, and 10,000 ppm to carry out virulence test on ciliates. The results show that the LC50 value is 1500 ppm, which can cause the death of ciliates in 10 min without causing significant changes in G. columna SOD, CAT, chlorophyll a, and zooxanthellae. In addition, observation of tissue slices revealed that no ciliates and vacuum were found in the G. columna tissue after 10 min of medicated bathing. In summary, 1500 ppm of clove extract can be used for the treatment of coral ciliates.
Collapse
|
141
|
Aagaard KJ, Lonsdorf EV, Thogmartin WE. Effects of weather variation on waterfowl migration: Lessons from a continental-scale generalizable avian movement and energetics model. Ecol Evol 2022; 12:e8617. [PMID: 35222974 PMCID: PMC8853969 DOI: 10.1002/ece3.8617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023] Open
Abstract
We developed a continental energetics-based model of daily mallard (Anas platyrhynchos) movement during the non-breeding period (September to May) to predict year-specific migration and overwinter occurrence. The model approximates movements and stopovers as functions of metabolism and weather, in terms of temperature and frozen precipitation (i.e., snow). The model is a Markov process operating at the population level and is parameterized through a review of literature. We applied the model to 62 years of daily weather data for the non-breeding period. The average proportion of available habitat decreased as weather severity increased, with mortality decreasing as the proportion of available habitat increased. The most commonly used locations during the course of the non-breeding period were generally consistent across years, with the most inter-annual variation present in the overwintering area. Our model revealed that the distribution of mallards on the landscape changed more dramatically when the variation in daily available habitat was greater. The main routes for avian migration in North America were predicted by our simulations: the Atlantic, Mississippi, Central, and Pacific flyways. Our model predicted an average of 77.4% survivorship for the non-breeding period across all years (range = 76.4%-78.4%), with lowest survivorship during autumn (90.5 ± 1.4%), intermediate survivorship in winter (91.8 ± 0.7%), and greatest survivorship in spring (93.6 ± 1.1%). We provide the parameters necessary for exploration within and among other taxa to leverage the generalizability of this migration model to a broader expanse of bird species, and across a range of climate change and land use/land cover change scenarios.
Collapse
Affiliation(s)
| | - Eric V. Lonsdorf
- Institute on the EnvironmentUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Wayne E. Thogmartin
- U.S. Geological SurveyUpper Midwest Environmental Sciences CenterLa CrosseWisconsinUSA
| |
Collapse
|
142
|
Wu Q, Miles DB, Richard M, Rutschmann A, Clobert J. Intraspecific diversity alters the relationship between climate change and parasitism in a polymorphic ectotherm. GLOBAL CHANGE BIOLOGY 2022; 28:1301-1314. [PMID: 34856039 DOI: 10.1111/gcb.16018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Climate-modulated parasitism is driven by a range of factors, yet the spatial and temporal variability of this relationship has received scant attention in wild vertebrate hosts. Moreover, most prior studies overlooked the intraspecific differences across host morphotypes, which impedes a full understanding of the climate-parasitism relationship. In the common lizard (Zootoca vivipara), females exhibit three colour morphs: yellow (Y-females), orange (O-females) and mixed (mixture of yellow and orange, M-females). Zootoca vivipara is also infested with an ectoparasite (Ophionyssus mites). We therefore used this model system to examine the intraspecific response of hosts to parasitism under climate change. We found infestation probability to differ across colour morphs at both spatial (10 sites) and temporal (20 years) scales: M-females had lower parasite infestations than Y- and O-females at lower temperatures, but became more susceptible to parasites as temperature increased. The advantage of M-females at low temperatures was counterbalanced by their higher mortality rates thereafter, which suggests a morph-dependent trade-off between resistance to parasites and host survival. Furthermore, significant interactions between colour morphs and temperature indicate that the relationship between parasite infestations and climate warming was contingent on host morphotypes. Parasite infestations increased with temperature for most morphs, but displayed morph-specific rates. Finally, infested M-females had higher reductions in survival rates than infested Y- or O-females, which implies a potential loss of intraspecific diversity within populations as parasitism and temperatures rise. Overall, we found parasitism increases with warming temperatures, but this relationship is modulated by host morphotypes and an interaction with temperature. We suggest that epidemiological models incorporate intraspecific diversity within species for better understanding the dynamics of wildlife diseases under climate warming.
Collapse
Affiliation(s)
- Qiang Wu
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
- Université Toulouse III Paul Sabatier, Université Fédérale Toulouse Midi-Pyrénées, Toulouse, France
| | - Donald B Miles
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| |
Collapse
|
143
|
Kumar D, Downs LP, Adegoke A, Machtinger E, Oggenfuss K, Ostfeld RS, Embers M, Karim S. An Exploratory Study on the Microbiome of Northern and Southern Populations of Ixodes scapularis Ticks Predicts Changes and Unique Bacterial Interactions. Pathogens 2022; 11:130. [PMID: 35215074 PMCID: PMC8880235 DOI: 10.3390/pathogens11020130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
The black-legged tick (Ixodes scapularis) is the primary vector of Borrelia burgdorferi, the causative agent of Lyme disease in North America. However, the prevalence of Lyme borreliosis is clustered around the Northern States of the United States of America. This study utilized a metagenomic sequencing approach to compare the microbial communities residing within Ix. scapularis populations from northern and southern geographic locations in the USA. Using a SparCC network construction model, we performed potential interactions between members of the microbial communities from Borrelia burgdorferi-infected tissues of unfed and blood-fed ticks. A significant difference in bacterial composition and diversity was found between northern and southern tick populations. The network analysis predicted a potential antagonistic interaction between endosymbiont Rickettsia buchneri and Borrelia burgdorferi sensu lato. The network analysis, as expected, predicted significant positive and negative microbial interactions in ticks from these geographic regions, with the genus Rickettsia, Francisella, and Borreliella playing an essential role in the identified clusters. Interactions between Rickettsia buchneri and Borrelia burgdorferi sensu lato need more validation and understanding. Understanding the interplay between the microbiome and tick-borne pathogens within tick vectors may pave the way for new strategies to prevent tick-borne infections.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
| | - Latoyia P. Downs
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
| | - Abdulsalam Adegoke
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
| | - Erika Machtinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Kelly Oggenfuss
- Cary Institute of Ecosystem Studies, Millbrook, NY 12542, USA; (K.O.); (R.S.O.)
| | - Richard S. Ostfeld
- Cary Institute of Ecosystem Studies, Millbrook, NY 12542, USA; (K.O.); (R.S.O.)
| | - Monica Embers
- Division of Immunology, Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA;
| | - Shahid Karim
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
144
|
McGowan VC, Bell P. “I now deeply care about the effects humans are having on the world”: cultivating ecological care and responsibility through complex systems modelling and investigations. EDUCATIONAL AND DEVELOPMENTAL PSYCHOLOGIST 2022. [DOI: 10.1080/20590776.2022.2027212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Philip Bell
- Learning Sciences and Human Development, University of Washington, College of Education, Seattle, WA, USA
| |
Collapse
|
145
|
Wang C, Wang X, Jin Z, Müller C, Pugh TAM, Chen A, Wang T, Huang L, Zhang Y, Li LXZ, Piao S. Occurrence of crop pests and diseases has largely increased in China since 1970. NATURE FOOD 2022; 3:57-65. [PMID: 37118481 DOI: 10.1038/s43016-021-00428-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/08/2021] [Indexed: 04/30/2023]
Abstract
Crop pests and diseases (CPDs) are emerging threats to global food security, but trends in the occurrence of pests and diseases remain largely unknown due to the lack of observations for major crop producers. Here, on the basis of a unique historical dataset with more than 5,500 statistical records, we found an increased occurrence of CPDs in every province of China, with the national average rate of CPD occurrence increasing by a factor of four (from 53% to 218%) during 1970-2016. Historical climate change is responsible for more than one-fifth of the observed increment of CPD occurrence (22% ± 17%), ranging from 2% to 79% in different provinces. Among the climatic factors considered, warmer nighttime temperatures contribute most to the increasing occurrence of CPDs (11% ± 9%). Projections of future CPDs show that at the end of this century, climate change will lead to an increase in CPD occurrence by 243% ± 110% under a low-emissions scenario (SSP126) and 460% ± 213% under a high-emissions scenario (SSP585), with the magnitude largely dependent on the impacts of warmer nighttime temperatures and decreasing frost days. This observation-based evidence highlights the urgent need to accurately account for the increasing risk of CPDs in mitigating the impacts of climate change on food production.
Collapse
Affiliation(s)
- Chenzhi Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Zhenong Jin
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Minnesota-Twin, MN, USA
| | - Christoph Müller
- Climate Resilience, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
| | - Thomas A M Pugh
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Tao Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Ling Huang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yuan Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Laurent X Z Li
- Laboratoire de Météorologie Dynamique, Sorbonne Université, CNRS, IPSL, Paris, France
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
146
|
Fuller AM, VanBlaricom GR, Neuman MJ, Witting DA, Friedman CS. A field sentinel study investigating withering syndrome transmission dynamics in California abalones. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105540. [PMID: 34864337 DOI: 10.1016/j.marenvres.2021.105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
We examined the risk of withering syndrome (WS) rickettsia-like organism (WS-RLO) infection in sentinel red abalone (Haliotis rufescens) deployed in modules at two Southern California field sites, one adjacent to an abalone farm and one adjacent to wild abalones. WS-RLO DNA was detected in seawater near modules at the wild abalone site but not near the farm (WS-RLO DNA was detected in the farm effluent). More WS-RLO DNA was detected in tissue from abalone near the farm relative to those near wild abalones (p < 0.05). However, infection prevalence and intensity based on histology were low and similar between sites (p > 0.05) and were independent of WS-RLO DNA loads in abalone tissue and seawater. More stippled (ST)-RLO than WS-RLO were observed with more ST-RLO infections near wild abalone than near the abalone farm (p < 0.05). We demonstrate the utility of caged sentinel abalone to better understand pathogen transmission patterns in the field.
Collapse
Affiliation(s)
- Ava M Fuller
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195, USA.
| | - Glenn R VanBlaricom
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195, USA; US Geological Survey, Washington Cooperative Fish and Wildlife Research Unit, University of Washington, Box 355020, Seattle, WA, 98195, USA
| | - Melissa J Neuman
- NOAA National Marine Fisheries Service Protected Resources Division, 501 West Ocean Blvd, Suite 4200 Long Beach, CA, 90802, USA
| | - David A Witting
- NOAA National Marine Fisheries Service Protected Resources Division, 501 West Ocean Blvd, Suite 4200 Long Beach, CA, 90802, USA
| | - Carolyn S Friedman
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195, USA
| |
Collapse
|
147
|
Mugwanya M, Dawood MA, Kimera F, Sewilam H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
148
|
Pathirana E, Whittington RJ, Hick PM. Impact of seawater temperature on the Pacific oyster (Crassostrea gigas) microbiome and susceptibility to disease associated with Ostreid herpesvirus-1 (OsHV-1). ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
149
|
Mironova E, Gopko M, Pasternak A, Mikheev V, Taskinen J. Allee effect in a manipulative parasite within poikilothermic host under temperature change. Parasitology 2022; 149:35-43. [PMID: 35184786 PMCID: PMC11010467 DOI: 10.1017/s0031182021001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Temperature and intraspecific competition are important factors influencing the growth of all organisms, including parasites. The temperature increase is suggested to stimulate the development of parasites within poikilothermic hosts. However, at high parasite densities, this effect could be diminished, due to stronger intraspecific competition. Our study, for the first time, addressed the joint effects of warming and parasite abundances on parasite growth in poikilothermic hosts. The growth of the common fish parasite larvae (trematode Diplostomum pseudospathaceum) within the rainbow trout at different infection intensities and temperatures (15°C and 18°C) was experimentally investigated. The results showed that temperature was positively correlated with both parasite infection success and growth rates. The growth rates increased much more compared to those in many free-living poikilothermic animals. Atypically for a majority of parasites, D. pseudospathaceum larvae grow faster when abundant (Allee effect). The possible causes for this phenomenon (manipulation cost sharing, etc.) are discussed in this study. Importantly, limited evidence of the interaction between temperature and population density was found. It is likely that temperature did not change the magnitude of the Allee effect but affected its timing. The impact of these effects is supposed to become more pronounced in freshwater ecosystems under current climate changes.
Collapse
Affiliation(s)
- Ekaterina Mironova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij prosp., 33, 119071Moscow, Russia
| | - Mikhail Gopko
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij prosp., 33, 119071Moscow, Russia
| | - Anna Pasternak
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nahimovskiy prosp., 36, 117997Moscow, Russia
| | - Viktor Mikheev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij prosp., 33, 119071Moscow, Russia
| | - Jouni Taskinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
| |
Collapse
|
150
|
Baag S, Mandal S. Combined effects of ocean warming and acidification on marine fish and shellfish: A molecule to ecosystem perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149807. [PMID: 34450439 DOI: 10.1016/j.scitotenv.2021.149807] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
It is expected that by 2050 human population will exceed nine billion leading to increased pressure on marine ecosystems. Therefore, it is conjectured various levels of ecosystem functioning starting from individual to population-level, species distribution, food webs and trophic interaction dynamics will be severely jeopardized in coming decades. Ocean warming and acidification are two prime threats to marine biota, yet studies about their cumulative effect on marine fish and shellfishes are still in its infancy. This review assesses existing information regarding the interactive effects of global environmental factors like warming and acidification in the perspective of marine capture fisheries and aquaculture industry. As climate change continues, distribution pattern of species is likely to be altered which will impact fisheries and fishing patterns. Our work is an attempt to compile the existing literatures in the biological perspective of the above-mentioned stressors and accentuate a clear outline of knowledge in this subject. We reviewed studies deciphering the biological consequences of warming and acidification on fish and shellfishes in the light of a molecule to ecosystem perspective. Here, for the first time impacts of these two global environmental drivers are discussed in a holistic manner taking into account growth, survival, behavioural response, prey predator dynamics, calcification, biomineralization, reproduction, physiology, thermal tolerance, molecular level responses as well as immune system and disease susceptibility. We suggest urgent focus on more robust, long term, comprehensive and ecologically realistic studies that will significantly contribute to the understanding of organism's response to climate change for sustainable capture fisheries and aquaculture.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|