101
|
Yang G, Artiaga BL, Lewis ST, Driver JP. Characterizing porcine invariant natural killer T cells: A comparative study with NK cells and T cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:343-351. [PMID: 28694168 DOI: 10.1016/j.dci.2017.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 05/10/2023]
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-like T cells that share phenotypic characteristics of both NK and conventional T cells (Tconv). Although iNKT cells have been well characterized in mice and humans, functional CD1d and CD1d-restricted iNKT cells are not universally expressed in mammals. Swine express iNKT cells that can be detected using α-galactosylceramide (α-GalCer)-loaded CD1d tetramers. In the present study, we characterized iNKT cells from the blood, spleen, lymph node, lung and liver of commercial mixed-breed pigs, and compared their phenotype to NK cells and Tconv. The principal findings are that pig iNKT cells are CD8α and CD44 positive and CD11b and Nkp46 negative. Most are also negative for the CD4 co-receptor, which is used to distinguish functionally distinct mouse and human iNKT cells subsets. The frequency of IFN-γ-producing CD8αbright iNKT cells was 3-4-fold higher than CD8αdull iNKT cells, suggesting that CD8α expression identifies iNKT cells with a unique functional role in immune responses. Finally, large variability was detected among pigs in interactions between iNKT cells and monocytes when iNKT cells were activated with α-GalCer, which raises a cautionary note about manipulating iNKT cells for immunotherapy. Collectively, our study provides important phenotypic and functional information about porcine iNKT cells that will be useful for understanding how iNKT cells contribute to immune responses in swine, with potential implications for human health.
Collapse
Affiliation(s)
- Guan Yang
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Bianca L Artiaga
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Sarah T Lewis
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
102
|
Bollino D, Webb TJ. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy. Transl Res 2017; 187. [PMID: 28651074 PMCID: PMC5604792 DOI: 10.1016/j.trsl.2017.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cells of the innate immune system and natural killer T (NKT) cells, which have roles in both the innate and adaptive responses, are unique lymphocyte subsets that have similarities in their functions and phenotypes. Both cell types can rapidly respond to the presence of tumor cells and participate in immune surveillance and antitumor immune responses. This has incited interest in the development of novel cancer therapeutics based on NK and NKT cell manipulation. Chimeric antigen receptors (CARs), generated through the fusion of an antigen-binding region of a monoclonal antibody or other ligand to intracellular signaling domains, can enhance lymphocyte targeting and activation toward diverse malignancies. Most of the CAR studies have focused on their expression in T cells; however, the functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. CAR-modified NK and NKT cells are becoming more prevalent because they provide a method to direct these cells more specifically to target cancer cells, with less risk of adverse effects. This review will outline current NK and NKT cell CAR constructs and how they compare to conventional CAR T cells, and discuss future modifications that can be explored to advance adoptive cell transfer of NK and NKT cells.
Collapse
Affiliation(s)
- Dominique Bollino
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Md
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Md.
| |
Collapse
|
103
|
Popovic ZV, Rabionet M, Jennemann R, Krunic D, Sandhoff R, Gröne HJ, Porubsky S. Glucosylceramide Synthase Is Involved in Development of Invariant Natural Killer T Cells. Front Immunol 2017; 8:848. [PMID: 28785267 PMCID: PMC5519558 DOI: 10.3389/fimmu.2017.00848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a unique population of CD1d-restricted T lymphocytes expressing an invariant T cell receptor encoded by Vα14-Jα18 and Vα24-Jα18 gene segments in mice and humans, respectively. Recognition of CD1d-loaded endogenous lipid antigen(s) on CD4/CD8-double positive (DP) thymocytes is essential for the development of iNKT cells. The lipid repertoire of DP thymocytes and the identity of the decisive endogenous lipid ligands have not yet been fully elucidated. Glycosphingolipids (GSL) were implicated to serve as endogenous ligands. However, further in vivo investigations were hampered by early embryonal lethality of mice deficient for the key GSL-synthesizing enzyme glucosylceramide (GlcCer) synthase [GlcCer synthase (GCS), EC 2.4.1.80]. We have now analyzed the GSL composition of DP thymocytes and shown that GlcCer represented the sole neutral GSL and the acidic fraction was composed of gangliosides. Furthermore, we report on a mouse model that by combination of Vav-promoter-driven iCre and floxed GCS alleles (VavCreGCSf/f) enabled an efficient depletion of GCS-derived GSL very early in the T cell development, reaching a reduction by 99.6% in DP thymocytes. Although the general T cell population remained unaffected by this depletion, iNKT cells were reduced by approximately 50% in thymus, spleen, and liver and showed a reduced proliferation and an increased apoptosis rate. The Vβ-chains repertoire and development of iNKT cells remained unaltered. The GSL-depletion neither interfered with expression of CD1d, SLAM, and Ly108 molecules nor impeded the antigen presentation on DP thymocytes. These results indicate that GlcCer-derived GSL, in particular GlcCer, contribute to the homeostatic development of iNKT cells.
Collapse
Affiliation(s)
- Zoran V Popovic
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mariona Rabionet
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, Heidelberg, Germany
| | - Roger Sandhoff
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Porubsky
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
104
|
Lai JCY, Rocha-Ferreira E, Ek CJ, Wang X, Hagberg H, Mallard C. Immune responses in perinatal brain injury. Brain Behav Immun 2017; 63:210-223. [PMID: 27865947 DOI: 10.1016/j.bbi.2016.10.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
The perinatal period has often been described as immune deficient. However, it has become clear that immune responses in the neonate following exposure to microbes or as a result of tissue injury may be substantial and play a role in perinatal brain injury. In this article we will review the immune cell composition under normal physiological conditions in the perinatal period, both in the human and rodent. We will summarize evidence of the inflammatory responses to stimuli and discuss how neonatal immune activation, both in the central nervous system and in the periphery, may contribute to perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Jacqueline C Y Lai
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden.
| |
Collapse
|
105
|
Pyaram K, Sen JM, Chang CH. Temporal regulation of Wnt/β-catenin signaling is important for invariant NKT cell development and terminal maturation. Mol Immunol 2017; 85:47-56. [PMID: 28208073 PMCID: PMC5385147 DOI: 10.1016/j.molimm.2017.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/19/2016] [Accepted: 01/28/2017] [Indexed: 01/30/2023]
Abstract
The Wnt/β-catenin signaling pathway plays important roles during various cellular functions including survival and proliferation of immune cells. The critical role of this pathway in conventional T cell development is established but little is known about its contributions to innate T cell development. In this study, we found that β-catenin level, an indication of the strength of Wnt/β-catenin signaling, is regulated during invariant NKT (iNKT) cell development. β-catenin levels were greatly increased during iNKT cell selection from double positive thymocytes to Stage 0 of iNKT cell development and during subsequent development to Stage 1. Thereafter, β-catenin levels decrease from Stage 2, which is essential for the terminal maturation of iNKT cells. Failure to dampen Wnt/β-catenin signaling as in mice expressing a stabilized active form of β-catenin (CATtg) resulted in increased Stage 2 and decreased Stage 3 iNKT cells. Inefficient transition from Stage 2 to 3 in CATtg iNKT cells seems to be contributed by poor expression of IL-15R (CD122) and transcription factor T-bet, both of which are necessary for terminal maturation of iNKT cells in the thymus. Consequently, IFN-γ+ iNKT cells were greatly reduced in CATtg mice. Together, our findings reveal that proper regulation of β-catenin and in turn Wnt signaling plays an important role in the terminal maturation and function of iNKT cells.
Collapse
Affiliation(s)
- Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jyoti Misra Sen
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Department of Medicine, The John Hopkins University School of Medicine, Baltimore, MD 217287, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
106
|
Guo X, Chen SY. Dedicator of Cytokinesis 2 in Cell Signaling Regulation and Disease Development. J Cell Physiol 2017; 232:1931-1940. [DOI: 10.1002/jcp.25512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Xia Guo
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
107
|
Sklarz T, Guan P, Gohil M, Cotton RM, Ge MQ, Haczku A, Das R, Jordan MS. mTORC2 regulates multiple aspects of NKT-cell development and function. Eur J Immunol 2017; 47:516-526. [PMID: 28078715 DOI: 10.1002/eji.201646343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/29/2016] [Accepted: 01/10/2017] [Indexed: 11/11/2022]
Abstract
Invariant NKT (iNKT) cells bridge innate and adaptive immunity by rapidly secreting cytokines and lysing targets following TCR recognition of lipid antigens. Based on their ability to secrete IFN-γ, IL-4 and IL-17A, iNKT-cells are classified as NKT-1, NKT-2, and NKT-17 subsets, respectively. The molecular pathways regulating iNKT-cell fate are not fully defined. Recent studies implicate Rictor, a required component of mTORC2, in the development of select iNKT-cell subsets, however these reports are conflicting. To resolve these questions, we used Rictorfl/fl CD4cre+ mice and found that Rictor is required for NKT-17 cell development and normal iNKT-cell cytolytic function. Conversely, Rictor is not absolutely required for IL-4 and IFN-γ production as peripheral iNKT-cells make copious amounts of these cytokines. Overall iNKT-cell numbers are dramatically reduced in the absence of Rictor. We provide data indicating Rictor regulates cell survival as well as proliferation of developing and mature iNKT-cells. Thus, mTORC2 regulates multiple aspects of iNKT-cell development and function.
Collapse
Affiliation(s)
- Tammarah Sklarz
- Abramson Family Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Guan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mercy Gohil
- Abramson Family Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Renee M Cotton
- Abramson Family Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Moyar Q Ge
- Department of Medicine, University of California at Davis, Davis, CA, USA
| | - Angela Haczku
- Department of Medicine, University of California at Davis, Davis, CA, USA
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
108
|
miR-17∼92 family clusters control iNKT cell ontogenesis via modulation of TGF-β signaling. Proc Natl Acad Sci U S A 2016; 113:E8286-E8295. [PMID: 27930306 DOI: 10.1073/pnas.1612024114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Invariant natural killer T cells (iNKT) cells are T lymphocytes displaying innate effector functions, acquired through a distinct thymic developmental program regulated by microRNAs (miRNAs). Deleting miRNAs by Dicer ablation (Dicer KO) in thymocytes selectively impairs iNKT cell survival and functional differentiation. To unravel this miRNA-dependent program, we systemically identified transcripts that were differentially expressed between WT and Dicer KO iNKT cells at different differentiation stages and predicted to be targeted by the iNKT cell-specific miRNAs. TGF-β receptor II (TGF-βRII), critically implicated in iNKT cell differentiation, was found up-regulated in iNKT Dicer KO cells together with enhanced TGF-β signaling. miRNA members of the miR-17∼92 family clusters were predicted to target Tgfbr2 mRNA upon iNKT cell development. iNKT cells lacking all three miR-17∼92 family clusters (miR-17∼92, miR-106a∼363, miR-106b∼25) phenocopied both increased TGF-βRII expression and signaling, and defective effector differentiation, displayed by iNKT Dicer KO cells. Consistently, genetic ablation of TGF-β signaling in the absence of miRNAs rescued iNKT cell differentiation. These results elucidate the global impact of miRNAs on the iNKT cell developmental program and uncover the targeting of a lineage-specific cytokine signaling by miRNAs as a mechanism regulating innate-like T-cell development and effector differentiation.
Collapse
|
109
|
Soluble γc cytokine receptor suppresses IL-15 signaling and impairs iNKT cell development in the thymus. Sci Rep 2016; 6:36962. [PMID: 27833166 PMCID: PMC5105068 DOI: 10.1038/srep36962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022] Open
Abstract
The soluble γc protein (sγc) is a naturally occurring splice isoform of the γc cytokine receptor that is produced by activated T cells and inhibits γc cytokine signaling. Here we show that sγc expression is also highly upregulated in immature CD4+CD8+ thymocytes but then downregulated in mature thymocytes. These results indicate a developmentally controlled mechanism for sγc expression and suggest a potential role for sγc in regulating T cell development in the thymus. Indeed, sγc overexpression resulted in significantly reduced thymocyte numbers and diminished expansion of immature thymocytes, concordant to its role in suppressing signaling by IL-7, a critical γc cytokine in early thymopoiesis. Notably, sγc overexpression also impaired generation of iNKT cells, resulting in reduced iNKT cell percentages and numbers in the thymus. iNKT cell development requires IL-15, and we found that sγc interfered with IL-15 signaling to suppress iNKT cell generation in the thymus. Thus, sγc represents a new mechanism to control cytokine availability during T cell development that constrains mature T cell production and specifically iNKT cell generation in the thymus.
Collapse
|
110
|
Cruz Tleugabulova M, Escalante NK, Deng S, Fieve S, Ereño-Orbea J, Savage PB, Julien JP, Mallevaey T. Discrete TCR Binding Kinetics Control Invariant NKT Cell Selection and Central Priming. THE JOURNAL OF IMMUNOLOGY 2016; 197:3959-3969. [PMID: 27798168 DOI: 10.4049/jimmunol.1601382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
Invariant NKT (iNKT) cells develop and differentiate in the thymus, segregating into iNKT1/2/17 subsets akin to Th1/2/17 classical CD4+ T cells; however, iNKT TCRs recognize Ags in a fundamentally different way. How the biophysical parameters of iNKT TCRs influence signal strength in vivo and how such signals affect the development and differentiation of these cells are unknown. In this study, we manipulated TCRs in vivo to generate clonotypic iNKT cells using TCR retrogenic chimeras. We report that the biophysical properties of CD1d-lipid-TCR interactions differentially impacted the development and effector differentiation of iNKT cells. Whereas selection efficiency strongly correlated with TCR avidity, TCR signaling, cell-cell conjugate formation, and iNKT effector differentiation correlated with the half-life of CD1d-lipid-TCR interactions. TCR binding properties, however, did not modulate Ag-induced iNKT cytokine production. Our work establishes that discrete TCR interaction kinetics influence iNKT cell development and central priming.
Collapse
Affiliation(s)
| | - Nichole K Escalante
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Stephanie Fieve
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - June Ereño-Orbea
- The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; and
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Jean-Philippe Julien
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; and.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| |
Collapse
|
111
|
Georgiev H, Ravens I, Benarafa C, Förster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun 2016; 7:13116. [PMID: 27721447 PMCID: PMC5062562 DOI: 10.1038/ncomms13116] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Invariant natural killer T (iNKT) cells comprise a subpopulation of innate lymphocytes developing in thymus. A new model proposes subdividing murine iNKT cells into iNKT1, 2 and 17 cells. Here, we use transcriptome analyses of iNKT1, 2 and 17 subsets isolated from BALB/c and C57BL/6 thymi to identify candidate genes that may affect iNKT cell development, migration or function. We show that Fcɛr1γ is involved in generation of iNKT1 cells and that SerpinB1 modulates frequency of iNKT17 cells. Moreover, a considerable proportion of iNKT17 cells express IL-4 and IL-17 simultaneously. The results presented not only validate the usefulness of the iNKT1/2/17-concept but also provide new insights into iNKT cell biology.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Carl Neuberg Street 1, Hannover D-30625, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Carl Neuberg Street 1, Hannover D-30625, Germany
| | - Charaf Benarafa
- Theodor Kocher Institute, University of Bern, Freisestrasse 1, Bern CH-3012, Switzerland
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl Neuberg Street 1, Hannover D-30625, Germany
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Carl Neuberg Street 1, Hannover D-30625, Germany
| |
Collapse
|
112
|
Beaudin AE, Boyer SW, Perez-Cunningham J, Hernandez GE, Derderian SC, Jujjavarapu C, Aaserude E, MacKenzie T, Forsberg EC. A Transient Developmental Hematopoietic Stem Cell Gives Rise to Innate-like B and T Cells. Cell Stem Cell 2016; 19:768-783. [PMID: 27666010 DOI: 10.1016/j.stem.2016.08.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 12/24/2022]
Abstract
The generation of distinct hematopoietic cell types, including tissue-resident immune cells, distinguishes fetal from adult hematopoiesis. However, the mechanisms underlying differential cell production to generate a layered immune system during hematopoietic development are unclear. Using an irreversible lineage-tracing model, we identify a definitive hematopoietic stem cell (HSC) that supports long-term multilineage reconstitution upon transplantation into adult recipients but does not persist into adulthood in situ. These HSCs are fully multipotent, yet they display both higher lymphoid cell production and greater capacity to generate innate-like B and T lymphocytes as compared to coexisting fetal HSCs and adult HSCs. Thus, these developmentally restricted HSCs (drHSCs) define the origin and generation of early lymphoid cells that play essential roles in establishing self-recognition and tolerance, with important implications for understanding autoimmune disease, allergy, and rejection of transplanted organs.
Collapse
Affiliation(s)
- Anna E Beaudin
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Scott W Boyer
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jessica Perez-Cunningham
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gloria E Hernandez
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - S Christopher Derderian
- Eli and Edythe Broad Center of Regeneration Medicine and Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chethan Jujjavarapu
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eric Aaserude
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tippi MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine and Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
113
|
Danzer C, Koller A, Baier J, Arnold H, Giessler C, Opoka R, Schmidt S, Willers M, Mihai S, Parsch H, Wirtz S, Daniel C, Reinhold A, Engelmann S, Kliche S, Bogdan C, Hoebe K, Mattner J. A mutation within the SH2 domain of slp-76 regulates the tissue distribution and cytokine production of iNKT cells in mice. Eur J Immunol 2016; 46:2121-2136. [PMID: 27349342 DOI: 10.1002/eji.201646331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/18/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
TCR ligation is critical for the selection, activation, and integrin expression of T lymphocytes. Here, we explored the role of the TCR adaptor protein slp-76 on iNKT-cell biology. Compared to B6 controls, slp-76(ace/ace) mice carrying a missense mutation (Thr428Ile) within the SH2-domain of slp-76 showed an increase in iNKT cells in the thymus and lymph nodes, but a decrease in iNKT cells in spleens and livers, along with reduced ADAP expression and cytokine response. A comparable reduction in iNKT cells was observed in the livers and spleens of ADAP-deficient mice. Like ADAP(-/-) iNKT cells, slp-76(ace/ace) iNKT cells were characterized by enhanced CD11b expression, correlating with an impaired induction of the TCR immediate-early gene Nur77 and a decreased adhesion to ICAM-1. Furthermore, CD11b-intrinsic effects inhibited cytokine release, concanavalin A-mediated inflammation, and iNKT-cell accumulation in the liver. Unlike B6 and ADAP(-/-) mice, the expression of the transcription factors Id3 and PLZF was reduced, whereas NP-1-expression was enhanced in slp-76(ace/ace) mice. Blockade of NP-1 decreased the recovery of iNKT cells from peripheral lymph nodes, identifying NP-1 as an iNKT-cell-specific adhesion factor. Thus, slp-76 contributes to the regulation of the tissue distribution, PLZF, and cytokine expression of iNKT cells via ADAP-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Claudia Danzer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Koller
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Baier
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Arnold
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Giessler
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Opoka
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Stephanie Schmidt
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Maike Willers
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sidonia Mihai
- Zentrallabor, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Hans Parsch
- Zentrallabor, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Nephropathologische Abteilung, Universitätsklinikum Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Swen Engelmann
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
114
|
Michel ML, Lenoir C, Massot B, Diem S, Pasquier B, Sawa S, Rignault-Bricard R, Lehuen A, Eberl G, Veillette A, Leite-de-Moraes M, Latour S. SLAM-associated protein favors the development of iNKT2 over iNKT17 cells. Eur J Immunol 2016; 46:2162-74. [PMID: 27338553 DOI: 10.1002/eji.201646313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 11/09/2022]
Abstract
Invariant NKT (iNKT) cells differentiate in the thymus into three distinct lineages defined by their cytokine and transcription factor expression. Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is essential for early stages of iNKT cell development, but its role during terminal differentiation of iNKT1, iNKT2, or iNKT17 cells remains unclear. Taking advantage of SAP-deficient mice expressing a Vα14-Jα18 TCRα transgene, we found that SAP is critical not only for IL-4 production but also for the terminal differentiation of IL-4-producing iNKT2 cells. Furthermore, without SAP, the IL-17 producing subset is expanded, while IFN-γ-producing iNKT1 differentiation is only moderately compromised. Lack of SAP reduced the expression of the transcription factors GATA-3 and promyelocytic leukemia zinc finger, but enhanced the levels of retinoic acid receptor-related orphan receptor γt. In the absence of SAP, lineage commitment was actually shifted toward the emergence of iNKT17 over iNKT2 cells. Collectively, our data unveil a new critical regulatory function for SAP in thymic iNKT cell fate decisions.
Collapse
Affiliation(s)
- Marie-Laure Michel
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France
| | - Bérangère Massot
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Séverine Diem
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Benoit Pasquier
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France
| | - Shinichiro Sawa
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France
| | - Rachel Rignault-Bricard
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Agnès Lehuen
- Hôpital Cochin-St. Vincent de Paul, INSERM UMR 986, Paris, France
| | - Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France
| | - André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Québec, Canada
| | - Maria Leite-de-Moraes
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France. .,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
115
|
Extrinsic allospecific signals of hematopoietic origin dictate iNKT cell lineage-fate decisions during development. Sci Rep 2016; 6:28837. [PMID: 27354027 PMCID: PMC4926280 DOI: 10.1038/srep28837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022] Open
Abstract
Invariant NKT (iNKT) cells are critical to the maintenance of tolerance toward alloantigens encountered during postnatal life pointing to the existence of a process for self-education. However, the impact of developmentally encountered alloantigens in shaping the phenotype and function of iNKT cells has not been described. To better understand this process, the current report examined naïve iNKT cells as they matured in an allogeneic environment. Following the prenatal transfer of fetal hematopoietic cells between age-matched allogeneic murine fetuses, cell-extrinsic signals appeared to dictate allospecific patterns of Ly49 receptor expression and lineage diversity in developing iNKT cells. Regulation for this process arose from cells of hematopoietic origin requiring only rare exposure to facilitate broad changes in developing iNKT cells. These findings highlight surprisingly asymmetric allospecific alterations in iNKT cells as they develop and mature in an allogeneic environment and establish a new paradigm for study of the self-education of iNKT cells.
Collapse
|
116
|
Transcription factor Bcl11b sustains iNKT1 and iNKT2 cell programs, restricts iNKT17 cell program, and governs iNKT cell survival. Proc Natl Acad Sci U S A 2016; 113:7608-13. [PMID: 27330109 DOI: 10.1073/pnas.1521846113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipid antigens and play critical roles in regulation of immune responses. Based on expression of the transcription factors (TFs) Tbet, Plzf, and Rorγt, iNKT cells have been classified in effector subsets that emerge in the thymus, namely, iNKT1, iNKT2, and iNKT17. Deficiency in the TF Bcl11b in double-positive (DP) thymocytes has been shown to cause absence of iNKT cells in the thymus and periphery due to defective self glycolipid processing and presentation by DP thymocytes and undefined intrinsic alterations in iNKT precursors. We used a model of cre-mediated postselection deletion of Bcl11b in iNKT cells to determine its intrinsic role in these cells. We found that Bcl11b is expressed equivalently in all three effector iNKT subsets, and its removal caused a reduction in the numbers of iNKT1 and iNKT2 cells, but not in the numbers of iNKT17 cells. Additionally, we show that Bcl11b sustains subset-specific cytokine production by iNKT1 and iNKT2 cells and restricts expression of iNKT17 genes in iNKT1 and iNKT2 subsets, overall restraining the iNKT17 program in iNKT cells. The total numbers of iNKT cells were reduced in the absence of Bcl11b both in the thymus and periphery, associated with the decrease in iNKT1 and iNKT2 cell numbers and decrease in survival, related to changes in survival/apoptosis genes. Thus, these results extend our understanding of the role of Bcl11b in iNKT cells beyond their selection and demonstrate that Bcl11b is a key regulator of iNKT effector subsets, their function, identity, and survival.
Collapse
|
117
|
Transcriptional regulator Bhlhe40 works as a cofactor of T-bet in the regulation of IFN-γ production in iNKT cells. Proc Natl Acad Sci U S A 2016; 113:E3394-402. [PMID: 27226296 DOI: 10.1073/pnas.1604178113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of innate-like T cells that act as important mediators of immune responses. In particular, iNKT cells have the ability to immediately produce large amounts of IFN-γ upon activation and thus initiate immune responses in various pathological conditions. However, molecular mechanisms that control IFN-γ production in iNKT cells are not fully understood. Here, we report that basic helix-loop-helix transcription factor family, member e40 (Bhlhe40), is an important regulator for IFN-γ production in iNKT cells. Bhlhe40 is highly expressed in stage 3 thymic iNKT cells and iNKT1 subsets, and the level of Bhlhe40 mRNA expression is correlated with Ifng mRNA expression in the resting state. Although Bhlhe40-deficient mice show normal iNKT cell development, Bhlhe40-deficient iNKT cells show significant impairment of IFN-γ production and antitumor effects. Bhlhe40 alone shows no significant effects on Ifng promoter activities but contributes to enhance T-box transcription factor Tbx21 (T-bet)-mediated Ifng promoter activation. Chromatin immunoprecipitation analysis revealed that Bhlhe40 accumulates in the T-box region of the Ifng locus and contributes to histone H3-lysine 9 acetylation of the Ifng locus, which is impaired without T-bet conditions. These results indicate that Bhlhe40 works as a cofactor of T-bet for enhancing IFN-γ production in iNKT cells.
Collapse
|
118
|
Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat Immunol 2016; 17:728-39. [PMID: 27089380 DOI: 10.1038/ni.3437] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
Natural killer T cells (NKT cells) have stimulatory or inhibitory effects on the immune response that can be attributed in part to the existence of functional subsets of NKT cells. These subsets have been characterized only on the basis of the differential expression of a few transcription factors and cell-surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic level and epigenomic level and by single-cell RNA sequencing. Our data indicated that despite their similar antigen specificity, the functional NKT cell subsets were highly divergent populations with many gene-expression and epigenetic differences. Therefore, the thymus 'imprints' distinct gene programs on subsets of innate-like NKT cells that probably impart differences in proliferative capacity, homing, and effector functions.
Collapse
|
119
|
Roy S, Zhuang Y. Orchestration of invariant natural killer T cell development by E and Id proteins. Crit Rev Immunol 2016; 35:33-48. [PMID: 25746046 DOI: 10.1615/critrevimmunol.2015012207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural killer T (NKT) cells are αβ T cells that express a semi-invariant T-cell receptor (TCR) along with natural killer (NK) cell markers and have an innate cell-like ability to produce a myriad of cytokines very quickly upon antigen exposure and subsequent activation. These cells are diverted from conventional single positive (SP) T-cell fate at the double positive (DP) stage, where TCR-mediated recognition of a lipid antigen presented on a CD1d molecule promotes their selection into the NKT lineage. Although many key regulatory molecules have been shown to play important roles in the development of NKT cells, the mechanism of lineage specification and acquisition of effector functions in these cells still remain to be fully addressed. In this review, we specifically discuss the role of a family of class-I helix-loop-helix proteins known as E proteins, and their antagonists Id proteins in NKT celldevelopment. Recent work has shown that these proteins play key roles in invariant NKT (iNKT) development, from the invariant TCR rearrangement to terminal differentiation and maturation. Elucidating these roles provides an opportunity to uncover the transcriptional network that separates NKT cells from concurrently developed conventional αβ T cells.
Collapse
Affiliation(s)
- Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
120
|
O'Brien TF, Bao K, Dell'Aringa M, Ang WXG, Abraham S, Reinhardt RL. Cytokine expression by invariant natural killer T cells is tightly regulated throughout development and settings of type-2 inflammation. Mucosal Immunol 2016; 9:597-609. [PMID: 26349658 PMCID: PMC4785102 DOI: 10.1038/mi.2015.78] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 07/22/2015] [Indexed: 02/04/2023]
Abstract
Invariant natural killer T (iNKT) cells produce cytokines interleukin-4 (IL-4) and IL-13 during type-2 inflammatory responses. However, the nature in which iNKT cells acquire type-2 cytokine competency and the precise contribution of iNKT cell-derived IL-4 and IL-13 in vivo remains unclear. Using IL-13-reporter mice to fate-map cytokine-expressing cells in vivo, this study reveals that thymic iNKT cells express IL-13 early during development, and this IL-13-expressing intermediate gives rise to mature iNKT1, iNKT2, and iNKT17 subsets. IL-4 and IL-13 reporter mice also reveal that effector iNKT2 cells produce IL-4 but little IL-13 in settings of type-2 inflammation. The preferential production of IL-4 over IL-13 in iNKT2 cells results in part from their reduced GATA-3 expression. In summary, this work helps integrate current models of iNKT cell development, and further establishes non-coordinate production of IL-4 and IL-13 as the predominant pattern of type-2 cytokine expression among innate cells in vivo.
Collapse
Affiliation(s)
- T F O'Brien
- grid.189509.c0000000100241216Department of Immunology, Duke University Medical Center, Durham, North Carolina USA
| | - K Bao
- grid.189509.c0000000100241216Department of Immunology, Duke University Medical Center, Durham, North Carolina USA
| | - M Dell'Aringa
- grid.189509.c0000000100241216Department of Immunology, Duke University Medical Center, Durham, North Carolina USA
| | - W X G Ang
- grid.189509.c0000000100241216Department of Pathology, Duke University Medical Center, Durham, North Carolina USA
| | - S Abraham
- grid.189509.c0000000100241216Department of Pathology, Duke University Medical Center, Durham, North Carolina USA
| | - R L Reinhardt
- grid.189509.c0000000100241216Department of Immunology, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
121
|
Antitumor Responses of Invariant Natural Killer T Cells. J Immunol Res 2015; 2015:652875. [PMID: 26543874 PMCID: PMC4620262 DOI: 10.1155/2015/652875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/26/2015] [Indexed: 01/18/2023] Open
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that were first described in the late 1980s. Since their initial description, numerous studies have collectively shed light on their development and effector function. These studies have highlighted the unique requirements for the activation of these lymphocytes and the functional responses that distinguish these cells from other effector lymphocyte populations such as conventional T cells and NK cells. This body of literature suggests that NKT cells play diverse nonredundant roles in a number of disease processes, including the initiation and propagation of airway hyperreactivity, protection against a variety of pathogens, development of autoimmunity, and mediation of allograft responses. In this review, however, we focus on the role of a specific lineage of NKT cells in antitumor immunity. Specifically, we describe the development of invariant NKT (iNKT) cells and the factors that are critical for their acquisition of effector function. Next, we delineate the mechanisms by which iNKT cells influence and modulate the activity of other immune cells to directly or indirectly affect tumor growth. Finally, we review the successes and failures of clinical trials employing iNKT cell-based immunotherapies and explore the future prospects for the use of such strategies.
Collapse
|
122
|
Mirzakhani H, Al-Garawi A, Weiss ST, Litonjua AA. Vitamin D and the development of allergic disease: how important is it? Clin Exp Allergy 2015; 45:114-25. [PMID: 25307157 DOI: 10.1111/cea.12430] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin D has known effects on lung development and the immune system that may be important in the development, severity, and course of allergic diseases (asthma, eczema, and food allergy). Vitamin D deficiency is prevalent worldwide and may partly explain the increases in asthma and allergic diseases that have occurred over the last 50-60 years. In this review, we explore past and current knowledge on the effect of vitamin D on lung development and immunomodulation and present the evidence of its role in allergic conditions. While there is growing observational and experimental evidence for the role of vitamin D, well-designed and well-powered clinical trials are needed to determine whether supplementation of vitamin D should be recommended in these disorders.
Collapse
Affiliation(s)
- H Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
123
|
Monteiro M, Agua-Doce A, Almeida CF, Fonseca-Pereira D, Veiga-Fernandes H, Graca L. IL-9 Expression by Invariant NKT Cells Is Not Imprinted during Thymic Development. THE JOURNAL OF IMMUNOLOGY 2015; 195:3463-71. [PMID: 26297763 DOI: 10.4049/jimmunol.1403170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/22/2015] [Indexed: 01/05/2023]
Abstract
Invariant NKT (iNKT) cell thymic development can lead to distinct committed effector lineages, namely NKT1, NKT2, and NKT17. However, following identification of IL-9-producing iNKT cells involved in mucosal inflammation, their development remains unaddressed. In this study, we report that although thymic iNKT cells from naive mice do not express IL-9, iNKT cell activation in the presence of TGF-β and IL-4 induces IL-9 secretion in murine and human iNKT cells. Acquisition of IL-9 production was observed in different iNKT subsets defined by CD4, NK1.1, and neuropilin-1, indicating that distinct functional subpopulations are receptive to IL-9 polarization. Transcription factor expression kinetics suggest that regulatory mechanisms of IL-9 expression are shared by iNKT and CD4 T cells, with Irf4 and Batf deficiency deeply affecting IL-9 production. Importantly, adoptive transfer of an enriched IL-9(+) iNKT cell population leads to exacerbated allergic inflammation in the airways upon intranasal immunization with house dust mite, confirming the ability of IL-9-producing iNKT cells to mediate proinflammatory effects in vivo, as previously reported. Taken together, our data show that peripheral iNKT cells retain the capacity of shaping their function in response to environmental cues, namely TGF-β and IL-4, adopting an IL-9-producing NKT cell phenotype able to mediate proinflammatory effects in vivo, namely granulocyte and mast cell recruitment to the lungs.
Collapse
Affiliation(s)
- Marta Monteiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; and Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Ana Agua-Doce
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; and Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Catarina F Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; and Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Diogo Fonseca-Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; and
| | - Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; and
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; and Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| |
Collapse
|
124
|
Yang XD, Sun SC. Targeting signaling factors for degradation, an emerging mechanism for TRAF functions. Immunol Rev 2015; 266:56-71. [PMID: 26085207 PMCID: PMC4473799 DOI: 10.1111/imr.12311] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of nuclear factor-κB (NF-κB)-inducing kinase (NIK), an action required for the control of NIK-regulated non-canonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
125
|
Abstract
The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins.
Collapse
Affiliation(s)
- Mihalis Verykokakis
- Committee on Immunology and Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
126
|
Pei B, Zhao M, Miller BC, Véla JL, Bruinsma MW, Virgin HW, Kronenberg M. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5872-84. [PMID: 25926673 DOI: 10.4049/jimmunol.1402154] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 04/01/2015] [Indexed: 12/21/2022]
Abstract
Autophagy regulates cell differentiation, proliferation, and survival in multiple cell types, including cells of the immune system. In this study, we examined the effects of a disruption of autophagy on the differentiation of invariant NKT (iNKT) cells. Using mice with a T lymphocyte-specific deletion of Atg5 or Atg7, two members of the macroautophagic pathway, we observed a profound decrease in the iNKT cell population. The deficit is cell-autonomous, and it acts predominantly to reduce the number of mature cells, as well as the function of peripheral iNKT cells. In the absence of autophagy, there is reduced progression of iNKT cells in the thymus through the cell cycle, as well as increased apoptosis of these cells. Importantly, the reduction in Th1-biased iNKT cells is most pronounced, leading to a selective reduction in iNKT cell-derived IFN-γ. Our findings highlight the unique metabolic and genetic requirements for the differentiation of iNKT cells.
Collapse
Affiliation(s)
- Bo Pei
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Meng Zhao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Brian C Miller
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jose Luis Véla
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Monique W Bruinsma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
127
|
Abstract
Over the last two decades, it has been established that peptides are not the only antigens recognized by T lymphocytes. Here, we review information on two T lymphocyte populations that recognize nonpeptide antigens: invariant natural killer T cells (iNKT cells), which respond to glycolipids, and mucosal associated invariant T cells (MAIT cells), which recognize microbial metabolites. These two populations have a number of striking properties that distinguish them from the majority of T cells. First, their cognate antigens are presented by nonclassical class I antigen-presenting molecules; CD1d for iNKT cells and MR1 for MAIT cells. Second, these T lymphocyte populations have a highly restricted diversity of their T cell antigen receptor α chains. Third, these cells respond rapidly to antigen or cytokine stimulation by producing copious amounts of cytokines, such as IFNγ, which normally are only made by highly differentiated effector T lymphocytes. Because of their response characteristics, iNKT and MAIT cells act at the interface of innate and adaptive immunity, participating in both types of responses. In this review, we will compare these two subsets of innate-like T cells, with an emphasis on the various ways that lead to their activation and their participation in antimicrobial responses.
Collapse
Affiliation(s)
- Shilpi Chandra
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | |
Collapse
|
128
|
Carr T, Krishnamoorthy V, Yu S, Xue HH, Kee BL, Verykokakis M. The transcription factor lymphoid enhancer factor 1 controls invariant natural killer T cell expansion and Th2-type effector differentiation. ACTA ACUST UNITED AC 2015; 212:793-807. [PMID: 25897173 PMCID: PMC4419352 DOI: 10.1084/jem.20141849] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/23/2015] [Indexed: 12/19/2022]
Abstract
The transcription factor LEF1 promotes the expansion and Th2-type polarization of invariant NKT cells in part by directly inducing the expression of the IL-7 receptor component CD127 and the transcription factors c-myc and Gata3. Invariant natural killer T cells (iNKT cells) are innate-like T cells that rapidly produce cytokines that impact antimicrobial immune responses, asthma, and autoimmunity. These cells acquire multiple effector fates during their thymic development that parallel those of CD4+ T helper cells. The number of Th2-type effector iNKT cells is variable in different strains of mice, and their number impacts CD8 T, dendritic, and B cell function. Here we demonstrate a unique function for the transcription factor lymphoid enhancer factor 1 (LEF1) in the postselection expansion of iNKT cells through a direct induction of the CD127 component of the receptor for interleukin-7 (IL-7) and the transcription factor c-myc. LEF1 also directly augments expression of the effector fate–specifying transcription factor GATA3, thus promoting the development of Th2-like effector iNKT cells that produce IL-4, including those that also produce interferon-γ. Our data reveal LEF1 as a central regulator of iNKT cell number and Th2-type effector differentiation.
Collapse
Affiliation(s)
- Tiffany Carr
- Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Veena Krishnamoorthy
- Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Shuyang Yu
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Hai-Hui Xue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Barbara L Kee
- Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637 Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637 Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Mihalis Verykokakis
- Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637 Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
129
|
Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function. Nat Immunol 2015; 16:517-24. [PMID: 25848867 PMCID: PMC4406853 DOI: 10.1038/ni.3146] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Lethal-7 (let-7) microRNAs are the most abundant in the genome but their role in developing thymocytes is unclear. We now report that let-7 miRNAs target Zbtb16 mRNA, which encodes the lineage-specific transcription factor PLZF, to post-transcriptionally regulate PLZF expression and NKT cell effector function. Dynamic up-regulation of let-7 miRNAs during NKT thymocyte development down-regulates PLZF expression and directs terminal differentiation into interferon-γ-producing NKT1 cells. Without let-7 up-regulation, NKT thymocytes maintain high PLZF expression and terminally differentiate into IL-4-producing NKT2 and IL-17-producing NKT17 cells. Let-7 up-regulation in developing NKT thymocytes can be signaled by IL-15, vitamin D and retinoic acid. Such miRNA targeting of a lineage-specific transcription factor constitutes a new level of developmental regulation in the thymus.
Collapse
|
130
|
Burocchi A, Pittoni P, Tili E, Rigoni A, Costinean S, Croce CM, Colombo MP. Regulated Expression of miR-155 is Required for iNKT Cell Development. Front Immunol 2015; 6:140. [PMID: 25870598 PMCID: PMC4378312 DOI: 10.3389/fimmu.2015.00140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/14/2015] [Indexed: 11/21/2022] Open
Abstract
Invariant natural killer T cells (iNKT cells) are CD1d-restricted, lipid antigen-reactive T lymphocytes with immunoregulatory functions. iNKT cell development in the thymus proceeds through subsequent stages, defined by the expression of CD44 and NK1.1, and is dictated by a unique gene expression program, including microRNAs. Here, we investigated whether miR-155, a microRNA involved in differentiation of most hematopoietic cells, played any role in iNKT cell development. To this end, we assessed the expression of miR-155 along iNKT cell maturation in the thymus, and studied the effects of miR-155 on iNKT cell development using Lck-miR-155 transgenic mice, which over express miR-155 in T cell lineage under the lymphocyte-specific protein tyrosine kinase (Lck) promoter. We show that miR-155 is expressed by newly selected immature wild-type iNKT cells and turned off along iNKT cells differentiation. In transgenic mice, miR-155 over-expression resulted in a substantial block of iNKT cell maturation at Stage 2, in the thymus toward an overall reduction of peripheral iNKT cells, unlike mainstream T cells. Furthermore, the effects of miR-155 over-expression on iNKT cell differentiation were cell autonomous. Finally, we identified Ets1 and ITK transcripts as relevant targets of miR-155 in iNKT cell differentiation. Altogether, these results demonstrate that a tight control of miR-155 expression is required for the development of iNKT cells.
Collapse
Affiliation(s)
- Alessia Burocchi
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS "Istituto Nazionale dei Tumori" , Milan , Italy
| | - Paola Pittoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS "Istituto Nazionale dei Tumori" , Milan , Italy
| | - Esmerina Tili
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University , Columbus, OH , USA ; Department of Anesthesiology, Wexner Medical Center, The Ohio State University , Columbus, OH , USA
| | - Alice Rigoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS "Istituto Nazionale dei Tumori" , Milan , Italy
| | - Stefan Costinean
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University , Columbus, OH , USA
| | - Carlo Maria Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University , Columbus, OH , USA
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS "Istituto Nazionale dei Tumori" , Milan , Italy
| |
Collapse
|
131
|
Kang J, Malhotra N. Transcription factor networks directing the development, function, and evolution of innate lymphoid effectors. Annu Rev Immunol 2015; 33:505-38. [PMID: 25650177 PMCID: PMC4674156 DOI: 10.1146/annurev-immunol-032414-112025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity.
Collapse
Affiliation(s)
- Joonsoo Kang
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| | | |
Collapse
|
132
|
Zhang H, Zhang F, Zhu Z, Luong D, Meadows GG. Chronic alcohol consumption enhances iNKT cell maturation and activation. Toxicol Appl Pharmacol 2014; 282:139-50. [PMID: 25499027 DOI: 10.1016/j.taap.2014.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 01/16/2023]
Abstract
Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1(-) iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1(+)CD44(hi) mature iNKT cells but does not alter the number of NK1.1(-) immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1(-) iNKT cells, especially the NK1.1(-)CD44(lo) Stage I iNKT cells. The percentage of NKG2A(+) iNKT cells increases in all of the tissues and organs examined; whereas CXCR3(+) iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210-1495, USA.
| | - Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210-1495, USA
| | - Zhaohui Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210-1495, USA
| | - Dung Luong
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210-1495, USA
| | - Gary G Meadows
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210-1495, USA
| |
Collapse
|
133
|
Prevot N, Pyaram K, Bischoff E, Sen JM, Powell JD, Chang CH. Mammalian target of rapamycin complex 2 regulates invariant NKT cell development and function independent of promyelocytic leukemia zinc-finger. THE JOURNAL OF IMMUNOLOGY 2014; 194:223-30. [PMID: 25404366 DOI: 10.4049/jimmunol.1401985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian target of rapamycin (mTOR) senses and incorporates different environmental cues via the two signaling complexes mTOR complex 1 (mTORC1) and mTORC2. As a result, mTOR controls cell growth and survival, and also shapes different effector functions of the cells including immune cells such as T cells. We demonstrate in this article that invariant NKT (iNKT) cell development is controlled by mTORC2 in a cell-intrinsic manner. In mice deficient in mTORC2 signaling because of the conditional deletion of the Rictor gene, iNKT cell numbers were reduced in the thymus and periphery. This is caused by decreased proliferation of stage 1 iNKT cells and poor development through subsequent stages. Functionally, iNKT cells devoid of mTORC2 signaling showed reduced number of IL-4-expressing cells, which correlated with a decrease in the transcription factor GATA-3-expressing cells. However, promyelocytic leukemia zinc-finger (PLZF), a critical transcription factor for iNKT cell development, is expressed at a similar level in mTORC2-deficient iNKT cells compared with that in the wild type iNKT cells. Furthermore, cellular localization of PLZF was not altered in the absence of mTOR2 signaling. Thus, our study reveals the PLZF-independent mechanisms of the development and function of iNKT cells regulated by mTORC2.
Collapse
Affiliation(s)
- Nicolas Prevot
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Evan Bischoff
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jyoti Misra Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Jonathan D Powell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109;
| |
Collapse
|
134
|
Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci U S A 2014; 111:15296-303. [PMID: 25313072 PMCID: PMC4217469 DOI: 10.1073/pnas.1411762111] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major cause of sea-level change during ice ages is the exchange of water between ice and ocean and the planet's dynamic response to the changing surface load. Inversion of ∼1,000 observations for the past 35,000 y from localities far from former ice margins has provided new constraints on the fluctuation of ice volume in this interval. Key results are: (i) a rapid final fall in global sea level of ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y before present (30 ka BP); (ii) a slow fall to -134 m from 29 to 21 ka BP with a maximum grounded ice volume of ∼52 × 10(6) km(3) greater than today; (iii) after an initial short duration rapid rise and a short interval of near-constant sea level, the main phase of deglaciation occurred from ∼16.5 ka BP to ∼8.2 ka BP at an average rate of rise of 12 m⋅ka(-1) punctuated by periods of greater, particularly at 14.5-14.0 ka BP at ≥40 mm⋅y(-1) (MWP-1A), and lesser, from 12.5 to 11.5 ka BP (Younger Dryas), rates; (iv) no evidence for a global MWP-1B event at ∼11.3 ka BP; and (v) a progressive decrease in the rate of rise from 8.2 ka to ∼2.5 ka BP, after which ocean volumes remained nearly constant until the renewed sea-level rise at 100-150 y ago, with no evidence of oscillations exceeding ∼15-20 cm in time intervals ≥200 y from 6 to 0.15 ka BP.
Collapse
Affiliation(s)
- Kurt Lambeck
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; Laboratoire de Géologie de l'École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and
| | - Hélène Rouby
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; Laboratoire de Géologie de l'École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and
| | - Anthony Purcell
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | - Yiying Sun
- Department of Earth Sciences, University of Hong Kong, Hong Kong, China
| | - Malcolm Sambridge
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
135
|
Ridgway WM, Gershwin ME. Prometheus unbound: NKT cells inhibit hepatic regeneration. Hepatology 2014; 60:1133-5. [PMID: 24824434 PMCID: PMC4174721 DOI: 10.1002/hep.27214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/07/2014] [Indexed: 12/29/2022]
Abstract
Although natural killer T (NKT) cells were discovered over 20 years ago, our understanding of their immunobiology continues to evolve and surprise. NKT cells are T lymphocytes: they arise in the bone marrow, are selected in the thymus, and express a T cell receptor. Unlike classic T cells, however, they are not strictly “adaptive” immune cells: in particular, as a population they express a very narrow range of T cell receptors. The vast majority of mouse NKT cells, for example, express the Vα14-J281 chain and only a finite number of Vβ chains (1). In addition, they express NK cell surface markers, such as NK 1.1. Moreover, unlike classical T cells, they are not restricted by MHC Class I or Class II, but by an MHC-like molecule, CD1d (2). Furthermore, NKT cells do not recognize peptides in the context of CD1d, but rather specialized lipids (3). Functionally NKT cells also reflect major differences from conventional T cells: they are able to produce both classic Th1 (IFN-γ) and Th2 (IL-4) cytokines without prior peripheral stimulation, but when stimulated by their glycolipid antigens downregulate TCR, expand, and divert to a Th1 phenotype (4). Like classical T cells, they are selected in the thymus by a self-molecule: however, it is not a protein, but a trihexosylceramide, iGb3, bound to CD1d (5). Mice deficient in iGb3 demonstrated a severe deficiency of NKT cells, illustrating its critical role in NKT cells selection and survival (5). These features of NKT cells place them into the expanding category of “innate-like” lymphocytes (6). “Innate” immunity has classically been defined by “stereotypical” responses mediated by invariant receptors to defined ligands: for example, the signaling and functional responses of TLR4 when bound to its ligand, LPS. Since the overall TCR repertoire of NKT cells is so limited, the population as a whole responds “innately” to just a few lipid antigens, rather than retaining a population-capability to respond to the full universe of T cell antigens. Finally, and of great interest to the field of hepatic immunity, NKT cells do not circulate freely, but tend to home to and reside for life in specific tissues such as the liver, where they compose ~30% of the intrahepatic lymphoid pool (7).
Collapse
Affiliation(s)
- William M. Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616
| |
Collapse
|
136
|
Invariant NKT cell development: focus on NOD mice. Curr Opin Immunol 2014; 27:83-8. [PMID: 24637104 DOI: 10.1016/j.coi.2014.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023]
Abstract
Natural killer T (NKT) cells are non-conventional T lymphocytes expressing a TCRαβ and several NK cell markers. Once activated, they can rapidly secrete large amounts of cytokines such as IFN-γ and IL-4. As a result they can favor both Th1 and Th2 immune responses and play a critical role in anti-pathogenic immune responses as well as in regulation of autoimmune diseases. It has now been clearly established that iNKT cells can be subdivided into three subpopulations: iNKT1, iNKT2 and iNKT17 cells. Each of these populations is characterized by the expression of a particular transcription factor, surface markers and cytokines making them functionally distinct. Interestingly, NOD mice developing autoimmune diabetes exhibit a high frequency of iNKT17 cells, which can participate in the disease.
Collapse
|
137
|
Liu X, Yin S, Cao W, Fan W, Yu L, Yin L, Wang L, Wang J. Runt-related transcription factor 3 is involved in the altered phenotype and function in ThPok-deficient invariant natural killer T cells. Cell Mol Immunol 2014; 11:232-44. [PMID: 24561456 DOI: 10.1038/cmi.2014.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 01/09/2023] Open
Abstract
The interplay between the CD4-lineage transcription factor ThPok and the CD8-lineage transcription factor, runt-related transcription factor 3 (Runx3), in T-cell development has been extensively documented. However, little is known about the roles of these transcription factors in invariant natural killer T (iNKT) cell development. CD1d-restricted iNKT cells are committed to the CD4(+)CD8(-) and CD4(-)CD8(-) sublineages, which respond to antigen stimulation with rapid and potent release of T helper (Th) 1 and Th2 cytokines. However, previous reports have demonstrated a new population of CD8(+) NKT cells in ThPok-deficient mice. In the current study, we sought to determine whether Runx3 was involved in the re-expression of CD8 and function of iNKT cells in the absence of ThPok. We used mice lacking Runx3, ThPok or both and verified that Runx3 was partially responsible for the appearance of CD8(+) iNKT cells in ThPok knockout mice. Additionally, Runx3 participated in the immune response mediated by iNKT cells in a model of α-galactosylceramide-induced acute hepatitis. These results indicate that Runx3 is crucial for the phenotypic and functional changes observed in ThPok-deficient iNKT cells.
Collapse
|
138
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|
139
|
Kim J, Lee SK, Jeon Y, Kim Y, Lee C, Jeon SH, Shim J, Kim IH, Hong S, Kim N, Lee H, Seong RH. TopBP1 deficiency impairs V(D)J recombination during lymphocyte development. EMBO J 2014; 33:217-28. [PMID: 24442639 DOI: 10.1002/embj.201284316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TopBP1 was initially identified as a topoisomerase II-β-binding protein and it plays roles in DNA replication and repair. We found that TopBP1 is expressed at high levels in lymphoid tissues and is essential for early lymphocyte development. Specific abrogation of TopBP1 expression resulted in transitional blocks during early lymphocyte development. These defects were, in major part, due to aberrant V(D)J rearrangements in pro-B cells, double-negative and double-positive thymocytes. We also show that TopBP1 was located at sites of V(D)J rearrangement. In TopBP1-deficient cells, γ-H2AX foci were found to be increased. In addition, greater amount of γ-H2AX product was precipitated from the regions where TopBP1 was localized than from controls, indicating that TopBP1 deficiency results in inefficient DNA double-strand break repair. The developmental defects were rescued by introducing functional TCR αβ transgenes. Our data demonstrate a novel role for TopBP1 as a crucial factor in V(D)J rearrangement during the development of B, T and iNKT cells.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Biological Sciences, Institute of Molecular Biology and Genetics Research Center for Functional Cellulomics Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Engel I, Kronenberg M. Transcriptional control of the development and function of Vα14i NKT cells. Curr Top Microbiol Immunol 2014; 381:51-81. [PMID: 24839184 DOI: 10.1007/82_2014_375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The majority of T lymphocytes, sometimes referred to as as mainstream or conventional T cells, are characterized by a diverse T cell antigen receptor (TCR) repertoire. They require antigen priming in order to become memory cells capable of mounting a rapid effector response. It has become established, however, that there are several distinct T cell lineages that exhibit a memory phenotype in the absence of antigen priming, even as they differentiate in the thymus. These lymphocytes typically express a markedly restricted TCR repertoire and their rapid response kinetics has led to their being described as innate-like T cells. In addition, several of these subsets typically express surface markers commonly found on natural killer cells, which has led to the moniker natural killer T cells (NKT cells). This review will describe our current understanding of the unique ways whereby transcription factors control the development and function of an abundant and widely studied lineage of NKT cells that recognizes glycolipid antigens.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | |
Collapse
|
141
|
Effective functional maturation of invariant natural killer T cells is constrained by negative selection and T-cell antigen receptor affinity. Proc Natl Acad Sci U S A 2013; 111:E119-28. [PMID: 24344267 DOI: 10.1073/pnas.1320777110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The self-reactivity of their T-cell antigen receptor (TCR) is thought to contribute to the development of immune regulatory cells, such as invariant NK T cells (iNKT). In the mouse, iNKT cells express TCRs composed of a unique Vα14-Jα18 rearrangement and recognize lipid antigens presented by CD1d molecules. We created mice expressing a transgenic TCR-β chain that confers high affinity for self-lipid/CD1d complexes when randomly paired with the mouse iNKT Vα14-Jα18 rearrangement to study their development. We show that although iNKT cells undergo agonist selection, their development is also shaped by negative selection in vivo. In addition, iNKT cells that avoid negative selection in these mice express natural sequence variants of the canonical TCR-α and decreased affinity for self/CD1d. However, limiting the affinity of the iNKT TCRs for "self" leads to inefficient Egr2 induction, poor expression of the iNKT lineage-specific zinc-finger transcription factor PLZF, inadequate proliferation of iNKT cell precursors, defects in trafficking, and impaired effector functions. Thus, proper development of fully functional iNKT cells is constrained by a limited range of TCR affinity that plays a key role in triggering the iNKT cell-differentiation pathway. These results provide a direct link between the affinity of the TCR expressed by T-cell precursors for self-antigens and the proper development of a unique population of lymphocytes essential to immune responses.
Collapse
|
142
|
Verykokakis M, Krishnamoorthy V, Iavarone A, Lasorella A, Sigvardsson M, Kee BL. Essential functions for ID proteins at multiple checkpoints in invariant NKT cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5973-83. [PMID: 24244015 PMCID: PMC3864619 DOI: 10.4049/jimmunol.1301521] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Invariant NKT (iNKT) cells display characteristics of both adaptive and innate lymphoid cells (ILCs). Like other ILCs, iNKT cells constitutively express ID proteins, which antagonize the E protein transcription factors that are essential for adaptive lymphocyte development. However, unlike ILCs, ID2 is not essential for thymic iNKT cell development. In this study, we demonstrated that ID2 and ID3 redundantly promoted iNKT cell lineage specification involving the induction of the signature transcription factor PLZF and that ID3 was critical for development of TBET-dependent NKT1 cells. In contrast, both ID2 and ID3 limited iNKT cell numbers by enforcing the postselection checkpoint in conventional thymocytes. Therefore, iNKT cells show both adaptive and innate-like requirements for ID proteins at distinct checkpoints during iNKT cell development.
Collapse
Affiliation(s)
- Mihalis Verykokakis
- Department of Pathology, University of Chicago, Chicago, IL, 60637
- Committee on Immunology, University of Chicago, Chicago, IL, 60637
| | | | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, 10032
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032
- Department of Pathology, Columbia University Medical Center, New York, NY, 10032
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, 10032
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032
- Department of Pathology, Columbia University Medical Center, New York, NY, 10032
| | - Mikael Sigvardsson
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty for Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Barbara L. Kee
- Department of Pathology, University of Chicago, Chicago, IL, 60637
- Committee on Immunology, University of Chicago, Chicago, IL, 60637
| |
Collapse
|
143
|
Rakhshandehroo M, Kalkhoven E, Boes M. Invariant natural killer T cells in adipose tissue: novel regulators of immune-mediated metabolic disease. Cell Mol Life Sci 2013; 70:4711-27. [PMID: 23835837 PMCID: PMC11113180 DOI: 10.1007/s00018-013-1414-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
Adipose tissue (AT) represents a microenvironment where intersection takes place between immune processes and metabolic pathways. A variety of immune cells have been characterized in AT over the past decades, with the most recent addition of invariant natural killer T (iNKT) cells. As members of the T cell family, iNKT cells represent a subset that exhibits both innate and adaptive characteristics and directs ensuing immune responses. In disease conditions, iNKT cells have established roles that include disorders in the autoimmune spectrum in malignancies and infectious diseases. Recent work supports a role for iNKT cells in the maintenance of AT homeostasis through both immune and metabolic pathways. The deficiency of iNKT cells can result in AT metabolic disruptions and insulin resistance. In this review, we summarize recent work on iNKT cells in immune regulation, with an emphasis on AT-resident iNKT cells, and identify the potential mechanisms by which adipocytes can mediate iNKT cell activity.
Collapse
Affiliation(s)
- M. Rakhshandehroo
- Section Metabolic Diseases, Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. Kalkhoven
- Section Metabolic Diseases, Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M. Boes
- Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
144
|
Copley MR, Eaves CJ. Developmental changes in hematopoietic stem cell properties. Exp Mol Med 2013; 45:e55. [PMID: 24232254 PMCID: PMC3849580 DOI: 10.1038/emm.2013.98] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 01/18/2023] Open
Abstract
Hematopoietic stem cells (HSCs) comprise a rare population of cells that can regenerate and maintain lifelong blood cell production. This functionality is achieved through their ability to undergo many divisions without activating a poised, but latent, capacity for differentiation into multiple blood cell types. Throughout life, HSCs undergo sequential changes in several key properties. These affect mechanisms that regulate the self-renewal, turnover and differentiation of HSCs as well as the properties of the committed progenitors and terminally differentiated cells derived from them. Recent findings point to the Lin28b-let-7 pathway as a master regulator of many of these changes with important implications for the clinical use of HSCs for marrow rescue and gene therapy, as well as furthering our understanding of the different pathogenesis of childhood and adult-onset leukemia.
Collapse
|
145
|
Li J, Wu D, Jiang N, Zhuang Y. Combined deletion of Id2 and Id3 genes reveals multiple roles for E proteins in invariant NKT cell development and expansion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5052-64. [PMID: 24123680 PMCID: PMC3837387 DOI: 10.4049/jimmunol.1301252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The invariant NKT (iNKT) cells represent a unique group of αβ T cells that have been classified based on their exclusive usage of the invariant Vα14Jα18 TCRα-chain and their innate-like effector function. Thus far, the transcriptional programs that control Vα14Jα18 TCRα rearrangements and the population size of iNKT cells are still incompletely defined. E protein transcription factors have been shown to play necessary roles in the development of multiple T cell lineages, including iNKT cells. In this study, we examined E protein functions in T cell development through combined deletion of genes encoding E protein inhibitors Id2 and Id3. Deletion of Id2 and Id3 in T cell progenitors resulted in a partial block at the pre-TCR selection checkpoint and a dramatic increase in numbers of iNKT cells. The increase in iNKT cells is accompanied with a biased rearrangement involving Vα14 to Jα18 recombination at the double-positive stage and enhanced proliferation of iNKT cells. We further demonstrate that a 50% reduction of E proteins can cause a dramatic switch from iNKT to innate-like γδ T cell fate in Id2- and Id3-deficient mice. Collectively, these findings suggest that Id2- and Id3-mediated inhibition of E proteins controls iNKT development by restricting lineage choice and population expansion.
Collapse
Affiliation(s)
- Jia Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Di Wu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
146
|
Role of invariant natural killer T cells in lipopolysaccharide-induced pregnancy loss. Cell Immunol 2013; 286:1-10. [DOI: 10.1016/j.cellimm.2013.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/27/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022]
|
147
|
Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol 2013; 14:1146-54. [PMID: 24097110 DOI: 10.1038/ni.2731] [Citation(s) in RCA: 492] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022]
Abstract
Invariant natural killer T cells (iNKT cells) can produce copious amounts of interleukin 4 (IL-4) early during infection. However, indirect evidence suggests they may produce this immunomodulatory cytokine in the steady state. Through intracellular staining for transcription factors, we have defined three subsets of iNKT cells (NKT1, NKT2 and NKT17) that produced distinct cytokines; these represented diverse lineages and not developmental stages, as previously thought. These subsets exhibited substantial interstrain variation in numbers. In several mouse strains, including BALB/c, NKT2 cells were abundant and were stimulated by self ligands to produce IL-4. In those strains, steady-state IL-4 conditioned CD8(+) T cells to become 'memory-like', increased serum concentrations of immunoglobulin E (IgE) and caused dendritic cells to produce chemokines. Thus, iNKT cell-derived IL-4 altered immunological properties under normal steady-state conditions.
Collapse
|
148
|
Sørensen JØ, Buschard K, Brogren CH. The preventive role of type 2 NKT cells in the development of type 1 diabetes. APMIS 2013; 122:167-82. [PMID: 23992281 DOI: 10.1111/apm.12140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
In the last two decades, natural killer T (NKT) cells have emerged as an important factor in preventing type 1 diabetes (T1D) when investigated in the experimental non-obese diabetic (NOD) mouse model. So far, investigations have largely focused on type 1 NKT cells with invariant T-cell receptors, whereas the role of type 2 NKT cells with diverse T-cell receptors is less well understood. However, there have been several findings which indicate that in fact type 2 NKT cells may regulate the progression of type 1 diabetes in NOD mice, including a fraction of these cells which recognize β-cell-enriched sulfatide. Therefore, the focus for this review is to present the current evidence of the effect of type 2 NKT cells on the development of T1D. In general, there is still uncertainty surrounding the mechanism of activation and function of NKT cells. Here, we present two models of the effector mechanisms, respectively, Th1/Th2 polarization and the induction of tolerogenic dendritic cells (DC). In conclusion, this review points to the importance of immunoregulation by type 2 NKT cells in preventing the development of T1D and highlights the induction of tolerogenic DC as a likely mechanism. The possible therapeutic role of type 1 and type 2 NKT cells are evaluated and future experiments concerning type 2 NKT cells and T1D are proposed.
Collapse
Affiliation(s)
- Jakob Ørskov Sørensen
- The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaloesvej 5, Copenhagen, Denmark
| | | | | |
Collapse
|
149
|
Yousefi M, Duplay P. CD28 controls the development of innate-like CD8+ T cells by promoting the functional maturation of NKT cells. Eur J Immunol 2013; 43:3017-27. [PMID: 23896981 DOI: 10.1002/eji.201343627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/20/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Abstract
NK T cells(NKT cells) share functional characteristics and homing properties that are distinct from conventional T cells. In this study, we investigated the contribution of CD28 in the functional development of γδ NKT and αβ NKT cells in mice. We show that CD28 promotes the thymic maturation of promyelocytic leukemia zinc finger(+) IL-4(+) NKT cells and upregulation of LFA-1 expression on NKT cells. We demonstrate that the developmental defect of γδ NKT cells in CD28-deficient mice is cell autonomous. Moreover, we show in both wild-type C57BL/6 mice and in downstream of tyrosine kinase-1 transgenic mice, a mouse model with increased numbers of γδ NKT cells, that CD28-mediated regulation of thymic IL-4(+) NKT cells promotes the differentiation of eomesodermin(+) CD44(high) innate-like CD8(+) T cells. These findings reveal a previously unappreciated mechanism by which CD28 controls NKT-cell homeostasis and the size of the innate-like CD8(+) T-cell pool.
Collapse
Affiliation(s)
- Mitra Yousefi
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | |
Collapse
|
150
|
Föhse L, Reinhardt A, Oberdörfer L, Schmitz S, Förster R, Malissen B, Prinz I. Differential postselection proliferation dynamics of αβ T cells, Foxp3+ regulatory T cells, and invariant NKT cells monitored by genetic pulse labeling. THE JOURNAL OF IMMUNOLOGY 2013; 191:2384-92. [PMID: 23894200 DOI: 10.4049/jimmunol.1301359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The thymus generates two divergent types of lymphocytes, innate and adaptive T cells. Innate T cells such as invariant NKT cells provide immediate immune defense, whereas adaptive T cells require a phase of expansion and functional differentiation outside the thymus. Naive adaptive T lymphocytes should not proliferate much after positive selection in the thymus to ensure a highly diverse TCR repertoire. In contrast, oligoclonal innate lymphocyte populations are efficiently expanded through intrathymic proliferation. For CD4(+)Foxp3(+) regulatory T cells (Tregs), which are thought to be generated by agonist recognition, it is not clear whether they proliferate upon thymic selection. In this study, we investigated thymic and peripheral T cell proliferation by genetic pulse labeling. To this end, we used a mouse model in which all developing αβ thymocytes were marked by expression of a histone 2B-enhanced GFP (H2BeGFP) fusion-protein located within the Tcrd locus (TcrdH2BeGFP). This reporter gene was excised during TCR α-chain VJ-recombination, and the retained H2BeGFP signal was thus diluted upon cell proliferation. We found that innate T cells such as CD1d-restricted invariant NKT cells all underwent a phase of intense intrathymic proliferation, whereas adaptive CD4(+) and CD8(+) single-positive thymocytes including thymic Tregs cycled, on average, only once after final selection. After thymic exit, retention or loss of very stable H2BeGFP signal indicated the proliferative history of peripheral αβ T cells. There, peripheral Tregs showed lower levels of H2BeGFP compared with CD4(+)Foxp3(-) T cells. This further supports the hypothesis that the Treg repertoire is shaped by self-Ag recognition in the steady-state.
Collapse
Affiliation(s)
- Lisa Föhse
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|