101
|
Wong TY, Solis MA, Chen YH, Huang LLH. Molecular mechanism of extrinsic factors affecting anti-aging of stem cells. World J Stem Cells 2015; 7:512-520. [PMID: 25815136 PMCID: PMC4369508 DOI: 10.4252/wjsc.v7.i2.512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/02/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Scientific evidence suggests that stem cells possess the anti-aging ability to self-renew and maintain differentiation potentials, and quiescent state. The objective of this review is to discuss the micro-environment where stem cells reside in vivo, the secreted factors to which stem cells are exposed, the hypoxic environment, and intracellular factors including genome stability, mitochondria integrity, epigenetic regulators, calorie restrictions, nutrients, and vitamin D. Secreted tumor growth factor-β and fibroblast growth factor-2 are reported to play a role in stem cell quiescence. Extracellular matrices may interact with caveolin-1, the lipid raft on cell membrane to regulate quiescence. N-cadherin, the adhesive protein on niche cells provides support for stem cells. The hypoxic micro-environment turns on hypoxia-inducible factor-1 to prevent mesenchymal stem cells aging through p16 and p21 down-regulation. Mitochondria express glucosephosphate isomerase to undergo glycolysis and prevent cellular aging. Epigenetic regulators such as p300, protein inhibitors of activated Stats and H19 help maintain stem cell quiescence. In addition, calorie restriction may lead to secretion of paracrines cyclic ADP-ribose by intestinal niche cells, which help maintain intestinal stem cells. In conclusion, it is crucial to understand the anti-aging phenomena of stem cells at the molecular level so that the key to solving the aging mystery may be unlocked.
Collapse
|
102
|
Gurkar AU, Niedernhofer LJ. Comparison of mice with accelerated aging caused by distinct mechanisms. Exp Gerontol 2015; 68:43-50. [PMID: 25617508 DOI: 10.1016/j.exger.2015.01.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Aging is the primary risk factor for numerous chronic, debilitating diseases. These diseases impact quality of life of the elderly and consume a large portion of health care costs. The cost of age-related diseases will only increase as the world's population continues to live longer. Thus it would be advantageous to consider aging itself as a therapeutic target, potentially stemming multiple age-related diseases simultaneously. While logical, this is extremely challenging as the molecular mechanisms that drive aging are still unknown. Furthermore, clinical trials to treat aging are impractical. Even in preclinical models, testing interventions to extend healthspan in old age are lengthy and therefore costly. One approach to expedite aging studies is to take advantage of mouse strains that are engineered to age rapidly. These strains are genetically and phenotypically quite diverse. This review aims to offer a comparison of several of these strains to highlight their relative strengths and weaknesses as models of mammalian and more specifically human aging. Additionally, careful identification of commonalities among the strains may lead to the identification of fundamental pathways of aging.
Collapse
Affiliation(s)
- Aditi U Gurkar
- Department of Metabolism and Aging, Scripps Florida, 130 Scripps Way #3B3, Jupiter, FL 33458, USA
| | - Laura J Niedernhofer
- Department of Metabolism and Aging, Scripps Florida, 130 Scripps Way #3B3, Jupiter, FL 33458, USA.
| |
Collapse
|
103
|
Detection of in vivo DNA damage induced by very low doses of mainstream and sidestream smoke extracts using a novel assay. Am J Prev Med 2015; 48:S102-10. [PMID: 25528699 DOI: 10.1016/j.amepre.2014.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/06/2014] [Accepted: 08/20/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mainstream (MS) smoke, the main smoke inhaled by active smokers, and sidestream (SS) smoke, the main component of secondhand smoke, induce a wide range of DNA lesions. Owing to technical limitations, the in vivo levels of tobacco-induced DNA damage are unknown. Recently, the authors developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to quantify endogenous and induced DNA damage. PURPOSE To quantify the in vivo levels of DNA damage induced by MS and SS smoke extracts in human cells using PADDA and define the strand-specific patterns of DNA damage and repair following exposure to diverse doses of MS and SS smoke. METHODS Human epithelial cells were exposed to escalating doses of hydrogen peroxide (H2O2), MS, or SS smoke. TP53 gene DNA damage was quantified using PADDA at various time points. DNA double-strand breaks were detected by immunofluorescence analysis of phosphorylated histone H2AX (γ-H2AX). Cell viability was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Data were collected and analyzed by t-test in 2012-2014. RESULTS A dose-dependent increase in DNA damage was detected in vivo with increasing doses of H2O2, MS, and SS smoke. Even 1 hour of exposure to very low doses of MS or SS smoke resulted in significant DNA damage (p<0.01). MS and SS smoke induced distinctive strand-specific patterns of DNA damage and DNA repair kinetics. CONCLUSIONS Very low concentrations of MS and SS smoke induce significant DNA damage in human cells. Application of PADDA to population studies has major potential to establish biomarkers of susceptibility to tobacco-induced diseases.
Collapse
|
104
|
Maskey RS, Kim MS, Baker DJ, Childs B, Malureanu LA, Jeganathan KB, Machida Y, van Deursen JM, Machida YJ. Spartan deficiency causes genomic instability and progeroid phenotypes. Nat Commun 2014; 5:5744. [PMID: 25501849 PMCID: PMC4269170 DOI: 10.1038/ncomms6744] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022] Open
Abstract
Spartan (also known as DVC1 and C1orf124) is a PCNA-interacting protein implicated in translesion synthesis, a DNA damage tolerance process that allows the DNA replication machinery to replicate past nucleotide lesions. However, the physiological relevance of Spartan has not been established. Here we report that Spartan insufficiency in mice causes chromosomal instability, cellular senescence and early onset of age-related phenotypes. Whereas complete loss of Spartan causes early embryonic lethality, hypomorphic mice with low amounts of Spartan are viable. These mice are growth retarded and develop cataracts, lordokyphosis and cachexia at a young age. Cre-mediated depletion of Spartan from conditional knockout mouse embryonic fibroblasts results in impaired lesion bypass, incomplete DNA replication, formation of micronuclei and chromatin bridges and eventually cell death. These data demonstrate that Spartan plays a key role in maintaining structural and numerical chromosome integrity and suggest a link between Spartan insufficiency and progeria. Spartan/DVC1 is a translesion synthesis regulator with important roles in cellular DNA damage tolerance. Here, the authors report that Spartan is essential for DNA lesion bypass and that Spartan insufficiency in mice causes chromosomal instability, cellular senescence and early onset of age-related phenotypes.
Collapse
Affiliation(s)
- Reeja S Maskey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Myoung Shin Kim
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Bennett Childs
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Liviu A Malureanu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Karthik B Jeganathan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Yuka Machida
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Yuichi J Machida
- 1] Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA [2] Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| |
Collapse
|
105
|
Abstract
Accumulation of DNA damage has been linked to the process of aging and to the onset of age-related diseases including diabetes. Studies on progeroid syndromes have suggested that the DNA damage response is involved in regulation of metabolic homeostasis. DNA damage could impair metabolic organ functions by causing cell death or senescence. DNA damage also could induce tissue inflammation that disturbs the homeostasis of systemic metabolism. Various roles of molecules related to DNA repair in cellular metabolism are being uncovered, and such molecules could also have an impact on systemic metabolism. This review explores mechanisms by which the DNA damage response could contribute to metabolic dysfunction.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
106
|
Sampath H. Oxidative DNA damage in disease--insights gained from base excision repair glycosylase-deficient mouse models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:689-703. [PMID: 25044514 DOI: 10.1002/em.21886] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/24/2014] [Indexed: 05/10/2023]
Abstract
Cellular components, including nucleic acids, are subject to oxidative damage. If left unrepaired, this damage can lead to multiple adverse cellular outcomes, including increased mutagenesis and cell death. The major pathway for repair of oxidative base lesions is the base excision repair pathway, catalyzed by DNA glycosylases with overlapping but distinct substrate specificities. To understand the role of these glycosylases in the initiation and progression of disease, several transgenic mouse models have been generated to carry a targeted deletion or overexpression of one or more glycosylases. This review summarizes some of the major findings from transgenic animal models of altered DNA glycosylase expression, especially as they relate to pathologies ranging from metabolic disease and cancer to inflammation and neuronal health.
Collapse
Affiliation(s)
- Harini Sampath
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
107
|
Kaur S, Sambyal V, Guleria K, Manjari M, Sudan M, Uppal MS, Singh NR, Singh G, Singh H. Analysis of TP53 polymorphisms in North Indian sporadic esophageal cancer patients. Asian Pac J Cancer Prev 2014; 15:8413-22. [PMID: 25339039 DOI: 10.7314/apjcp.2014.15.19.8413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the relationship of five TP53 polymorphisms (p.P47S, p.R72P, PIN3 ins16bp, p.R213R and r.13494g>a) with the esophageal cancer (EC) risk in North Indians. MATERIALS AND METHODS Genotyping of p.P47S, p.R72P, PIN3 ins16bp, p.R213R and r.13494g>a polymorphisms of TP53 in 136 sporadic EC patients and 136 controls using polymerase chain reaction and PCR-RFLP. RESULTS The frequencies of genotype RR, RP and PP of p.R72P polymorphism were 16.91 vs 26.47%, 58.82 vs 49.27% and 24.27 vs 24.27% among patients and controls respectively. We observed significantly increased frequency of RP genotype in cases as compared to controls (OR=1.87, 95% CI, 1.01-3.46, p=0.05). The frequencies of genotype A1A1, A1A2 and A2A2 of PIN3 ins16bp polymorphism were 69.12 vs 70.59%, 27.20 vs 25% and 3.68 vs 4.41% among patients and controls. There was no significant difference among genotype and allele distribution between patients and controls. The frequencies of genotype GG, GA and AA of r.13494g>a polymorphism were 62.50 vs 64.70%, 34.56 vs 30.15% and 2.94 vs 5.15% among patients and controls respectively. No significant difference between genotype and allele frequency was observed in the patients and controls. For p.P47S and p.R213R polymorphisms, all the cases and controls had homozygous wild type genotype. The RP-A1A1-GG genotype combination shows significant risk for EC (OR=2.01, 95%CI: 1.01-3.99, p=0.05). CONCLUSIONS Among the five TP53 polymorphisms investigated, only p.R72P polymorphism may contributes to EC susceptibility.
Collapse
Affiliation(s)
- Sukhpreet Kaur
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Somatic mutations, genome mosaicism, cancer and aging. Curr Opin Genet Dev 2014; 26:141-9. [PMID: 25282114 DOI: 10.1016/j.gde.2014.04.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 01/11/2023]
Abstract
Genomes are inherently unstable due to the need for DNA sequence variation in the germ line to fuel evolution through natural selection. In somatic tissues mutations accumulate during development and aging, generating genome mosaics. There is little information about the possible causal role of increased somatic mutation loads in late-life disease and aging, with the exception of cancer. Characterizing somatic mutations and their functional consequences in normal tissues remains a formidable challenge due to their low, individual abundance. Here, I will briefly review our current knowledge of somatic mutations in animals and humans in relation to aging, how they arise and lead to genome mosaicism, the technology to study somatic mutations and how they possibly could cause non-clonal disease.
Collapse
|
109
|
Joseph AM, Nguyen LMD, Welter AE, Dominguez JM, Behnke BJ, Adhihetty PJ. Mitochondrial adaptations evoked with exercise are associated with a reduction in age-induced testicular atrophy in Fischer-344 rats. Biogerontology 2014; 15:517-534. [PMID: 25108553 DOI: 10.1007/s10522-014-9526-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction in various tissues has been associated with numerous conditions including aging. In testes, aging induces atrophy and a decline in male reproductive function but the involvement of mitochondria is not clear. The purpose of this study was to examine whether the mitochondrial profile differed with (1) aging, and (2) 10-weeks of treadmill exercise training, in the testes of young (6 month) and old (24 month) Fischer-344 (F344) animals. Old animals exhibited significant atrophy (30 % decline; P < 0.05) in testes compared to young animals. However, relative mitochondrial content was not reduced with age and this was consistent with the lack of change in the mitochondrial biogenesis regulator protein, peroxisome proliferator-activated receptor gamma coactivator 1-alpha and its downstream targets nuclear respiratory factor-1 and mitochondrial transcription factor A. No effect was observed in the pro- or anti-apoptotic proteins, Bax and Bcl-2, respectively, but age increased apoptosis inducing factor levels. Endurance training induced beneficial mitochondrial adaptations that were more prominent in old animals including greater increases in relative mtDNA content, biogenesis/remodeling (mitofusin 2), antioxidant capacity (mitochondrial superoxide dismutase) and lower levels of phosphorylated histone H2AX, an early marker of DNA damage (P < 0.05). Importantly, these exercise-induced changes were associated with an attenuation of testes atrophy in older sedentary animals (P < 0.05). Our results indicate that aging-induced atrophy in testes may not be associated with changes in relative mitochondrial content and key regulatory proteins and that exercise started in late-life elicits beneficial changes in mitochondria that may protect against age-induced testicular atrophy.
Collapse
Affiliation(s)
- A-M Joseph
- Institute on Aging, Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - L M-D Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - A E Welter
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - J M Dominguez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - B J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - P J Adhihetty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
110
|
Bajacan JEV, Hong IS, Penning TM, Penning TW, Greenberg MM. Quantitative detection of 8-Oxo-7,8-dihydro-2'-deoxyguanosine using chemical tagging and qPCR. Chem Res Toxicol 2014; 27:1227-35. [PMID: 24932862 PMCID: PMC4106692 DOI: 10.1021/tx500120p] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
8-Oxo-7,8-dihydro-2′-deoxyguanosine
(8-oxodGuo) is a commonly
formed DNA lesion that is useful as a biomarker for oxidative stress.
Although methods for selective quantification of 8-oxodGuo exist,
there is room for additional methods that are sensitive and utilize
instrumentation that is widely available. We previously took advantage
of the reported reactivity of 8-oxodGuo to develop a method for detecting
the lesion by selectively covalently tagging it with a molecule equipped
with a biotin label that can be used subsequently with a reporting
method (XueL., and GreenbergM. M. (2007) J. Am. Chem. Soc.129, 701017497789). We now report a method that can
detect as little as 14 amol of 8-oxodGuo by tagging DNA with a reagent
containing a disulfide that reduces background due to nonspecific
binding. The reagent also contains biotin that enables capturing target
DNA on streptavidin-coated magnetic beads. The captured DNA is quantified
using quantitative PCR. The method is validated by comparing the amount
of 8-oxodGuo detected as a function of Fe2+/H2O2/ascorbate-dose to that reported previously using mass
spectrometry.
Collapse
Affiliation(s)
- John Ernest Vallarta Bajacan
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | | | | | | | | |
Collapse
|
111
|
Ghosh S, Zhou Z. Genetics of aging, progeria and lamin disorders. Curr Opin Genet Dev 2014; 26:41-6. [DOI: 10.1016/j.gde.2014.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/11/2014] [Accepted: 05/26/2014] [Indexed: 12/19/2022]
|
112
|
Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. Neuroscience 2014; 269:256-64. [DOI: 10.1016/j.neuroscience.2014.03.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 01/24/2023]
|
113
|
Mischo M, von Kobyletzki LB, Bründermann E, Schmidt DA, Potthoff A, Brockmeyer NH, Havenith M. Similar appearance, different mechanisms: xerosis in HIV, atopic dermatitis and ageing. Exp Dermatol 2014; 23:446-8. [DOI: 10.1111/exd.12425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Meike Mischo
- Physical Chemistry II; Ruhr-Universität Bochum; Bochum Germany
| | - Laura B. von Kobyletzki
- Department of Dermatology; Institute of Clinical Research in Malmö; Lund University; Skåne University Hospital; Malmö Sweden
- Department of Public Health Sciences; Karlstad University; Karlstad Sweden
| | | | | | - Anja Potthoff
- Department of Dermatology; Ruhr-University Bochum; Bochum Germany
| | - Norbert H. Brockmeyer
- Department of Dermatology; Ruhr-University Bochum; Bochum Germany
- Competence Network for HIV/Aids; Ruhr-University Bochum; Bochum Germany
| | | |
Collapse
|
114
|
Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer's disease. Pharmacol Ther 2014; 142:244-57. [DOI: 10.1016/j.pharmthera.2013.12.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
|
115
|
Tigges J, Krutmann J, Fritsche E, Haendeler J, Schaal H, Fischer JW, Kalfalah F, Reinke H, Reifenberger G, Stühler K, Ventura N, Gundermann S, Boukamp P, Boege F. The hallmarks of fibroblast ageing. Mech Ageing Dev 2014; 138:26-44. [PMID: 24686308 DOI: 10.1016/j.mad.2014.03.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 12/26/2022]
Abstract
Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades.
Collapse
Affiliation(s)
- Julia Tigges
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Jean Krutmann
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Judith Haendeler
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany; Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Heiner Schaal
- Center for Microbiology and Virology, Institute of Virology, Heinrich-Heine-University, Med. Faculty, D-40225 Düsseldorf, Germany
| | - Jens W Fischer
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Faiza Kalfalah
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Hans Reinke
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany; Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany; Molecular Proteomics Laboratory, Centre for Biological and Medical Research (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany; Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | | | - Petra Boukamp
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany.
| |
Collapse
|
116
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. WITHDRAWN: Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014:S1084-9521(14)00058-5. [PMID: 24685615 DOI: 10.1016/j.semcdb.2014.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2014.03.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2).
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3).
| |
Collapse
|
117
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014; 29:125-47. [PMID: 24662892 DOI: 10.1016/j.semcdb.2014.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features associated to progeria. New therapeutic strategies under study, in particular targeting the protein expression pathway at the mRNA level, have shown a remarkable efficacy both in vitro in cells and in vivo in mice models. Strategies intending to clear the toxic accumulated proteins from the nucleus are also under evaluation. However, although exceedingly rare, improving our knowledge of genetic progeroid syndromes and searching for innovative and efficient therapies in these syndromes is of paramount importance as, even before they can be used to save lives, they may significantly (i) expand the affected childrens' lifespan and preserve their quality of life; (ii) improve our understanding of aging-related disorders and other more common diseases; and (iii) expand our fundamental knowledge of physiological aging and its links with major physiological processes such as those involved in oncogenesis.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| |
Collapse
|
118
|
Chen ZJ, Wang WP, Chen YC, Wang JY, Lin WH, Tai LA, Liou GG, Yang CS, Chi YH. Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies. J Cell Sci 2014; 127:1792-804. [PMID: 24522183 DOI: 10.1242/jcs.139683] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a human progeroid disease caused by a point mutation on the LMNA gene. We reported previously that the accumulation of the nuclear envelope protein SUN1 contributes to HGPS nuclear aberrancies. However, the mechanism by which interactions between mutant lamin A (also known as progerin or LAΔ50) and SUN1 produce HGPS cellular phenotypes requires further elucidation. Using light and electron microscopy, this study demonstrated that SUN1 contributes to progerin-elicited structural changes in the nuclear envelope and the endoplasmic reticulum (ER) network. We further identified two domains through which full-length lamin A associates with SUN1, and determined that the farnesylated cysteine within the CaaX motif of lamin A has a stronger affinity for SUN1 than does the lamin A region containing amino acids 607 to 656. Farnesylation of progerin enhanced its interaction with SUN1 and reduced SUN1 mobility, thereby promoting the aberrant recruitment of progerin to the ER membrane during postmitotic assembly of the nuclear envelope, resulting in the accumulation of SUN1 over consecutive cellular divisions. These results indicate that the dysregulated interaction of SUN1 and progerin in the ER during nuclear envelope reformation determines the progression of HGPS.
Collapse
Affiliation(s)
- Zi-Jie Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
DNA damage response genes play vital roles in the maintenance of a healthy genome. Defects in cell cycle checkpoint and DNA repair genes, especially mutation or aberrant downregulation, are associated with a wide spectrum of human disease, including a predisposition to the development of neurodegenerative conditions and cancer. On the other hand, upregulation of DNA damage response and repair genes can also cause cancer, as well as increase resistance of cancer cells to DNA damaging therapy. In recent years, it has become evident that many of the genes involved in DNA damage repair have additional roles in tumorigenesis, most prominently by acting as transcriptional (co-)factors. Although defects in these genes are causally connected to tumor initiation, their role in tumor progression is more controversial and it seems to depend on tumor type. In some tumors like melanoma, cell cycle checkpoint/DNA repair gene upregulation is associated with tumor metastasis, whereas in a number of other cancers the opposite has been observed. Several genes that participate in the DNA damage response, such as RAD9, PARP1, BRCA1, ATM and TP53 have been associated with metastasis by a number of in vitro biochemical and cellular assays, by examining human tumor specimens by immunohistochemistry or by DNA genome-wide gene expression profiling. Many of these genes act as transcriptional effectors to regulate other genes implicated in the pathogenesis of cancer. Furthermore, they are aberrantly expressed in numerous human tumors and are causally related to tumorigenesis. However, whether the DNA damage repair function of these genes is required to promote metastasis or another activity is responsible (e.g., transcription control) has not been determined. Importantly, despite some compelling in vitro evidence, investigations are still needed to demonstrate the role of cell cycle checkpoint and DNA repair genes in regulating metastatic phenotypes in vivo.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
120
|
Kishi S. Using zebrafish models to explore genetic and epigenetic impacts on evolutionary developmental origins of aging. Transl Res 2014; 163:123-35. [PMID: 24239812 PMCID: PMC3969878 DOI: 10.1016/j.trsl.2013.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 01/10/2023]
Abstract
Can we reset, reprogram, rejuvenate, or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be manipulated further into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact and noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these 2 phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages ("embryonic/larval senescence"). Subsequently, at least some of these mutant animals were found to show a shortened life span, whereas others would be expected to live longer into adulthood. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and its regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes, genotypes, and epigenotypes that can be linked to the senescence phenotype, which facilitates searching for the evolutionary and developmental origins of aging in vertebrates.
Collapse
Affiliation(s)
- Shuji Kishi
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Fla.
| |
Collapse
|
121
|
Wu H, Roks AJ. Genomic instability and vascular aging: A focus on nucleotide excision repair. Trends Cardiovasc Med 2014; 24:61-8. [DOI: 10.1016/j.tcm.2013.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
|
122
|
Sakai H, Fujigaki H, Mazur SJ, Appella E. Wild-type p53-induced phosphatase 1 (Wip1) forestalls cellular premature senescence at physiological oxygen levels by regulating DNA damage response signaling during DNA replication. Cell Cycle 2014; 13:1015-29. [PMID: 24552809 DOI: 10.4161/cc.27920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wip1 (protein phosphatase Mg(2+)/Mn(2+)-dependent 1D, Ppm1d) is a nuclear serine/threonine protein phosphatase that is induced by p53 following the activation of DNA damage response (DDR) signaling. Ppm1d(-/-) mouse embryonic fibroblasts (MEFs) exhibit premature senescence under conventional culture conditions; however, little is known regarding the role of Wip1 in regulating cellular senescence. In this study, we found that even at a representative physiological concentration of 3% O2, Ppm1d(-/-) MEFs underwent premature cellular senescence that depended on the functional activation of p53. Interestingly, Ppm1d(-/-) MEFs showed increased H2AX phosphorylation levels without increased levels of reactive oxygen species (ROS) or DNA base damage compared with wild-type (Wt) MEFs, suggesting a decreased threshold for DDR activation or sustained DDR activation during recovery. Notably, the increased H2AX phosphorylation levels observed in Ppm1d(-/-) MEFs were primarily associated with S-phase cells and predominantly dependent on the activation of ATM. Moreover, these same phenotypes were observed when Wt and Ppm1d(-/-) MEFs were either transiently or chronically exposed to low levels of agents that induce replication-mediated double-stranded breaks. These findings suggest that Wip1 prevents the induction of cellular senescence at physiological oxygen levels by attenuating DDR signaling in response to endogenous double-stranded breaks that form during DNA replication.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Hidetsugu Fujigaki
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Sharlyn J Mazur
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Ettore Appella
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
123
|
Abstract
Genomes are inherently unstable because of the need for DNA sequence variation as a substrate for evolution through natural selection. However, most multicellular organisms have postmitotic tissues, with limited opportunity for selective removal of cells harboring persistent damage and deleterious mutations, which can therefore contribute to functional decline, disease, and death. Key in this process is the role of genome maintenance, the network of protein products that repair DNA damage and signal DNA damage response pathways. Genome maintenance is beneficial early in life by swiftly eliminating DNA damage or damaged cells, facilitating rapid cell proliferation. However, at later ages accumulation of unrepaired damage and mutations, as well as ongoing cell depletion, promotes cancer, atrophy, and other deleterious effects associated with aging. As such, genome maintenance and its phenotypic sequelae provide yet another example of antagonistic pleiotropy in aging and longevity.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
124
|
|
125
|
Aoshiba K, Tsuji T, Yamaguchi K, Itoh M, Nakamura H. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD. Eur Respir J 2013; 42:1689-1695. [PMID: 23397294 DOI: 10.1183/09031936.00102912] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammation in chronic obstructive pulmonary disease (COPD) is thought to originate from the activation of innate immunity by a danger signal (first hit), although this mechanism does not readily explain why the inflammation becomes chronic. Here, we propose a two-hit hypothesis explaining why inflammation becomes chronic in patients with COPD. A more severe degree of inflammation exists in the lungs of patients who develop COPD than in the lungs of healthy smokers, and the large amounts of reactive oxygen species and reactive nitrogen species released from inflammatory cells are likely to induce DNA double-strand breaks (second hit) in the airways and pulmonary alveolar cells, causing apoptosis and cell senescence. The DNA damage response and senescence-associated secretory phenotype (SASP) are also likely to be activated, resulting in the production of pro-inflammatory cytokines. These pro-inflammatory cytokines further stimulate inflammatory cell infiltration, intensifying cell senescence and SASP through a positive-feedback mechanism. This vicious cycle, characterised by mutually reinforcing inflammation and DNA damage, may cause the inflammation in COPD patients to become chronic. Our hypothesis helps explain why COPD tends to occur in the elderly, why the inflammation worsens progressively, why inflammation continues even after smoking cessation, and why COPD is associated with lung cancer.
Collapse
|
126
|
Hasty P, Christy BA. p53 as an intervention target for cancer and aging. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2013; 3:22702. [PMID: 24124625 PMCID: PMC3794078 DOI: 10.3402/pba.v3i0.22702] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/30/2022]
Abstract
p53 is well known for suppressing tumors but could also affect other aging processes not associated with tumor suppression. As a transcription factor, p53 responds to a variety of stresses to either induce apoptosis (cell death) or cell cycle arrest (cell preservation) to suppress tumor development. Yet, the effect p53 has on the non-cancer aspects of aging is complicated and not well understood. On one side, p53 could induce cellular senescence or apoptosis to suppress cancer but as an unintended consequence enhance the aging process especially if these responses diminish stem and progenitor cell populations. But on the flip side, p53 could reduce growth and growth-related stress to enable cell survival and ultimately delay the aging process. A better understanding of diverse functions of p53 is essential to elucidate its influences on the aging process and the possibility of targeting p53 or p53 transcriptional targets to treat cancer and ameliorate general aging.
Collapse
Affiliation(s)
- Paul Hasty
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA ; Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA ; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
127
|
Gravina S, Dollé MET, Wang T, van Steeg H, Hasty P, Hoeijmakers J, Vijg J. High preservation of CpG cytosine methylation patterns at imprinted gene loci in liver and brain of aged mice. PLoS One 2013; 8:e73496. [PMID: 24039963 PMCID: PMC3767788 DOI: 10.1371/journal.pone.0073496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/30/2013] [Indexed: 12/22/2022] Open
Abstract
A gradual loss of the correct patterning of 5-methyl cytosine marks in gene promoter regions has been implicated in aging and age-related diseases, most notably cancer. While a number of studies have examined DNA methylation in aging, there is no consensus on the magnitude of the effects, particularly at imprinted loci. Imprinted genes are likely candidate to undergo age-related changes because of their demonstrated plasticity in utero, for example, in response to environmental cues. Here we quantitatively analyzed a total of 100 individual CpG sites in promoter regions of 11 imprinted and non-imprinted genes in liver and cerebral cortex of young and old mice using mass spectrometry. The results indicate a remarkably high preservation of methylation marks during the aging process in both organs. To test if increased genotoxic stress associated with premature aging would destabilize DNA methylation we analyzed two DNA repair defective mouse models showing a host of premature aging symptoms in liver and brain. However, also in these animals, at the end of their life span, we found a similarly high preservation of DNA methylation marks. We conclude that patterns of DNA methylation in gene promoters of imprinted genes are surprisingly stable over time in normal, postmitotic tissues and that the multiple documented changes with age are likely to involve exceptions to this pattern, possibly associated with specific cellular responses to age-related changes other than genotoxic stress.
Collapse
Affiliation(s)
- Silvia Gravina
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (SG); (JV)
| | - Martijn E. T. Dollé
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Harry van Steeg
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Jan Hoeijmakers
- MGC Department of Genetics, CBG Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (SG); (JV)
| |
Collapse
|
128
|
Greer C, Lee M, Westerhof M, Milholland B, Spokony R, Vijg J, Secombe J. Myc-dependent genome instability and lifespan in Drosophila. PLoS One 2013; 8:e74641. [PMID: 24040302 PMCID: PMC3765364 DOI: 10.1371/journal.pone.0074641] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/05/2013] [Indexed: 01/21/2023] Open
Abstract
The Myc family of transcription factors are key regulators of cell growth and proliferation that are dysregulated in a large number of human cancers. When overexpressed, Myc family proteins also cause genomic instability, a hallmark of both transformed and aging cells. Using an in vivo lacZ mutation reporter, we show that overexpression of Myc in Drosophila increases the frequency of large genome rearrangements associated with erroneous repair of DNA double-strand breaks (DSBs). In addition, we find that overexpression of Myc shortens adult lifespan and, conversely, that Myc haploinsufficiency reduces mutation load and extends lifespan. Our data provide the first evidence that Myc may act as a pro-aging factor, possibly through its ability to greatly increase genome instability.
Collapse
Affiliation(s)
- Christina Greer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Moonsook Lee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maaike Westerhof
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Brandon Milholland
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rebecca Spokony
- Department of Human Genetics, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, Illinois, United States of America
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
129
|
Abstract
Genome instability has long been implicated as the main causal factor in aging. Somatic cells are continuously exposed to various sources of DNA damage, from reactive oxygen species to UV radiation to environmental mutagens. To cope with the tens of thousands of chemical lesions introduced into the genome of a typical cell each day, a complex network of genome maintenance systems acts to remove damage and restore the correct base pair sequence. Occasionally, however, repair is erroneous, and such errors, as well as the occasional failure to correctly replicate the genome during cell division, are the basis for mutations and epimutations. There is now ample evidence that mutations accumulate in various organs and tissues of higher animals, including humans, mice, and flies. What is not known, however, is whether the frequency of these random changes is sufficient to cause the phenotypic effects generally associated with aging. The exception is cancer, an age-related disease caused by the accumulation of mutations and epimutations. Here, we first review current concepts regarding the relationship between DNA damage, repair, and mutation, as well as the data regarding genome alterations as a function of age. We then describe a model for how randomly induced DNA sequence and epigenomic variants in the somatic genomes of animals can result in functional decline and disease in old age. Finally, we discuss the genetics of genome instability in relation to longevity to address the importance of alterations in the somatic genome as a causal factor in aging and to underscore the opportunities provided by genetic approaches to develop interventions that attenuate genome instability, reduce disease risk, and increase life span.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | | |
Collapse
|
130
|
Fanzani A, Monti E, Donato R, Sorci G. Muscular dystrophies share pathogenetic mechanisms with muscle sarcomas. Trends Mol Med 2013; 19:546-54. [PMID: 23890422 DOI: 10.1016/j.molmed.2013.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/27/2022]
Abstract
Several lines of recent evidence have opened a new debate on the mechanisms underlying the genesis of rhabdomyosarcoma, a pediatric soft tissue tumor with a widespread expression of muscle-specific markers. In particular, it is increasingly evident that the loss of skeletal muscle integrity observed in some mouse models of muscular dystrophy can favor rhabdomyosarcoma formation. This is especially true in old age. Here, we review these experimental findings and focus on the main molecular and cellular events that can dictate the tumorigenic process in dystrophic muscle, such as the loss of structural or regulatory proteins with tumor suppressor activity, the impaired DNA damage response due to oxidative stress, the chronic inflammation and the conflicting signals arising within the degenerated muscle niche.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Molecular and Translational Medicine and Interuniversity Institute of Myology (IIM), University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
| | | | | | | |
Collapse
|
131
|
Zhang YH, Shen L, Shen Y, Chen XD, Jiang LS. Study on key genes and regulatory networks associated with osteoporosis by microarray technology. Genet Test Mol Biomarkers 2013; 17:625-30. [PMID: 23819813 DOI: 10.1089/gtmb.2013.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE DNA microarray data of patients with osteoporosis were compared with that of healthy people to identify key genes and thus disclose the underlying regulatory network. METHODS Microarray dataset GSE35958 was downloaded from the Gene Expression Omnibus database, including five gene chips from patients with primary osteoporosis and four from age-matching nonosteoporosis controls. Raw data were preprocessed and differentially expressed genes (DEGs) were identified by the t-test. Then, function and pathway annotations were given by gene ontology (GO) and KEGG. The regulatory network for the DEGs was established from the aspects of transcription factors and microRNAs (miRNAs). The regulators of the miRNAs were also predicted by the MATCH algorithm. RESULTS A total of 274 DEGs were obtained with 47 significantly over-represented GO terms and 2 KEGG pathways. Transcriptional and post-transcriptional regulatory networks were established for the DEGs. Moreover, upstream regulators of the miRNAs were also obtained. CONCLUSION A range of genes, which might be implicated in the development of osteoporosis were obtained in the present study. Our findings are of possible benefit for the understanding of the unsolved regulatory mechanisms, and future clinical diagnosis as well as treatment.
Collapse
Affiliation(s)
- Yue-Hui Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
132
|
Ferrarelli LK, Popuri V, Ghosh AK, Tadokoro T, Canugovi C, Hsu JK, Croteau DL, Bohr VA. The RECQL4 protein, deficient in Rothmund-Thomson syndrome is active on telomeric D-loops containing DNA metabolism blocking lesions. DNA Repair (Amst) 2013; 12:518-28. [PMID: 23683351 PMCID: PMC3710707 DOI: 10.1016/j.dnarep.2013.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/26/2013] [Accepted: 04/15/2013] [Indexed: 12/26/2022]
Abstract
Telomeres are critical for cell survival and functional integrity. Oxidative DNA damage induces telomeric instability and cellular senescence that are associated with normal aging and segmental premature aging disorders such as Werner Syndrome and Rothmund-Thomson Syndrome, caused by mutations in WRN and RECQL4 helicases respectively. Characterizing the metabolic roles of RECQL4 and WRN in telomere maintenance is crucial in understanding the pathogenesis of their associated disorders. We have previously shown that WRN and RECQL4 display a preference in vitro to unwind telomeric DNA substrates containing the oxidative lesion 8-oxoguanine. Here, we show that RECQL4 helicase has a preferential activity in vitro on telomeric substrates containing thymine glycol, a critical lesion that blocks DNA metabolism, and can be modestly stimulated further on a D-loop structure by TRF2, a telomeric shelterin protein. Unlike that reported for telomeric D-loops containing 8-oxoguanine, RECQL4 does not cooperate with WRN to unwind telomeric D-loops with thymine glycol, suggesting RECQL4 helicase is selective for the type of oxidative lesion. RECQL4's function at the telomere is not yet understood, and our findings suggest a novel role for RECQL4 in the repair of thymine glycol lesions to promote efficient telomeric maintenance.
Collapse
Affiliation(s)
- Leslie K Ferrarelli
- The Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Guo J, Hanawalt PC, Spivak G. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res 2013; 41:7700-12. [PMID: 23775797 PMCID: PMC3763531 DOI: 10.1093/nar/gkt524] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxidized bases in DNA have been implicated in cancer, aging and neurodegenerative disease. We have developed an approach combining single-cell gel electrophoresis (comet) with fluorescence in situ hybridization (FISH) that enables the comparative quantification of low, physiologically relevant levels of DNA lesions in the respective strands of defined nucleotide sequences and in the genome overall. We have synthesized single-stranded probes targeting the termini of DNA segments of interest using a polymerase chain reaction-based method. These probes facilitate detection of damage at the single-molecule level, as the lesions are converted to DNA strand breaks by lesion-specific endonucleases or glycosylases. To validate our method, we have documented transcription-coupled repair of cyclobutane pyrimidine dimers in the ataxia telangiectasia-mutated (ATM) gene in human fibroblasts irradiated with 254 nm ultraviolet at 0.1 J/m2, a dose ∼100-fold lower than those typically used. The high specificity and sensitivity of our approach revealed that 7,8-dihydro-8-oxoguanine (8-oxoG) at an incidence of approximately three lesions per megabase is preferentially repaired in the transcribed strand of the ATM gene. We have also demonstrated that the hOGG1, XPA, CSB and UVSSA proteins, as well as actively elongating RNA polymerase II, are required for this process, suggesting cross-talk between DNA repair pathways.
Collapse
Affiliation(s)
- Jia Guo
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
134
|
Vo N, Niedernhofer LJ, Nasto LA, Jacobs L, Robbins PD, Kang J, Evans CH. An overview of underlying causes and animal models for the study of age-related degenerative disorders of the spine and synovial joints. J Orthop Res 2013; 31:831-837. [PMID: 23483579 PMCID: PMC3628921 DOI: 10.1002/jor.22204] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 07/10/2012] [Indexed: 02/04/2023]
Abstract
As human lifespan increases so does the incidence of age-associated degenerative joint diseases, resulting in significant negative socioeconomic consequences. Osteoarthritis (OA) and intervertebral disc degeneration (IDD) are the most common underlying causes of joint-related chronic disability and debilitating pain in the elderly. Current treatment methods are generally not effective and involve either symptomatic relief with non-steroidal anti-inflammatory drugs and physical therapy or surgery when conservative treatments fail. The limitation in treatment options is due to our incomplete knowledge of the molecular mechanism of degeneration of articular cartilage and disc tissue. Basic understanding of the age-related changes in joint tissue is thus needed to combat the adverse effects of aging on joint health. Aging is caused at least in part by time-dependent accumulation of damaged organelles and macromolecules, leading to cell death and senescence and the eventual loss of multipotent stem cells and tissue regenerative capacity. Studies over the past decades have uncovered a number of important molecular and cellular changes in joint tissues with age. However, the precise causes of damage, cellular targets of damage, and cellular responses to damage remain poorly understood. The objectives of this review are to provide an overview of the current knowledge about the sources of endogenous and exogenous damaging agents and how they contribute to age-dependent degenerative joint disease, and highlight animal models of accelerated aging that could potentially be useful for identifying causes of and therapies for degenerative joint diseases.
Collapse
Affiliation(s)
- Nam Vo
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, E1641 Biomedical Science Tower, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
135
|
Maslov AY, Ganapathi S, Westerhof M, Quispe‐Tintaya W, White RR, Van Houten B, Reiling E, Dollé MET, Steeg H, Hasty P, Hoeijmakers JHJ, Vijg J. DNA damage in normally and prematurely aged mice. Aging Cell 2013; 12:467-77. [PMID: 23496256 DOI: 10.1111/acel.12071] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2013] [Indexed: 01/25/2023] Open
Abstract
Steady-state levels of spontaneous DNA damage, the by-product of normal metabolism and environmental exposure, are controlled by DNA repair pathways. Incomplete repair or an age-related increase in damage production and/or decline in repair could lead to an accumulation of DNA damage, increasing mutation rate, affecting transcription, and/or activating programmed cell death or senescence. These consequences of DNA damage metabolism are highly conserved, and the accumulation of lesions in the DNA of the genome could therefore provide a universal cause of aging. An important corollary of this hypothesis is that defects in DNA repair cause both premature aging and accelerated DNA damage accumulation. While the former has been well-documented, the reliable quantification of the various lesions thought to accumulate in DNA during aging has been a challenge. Here, we quantified inhibition of long-distance PCR as a measure of DNA damage in liver and brain of both normal and prematurely aging, DNA repair defective mice. The results indicate a marginal, but statistically significant, increase in spontaneous DNA damage with age in normal mouse liver but not in brain. Increased levels of DNA damage were not observed in the DNA repair defective mice. We also show that oxidative lesions do not increase with age. These results indicate that neither normal nor premature aging is accompanied by a dramatic increase in DNA damage. This suggests that factors other than DNA damage per se, for example, cellular responses to DNA damage, are responsible for the aging phenotype in mice.
Collapse
Affiliation(s)
- Alexander Y. Maslov
- Department of Genetics Albert Einstein College of Medicine New York NY 10461USA
| | - Shireen Ganapathi
- Department of Genetics Albert Einstein College of Medicine New York NY 10461USA
| | - Maaike Westerhof
- Department of Genetics Albert Einstein College of Medicine New York NY 10461USA
| | | | - Ryan R. White
- Department of Genetics Albert Einstein College of Medicine New York NY 10461USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology University of Pittsburgh Cancer Institute University of Pittsburgh School of Medicine Pittsburgh PA 15213USA
| | - Erwin Reiling
- National Institute of Public Health and the Environment Bilthoven The Netherlands
- MGC Department of Genetics CBG Cancer Genomics Center Erasmus Medical Center Rotterdam The Netherlands
| | - Martijn E. T. Dollé
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| | - Harry Steeg
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology University of Texas Health Science Center San Antonio TX 78245USA
| | - Jan H. J. Hoeijmakers
- MGC Department of Genetics CBG Cancer Genomics Center Erasmus Medical Center Rotterdam The Netherlands
| | - Jan Vijg
- Department of Genetics Albert Einstein College of Medicine New York NY 10461USA
| |
Collapse
|
136
|
Sasaki T, Kishi S. Molecular and chemical genetic approaches to developmental origins of aging and disease in zebrafish. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1362-70. [PMID: 23660559 DOI: 10.1016/j.bbadis.2013.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 12/13/2022]
Abstract
The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis ("embryonic senescence"), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Tomoyuki Sasaki
- Department of Metabolism & Aging, The Scripps Research Institute, USA
| | | |
Collapse
|
137
|
Madonna R, Jiang J, Geng YJ. Attenuated expression of gelsolin in association with induction of aquaporin-1 and nitric oxide synthase in dysfunctional hearts of aging mice exposed to endotoxin. Int J Immunopathol Pharmacol 2013; 25:911-22. [PMID: 23298482 DOI: 10.1177/039463201202500409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sepsis triggered by endotoxinemia may impair cardiac function. A decline in tolerance to septic shock occurs with aging. This study addressed the hypothesis that aging negatively impairs expression of gelsolin, and axerts the regulatory effects on the water channel protein aquaporin-1 (AQP-1) and endotoxin-inducible nitric oxide synthase (iNOS). We explored whether the age-related gene changes are associated with the cardiac dysfunction induced by endotoxic stress exposure. Male mice at young (3-month) and old (12-month) ages received intraperitoneal injections of saline or lipopolysaccharide (LPS, 30mg/Kg). Cardiac performance and morphology were analyzed by echocardiography at baseline and 2 and 24 h after injection. At the end of treatment, the animals were sacrificed, and cardiac tissues were collected for assessing expression of gelsolin, AQP-1, iNOS, and transcription-3 (STAT3). LPS administration led to a decreased contractility while increasing cardiac dimensions in both young and old mice. LPS also markedly induced expression of gelsolin in both animal groups. However, compared to young mice, old mice showed compromised induction of gelsolin and cardiac performance in response to endotoxin. Meanwhile, the LPS-exposed old animals exhibited higher levels of AQP-1, iNOS, and phosphorylated STAT3. Gelsolin-null mice had increased expression of glycosylated AQP-1 and STAT3 phosphorylation as well as cardiac dysfunction. Thus, endotoxin administration induces expression of gelsolin, AQP-1 and pro-inflammatory genes, such as iNOS. Our data suggest that changed expression of gelsolin, AQP-1 and iNOS may contribute to dysfunction of hearts in aged subjects with septic endotoxinemia.
Collapse
Affiliation(s)
- R Madonna
- The University of Texas Health Science Center, Houston, TX, USA
| | | | | |
Collapse
|
138
|
Beltrami E, Ruggiero A, Busuttil R, Migliaccio E, Pelicci PG, Vijg J, Giorgio M. Deletion of p66Shc in mice increases the frequency of size-change mutations in the lacZ transgene. Aging Cell 2013; 12:177-83. [PMID: 23237310 PMCID: PMC4141878 DOI: 10.1111/acel.12036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2012] [Indexed: 12/26/2022] Open
Abstract
Upon oxidative challenge the genome accumulates adducts and breaks that activate the DNA damage response to repair, arrest, or eliminate the damaged cell. Thus, reactive oxygen species (ROS) generated by endogenous oxygen metabolism are thought to affect mutation frequency. However, few studies determined the mutation frequency when oxidative stress is reduced. To test whether in vivo spontaneous mutation frequency is altered in mice with reduced oxidative stress and cell death rate, we crossed p66Shc knockout (p66KO) mice, characterized by reduced intracellular concentration of ROS and by impaired apoptosis, with a transgenic line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from organs into Escherichia coli to measure mutation rate. Liver and small intestine from 2- to 24-month-old, lacZ (p66Shc+/+) and lacZp66KO mice, were investigated revealing no difference in overall mutation frequency but a significant increase in the frequency of size-change mutations in the intestine of lacZp66KO mice. This difference was further increased upon irradiation of mice with X-ray. In addition, we found that knocking down cyclophilin D, a gene that facilitates mitochondrial apoptosis acting downstream of p66Shc, increased the size-change mutation frequency in small intestine. Size-change mutations also accumulated in death-resistant embryonic fibroblasts from lacZp66KO mice treated with H2 O2 . These results indicate that p66Shc plays a role in the accumulation of DNA rearrangements and suggest that p66Shc functions to clear damaged cells rather than affect DNA metabolism.
Collapse
Affiliation(s)
- Elena Beltrami
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Antonella Ruggiero
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Rita Busuttil
- Department of Cancer Genetics and Genomics, Peter MacCallum Cancer Centre, Locked Bag 1, Melbourne, 8006, Victoria, Australia and Department of Medicine, The University of Melbourne, Parkville, 3010, Australia
| | - Enrica Migliaccio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY10-461-1926, USA
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
139
|
García-Prat L, Sousa-Victor P, Muñoz-Cánoves P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J 2013; 280:4051-62. [DOI: 10.1111/febs.12221] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/18/2013] [Accepted: 02/26/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Laura García-Prat
- Cell Biology Group; Department of Experimental and Health Sciences; Pompeu Fabra University (UPF); CIBER on Neurodegenerative Diseases (CIBERNED); Barcelona; Spain
| | - Pedro Sousa-Victor
- Cell Biology Group; Department of Experimental and Health Sciences; Pompeu Fabra University (UPF); CIBER on Neurodegenerative Diseases (CIBERNED); Barcelona; Spain
| | | |
Collapse
|
140
|
Abstract
Skin aging is a complex process and underlies multiple influences with the probable involvement of heritable and various environmental factors. Several theories have been conducted regarding the pathomechanisms of aged skin, however fundamental mechanisms still remain poorly understood. This article addresses the influence of genetics on skin aging and in particular deals with the differences observed in ethnic populations and between both genders. Recent studies indicate that male and female aged skin differs as far as the type, the consistency and the sensitivity to external factors is concerned. The same has been also documented between elderly people of different origin. Consequently, the aging process taking place in both genders and in diverse ethnic groups should be examined separately and products specialized to each population should be developed in order to satisfy the special needs.
Collapse
Affiliation(s)
- Evgenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau, Germany ; Institute of Clinical Pharmacology and Toxicology; Charité Universitaetsmedizin Berlin; Berlin, Germany
| | | | | |
Collapse
|
141
|
Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123:966-72. [PMID: 23454759 DOI: 10.1172/jci64098] [Citation(s) in RCA: 1288] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging is the largest risk factor for most chronic diseases, which account for the majority of morbidity and health care expenditures in developed nations. New findings suggest that aging is a modifiable risk factor, and it may be feasible to delay age-related diseases as a group by modulating fundamental aging mechanisms. One such mechanism is cellular senescence, which can cause chronic inflammation through the senescence-associated secretory phenotype (SASP). We review the mechanisms that induce senescence and the SASP, their associations with chronic disease and frailty, therapeutic opportunities based on targeting senescent cells and the SASP, and potential paths to developing clinical interventions.
Collapse
Affiliation(s)
- Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
142
|
Effects of Aging and Hypercholesterolemia on Oxidative Stress and DNA Damage in Bone Marrow Mononuclear Cells in Apolipoprotein E-deficient Mice. Int J Mol Sci 2013; 14:3325-42. [PMID: 23385237 PMCID: PMC3588046 DOI: 10.3390/ijms14023325] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/10/2013] [Accepted: 01/29/2013] [Indexed: 01/01/2023] Open
Abstract
Recent evidence from apolipoprotein E-deficient (apoE−/−) mice shows that aging and atherosclerosis are closely associated with increased oxidative stress and DNA damage in some cells and tissues. However, bone marrow cells, which are physiologically involved in tissue repair have not yet been investigated. In the present study, we evaluated the influence of aging and hypercholesterolemia on oxidative stress, DNA damage and apoptosis in bone marrow cells from young and aged apoE−/− mice compared with age-matched wild-type C57BL/6 (C57) mice, using the comet assay and flow cytometry. The production of both superoxide and hydrogen peroxide in bone marrow cells was higher in young apoE−/− mice than in age-matched C57 mice, and reactive oxygen species were increased in aged C57 and apoE−/− mice. Similar results were observed when we analyzed the DNA damage and apoptosis. Our data showed that both aging and hypercholesterolemia induce the increased production of oxidative stress and consequently DNA damage and apoptosis in bone marrow cells. This study is the first to demonstrate a functionality decrease of the bone marrow, which is a fundamental extra-arterial source of the cells involved in vascular injury repair.
Collapse
|
143
|
Engelfriet PM, Jansen EHJM, Picavet HSJ, Dollé MET. Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev 2013; 35:132-51. [PMID: 23382477 PMCID: PMC4707878 DOI: 10.1093/epirev/mxs011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Much progress has been made in the past decades in unraveling the mechanisms that are responsible for aging. The discovery that particular gene mutations in experimental species such as yeast, flies, and nematodes are associated with longevity has led to many important insights into pathways that regulate aging processes. However, extrapolating laboratory findings in experimental species to knowledge that is valid for the complexity of human physiology remains a major challenge. Apart from the restricted experimental possibilities, studying aging in humans is further complicated by the development of various age-related diseases. The availability of a set of biomarkers that really reflect underlying aging processes would be of much value in disentangling age-associated pathology from specific aging mechanisms. In this review, we survey the literature to identify promising biochemical markers of aging, with a particular focus on using them in longitudinal studies of aging in humans that entail repeated measurements on easily obtainable material, such as blood samples. Our search strategy was a 2-pronged approach, one focused on general mechanisms of aging and one including studies on clinical biomarkers of age-related diseases.
Collapse
Affiliation(s)
- Peter M. Engelfriet
- Correspondence to Dr. Peter M. Engelfriet, National Institute for Public Health and the Environment (RIVM), Centre for Prevention and Health Services Research, P.O. Box 1, 3720 BA Bilthoven, The Netherlands (e-mail: )
| | | | | | | |
Collapse
|
144
|
The Fruit Fly Drosophila melanogaster as a Model for Aging Research. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:63-77. [DOI: 10.1007/10_2013_193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
145
|
The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev 2013; 12:8-21. [PMID: 22543101 DOI: 10.1016/j.arr.2012.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/29/2022]
Abstract
The mouse has become the favorite mammalian model. Among the many reasons for this privileged position of mice is their genetic proximity to humans, the possibilities of genetically manipulating their genomes and the availability of many tools, mutants and inbred strains. Also in the field of aging, mice have become very robust and reliable research tools. Since laboratory mice have a life expectancy of only a few years, genetic approaches and other strategies for intervening in aging can be tested by examining their effects on life span and aging parameters during the relatively short period of, for example, a PhD project. Moreover, experiments on mice with an extended life span as well as on mice demonstrating signs of (segmental) premature aging, together with genetic mapping strategies, have provided novel insights into the fundamental processes that drive aging. Finally, the results of studies on caloric restriction and pharmacological anti-aging treatments in mice have a high degree of relevance to humans. In this paper, we review a number of recent genetic mapping studies that have yielded novel insights into the aging process. We discuss the value of the mouse as a model for testing interventions in aging, such as caloric restriction, and we critically discuss mouse strains with an extended or a shortened life span as models of aging.
Collapse
|
146
|
Nasto LA, Wang D, Robinson AR, Clauson CL, Ngo K, Dong Q, Roughley P, Epperly M, Huq SM, Pola E, Sowa G, Robbins PD, Kang J, Niedernhofer LJ, Vo NV. Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs. Mech Ageing Dev 2013; 134:35-42. [PMID: 23262094 PMCID: PMC3558562 DOI: 10.1016/j.mad.2012.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 01/09/2023]
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of debilitating spinal disorders such as chronic lower back pain. Aging is the greatest risk factor for IDD. Previously, we demonstrated IDD in a murine model of a progeroid syndrome caused by reduced expression of a key DNA repair enzyme. This led us to hypothesize that DNA damage promotes IDD. To test our hypothesis, we chronically exposed adult wild-type (Wt) and DNA repair-deficient Ercc1(-/Δ) mice to the cancer therapeutic agent mechlorethamine (MEC) or ionization radiation (IR) to induce DNA damage and measured the impact on disc structure. Proteoglycan, a major structural matrix constituent of the disc, was reduced 3-5× in the discs of MEC- and IR-exposed animals compared to untreated controls. Expression of the protease ADAMTS4 and aggrecan proteolytic fragments was significantly increased. Additionally, new PG synthesis was reduced 2-3× in MEC- and IR-treated discs compared to untreated controls. Both cellular senescence and apoptosis were increased in discs of treated animals. The effects were more severe in the DNA repair-deficient Ercc1(-/Δ) mice than in Wt littermates. Local irradiation of the vertebra in Wt mice elicited a similar reduction in PG. These data demonstrate that genotoxic stress drives degenerative changes associated with IDD.
Collapse
Affiliation(s)
- Luigi A Nasto
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Wijshake T, Malureanu LA, Baker DJ, Jeganathan KB, van de Sluis B, van Deursen JM. Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation. PLoS Genet 2012; 8:e1003138. [PMID: 23300461 PMCID: PMC3531486 DOI: 10.1371/journal.pgen.1003138] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/18/2012] [Indexed: 01/10/2023] Open
Abstract
Mosaic Variegated Aneuploidy (MVA) syndrome is a rare autosomal recessive disorder characterized by inaccurate chromosome segregation and high rates of near-diploid aneuploidy. Children with MVA syndrome die at an early age, are cancer prone, and have progeroid features like facial dysmorphisms, short stature, and cataracts. The majority of MVA cases are linked to mutations in BUBR1, a mitotic checkpoint gene required for proper chromosome segregation. Affected patients either have bi-allelic BUBR1 mutations, with one allele harboring a missense mutation and the other a nonsense mutation, or mono-allelic BUBR1 mutations combined with allelic variants that yield low amounts of wild-type BubR1 protein. Parents of MVA patients that carry single allele mutations have mild mitotic defects, but whether they are at risk for any of the pathologies associated with MVA syndrome is unknown. To address this, we engineered a mouse model for the nonsense mutation 2211insGTTA (referred to as GTTA) found in MVA patients with bi-allelic BUBR1 mutations. Here we report that both the median and maximum lifespans of the resulting BubR1+/GTTA mice are significantly reduced. Furthermore, BubR1+/GTTA mice develop several aging-related phenotypes at an accelerated rate, including cataract formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. BubR1+/GTTA mice develop mild aneuploidies and show enhanced growth of carcinogen-induced tumors. Collectively, these data demonstrate that the BUBR1 GTTA mutation compromises longevity and healthspan, raising the interesting possibility that mono-allelic changes in BUBR1 might contribute to differences in aging rates in the general population. Aging is the main risk factor for the majority of chronic diseases and the leading cause of death and disability in humans. Humans age at different rates, but the molecular genetic basis underlying this phenomenon remains largely unknown. Efforts to understand how we age have focused on genetic changes that extend lifespan or underlie progeroid disorders. One potential progeroid disorder, MVA syndrome, has been associated with mutations in the mitotic regulator BUBR1. Although MVA syndrome is rare due to its recessive nature, individuals carrying heterozygous BUBR1 mutations associated with MVA would be much more prevalent. However, whether such carriers are asymptomatic or at risk of developing aspects of MVA syndrome later in life is unknown. To investigate this, we engineered mice to carry an analogous mutation to the human MVA BUBR1 nonsense mutation 2211insGTTA. We find that these mice have a reduced lifespan and develop several age-related phenotypes at an accelerated rate. These findings suggest that bi-allelic integrity of BUBR1 is a key determinant of healthspan and longevity, and provide a conceptual framework for elucidating differences in aging rates among humans.
Collapse
Affiliation(s)
- Tobias Wijshake
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Liviu A. Malureanu
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Darren J. Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bart van de Sluis
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
148
|
Sirt1 suppresses RNA synthesis after UV irradiation in combined xeroderma pigmentosum group D/Cockayne syndrome (XP-D/CS) cells. Proc Natl Acad Sci U S A 2012; 110:E212-20. [PMID: 23267107 DOI: 10.1073/pnas.1213076110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific mutations in the XPD subunit of transcription factor IIH result in combined xeroderma pigmentosum (XP)/Cockayne syndrome (CS), a severe DNA repair disorder characterized at the cellular level by a transcriptional arrest following UV irradiation. This transcriptional arrest has always been thought to be the result of faulty transcription-coupled repair. In the present study, we showed that, following UV irradiation, XP-D/CS cells displayed a gross transcriptional dysregulation compared with "pure" XP-D cells or WT cells. Furthermore, global RNA-sequencing analysis showed that XP-D/CS cells repressed the majority of genes after UV, whereas pure XP-D cells did not. By using housekeeping genes as a model, we demonstrated that XP-D/CS cells were unable to reassemble these gene promoters and thus to restart transcription after UV irradiation. Furthermore, we found that the repression of these promoters in XP-D/CS cells was not a simple consequence of deficient repair but rather an active heterochromatinization process mediated by the histone deacetylase Sirt1. Indeed, RNA-sequencing analysis showed that inhibition of and/or silencing of Sirt1 changed the chromatin environment at these promoters and restored the transcription of a large portion of the repressed genes in XP-D/CS cells after UV irradiation. Our work demonstrates that a significant part of the transcriptional arrest displayed by XP-D/CS cells arises as a result of an active repression process and not simply as a result of a DNA repair deficiency. This dysregulation of Sirt1 function that results in transcriptional repression may be the cause of various severe clinical features in patients with XP-D/CS that cannot be explained by a DNA repair defect.
Collapse
|
149
|
Vashistha H, Singhal PC, Malhotra A, Husain M, Mathieson P, Saleem MA, Kuriakose C, Seshan S, Wilk A, Delvalle L, Peruzzi F, Giorgio M, Pelicci PG, Smithies O, Kim HS, Kakoki M, Reiss K, Meggs LG. Null mutations at the p66 and bradykinin 2 receptor loci induce divergent phenotypes in the diabetic kidney. Am J Physiol Renal Physiol 2012; 303:F1629-40. [PMID: 23019230 PMCID: PMC3532473 DOI: 10.1152/ajprenal.00246.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/25/2012] [Indexed: 12/28/2022] Open
Abstract
Candidate genes have been identified that confer increased risk for diabetic glomerulosclerosis (DG). Mice heterozygous for the Akita (Ins2(+/C96Y)) diabetogenic mutation with a second mutation introduced at the bradykinin 2 receptor (B2R(-/-)) locus express a disease phenotype that approximates human DG. Src homology 2 domain transforming protein 1 (p66) controls mitochondrial metabolism and cellular responses to oxidative stress, aging, and apoptosis. We generated p66-null Akita mice to test whether inactivating mutations at the p66 locus will rescue kidneys of Akita mice from disease-causing mutations at the Ins2 and B2R loci. Here we show null mutations at the p66 and B2R loci interact with the Akita (Ins2(+/C96Y)) mutation, independently and in combination, inducing divergent phenotypes in the kidney. The B2R(-/-) mutation induces detrimental phenotypes, as judged by increased systemic and renal levels of oxidative stress, histology, and urine albumin excretion, whereas the p66-null mutation confers a powerful protection phenotype. To elucidate the mechanism(s) of the protection phenotype, we turned to our in vitro system. Experiments with cultured podocytes revealed previously unrecognized cross talk between p66 and the redox-sensitive transcription factor p53 that controls hyperglycemia-induced ROS metabolism, transcription of p53 target genes (angiotensinogen, angiotensin II type-1 receptor, and bax), angiotensin II generation, and apoptosis. RNA-interference targeting p66 inhibits all of the above. Finally, protein levels of p53 target genes were upregulated in kidneys of Akita mice but unchanged in p66-null Akita mice. Taken together, p66 is a potential molecular target for therapeutic intervention in DG.
Collapse
Affiliation(s)
- Himanshu Vashistha
- Institute for Translational Research, Nephrology Research Laboratory, Ochsner Health Foundation, Dept. of Nephrology, New Orleans, LA 70121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
López-Andrés N, Calvier L, Labat C, Fay R, Díez J, Benetos A, Zannad F, Lacolley P, Rossignol P. Absence of cardiotrophin 1 is associated with decreased age-dependent arterial stiffness and increased longevity in mice. Hypertension 2012; 61:120-9. [PMID: 23172930 DOI: 10.1161/hypertensionaha.112.201699] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiotrophin 1 (CT-1), an interleukin 6 family member, promotes fibrosis and arterial stiffness. We hypothesized that the absence of CT-1 influences arterial fibrosis and stiffness, senescence, and life span. In senescent 29-month-old mice, vascular function was analyzed by echotracking device. Arterial histomorphology, senescence, metabolic, inflammatory, and oxidative stress parameters were measured by immunohistochemistry, reverse transcription polymerase chain reaction, Western blot, and ELISA. Survival rate of wild-type and CT-1-null mice was studied. Vascular smooth muscle cells were treated with CT-1 (10(-9) mol/L) for 15 days to analyze senescence. The wall stress-incremental elastic modulus curve of old CT-1-null mice was shifted rightward as compared with wild-type mice, indicating decreased arterial stiffness. Media thickness and wall fibrosis were lower in CT-1-null mice. CT-1-null mice showed decreased levels of inflammatory, apoptotic, and senescence pathways, whereas telomere-linked proteins, DNA repair proteins, and antioxidant enzyme activities were increased. CT-1-null mice displayed a 5-month increased median longevity compared with wild-type mice. In vascular smooth muscle cells, chronic CT-1 stimulation upregulated apoptotic and senescence markers and downregulated telomere-linked proteins. The absence of CT-1 is associated with decreased arterial fibrosis, stiffness, and senescence and increased longevity in mice likely through downregulating apoptotic, senescence, and inflammatory pathways. CT-1 may be a major regulator of arterial stiffness with a major impact on the aging process.
Collapse
Affiliation(s)
- Natalia López-Andrés
- Institut National de la Santé et de la Recherche Médicale, U961, Faculty of Medicine, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | | | | | | | |
Collapse
|