101
|
Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SIS. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 2005; 37:809-19. [PMID: 15976807 DOI: 10.1038/ng1602] [Citation(s) in RCA: 401] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 06/16/2005] [Indexed: 02/07/2023]
Abstract
The organization of eukaryotic genomes into distinct structural and functional domains is important for the regulation and transduction of genetic information. Here, we investigated heterochromatin and euchromatin profiles of the entire fission yeast genome and explored the role of RNA interference (RNAi) in genome organization. Histone H3 methylated at Lys4, which defines euchromatin, was not only distributed across most of the chromosomal landscape but was also present at the centromere core, the site of kinetochore assembly. In contrast, histone H3 methylated at Lys9 and its interacting protein Swi6/HP1, which define heterochromatin, coated extended domains associated with a variety of repeat elements and small islands corresponding to meiotic genes. Notably, RNAi components were distributed throughout all these heterochromatin domains, and their localization depended on Clr4/Suv39h histone methyltransferase. Sequencing of small interfering RNAs (siRNAs) associated with the RITS RNAi effector complex identified hot spots of siRNAs, which mapped to a diverse array of elements in these RNAi-heterochromatin domains. We found that Clr4/Suv39h predominantly silenced repeat elements whose derived transcripts, transcribed mainly by RNA polymerase II, serve as a source for siRNAs. Our analyses also uncover an important role for the RNAi machinery in maintaining genomic integrity.
Collapse
Affiliation(s)
- Hugh P Cam
- Laboratory of Molecular Cell Biology, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
102
|
Sha AH, Lin XH, Huang JB, Zhang DP. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics 2005; 273:484-90. [PMID: 15968537 DOI: 10.1007/s00438-005-1148-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. The rice cultivar Wase Aikoku 3 becomes resistant to the blight pathogen Xanthomonas oryzae pv. oryzae at the adult stage. Using methylation-sensitive amplified polymorphism (MSAP) analysis, we compared the patterns of cytosine methylation in seedlings and adult plants of the rice cultivar Wase Aikoku 3 that had been inoculated with the pathogen Xanthomonas oryzae pv. oryzae, subjected to mock inoculation or left untreated. In all, 2000 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using 60 pairs of selective primers. A total of 380 sites were found to be methylated. Of these, 45 showed differential cytosine methylation among the seedlings and adult plants subjected to different treatments, and overall levels of methylation were higher in adult plants than in seedlings. All polymorphic fragments were sequenced, and six showed homology to genes that code for products of known function. Northern analysis of three fragments indicated that their expression varied with methylation pattern, with hypermethylation being correlated with repression of transcription, as expected. The results suggest that significant differences in cytosine methylation exist between seedlings and adult plants, and that hypermethylation or hypomethylation of specific genes may be involved in the development of adult plant resistance (APR) in rice plants.
Collapse
Affiliation(s)
- A H Sha
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
103
|
Schramke V, Sheedy DM, Denli AM, Bonila C, Ekwall K, Hannon GJ, Allshire RC. RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature 2005; 435:1275-9. [PMID: 15965464 DOI: 10.1038/nature03652] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 04/22/2005] [Indexed: 01/07/2023]
Abstract
RNA interference (RNAi) acts on long double-stranded RNAs (dsRNAs) in a variety of eukaryotes to generate small interfering RNAs that target homologous messenger RNA, resulting in their destruction. This process is widely used to 'knock-down' the expression of genes of interest to explore phenotypes. In plants, fission yeast, ciliates, flies and mammalian cells, short interfering RNAs (siRNAs) also induce DNA or chromatin modifications at the homologous genomic locus, which can result in transcriptional silencing or sequence elimination. siRNAs may direct DNA or chromatin modification by siRNA-DNA interactions at the homologous locus. Alternatively, they may act by interactions between siRNA and nascent transcript. Here we show that in fission yeast (Schizosaccharomyces pombe), chromatin modifications are only directed by RNAi if the homologous DNA sequences are transcribed. Furthermore, transcription by exogenous T7 polymerase is not sufficient. Ago1, a component of the RNAi effector RISC/RITS complex, associates with target transcripts and RNA polymerase II. Truncation of the regulatory carboxy-terminal domain (CTD) of RNA pol II disrupts transcriptional silencing, indicating that, like other RNA processing events, RNAi-directed chromatin modification is coupled to transcription.
Collapse
Affiliation(s)
- Vera Schramke
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
104
|
Chicas A, Forrest EC, Sepich S, Cogoni C, Macino G. Small interfering RNAs that trigger posttranscriptional gene silencing are not required for the histone H3 Lys9 methylation necessary for transgenic tandem repeat stabilization in Neurospora crassa. Mol Cell Biol 2005; 25:3793-801. [PMID: 15831483 PMCID: PMC1084287 DOI: 10.1128/mcb.25.9.3793-3801.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Neurospora crassa, the introduction of a transgene can lead to small interfering RNA (siRNA)-mediated posttranscriptional gene silencing (PTGS) of homologous genes. siRNAs can also guide locus-specific methylation of Lys9 of histone H3 (Lys9H3) in Schizosaccharomyces pombe. Here we tested the hypothesis that transgenically derived siRNAs may contemporaneously both activate the PTGS mechanism and induce chromatin modifications at the transgene and the homologous endogenous gene. We carried out chromatin immunoprecipitation using a previously characterized albino-1 (al-1) silenced strain but detected no alterations in the pattern of histone modifications at the endogenous al-1 locus, suggesting that siRNAs produced from the transgenic locus do not trigger modifications in trans of those histones tested. Instead, we found that the transgenic locus was hypermethylated at Lys9H3 in our silenced strain and remained hypermethylated in the quelling defective mutants (qde), further demonstrating that the PTGS machinery is dispensable for Lys9H3 methylation. However, we found that a mutant in the histone Lys9H3 methyltransferase dim-5 was unable to maintain PTGS, with transgenic copies being rapidly lost, resulting in reversion of the silenced phenotype. These results indicate that the defect in PTGS of the Deltadim-5 strain is due to the inability to maintain the transgene in tandem, suggesting a role for DIM-5 in stabilizing such repeated sequences. We conclude that in Neurospora, siRNAs produced from the transgenic locus are used in the RNA-induced silencing complex-mediated PTGS pathway and do not communicate with an RNAi-induced initiation of transcriptional gene silencing complex to effect chromatin-based silencing.
Collapse
Affiliation(s)
- Agustin Chicas
- Istituto Pasteur e Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Universita di Roma La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
105
|
Chan SWL, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 2005; 6:351-60. [PMID: 15861207 DOI: 10.1038/nrg1601] [Citation(s) in RCA: 587] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA methylation has two essential roles in plants and animals - defending the genome against transposons and regulating gene expression. Recent experiments in Arabidopsis thaliana have begun to address crucial questions about how DNA methylation is established and maintained. One cardinal insight has been the discovery that DNA methylation can be guided by small RNAs produced through RNA-interference pathways. Plants and mammals use a similar suite of DNA methyltransferases to propagate DNA methylation, but plants have also developed a glycosylase-based mechanism for removing DNA methylation, and there are hints that similar processes function in other organisms.
Collapse
Affiliation(s)
- Simon W-L Chan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
106
|
Sciamanna I, Landriscina M, Pittoggi C, Quirino M, Mearelli C, Beraldi R, Mattei E, Serafino A, Cassano A, Sinibaldi-Vallebona P, Garaci E, Barone C, Spadafora C. Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene 2005; 24:3923-3931. [PMID: 15806170 DOI: 10.1038/sj.onc.1208562] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/21/2004] [Accepted: 01/27/2005] [Indexed: 11/09/2022]
Abstract
Undifferentiated cells and embryos express high levels of endogenous non-telomerase reverse transcriptase (RT) of retroposon/retroviral origin. We previously found that RT inhibitors modulate cell growth and differentiation in several cell lines. We have now sought to establish whether high levels of RT activity are directly linked to cell transformation. To address this possibility, we have employed two different approaches to inhibit RT activity in melanoma and prostate carcinoma cell lines: pharmacological inhibition by two characterized RT inhibitors, nevirapine and efavirenz, and downregulation of expression of RT-encoding LINE-1 elements by RNA interference (RNAi). Both treatments reduced proliferation, induced morphological differentiation and reprogrammed gene expression. These features are reversible upon discontinuation of the anti-RT treatment, suggesting that RT contributes to an epigenetic level of control. Most importantly, inhibition of RT activity in vivo antagonized tumor growth in animal experiments. Moreover, pretreatment with RT inhibitors attenuated the tumorigenic phenotype of prostate carcinoma cells inoculated in nude mice. Based on these data, the endogenous RT can be regarded as an epigenetic regulator of cell differentiation and proliferation and may represent a novel target in cancer therapy.
Collapse
Affiliation(s)
- Ilaria Sciamanna
- Istituto Superiore di Sanità, Viale Regina Elena 299, Via del Castro Laurenziano 25, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Coregulation of lymphoid-specific gene sets is achieved by a series of epigenetic mechanisms. Association with higher-order chromosomal structures (nuclear subcompartments repressing or favouring gene expression) and locus control regions affects recombination and transcription of clonotypic antigen receptors and expression of a series of other lymphoid-specific genes. Locus control regions can regulate DNA methylation patterns in their vicinity. They may induce tissue- and site-specific DNA demethylation and affect, thereby, accessibility to recombination-activating proteins, transcription factors, and enzymes involved in histone modifications. Both DNA methylation and the Polycomb group of proteins (PcG) function as alternative systems of epigenetic memory in lymphoid cells. Complexes of PcG proteins mark their target genes by covalent histone tail modifications and influence lymphoid development and rearrangement of IgH genes. Ectopic expression of protein noncoding microRNAs may affect the generation of B-lineage cells, too, by guiding effector complexes to sites of heterochromatin assembly. Coregulation of lymphoid and viral promoters is also possible. EBNA 2, a nuclear protein encoded by episomal Epstein-Barr virus genomes, binds to the cellular protein CBF1 (C promoter binding factor 1) and operates, thereby, a regulatory network to activate latent viral promoters and cellular promoters associated with CBF1 binding sites.Key words : lymphoid cells, coregulation of gene batteries, epigenetic regulation, nuclear subcompartment switch, locus control region, DNA methylation, Polycomb group of proteins, histone modifications, microRNA, Epstein-Barr virus, EBNA 2, regulatory network.
Collapse
Affiliation(s)
- Ildikó Györy
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
| | | |
Collapse
|
108
|
Abstract
Recent developments in studies of sperm-mediated gene transfer (SMGT) now provide solid ground for the notion that sperm cells can act as vectors for exogenous genetic sequences. A substantive body of evidence indicates that SMGT is potentially useable in animal transgenesis, but also suggests that the final fate of the exogenous sequences transferred by sperm is not always predictable. The analysis of SMGT-derived offspring has shown the existence of integrated foreign sequences in some cases, while in others stable modifications of the genome are difficult to detect. The appearance of SMGT-derived modified offspring on the one hand and, on the other hand, the rarity of actual modification of the genome, suggest inheritance as extrachromosomal structures. Several specific factors have been identified that mediate distinct steps in SMGT. Among those, a prominent role is played by an endogenous reverse transcriptase of retrotransposon origin. Mature spermatozoa are naturally protected against the intrusion of foreign nucleic acid molecules; however, particular environmental conditions, such as those occurring during human assisted reproduction, can abolish this protection. The possibility that sperm cells under these conditions carry genetic sequences affecting the integrity or identity of the host genome should be critically considered. These considerations further suggest the possibility that SMGT events may occasionally take place in nature, with profound implications for evolutionary processes.
Collapse
Affiliation(s)
- Kevin Smith
- School of Contemporary Sciences, University of Abertay, Dundee, UK.
| | | |
Collapse
|
109
|
Slotkin RK, Freeling M, Lisch D. Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 2005; 37:641-4. [PMID: 15908951 DOI: 10.1038/ng1576] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 04/22/2005] [Indexed: 11/08/2022]
Abstract
It has been suggested that gene silencing evolved as a defense against genomic parasites such as transposons. This idea is based on analysis of mutations that reactivate transposons that are stably silenced: they affect maintenance rather than initiation of silencing. Here we describe the cloning and characterization of a naturally occurring locus able to heritably silence the otherwise highly active MuDR transposon in maize. This locus, Mu killer (Muk), results from the inverted duplication of a partially deleted autonomous MuDR element located at the breakpoint of a genomic deletion. Muk produces a hybrid hairpin transcript that is processed into small RNAs, which are amplified when the target MuDR transcript is present. Muk provides the first example of a naturally occurring transposon derivative capable of initiating the heritable silencing of an active transposon family. Further, transposon-generated inverted duplications may be important for the generation of double-stranded RNAs used in gene silencing.
Collapse
Affiliation(s)
- R Keith Slotkin
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
110
|
Abstract
Cellular differentiation and multicellular development require the programmed expression of coregulated suites of genetic loci dispersed throughout the genome. How do functionally diverse loci come to share common regulatory motifs? A new paper finds that retrotransposons (RTEs) may play a role in providing common regulation to a group of functions expressed during the development of oocytes and preimplantation embryos. Examining cDNA libraries, Peaston et al. find that 13% of all processed transcripts in full-grown mouse oocytes contain RTE sequences, mostly from the MT family of retroviral-like elements. Smaller but still significant percentages of RTE sequences are found in cDNA libraries from 2-cell embryos and blastocysts. A quarter of these RTE sequences are at the 5' ends of chimeric transcripts that also contain exons from endogenous mouse loci. These chimeric transcripts display restricted expression in oocytes and preimplantation embryos and presumably originate from developmentally regulated LTR promoters. Some, but not all, chimeric transcripts encode novel protein products.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA.
| |
Collapse
|
111
|
Abstract
Closely related RNA silencing phenomena such as posttranscriptional and transcriptional gene silencing (PTGS and TGS), quelling and RNA interference (RNAi) represent different forms of a conserved ancestral process. The biological relevance of these RNA-directed mechanisms of silencing in gene regulation, genome defence and chromosomal structure is rapidly being unravelled. Here, we review the recent developments in the field of RNA silencing in relation to other epigenetic phenomena and discuss the significance of this process and its targets in the regulation of modern eukaryotic genomes.
Collapse
Affiliation(s)
- Ricardo Almeida
- Wellcome Trust Centre for Cell Biology, 6.34 Swann Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
112
|
Sales-Pardo M, Guimerà R, Moreira AA, Widom J, Amaral LAN. Mesoscopic modeling for nucleic acid chain dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:051902. [PMID: 16089566 PMCID: PMC2128761 DOI: 10.1103/physreve.71.051902] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 11/08/2004] [Indexed: 05/03/2023]
Abstract
To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present here a mesoscopic-level computational model that provides a new window into nucleic acid dynamics. We model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin motion. By performing a number of tests, we first show that our model is physically sound. We then focus on a study of the kinetics of a DNA hairpin--a single-stranded molecule comprising two complementary segments joined by a noncomplementary loop--studied experimentally. We find that results from our simulations agree with experimental observations, demonstrating that our model is a suitable tool for the investigation of the hybridization of single strands.
Collapse
Affiliation(s)
- M Sales-Pardo
- Department Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
113
|
Abstract
Double-stranded RNAs (dsRNAs) and their 'diced' small RNA products can guide key developmental and defense mechanisms in eukaryotes. Some RNA-directed mechanisms act at a post-transcriptional level to degrade target messenger RNAs. However, dsRNA-derived species can also direct changes in the chromatin structure of DNA regions with which they share sequence identity. For example, plants use such RNA species to lay down cytosine methylation imprints on identical DNA sequences, providing a fundamental mark for the formation of transcriptionally silent heterochromatin. Thus, RNA can feed backwards to modulate the accessibility of information stored in the DNA of cognate genes. RNA triggers for DNA methylation can come from different sources, including invasive viral, transgene or transposon sequences, and in some cases are derived from single-stranded RNA precursors by RNA-dependent RNA polymerases. The mechanism by which RNA signals are translated into DNA methylation imprints is currently unknown, but two plant-specific types of cytosine methyltransferase have been implicated in this process. RNA can also direct heterochromatin formation in fission yeast and Drosophila, but in these organisms the process occurs in the absence of DNA methylation.
Collapse
Affiliation(s)
- Olivier Mathieu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
114
|
Matthess Y, Kappel S, Spänkuch B, Zimmer B, Kaufmann M, Strebhardt K. Conditional inhibition of cancer cell proliferation by tetracycline-responsive, H1 promoter-driven silencing of PLK1. Oncogene 2005; 24:2973-80. [PMID: 15735719 DOI: 10.1038/sj.onc.1208472] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 11/15/2004] [Accepted: 12/13/2004] [Indexed: 11/08/2022]
Abstract
RNA interference (RNAi) is a powerful tool for studying gene function. We developed an inducible genetic element for short interfering RNA-mediated gene silencing. This system uses a tetracycline (Tet)-responsive derivative of the H1 promoter and the Tet repressor (TetR) for conditional expression of short hairpin RNA (shRNA) in HeLa cells. Promoter constructs were generated, which contain the Tet operator (TetO) derived from a prokaryotic Tet resistance transposon upstream and/or downstream of the TATA box. To quantify the response of controllable transcription units for shRNA expression, we examined the functional activity of polo-like kinase 1 (PLK1), a key component of mitotic progression, that is overexpressed in many human tumors. Cotransfection of plasmids for the expression of TetR and shRNA/PLK1 under the control of an H1 promoter-variant carrying TetO upstream of the TATA box did not alter PLK1 expression and proliferation properties of HeLa cells in the absence of doxycycline. Addition of the antibiotic led to marked downregulation of endogenous PLK1 accompanied by strong inhibition of cellular proliferation. Our data indicate that an inducible transcription system for shRNAs based on the human H1 promoter could be a versatile tool for controlled gene silencing in vitro.
Collapse
Affiliation(s)
- Yves Matthess
- Department of Gynecology and Obstetrics, School of Medicine, JW Goethe-University, Theodor-Stern-Kai 7, Haus 15, Frankfurt 60590, Germany
| | | | | | | | | | | |
Collapse
|
115
|
Abstract
RNA silencing pathways convert the sequence information in long RNA, typically double-stranded RNA, into approximately 21-nt RNA signaling molecules such as small interfering RNAs (siRNAs) and microRNAs (miRNAs). siRNAs and miRNAs provide specificity to protein effector complexes that repress mRNA transcription or translation, or catalyze mRNA destruction. Here, we review our current understanding of how small RNAs are produced, how they are loaded into protein complexes, and how they repress gene expression.
Collapse
Affiliation(s)
- Yukihide Tomari
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
116
|
Kalmykova AI, Klenov MS, Gvozdev VA. Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res 2005; 33:2052-9. [PMID: 15817569 PMCID: PMC1074743 DOI: 10.1093/nar/gki323] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Proteins of the Argonaute family have been identified as key components of RNA interference (RNAi) pathway. RNAi-related mechanisms are implicated in the regulation of gene expression and repression of transposable elements in eukaryotes. The piwi gene encoding protein of the Drosophila Argonaute family was shown to be required for the germ stem cells maintenance. Here, we show that piwi is involved in silencing of LTR retrotransposons in testes. piwi mutations led to derepression of endogenous retrotransposon copia as well as to upregulation of the reporter gene driven by copia LTR. piwi mutation causes accumulation of retrotransposon mdg1 transcripts at the apical tip of testes, including germinal proliferative center where PIWI protein was shown to be expressed. We applied inverse PCR approach to detect the newly arisen insertions of the mdg1 retrotransposon in the progeny of individual piwi mutant males. Owing to piwi mutation a high rate of mdg1 transpositions was revealed. Thus, piwi is involved in the silencing of retrotransposons in the precursors of male gametes. Our results provide the first evidence that protein of the Argonaute family prevents retrotranspositions. It is supposed that the disturbance of RNA silencing system in germinal cells might cause transposition burst.
Collapse
Affiliation(s)
- Alla I. Kalmykova
- Institute of Molecular Genetics RASKurchatov square 2, 123 182 Moscow, Russia
| | - Mikhail S. Klenov
- Institute of Molecular Genetics RASKurchatov square 2, 123 182 Moscow, Russia
- Department of Molecular Biology, Moscow State UniversityMoscow, Russia
| | - Vladimir A. Gvozdev
- Institute of Molecular Genetics RASKurchatov square 2, 123 182 Moscow, Russia
- Department of Molecular Biology, Moscow State UniversityMoscow, Russia
- To whom correspondence should be addressed. Tel: +7 095 196 0012; Fax: +7 095 196 0221;
| |
Collapse
|
117
|
Svoboda P. Long dsRNA and silent genes strike back:RNAi in mouse oocytes and early embryos. Cytogenet Genome Res 2005; 105:422-34. [PMID: 15237230 DOI: 10.1159/000078215] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 11/14/2003] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) refers to the selective degradation of mRNA induced by double-stranded RNA (dsRNA), first discovered in Caenorhabditis elegans. Homology-dependent silencing phenomena related to RNAi have been observed in many species from all eukaryotic kingdoms. RNAi and related mechanisms share several conserved components. The hallmark of these phenomena is the presence of short dsRNA molecules (21-25 bp long), termed short interfering RNA (siRNA), which are generated from dsRNA by the activity of Dicer, a specific type III RNAse. These molecules serve as a template for the recognition and cleavage of the cognate mRNA. As it is beyond the scope of a single review to cover all aspects of RNAi, this review will focus on certain steps of the pathway relevant to mammals and on the use of long dsRNA to specifically silence genes in mammalian cells permissive to this technique, such as oocytes and early embryos.
Collapse
Affiliation(s)
- P Svoboda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
118
|
Abstract
The main epigenetic mechanisms in regulation of gene expression are discussed. The definition of epigenetics and its specific mechanisms including DNA methylation and gene imprinting, modifications of nucleosomal histones associated with silencing or activation of gene transcription, RNA interference, chromosomal silencing, and the role of mobile elements are discussed.
Collapse
Affiliation(s)
- N A Tchurikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
119
|
Abstract
Chromatin at centromeres is distinct from the chromatin in which the remainder of the genome is assembled. Two features consistently distinguish centromeres: the presence of the histone H3 variant CENP-A and, in most organisms, the presence of heterochromatin. In fission yeast, domains of silent "heterochromatin" flank the CENP-A chromatin domain that forms a platform upon which the kinetochore is assembled. Thus, fission yeast centromeres resemble their metazoan counterparts where the kinetochore is embedded in centromeric heterochromatin. The centromeric outer repeat chromatin is underacetylated on histones H3 and H4, and methylated on lysine 9 of histone H3, which provides a binding site for the chromodomain protein Swi6 (orthologue of Heterochromatin Protein 1, HP1). The remarkable demonstration that the assembly of repressive heterochromatin is dependent on the RNA interference machinery provokes many questions about the mechanisms of this process that may be tractable in fission yeast. Heterochromatin ensures that a high density of cohesin is recruited to centromeric regions, but it could have additional roles in centromere architecture and the prevention of merotely, and it might also act as a trigger for kinetochore assembly. In addition, we discuss an epigenetic model for ensuring that CENP-A is targeted and replenished at the kinetochore domain.
Collapse
Affiliation(s)
- Alison L Pidoux
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
120
|
Hansen KR, Burns G, Mata J, Volpe TA, Martienssen RA, Bähler J, Thon G. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol Cell Biol 2005; 25:590-601. [PMID: 15632061 PMCID: PMC543407 DOI: 10.1128/mcb.25.2.590-601.2005] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone modifications influence gene expression in complex ways. The RNA interference (RNAi) machinery can repress transcription by recruiting histone-modifying enzymes to chromatin, although it is not clear whether this is a general mechanism for gene silencing or whether it requires repeated sequences such as long terminal repeats (LTRs). We analyzed the global effects of the Clr3 and Clr6 histone deacetylases, the Clr4 methyltransferase, the zinc finger protein Clr1, and the RNAi proteins Dicer, RdRP, and Argonaute on the transcriptome of Schizosaccharomyces pombe (fission yeast). The clr mutants derepressed similar subsets of genes, many of which also became transcriptionally activated in cells that were exposed to environmental stresses such as nitrogen starvation. Many genes that were repressed by the Clr proteins clustered in extended regions close to the telomeres. Surprisingly few genes were repressed by both the silencing and RNAi machineries, with transcripts from centromeric repeats and Tf2 retrotransposons being notable exceptions. We found no correlation between repression by RNAi and proximity to LTRs, and the wtf family of repeated sequences seems to be repressed by histone deacetylation independent of RNAi. Our data indicate that the RNAi and Clr proteins show only a limited functional overlap and that the Clr proteins play more global roles in gene silencing.
Collapse
Affiliation(s)
- Klavs R Hansen
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen 1353 K, Denmark
| | | | | | | | | | | | | |
Collapse
|
121
|
Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005; 19:489-501. [PMID: 15713842 PMCID: PMC548949 DOI: 10.1101/gad.1248505] [Citation(s) in RCA: 958] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dicer is the enzyme that cleaves double-stranded RNA (dsRNA) into 21-25-nt-long species responsible for sequence-specific RNA-induced gene silencing at the transcriptional, post-transcriptional, or translational level. We disrupted the dicer-1 (dcr-1) gene in mouse embryonic stem (ES) cells by conditional gene targeting and generated Dicer-null ES cells. These cells were viable, despite being completely defective in RNA interference (RNAi) and the generation of microRNAs (miRNAs). However, the mutant ES cells displayed severe defects in differentiation both in vitro and in vivo. Epigenetic silencing of centromeric repeat sequences and the expression of homologous small dsRNAs were markedly reduced. Re-expression of Dicer in the knockout cells rescued these phenotypes. Our data suggest that Dicer participates in multiple, fundamental biological processes in a mammalian organism, ranging from stem cell differentiation to the maintenance of centromeric heterochromatin structure and centromeric silencing.
Collapse
Affiliation(s)
- Chryssa Kanellopoulou
- The Dana-Farber Cancer Institute, Department of Cancer Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Krajewski WA, Nakamura T, Mazo A, Canaani E. A motif within SET-domain proteins binds single-stranded nucleic acids and transcribed and supercoiled DNAs and can interfere with assembly of nucleosomes. Mol Cell Biol 2005; 25:1891-9. [PMID: 15713643 PMCID: PMC549386 DOI: 10.1128/mcb.25.5.1891-1899.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolutionary conserved SET domain is present in many eukaryotic chromatin-associated proteins, including some members of the trithorax (TrxG) group and the polycomb (PcG) group of epigenetic transcriptional regulators and modifiers of position effect variegation. All SET domains examined exhibited histone lysine methyltransferase activity, implicating these proteins in the generation of epigenetic marks. However, the mode of the initial recruitment of SET proteins to target genes and the way that their association with the genes is maintained after replication are not known. We found that SET-containing proteins of the SET1 and SET2 families contain motifs in the pre-SET region or at the pre-SET-SET and SET-post-SET boundaries which very tightly bind single-stranded DNA (ssDNA) and RNA. These motifs also bind stretches of ssDNA generated by superhelical tension or during the in vitro transcription of duplex DNA. Importantly, such binding withstands nucleosome assembly, interfering with the formation of regular nucleosomal arrays. Two representatives of the SUV39 SET family, SU(VAR)3-9 and G9a, did not bind ssDNA. The trxZ11 homeotic point mutation, which is located within TRX SET and disrupts embryonic development, impairs the ssDNA binding capacity of the protein. We suggest that the motifs described here may be directly involved in the biological function(s) of SET-containing proteins. The binding of single-stranded nucleic acids might play a role in the initial recruitment of the proteins to target genes, in the maintenance of their association after DNA replication, or in sustaining DNA stretches in a single-stranded configuration to allow for continuous transcription.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- Department of Biochemistry, Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, 117808 Moscow, Russia.
| | | | | | | |
Collapse
|
123
|
Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 2005; 119:789-802. [PMID: 15607976 DOI: 10.1016/j.cell.2004.11.034] [Citation(s) in RCA: 431] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/09/2004] [Accepted: 11/16/2004] [Indexed: 11/20/2022]
Abstract
RNAi-mediated heterochromatin assembly in fission yeast requires the RNA-induced transcriptional silencing (RITS) complex and a putative RNA-directed RNA polymerase (Rdp1). Here we show that Rdp1 is associated with two conserved proteins, Hrr1, an RNA helicase, and Cid12, a member of the polyA polymerase family, in a complex that has RNA-directed RNA polymerase activity (RDRC, RNA-directed RNA polymerase complex). RDRC physically interacts with RITS in a manner that requires the Dicer ribonuclease (Dcr1) and the Clr4 histone methyltransferase. Moreover, both complexes are localized to the nucleus and associate with noncoding centromeric RNAs in a Dcr1-dependent manner. In cells lacking Rdp1, Hrr1, or Cid12, RITS complexes are devoid of siRNAs and fail to localize to centromeric DNA repeats to initiate heterochromatin assembly. These findings reveal a physical and functional link between Rdp1 and RITS and suggest that noncoding RNAs provide a platform for siRNA-dependent localization of RNAi complexes to specific chromosome regions.
Collapse
|
124
|
Nolan T, Braccini L, Azzalin G, De Toni A, Macino G, Cogoni C. The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucleic Acids Res 2005; 33:1564-73. [PMID: 15767281 PMCID: PMC1065258 DOI: 10.1093/nar/gki300] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Post-transcriptional gene silencing (PTGS) involving small interfering RNA (siRNA)-directed degradation of RNA transcripts and transcriptional silencing via DNA methylation have each been proposed as mechanisms of genome defence against invading nucleic acids, such as transposons and viruses. Furthermore, recent data from plants indicates that many transposons are silenced via a combination of the two mechanisms, and siRNAs can direct methylation of transposon sequences. We investigated the contribution of DNA methylation and the PTGS pathway to transposon control in the filamentous fungus Neurospora crassa. We found that repression of the LINE1-like transposon, Tad, requires the Argonaute protein QDE2 and Dicer, each of which are required for transgene-induced PTGS (quelling) in N.crassa. Interestingly, unlike quelling, the RNA-dependent RNA polymerase QDE1 and the RecQ DNA helicase QDE3 were not required for Tad control, suggesting the existence of specialized silencing pathways for diverse kinds of repetitive elements. In contrast, Tad elements were not significantly methylated and the DIM2 DNA methyltransferase, responsible for all known DNA methylation in Neurospora, had no effect on Tad control. Thus, an RNAi-related transposon silencing mechanism operates during the vegetative phase of N.crassa that is independent of DNA methylation, highlighting a major difference between this organism and other methylation-proficient species.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlo Cogoni
- To whom correspondence should be addressed. Tel and Fax: +39064457731;
| |
Collapse
|
125
|
Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, Voravud N, Sriuranpong V, Mutirangura A. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 2005; 23:8841-6. [PMID: 15480421 DOI: 10.1038/sj.onc.1208137] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genome-wide losses of DNA methylation have been regarded as a common epigenetic event in malignancies and may play crucial roles in carcinogenesis. Limited information is available on the global methylation status in normal tissues and other cancer types beyond colonic carcinoma. Here we applied the combined bisulfite restriction analysis PCR to evaluate the methylation status of LINE-1 repetitive sequences in genomic DNA derived from microdissected samples from several human normal and neoplastic tissues. We found that methylation of LINE-1 in leukocytes was independent of age and gender. In contrast, normal tissues from different organs showed tissue-specific levels of methylated LINE-1. Globally, most carcinomas including breast, colon, lung, head and neck, bladder, esophagus, liver, prostate, and stomach, revealed a greater percentage of hypomethylation than their normal tissue counterparts. Furthermore, DNA derived from sera of patients with carcinoma displayed more LINE-1 hypomethylation than those of noncarcinoma individuals. Finally, in a colonic carcinogenesis model, we detected significantly greater hypomethylation in carcinoma than those of dysplastic polyp and histological normal colonic epithelium. Thus, the methylation status is a unique feature of a specific tissue type and the global hypomethylation is a common epigenetic process in cancer, which may progressively evolve during multistage carcinogenesis.
Collapse
Affiliation(s)
- Krisanee Chalitchagorn
- Genetics Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control.
Collapse
Affiliation(s)
- Tim C Roloff
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
| | | |
Collapse
|
127
|
Abstract
Although heterochromatin has been studied for 80 years, its genetic function and molecular organization have remained elusive. In almost all organisms, heterochromatin has been regarded as genetically inactive chromosome regions. However, from genetic and genomic studies in Drosophila melanogaster and other organisms including humans, it is now clear that transcriptionally active domains are present within constitutive heterochromatin. These domains contain essential coding genes whose expression during development ensures the formation of the proper biochemical and morphological phenotypes, together with several gene models defined by genome annotation whose functions still need to be determined.
Collapse
Affiliation(s)
- Patrizio Dimitri
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, 70-00185 Roma, Italy.
| | | | | | | |
Collapse
|
128
|
Kordis D. A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses. Gene 2005; 347:161-73. [PMID: 15777633 DOI: 10.1016/j.gene.2004.12.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 12/01/2004] [Accepted: 12/07/2004] [Indexed: 12/31/2022]
Abstract
Chromoviruses, chromodomain-containing retrotransposons, are the only Metaviridae (Ty3/gypsy group of retrotransposons) clade with a Eukaryota-wide distribution. They have a common evolutionary origin and are the most prolific and diverse Metaviridae clade. The fusion of a retrotransposon and a chromodomain, was most probably responsible for their extreme evolutionary success in Eukaryota. Analysis of the massive amount of genome sequence data for different eukaryotic lineages has provided an in depth insight into the diversity, evolution, neofunctionalization, high rate of genomic turnover and origin of chromoviruses in Eukaryota. This review attempts to summarise the unique aspects of chromoviruses from a genomic perspective.
Collapse
Affiliation(s)
- Dusan Kordis
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova 39, 1001 Ljubljana, Slovenia.
| |
Collapse
|
129
|
Wegel E, Vallejos RH, Christou P, Stöger E, Shaw P. Large-scale chromatin decondensation induced in a developmentally activated transgene locus. J Cell Sci 2005; 118:1021-31. [PMID: 15713746 DOI: 10.1242/jcs.01685] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The high molecular weight (HMW) glutenin-encoding genes in wheat are developmentally activated in the endosperm at about 8 days after anthesis. We have investigated the physical changes that occur in these genes in two transgenic lines containing about 20 and 50 copies each of the HMW glutenin genes together with their promoters. Using fluorescence in-situ hybridisation (FISH) and confocal imaging, we demonstrate that, in non-expressing tissue, each transgene locus consists of one or two highly condensed sites, which decondense into many foci upon activation of transcription in endosperm nuclei. Initiation of transcription can precede decondensation but not vice versa. We show that, in one of the lines, cytoplasmic transcript levels are high after onset of transcription but disappear by 14 days after anthesis, whereas small interfering RNAs, which indicate post-transcriptional gene silencing (PTGS), are detected at this stage. However, the transcript levels remain high at the transcription sites, most of the transgene copies are transcriptionally active and transcriptional activity in the nucleus ceases only with cell death at the end of endosperm development.
Collapse
MESH Headings
- Cell Nucleus/metabolism
- Chromatin/chemistry
- Chromatin/metabolism
- Chromatin/ultrastructure
- Cytoplasm/metabolism
- DNA/metabolism
- DNA Methylation
- DNA Primers/chemistry
- Flow Cytometry
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant
- Glutens/genetics
- Image Processing, Computer-Assisted
- In Situ Hybridization
- In Situ Hybridization, Fluorescence
- Metaphase
- Microscopy, Confocal
- Plant Physiological Phenomena
- Plant Roots/metabolism
- Plants, Genetically Modified
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Seeds/metabolism
- Time Factors
- Transcription, Genetic
- Transformation, Genetic
- Transgenes
- Triticum/genetics
- Triticum/metabolism
Collapse
Affiliation(s)
- Eva Wegel
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | | | | | | | | |
Collapse
|
130
|
Abstract
In eukaryotes, small RNA molecules engage in sequence-specific interactions to inhibit gene expression by RNA silencing. This process fulfils fundamental regulatory roles, as well as antiviral functions, through the activities of microRNAs and small interfering RNAs. As a counter-defence mechanism, viruses have evolved various anti-silencing strategies that are being progressively unravelled. These studies have not only highlighted our basic understanding of host-parasite interactions, but also provide key insights into the diversity, regulation and evolution of RNA-silencing pathways.
Collapse
Affiliation(s)
- Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
131
|
Schmidt FR. About the nature of RNA interference. Appl Microbiol Biotechnol 2005; 67:429-35. [PMID: 15703909 DOI: 10.1007/s00253-004-1882-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
In the context of yet unclarified issues of RNA interference (RNAi), it is discussed that RNAi-induced histone modification may not only have the purpose of inactivating native genes by blocking their transcription in the sense direction but may also simultaneously trigger transcription of the corresponding antisense strand to form double-stranded RNA for posttranscriptional gene-silencing in cells lacking RNA replicase activities. Invading foreign genetic traits may be posttranscriptionally silenced through complementary transcripts from specific, highly variable genomic regions, which are able to finally match any given sequence by the appropriate recombination and processing of their transcripts. The information to fight these traits may additionally become anchored in the genome, to provide at least a temporary "immunity" and may be inherited at least for a few generations. It is further proposed that: (1) RNA viruses evolved from constituents of the RNAi machinery through the capture of functions essential for their maintenance and replication and (2) viruses and RNAi are mutually interacting components of a universal and predominant genetic steering system that is involved in the modulation of gene expression on the cellular level and simultaneously constitutes a driving force for evolution, particularly in imperfect organisms. Such a model would deliver explanations for yet unresolved issues of RNAi, the clarification of which will have a significant impact on its future medical and biotechnological application.
Collapse
Affiliation(s)
- F R Schmidt
- Sanofi-Aventis Deutschland, Biocenter H 780, Industriepark Höchst, Frankfurt am Main.
| |
Collapse
|
132
|
Abstract
Here, epigenetic regulation of centromeric chromatin in fission yeast (Schizosaccharomyces pombe) is reviewed, focussing on the role of histone modifications and the link to RNA interference (RNAi). Fission yeast centromeres are organized into two structurally and functionally distinct domains, both of which are required for centromere function. The central core domain anchors the kinetochore structure while the flanking heterochromatin domain is important for sister centromere cohesion. The chromatin structure of both domains is regulated epigenetically. In the central core domain, the histone H3 variant Cnp1(CENP-A) plays a key role. In the flanking heterochromatin domain, histones are kept underacetylated by the histone deacetylases (HDACs) Clr3, Clr6 and Sir2, and methylated by Clr4 methyltransferase (HMTase) to create a specific binding site for the Swi6 protein. Swi6 then directly mediates cohesin binding to the centromeric heterochromatin. Recently, a surprising link was made between heterochromatin formation and RNAi.
Collapse
Affiliation(s)
- Karl Ekwall
- Karolinska Institutet, Dept. of Biosciences/University College Sodertorn, Dept. of Natural Sciences, Sweden.
| |
Collapse
|
133
|
Abstract
Fission yeast centromeres are composed of two distinctive chromatin domains. The central domain nucleosomes contain the histone H3-like protein CENP-A(Cnp1). In contrast, the flanking repeats are coated with silent chromatin in which Swi6 (HP1) binds histone H3 methylated on lysine 9 that is induced by the action of the RNA interference pathway on non-coding centromeric transcripts. The overall structure is similar to that of metazoan centromeres where the kinetochore is embedded in surrounding heterochromatin. Kinetochore specific proteins associate with the central domain and affect silencing in that region. The flanking heterochromatin is required to recruit cohesin and mediate tight physical cohesion between sister centromeres. The loss of silencing that accompanies defects in heterochromatin has been invaluable as a tool in the investigation of centromere function. Both the heterochromatin and kinetochore regions are required for the de novo assembly of a functional centromere on DNA constructs, suggesting that heterochromatin may provide an environment that promotes kinetochore assembly within the central domain. The process is clearly epigenetically regulated. Fission yeast kinetochores associate with 2-4 microtubules, and flanking heterochromatin may be required to promote the orientation of multiple microtubule binding sites on one kinetochore towards the same pole and thus prevent merotelic orientation.
Collapse
Affiliation(s)
- Alison L Pidoux
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | | |
Collapse
|
134
|
Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A. Evolution of DNA sequence nonhomologies among maize inbreds. THE PLANT CELL 2005; 17:343-60. [PMID: 15659640 PMCID: PMC548811 DOI: 10.1105/tpc.104.025627] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 11/17/2004] [Indexed: 05/18/2023]
Abstract
Allelic chromosomal regions totaling more than 2.8 Mb and located on maize (Zea mays) chromosomes 1L, 2S, 7L, and 9S have been sequenced and compared over distances of 100 to 350 kb between the two maize inbred lines Mo17 and B73. The alleles contain extended regions of nonhomology. On average, more than 50% of the compared sequence is noncolinear, mainly because of the insertion of large numbers of long terminal repeat (LTR)-retrotransposons. Only 27 LTR-retroelements are shared between alleles, whereas 62 are allele specific. The insertion of LTR-retrotransposons into the maize genome is statistically more recent for nonshared than shared ones. Most surprisingly, more than one-third of the genes (27/72) are absent in one of the inbreds at the loci examined. Such nonshared genes usually appear to be truncated and form clusters in which they are oriented in the same direction. However, the nonshared genome segments are gene-poor, relative to regions shared by both inbreds, with up to 12-fold difference in gene density. By contrast, miniature inverted terminal repeats (MITEs) occur at a similar frequency in the shared and nonshared fractions. Many times, MITES are present in an identical position in both LTRs of a retroelement, indicating that their insertion occurred before the replication of the retroelement in question. Maize ESTs and/or maize massively parallel signature sequencing tags were identified for the majority of the nonshared genes or homologs of them. In contrast with shared genes, which are usually conserved in gene order and location relative to rice (Oryza sativa), nonshared genes violate the maize colinearity with rice. Based on this, insertion by a yet unknown mechanism, rather than deletion events, seems to be the origin of the nonshared genes. The intergenic space between conserved genes is enlarged up to sixfold in maize compared with rice. Frequently, retroelement insertions create a different sequence environment adjacent to conserved genes.
Collapse
Affiliation(s)
- Stephan Brunner
- DuPont Crop Genetics Research, Wilmington, Delaware 19880, USA.
| | | | | | | | | |
Collapse
|
135
|
Martens JHA, O'Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 2005; 24:800-12. [PMID: 15678104 PMCID: PMC549616 DOI: 10.1038/sj.emboj.7600545] [Citation(s) in RCA: 523] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 12/13/2004] [Indexed: 12/12/2022] Open
Abstract
Histone lysine methylation has been shown to index silenced chromatin regions at, for example, pericentric heterochromatin or of the inactive X chromosome. Here, we examined the distribution of repressive histone lysine methylation states over the entire family of DNA repeats in the mouse genome. Using chromatin immunoprecipitation in a cluster analysis representing repetitive elements, our data demonstrate the selective enrichment of distinct H3-K9, H3-K27 and H4-K20 methylation marks across tandem repeats (e.g. major and minor satellites), DNA transposons, retrotransposons, long interspersed nucleotide elements and short interspersed nucleotide elements. Tandem repeats, but not the other repetitive elements, give rise to double-stranded (ds) RNAs that are further elevated in embryonic stem (ES) cells lacking the H3-K9-specific Suv39h histone methyltransferases. Importantly, although H3-K9 tri- and H4-K20 trimethylation appear stable at the satellite repeats, many of the other repeat-associated repressive marks vary in chromatin of differentiated ES cells or of embryonic trophoblasts and fibroblasts. Our data define a profile of repressive histone lysine methylation states for the repetitive complement of four distinct mouse epigenomes and suggest tandem repeats and dsRNA as primary triggers for more stable chromatin imprints.
Collapse
Affiliation(s)
- Joost H A Martens
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Vienna, Austria
| | - Roderick J O'Sullivan
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Vienna, Austria
| | - Ulrich Braunschweig
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Vienna, Austria
| | - Susanne Opravil
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Vienna, Austria
| | - Martin Radolf
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Vienna, Austria
| | - Peter Steinlein
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Vienna, Austria
| | - Thomas Jenuwein
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Dr Bohrgasse 7, 1030 Vienna, Austria. Tel.: +43 1 797 30 474; Fax: +43 1 798 7153; E-mail:
| |
Collapse
|
136
|
|
137
|
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism that uses short antisense RNAs that are generated by 'dicing' dsRNA precursors to target corresponding mRNAs for cleavage. However, recent developments have revealed that there is also extensive involvement of RNAi-related processes in regulation at the genome level. dsRNA and proteins of the RNAi machinery can direct epigenetic alterations to homologous DNA sequences to induce transcriptional gene silencing or, in extreme cases, DNA elimination. Furthermore, in some organisms RNAi silences unpaired DNA regions during meiosis. These mechanisms facilitate the directed silencing of specific genomic regions.
Collapse
Affiliation(s)
- Marjori A Matzke
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, UZA2, Pharmazie Zentrum, Althanstrasse 14/2D-541, A-1090 Vienna, Austria.
| | | |
Collapse
|
138
|
Abstract
In the RNA-interference pathway, double-stranded RNA induces sequence-specific mRNA degradation through the action of the RNA-induced silencing complex (RISC). Recent work has provided our first glimpses of the RISC-assembly pathway and uncovered the biochemical roles of critical RISC components. These advances have taken our mechanistic understanding of RNA interference to a new level and promise to improve our ability to exploit this biological process for use in experimental biology and medicine.
Collapse
Affiliation(s)
- Erik J Sontheimer
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3500, USA.
| |
Collapse
|
139
|
Sugiyama T, Cam H, Verdel A, Moazed D, Grewal SIS. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci U S A 2005; 102:152-7. [PMID: 15615848 PMCID: PMC544066 DOI: 10.1073/pnas.0407641102] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/09/2004] [Indexed: 11/18/2022] Open
Abstract
In fission yeast, factors involved in the RNA interference (RNAi) pathway including Argonaute, Dicer, and RNA-dependent RNA polymerase are required for heterochromatin assembly at centromeric repeats and the silent mating-type region. Previously, we have shown that RNA-induced initiation of transcriptional gene silencing (RITS) complex containing the Argonaute protein and small interfering RNAs (siRNAs) localizes to heterochromatic loci and collaborates with heterochromatin assembly factors via a self-enforcing RNAi loop mechanism to couple siRNA generation with heterochromatin formation. Here, we investigate the role of RNA-dependent RNA polymerase (Rdp1) and its polymerase activity in the assembly of heterochromatin. We find that Rdp1, similar to RITS, localizes to all known heterochromatic loci, and its localization at centromeric repeats depends on components of RITS and Dicer as well as heterochromatin assembly factors including Clr4/Suv39h and Swi6/HP1 proteins. We show that a point mutation within the catalytic domain of Rdp1 abolished its RNA-dependent RNA polymerase activity and resulted in the loss of transcriptional silencing and heterochromatin at centromeres, together with defects in mitotic chromosome segregation and telomere clustering. Moreover, the RITS complex in the rdp1 mutant does not contain siRNAs, and is delocalized from centromeres. These results not only implicate Rdp1 as an essential component of a self-enforcing RNAi loop but also ascribe a critical role for its RNA-dependent RNA polymerase activity in siRNA production necessary for heterochromatin formation.
Collapse
Affiliation(s)
- Tomoyasu Sugiyama
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
140
|
Verdel A, Moazed D. Labeling and Characterization of Small RNAs Associated with the RNA Interference Effector Complex RITS. Methods Enzymol 2005; 392:297-307. [PMID: 15644188 DOI: 10.1016/s0076-6879(04)92017-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA interference (RNAi) is a gene silencing mechanism that acts at both the posttranscriptional and transcriptional levels. We have recently identified an RNA-containing complex, named RNA-induced transcriptional silencing (RITS), that directly links RNAi to transcriptional gene silencing in Schizosaccharomyces pombe. Here we review the affinity purification methods we use to isolate RITS and describe how to purify, detect, and analyze RNAs associated with this complex.
Collapse
Affiliation(s)
- André Verdel
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
141
|
Sinibaldi-Vallebona P, Lavia P, Garaci E, Spadafora C. A role for endogenous reverse transcriptase in tumorigenesis and as a target in differentiating cancer therapy. Genes Chromosomes Cancer 2005; 45:1-10. [PMID: 16175572 DOI: 10.1002/gcc.20266] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An unexpected result emerging from completion of the genome sequencing project is that a large portion of mammalian genomes is constituted by retrotransposons. A large body of published data supports the conclusion that retrotransposons are biologically active elements and indicates that retrotransposition is an ongoing process in mammalian genomes. Retroelements can act as insertional mutagens altering the coding integrity of genes and, recently, have been found to also affect the expression of cellular genes at the epigenetic level: in this light, they are a potential threat in that these events can trigger the onset of several pathologies including cancer. Retroelement genes, and particularly the gene coding for reverse transcriptase (RT), are typically expressed at high levels in transformed cells and tumors. In recent work, we have found that drug-mediated inhibition of the endogenous RT activity, or silencing of expression of active retrotransposons of the LINE-1 family by RNA interference, down-regulate cell growth and induce the activation of differentiating functions in several cancer cell lines. Moreover, the inhibition of endogenous RT activity in vivo antagonizes the growth of human tumors in animal models. In this review, we discuss newly emerging concepts on the role of retrotransposons and suggest that an abnormally high level of the RT activity that they encode may contribute to the loss of control in the proliferation and differentiation programs typical of transformed cells. In this light, RT-coding elements may be regarded as promising targets in the development of novel, differentiation-inducing approaches to cancer therapy.
Collapse
|
142
|
Valente L, Nishikura K. ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:299-338. [PMID: 16096031 DOI: 10.1016/s0079-6603(04)79006-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Louis Valente
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
143
|
Burzynski SR. Aging: gene silencing or gene activation? Med Hypotheses 2005; 64:201-8. [PMID: 15533642 DOI: 10.1016/j.mehy.2004.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 06/02/2004] [Indexed: 12/31/2022]
Abstract
According to the author's theory of gene silencing, the key process in aging involves reduced expression of a number of genes. Silencing of genes has a complex mechanism, which involves methylation of DNA, histone modification and chromatin remodeling. In addition to deacetylation of the histones and methylation of DNA, recently described RNAi mechanism could initiate formation of silenced chromatin. Hypermethylation of the promoter will silence the gene. Genome-wide hypomethylation will induce genomic instability, amplification of oncogenes and also silencing of the genes through RNAi mechanism. Studies by different groups, conducted in yeast, worms, flies and mice, confirmed substantial changes in gene expression in aging. Among them, the most important was silencing of tumor suppressors and other genes involved in the control of cell cycle, apoptosis, detoxification, and cholesterol metabolism. There was also increased expression of the smaller group of oncogenes and other genes which are associated with typical diseases of old age. Caloric restriction normalizes expression of a substantial percentage of these genes. Animal studies confirmed importance of caloric restriction, which decreases signaling through the IGF-1/AKT pathway and expression of gene p53. These studies, however, cannot be directly applied to human aging. It is proposed that age management therapy should attempt to normalize gene expression in the older population to the level typical for young adults. This would require activation of silenced genes and normalization of overexpressed genes. Caloric restriction and exercise are helpful in decreasing the activity of important oncogenes and activation of silenced tumor suppressors, and may have a positive impact, not only on aging, but also on prevention of cancer. Dietary supplements containing phytochemicals should normalize increased expression of oncogenes. Examples are: genistein and EGCG, which effect signaling through the IGF-1/AKT pathway and resveratrol and limonen, which do so through the RAS pathway. A group of amino acid derivatives and organic acids of animal and human origin should activate silenced tumor suppressor genes (Aminocare A10, Aminocare Extra). Among them 3-phenylacetylamino-2, 6-piperidinedione intercalates specifically with DNA and protects sequences of tumor suppressor genes, which are vulnerable to the effects of carcinogens. Phenylacetate activates p53 and p21 through inhibition of methyltransferase and farnesylation of the RAS protein. Phenylbutyrate activates tumor suppressor genes through inhibition of histone deacetylation. Phenylacetylglutamine decreases genomic instability and expression of oncogenes and promotes apoptosis. The application of DNA microarray techniques to human studies should provide more information about differences in gene expression in different age groups and help design more effective age management regimens.
Collapse
|
144
|
Abstract
Gene regulation by short RNAs is a ubiquitous and important mode of control. MicroRNAs are short, single-strand RNAs that bind with partial complementarity to the 3' untranslated region of several genes to silence their expression. This expanding class of endogenous short RNAs are evolutionarily conserved and participate in control of development and cell-specific gene function. Several of these microRNAs have been cloned uniquely from mammalian lymphocytes suggesting specialized roles in lymphocyte development and function. In addition, several genes linked to RNAi in lower eukaryotes have mammalian homologs with specialized roles in adaptive immunity. For example, in worms, the nonsense-mediated decay (NMD) and RNAi pathways appear to be intricately linked. NMD plays a key role in regulating antigen-receptor expression in lymphocytes and there are mammalian homologs for factors identified in worms that appear to be common in both RNAi and NMD pathways. On the other hand, RNA editing and RNAi have an inverse relationship and RNA editing has an important role in viral immunity. These observations indicate unique roles for dsRNAs in the mammalian immune system.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
145
|
Abstract
During the development of a multicellular organism, cell differentiation involves activation and repression of transcription programs that must be stably maintained during subsequent cell divisions. Chromatin remodeling plays a crucial role in regulating chromatin states that conserve transcription programs and provide a mechanism for chromatin states to be maintained as cells proliferate, a process referred to as epigenetic inheritance. A large number of factors and protein complexes are now known to be involved in regulating the dynamic states of chromatin structure. Their biological functions and molecular mechanisms are beginning to be revealed.
Collapse
Affiliation(s)
- Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.
| | | |
Collapse
|
146
|
Brandt J, Veith AM, Volff JN. A family of neofunctionalized Ty3/gypsy retrotransposon genes in mammalian genomes. Cytogenet Genome Res 2005; 110:307-17. [PMID: 16093683 DOI: 10.1159/000084963] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 02/25/2004] [Indexed: 12/30/2022] Open
Abstract
A family of at least eleven genes called Mar related to long terminal repeat retrotransposons from the Ty3/gypsy group, including two genes previously identified as such, is present in human and mouse genomes. Single orthologous copies were identified for most Mar genes in different mammals. All of them have lost essential structural features necessary for autonomous retrotransposition before divergence between mouse and human. Three Mar genes also have introns at identical positions in human and mouse. Hence, Mar genes do not correspond to functional retrotransposons. Mar genes evolved under purifying selection, strongly suggesting that they are not pseudogenic relics but rather neofunctionalized retrotransposon genes. All putative Mar proteins display sequence similarity to the capsid-like domain of the Gag protein of Tf1/Sushi retrotransposons. In addition, three Mar proteins have conserved the Gag CCHC zinc finger motif, suggesting a role in nucleic acid binding. Some Mar genes have also retained from their retrotransposon origin a -1 ribosomal frameshifting between the gag-related open reading frame and a region encoding a putative aspartyl protease domain. EST analysis revealed that the majority of Mar genes are expressed in brain as well as in other tissues and organs. Some Mar proteins might function as transcription factors or be involved in the control of cell proliferation and apoptosis. Strikingly, as many as eight Mar genes are located on the X chromosome in human, mouse and other mammals, and at least two of the autosomal genes are subject to imprinting. We suggest that retrotransposons might be a source for epigenetically regulated genes. Epigenetic regulation of these neogenes might be derived from the cellular defense mechanisms having controlled their retrotransposon ancestor.
Collapse
Affiliation(s)
- J Brandt
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
147
|
Global expression changes resulting from loss of telomeric DNA in fission yeast. Genome Biol 2004; 6:R1. [PMID: 15642092 PMCID: PMC549061 DOI: 10.1186/gb-2004-6-1-r1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/16/2004] [Accepted: 11/24/2004] [Indexed: 11/23/2022] Open
Abstract
Gene expression profiling of the response of Schizosaccharomyces pombe cells to loss of the catalytic subunit of telomerase (trt1+) identified two waves of altered gene expression and a continued up-regulation of Core Environmental stress Response (CESR) genes. Background Schizosaccharomyces pombe cells lacking the catalytic subunit of telomerase (encoded by trt1+) lose telomeric DNA and enter crisis, but rare survivors arise with either circular or linear chromosomes. Survivors with linear chromosomes have normal growth rates and morphology, but those with circular chromosomes have growth defects and are enlarged. We report the global gene-expression response of S. pombe to loss of trt1+. Results Survivors with linear chromosomes had expression profiles similar to cells with native telomeres, whereas survivors with circular chromosomes showed continued upregulation of core environmental stress response (CESR) genes. In addition, survivors with circular chromosomes had altered expression of 51 genes compared to survivors with linear chromosomes, providing an expression signature. S. pombe progressing through crisis displayed two waves of altered gene expression. One coincided with crisis and consisted of around 110 genes, 44% of which overlapped with the CESR. The second was synchronized with the emergence of survivors and consisted of a single class of open reading frames (ORFs) with homology both to RecQ helicases and to dh repeats at centromeres targeted for heterochromatin formation via an RNA interference (RNAi) mechanism. Accumulation of transcript from the ORF was found not only in trt1- cells, but also in dcr1- and ago1- RNAi mutants, suggesting that RNAi may control its expression. Conclusions These results demonstrate a correlation between a state of cellular stress, short telomeres and growth defects in cells with circular chromosomes. A putative new RecQ helicase was expressed as survivors emerged and appears to be transcriptionally regulated by RNAi, suggesting that this mechanism operates at telomeres.
Collapse
|
148
|
|
149
|
Hodgetts R. Eukaryotic gene regulation by targeted chromatin re-modeling at dispersed, middle-repetitive sequence elements. Curr Opin Genet Dev 2004; 14:680-5. [PMID: 15531164 DOI: 10.1016/j.gde.2004.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RNA interference might have evolved to minimize the deleterious impact of transposable elements and viruses on eukaryotic genomes, because mutations in genes within the RNAi pathway cause mobilization of transposons in nematodes and flies. Although the first examples of RNAi involved post-transcriptional gene silencing, recently the pathway has been shown to act at the transcriptional level. It does so by establishing a chromatin configuration on the target DNA that has many of the hallmarks of heterochromatin, thus preventing its transcription. Members of dispersed, repeated sequence families appear to have been utilized by the RNAi machinery to regulate nearby genes in yeast. The unusual genomic distribution of three repeated element families in the chicken, fruit-fly and nematode genomes prompts speculation that some of these repeats have been co-opted to control gene expression, either locally or over extended chromosomal domains.
Collapse
Affiliation(s)
- Ross Hodgetts
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
150
|
Abstract
Transposable elements are the single most abundant class of genetic material in higher eukaryotes. These elements show a genome-wide distribution but are found in disproportionate abundance at the centromeric and/or pericentric regions in a wide range of phylogenetic species. We propose at least three possible ways in which these elements could have directly contributed to the evolution of the architecture and function of the centromere in various organisms. An "extradition" mechanism also appears to have evolved, which enables the developing or established centromere to deal with the potentially disruptive effects of any subsequently arising transposable elements.
Collapse
Affiliation(s)
- Lee H Wong
- The Murdoch Childrens Research Institute, Department of Paediatrics, Royal Children's Hospital, Flemington Road, Melbourne 3052, Australia
| | | |
Collapse
|