101
|
Basu A, Tiwari VK. Epigenetic reprogramming of cell identity: lessons from development for regenerative medicine. Clin Epigenetics 2021; 13:144. [PMID: 34301318 PMCID: PMC8305869 DOI: 10.1186/s13148-021-01131-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.
Collapse
Affiliation(s)
- Amitava Basu
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
102
|
Heterozygous Nme7 Mutation Affects Glucose Tolerance in Male Rats. Genes (Basel) 2021; 12:genes12071087. [PMID: 34356103 PMCID: PMC8305224 DOI: 10.3390/genes12071087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022] Open
Abstract
Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/− on male rats vs. their wild-type Nme7+/+ controls. Nme7+/− animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/− male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity.
Collapse
|
103
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|
104
|
Liu L, Zhao M, Fu L, Cao J. Unraveling local relationship patterns in project networks: A network motif approach. INTERNATIONAL JOURNAL OF PROJECT MANAGEMENT 2021. [DOI: 10.1016/j.ijproman.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
105
|
Liu F, Zhu X, Jiang X, Li S, Lv Y. Transcriptional control by HNF-1: Emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis 2021; 9:1248-1257. [PMID: 35873023 PMCID: PMC9293700 DOI: 10.1016/j.gendis.2021.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The present review focuses on the roles and underlying mechanisms of action of hepatic nuclear factor-1 (HNF-1) in lipid metabolism and the development of lipid metabolism disorders. HNF-1 is a transcriptional regulator that can form homodimers, and the HNF-1α and HNF-1β isomers can form heterodimers. Both homo- and heterodimers recognize and bind to specific cis-acting elements in gene promoters to transactivate transcription and to coordinate the expression of target lipid-related genes, thereby influencing the homeostasis of lipid metabolism. HNF-1 was shown to restrain lipid anabolism, including synthesis, absorption, and storage, by inhibiting the expression of lipogenesis-related genes, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein-1/2 (SREBP-1/2). Moreover, HNF-1 enhances the expression of various genes, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), glutathione peroxidase 1 (GPx1), and suppressor of cytokine signaling-3 (SOCS-3) and negatively regulates signal transducer and activator of transcription (STAT) to facilitate lipid catabolism in hepatocytes. HNF-1 reduces hepatocellular lipid decomposition, which alleviates the progression of nonalcoholic fatty liver disease (NAFLD). HNF-1 impairs preadipocyte differentiation to reduce the number of adipocytes, stunting the development of obesity. Furthermore, HNF-1 reduces free cholesterol levels in the plasma to inhibit aortic lipid deposition and lipid plaque formation, relieving dyslipidemia and preventing the development of atherosclerotic cardiovascular disease (ASCVD). In summary, HNF-1 transcriptionally regulates lipid-related genes to manipulate intracorporeal balance of lipid metabolism and to suppress the development of lipid metabolism disorders.
Collapse
|
106
|
Pan G, Cavalli M, Wadelius C. Polymorphisms rs55710213 and rs56334587 regulate SCD1 expression by modulating HNF4A binding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194724. [PMID: 34171462 DOI: 10.1016/j.bbagrm.2021.194724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The stearoyl-CoA desaturase 1 (SCD1) gene at 10q24.31 encodes the rate limiting enzyme SCD1 that catalyzes the biosynthesis of monounsaturated fatty acids (MUFAs) from saturated fatty acids (SFAs). Dysregulated SCD1 activity has been observed in many human diseases including non-alcoholic fatty liver disease (NAFLD), obesity, hypertension, hyperlipidemia, metabolic syndrome and several types of cancer. HNF4A is a central regulator of glucose and lipid metabolism and previous studies suggested that it is deeply involved in regulating the SCD1 activity in the liver. However, the underlying mechanisms on whether and how SCD1 is regulated by HNF4A have not been explored in detail. In this study, we found that HNF4A regulates SCD1 expression by directly binding to the key regulatory regions in the SCD1 locus. Knocking down of HNF4A significantly downregulated the expression of SCD1. Variants rs55710213 and rs56334587 in intron 5 of SCD1 directly reside in a canonical HNF4A binding site. The GG haplotype of rs55710213 and rs56334587 is associated with decreased SCD1 activity by disrupting the binding of HNF4A, which further decreased the enhancer activity and SCD1 expression. In conclusion, our study demonstrated that SCD1 is directly regulated by HNF4A, which may be helpful in the understanding of the altered metabolic pathways in many diseases associated with dysregulated SCD1 or HNF4A or both.
Collapse
Affiliation(s)
- Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
107
|
Oreschak K, Saba LM, Rafaels N, Ambardekar AV, Deininger KM, PageII R, Lindenfeld J, Aquilante CL. Variants in mycophenolate and CMV antiviral drug pharmacokinetic and pharmacodynamic genes and leukopenia in heart transplant recipients. J Heart Lung Transplant 2021; 40:917-925. [PMID: 34253456 DOI: 10.1016/j.healun.2021.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The objective was to assess the relationship between single nucleotide polymorphisms in mycophenolate and cytomegalovirus antiviral drug pharmacokinetic and pharmacodynamic genes and drug-induced leukopenia in adult heart transplant recipients. METHODS This retrospective analysis included n = 148 patients receiving mycophenolate and a cytomegalovirus antiviral drug. In total, 81 single nucleotide polymorphisms in 21 pharmacokinetic and 23 pharmacodynamic genes were selected for investigation. The primary and secondary outcomes were mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia, defined as a white blood cell count <3.0 × 109/L, in the first six and 12 months post-heart transplant, respectively. RESULTS Mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia occurred in 20.3% of patients. HNF1A rs1169288 A>C (p.I27L) was associated with drug-induced leukopenia (unadjusted p = 0.002; false discovery rate <20%) in the first six months post-transplant. After adjusting for covariates, HNF1A rs1169288 variant C allele carriers had significantly higher odds of leukopenia compared to A/A homozygotes (odds ratio 6.19; 95% CI 1.97-19.43; p = 0.002). Single nucleotide polymorphisms in HNF1A, SLC13A1, and MBOAT1 were suggestively associated (p < 0.05) with the secondary outcome but were not significant after adjusting for multiple comparisons. CONCLUSION Our data suggest genetic variation may play a role in the development of leukopenia in patients receiving mycophenolate and cytomegalovirus antiviral drugs after heart transplantation. Following replication, pharmacogenetic markers, such as HNF1A rs1169288, could help identify patients at higher risk of drug-induced leukopenia, allowing for more personalized immunosuppressant therapy and cytomegalovirus prophylaxis following heart transplantation.
Collapse
Affiliation(s)
- Kris Oreschak
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Nicholas Rafaels
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amrut V Ambardekar
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kimberly M Deininger
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - RobertL PageII
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - JoAnn Lindenfeld
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.
| |
Collapse
|
108
|
Almeida-Oliveira F, Tuthill BF, Gondim KC, Majerowicz D, Musselman LP. dHNF4 regulates lipid homeostasis and oogenesis in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103569. [PMID: 33753225 DOI: 10.1016/j.ibmb.2021.103569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The fly genome contains a single ortholog of the evolutionarily conserved transcription factor hepatocyte nuclear factor 4 (HNF4), a broadly and constitutively expressed member of the nuclear receptor superfamily. Like its mammalian orthologs, Drosophila HNF4 (dHNF4) acts as a critical regulator of fatty acid and glucose homeostasis. Because of its role in energy storage and catabolism, the insect fat body controls non-autonomous organs including the ovaries, where lipid metabolism is essential for oogenesis. The present paper used dHNF4 overexpression (OE) in the fat bodies and ovaries to investigate its potential roles in lipid homeostasis and oogenesis. When the developing fat body overexpressed dHNF4, animals exhibited reduced size and failed to pupariate, but no changes in body composition were observed. Conditional OE of dHNF4 in the adult fat body produced a reduction in triacylglycerol content and reduced oogenesis. Ovary-specific dHNF4 OE increased oogenesis and egg-laying, but reduced the number of adult offspring. The phenotypic effects on oogenesis that arise upon dHNF4 OE in the fat body or ovary may be due to its function in controlling lipid utilization.
Collapse
Affiliation(s)
- Fernanda Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Department of Biological Sciences, Binghamton University, USA
| | - Bryon F Tuthill
- Department of Biological Sciences, Binghamton University, USA
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| | | |
Collapse
|
109
|
Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant β cells. Nat Commun 2021; 12:3133. [PMID: 34035238 PMCID: PMC8149827 DOI: 10.1038/s41467-021-22843-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
Heterozygous HNF1A gene mutations can cause maturity onset diabetes of the young 3 (MODY3), characterized by insulin secretion defects. However, specific mechanisms of MODY3 in humans remain unclear due to lack of access to diseased human pancreatic cells. Here, we utilize MODY3 patient-derived human induced pluripotent stem cells (hiPSCs) to study the effect(s) of a causal HNF1A+/H126D mutation on pancreatic function. Molecular dynamics simulations predict that the H126D mutation could compromise DNA binding and gene target transcription. Genome-wide RNA-Seq and ChIP-Seq analyses on MODY3 hiPSC-derived endocrine progenitors reveal numerous HNF1A gene targets affected by the mutation. We find decreased glucose transporter GLUT2 expression, which is associated with reduced glucose uptake and ATP production in the MODY3 hiPSC-derived β-like cells. Overall, our findings reveal the importance of HNF1A in regulating GLUT2 and several genes involved in insulin secretion that can account for the insulin secretory defect clinically observed in MODY3 patients. Heterozygous HNF1A mutations can give rise to maturity onset diabetes of the young 3 (MODY3), characterized by insulin secretion defects. Here the authors show that MODY3-related HNF1A mutation in patient hiPSCderived pancreatic cells decreases glucose transporter GLUT2 expression due to compromised DNA binding.
Collapse
|
110
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
111
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
112
|
Deng W, Wei X, Dong Z, Zhang J, Huang Z, Na N. Identification of fibroblast activation-related genes in two acute kidney injury models. PeerJ 2021; 9:e10926. [PMID: 33777519 PMCID: PMC7982076 DOI: 10.7717/peerj.10926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ischemia-reperfusion injury and drug-induced nephrotoxicity are the two most common reasons for acute kidney injury (AKI). However, little attention has been paid to early activation of fibroblasts in the progression of AKI to chronic kidney disease (CKD). The present study aimed to identify related genes and pathways on fibroblast activation in two mouse models of AKI: ischemia-reperfusion injury (IRI) model and folic acid (FA)-induced injury model. Methods The microarray expression profiles of GSE62732 and GSE121190 were downloaded from the GEO database, and the differentially expressed genes (DEGs) was analyzed using the Limma package of R software. Principal component analysis (PCA) was also performed using R. The functional information of gene products was annotated by Gene Ontology (GO) and DAVID online database, and the pathway analysis was carried out by using the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Protein-protein interactions (PPI) network was constructed by STRING and Cytoscape. Furthermore, in the Hypoxia/Reoxygenation (H/R) model, the morphological changes of cells were observed under microscope and the expression of the hub genes in NRK-49F cells were validated by qRT-PCR assays. Results A total of 457 DEGs were identified. Among these, 215 DEGs were upregulated and 242 DEGs were downregulated in the acute injured samples compared with uninjured samples. The GO enrichment analysis indicated that these DEGs were mainly involved in transport, the oxidation-reduction process, the metabolic process, metal ion binding, hydrolase activity, and oxidoreductase activity. The KEGG analysis revealed that these DEGs were significantly enriched in the PI3K-Akt signaling pathway, protein digestion and absorption pathway, and focal adhesion pathway. The hub genes including Hnf4α, Pck1 and Timp1 were validated by the qRT-PCR assay in NRK-49F cells in the H/R model. Conclusions Hnf4α, Pck1 and Timp-1 may play a pivotal role in the early activation of fibroblasts, providing novel therapeutic strategies for early prediction and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Weiming Deng
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiangling Wei
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhanwen Dong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jinhua Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhengyu Huang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
113
|
Molecular mechanisms of transcription factor mediated cell reprogramming: conversion of liver to pancreas. Biochem Soc Trans 2021; 49:579-590. [PMID: 33666218 PMCID: PMC8106502 DOI: 10.1042/bst20200219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Transdifferentiation is a type of cellular reprogramming involving the conversion of one differentiated cell type to another. This remarkable phenomenon holds enormous promise for the field of regenerative medicine. Over the last 20 years techniques used to reprogram cells to alternative identities have advanced dramatically. Cellular identity is determined by the transcriptional profile which comprises the subset of mRNAs, and therefore proteins, being expressed by a cell at a given point in time. A better understanding of the levers governing transcription factor activity benefits our ability to generate therapeutic cell types at will. One well-established example of transdifferentiation is the conversion of hepatocytes to pancreatic β-cells. This cell type conversion potentially represents a novel therapy in T1D treatment. The identification of key master regulator transcription factors (which distinguish one body part from another) during embryonic development has been central in developing transdifferentiation protocols. Pdx1 is one such example of a master regulator. Ectopic expression of vector-delivered transcription factors (particularly the triumvirate of Pdx1, Ngn3 and MafA) induces reprogramming through broad transcriptional remodelling. Increasingly, complimentary cell culture techniques, which recapitulate the developmental microenvironment, are employed to coax cells to adopt new identities by indirectly regulating transcription factor activity via intracellular signalling pathways. Both transcription factor-based reprogramming and directed differentiation approaches ultimately exploit transcription factors to influence cellular identity. Here, we explore the evolution of reprogramming and directed differentiation approaches within the context of hepatocyte to β-cell transdifferentiation focussing on how the introduction of new techniques has improved our ability to generate β-cells.
Collapse
|
114
|
Ma S, Zhou B, Yang Q, Pan Y, Yang W, Freedland SJ, Ding LW, Freeman MR, Breunig JJ, Bhowmick NA, Pan J, Koeffler HP, Lin DC. A Transcriptional Regulatory Loop of Master Regulator Transcription Factors, PPARG, and Fatty Acid Synthesis Promotes Esophageal Adenocarcinoma. Cancer Res 2021; 81:1216-1229. [PMID: 33402390 PMCID: PMC8026506 DOI: 10.1158/0008-5472.can-20-0652] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/21/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
Although obesity is one of the strongest risk factors for esophageal adenocarcinoma, the molecular mechanisms underlying this association remain unclear. We recently identified four esophageal adenocarcinoma-specific master regulator transcription factors (MRTF) ELF3, KLF5, GATA6, and EHF. In this study, gene-set enrichment analysis of both esophageal adenocarcinoma patient samples and cell line models unbiasedly underscores fatty acid synthesis as the central pathway downstream of three MRTFs (ELF3, KLF5, GATA6). Further characterizations unexpectedly identified a transcriptional feedback loop between MRTF and fatty acid synthesis, which mutually activated each other through the nuclear receptor, PPARG. MRTFs cooperatively promoted PPARG transcription by directly regulating its promoter and a distal esophageal adenocarcinoma-specific enhancer, leading to PPARG overexpression in esophageal adenocarcinoma. PPARG was also elevated in Barrett's esophagus, a recognized precursor to esophageal adenocarcinoma, implying that PPARG might play a role in the intestinal metaplasia of esophageal squamous epithelium. Upregulation of PPARG increased de novo synthesis of fatty acids, phospholipids, and sphingolipids as revealed by mass spectrometry-based lipidomics. Moreover, ChIP-seq, 4C-seq, and a high-fat diet murine model together characterized a novel, noncanonical, and cancer-specific function of PPARG in esophageal adenocarcinoma. PPARG directly regulated the ELF3 super-enhancer, subsequently activating the transcription of other MRTFs through an interconnected regulatory circuitry. Together, elucidation of this novel transcriptional feedback loop of MRTF/PPARG/fatty acid synthesis advances our understanding of the mechanistic foundation for epigenomic dysregulation and metabolic alterations in esophageal adenocarcinoma. More importantly, this work identifies a potential avenue for prevention and early intervention of esophageal adenocarcinoma by blocking this feedback loop. SIGNIFICANCE: These findings elucidate a transcriptional feedback loop linking epigenomic dysregulation and metabolic alterations in esophageal adenocarcinoma, indicating that blocking this feedback loop could be a potential therapeutic strategy in high-risk individuals.
Collapse
Affiliation(s)
- Sai Ma
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qian Yang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yunzhi Pan
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J Freedland
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, USA and the Durham VA Medical Center, Durham, North Carolina
| | - Ling-Wen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael R Freeman
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Neil A Bhowmick
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - De-Chen Lin
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
115
|
LncRNA HOTAIR recruits SNAIL to inhibit the transcription of HNF4α and promote the viability, migration, invasion and EMT of colorectal cancer. Transl Oncol 2021; 14:101036. [PMID: 33588137 PMCID: PMC7901038 DOI: 10.1016/j.tranon.2021.101036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
HOTAIR recruited SNAIL and reduced the expression of HNF4α to promote EMT of colorectal cancer. Provided potential novel long non-coding RNA-directed early diagnosis and therapy for colorectal cancer. Provided further insight into the regulatory mechanism of HOTAIR in colorectal cancer.
Colorectal cancer causes severe burdensome on the health by its high fatality and poor prognosis. Hox transcript antisense intergenic RNA (HOTAIR) was believed closely related with the genesis and development of colorectal cancer, but the regulatory mechanism is still to be investigated. The expression of HOTAIR was analyzed in colorectal cancer using both qRT-PCR and ISH assay. The cell viability, migration, invasion and apoptosis rate were evaluated using MTT, BrdU,Transwell and flow cytometryexperiments. The interaction between HOTAIR and SNAIL was detected using RIP and RNA pull-down. The binding of SNAIL to HNF4α promoter was assessed by ChIP. The cell lines that knock down HOTAIR, SNAIL or overexpress HNF4α were constructed using retroviral vector system. The tumorigenic and metastatic capacity of colorectal cancer cells after knocking down HOTAIR were evaluated based on xenograft assay and liver metastases model. HOTAIR was highly expressed in both tissue and cell lines of colorectal cancer, indicated a regulatory function in colorectal cancer. Knock-down of HOTAIR suppressed cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) of colorectal cancer cells in vitro, and inhibited the growth and metastasis of colorectal tumor in nude mice. We further found that HOTAIR suppressed HNF4α via recruiting SNAIL, and the overexpression of HNF4α inhibited cell viability, migration, invasion and EMT of colorectal cancer cells. We demonstrated that HOTAIR regulates the level of HNF4α via recruiting SNAIL, knocking down HOTAIR repressed the cell viability and metestasis of colorectal cancer cell line in vitro, and suppressed the tomorgenesis and migration/invasion of colorectal cancer in vivo.
Collapse
|
116
|
Finotti P, Pagetta A. A mutant α1antitrypsin in complex with heat shock proteins as the primary antigen in type 1 diabetes in silico investigation. Sci Rep 2021; 11:3002. [PMID: 33542414 PMCID: PMC7862655 DOI: 10.1038/s41598-021-82730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022] Open
Abstract
Based on previous results demonstrating that complexes of a mutant α1-antitrypsin with the heat shock proteins (HSP)70 and glucose-regulated protein94 (Grp94) circulate in the blood of patients with type 1 diabetes, we raised the hypothesis that these complexes could represent the primary antigen capable of triggering the autoimmune reactions leading to overt diabetes. As a first approach to this issue, we searched whether A1AT and HSPs had a sequence similarity to major islet antigen proteins so as to identify among the similar sequences those with potential relevance for the pathogenesis of diabetes. A thorough in silico analysis was performed to establish the score of similarity of the human proteins: A1AT, pro-insulin (INS), GAD65, IAPP, IA-2, ICA69, Grp94, HSP70 and HSP60. The sequences of A1AT and HSPs with the highest score of similarity to the islet peptides reported in the literature as the main autoantigens in human diabetes were recorded. At variance with other HSPs, also including HSP90 and Grp78, Grp94 contained the highest number and the longest sequences with structural similarity to A1AT and to well-known immunogenic peptides/epitopes of INS, GAD65, and IA-2. The similarity of A1AT with Grp94 and that of Grp94 with INS also suggested a functional relationship among the proteins. Specific sequences were identified in A1AT, Grp94 and HSP70, with the highest score of cross-similarity to a pattern of eight different islet protein epitopes. The similarity also involved recently discovered autoantigens in type 1 diabetes such as a hybrid peptides of insulin and the defective ribosomal insulin gene product. The significant similarity displayed by specific sequences of Grp94 and A1AT to the islet peptides considered main antigens in human diabetes, is a strong indication for testing these sequences as new peptides of immunogenic relevance in diabetes.
Collapse
Affiliation(s)
- Paola Finotti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Building "C", Largo E. Meneghetti, 2, 35131, Padua, Italy.
| | - Andrea Pagetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Building "C", Largo E. Meneghetti, 2, 35131, Padua, Italy
| |
Collapse
|
117
|
Sherman BT, Hu X, Singh K, Haine L, Rupert AW, Neaton JD, Lundgren JD, Imamichi T, Chang W, Lane HC. Genome-wide association study of high-sensitivity C-reactive protein, D-dimer, and interleukin-6 levels in multiethnic HIV+ cohorts. AIDS 2021; 35:193-204. [PMID: 33095540 PMCID: PMC7789909 DOI: 10.1097/qad.0000000000002738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/28/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Elevated levels of interleukin-6 (IL-6), D-dimer, and C-reactive protein (hsCRP) are associated with increased incidence of comorbid disease and mortality among people living with HIV (PLWH). Prior studies suggest a genetic basis for these biomarker elevations in the general population. The study objectives are to identify the genetic basis for these biomarkers among PLWH. METHODS Baseline levels of hsCRP, D-dimer, and IL-6, and single nucleotide polymorphisms (SNPs) were determined for 7768 participants in three HIV treatment trials. Single variant analysis was performed for each biomarker on samples from each of three ethnic groups [African (AFR), Admixed American (AMR), European (EUR)] within each trial including covariates relevant to biomarker levels. For each ethnic group, the results were pooled across trials, then further pooled across ethnicities. RESULTS The transethnic analysis identified three, two, and one known loci associated with hsCRP, D-dimer, and IL-6 levels, respectively, and two novel loci, FGB and GCNT1, associated with D-dimer levels. Lead SNPs exhibited similar effects across ethnicities. Additionally, three novel, ethnic-specific loci were identified: CATSPERG associated with D-dimer in AFR and PROX1-AS1 and TRAPPC9 associated with IL-6 in AFR and AMR, respectively. CONCLUSION Eleven loci associated with three biomarker levels were identified in PLWH from the three studies including six loci known in the general population and five novel loci associated with D-dimer and IL-6 levels. These findings support the hypothesis that host genetics may partially contribute to chronic inflammation in PLWH and help to identify potential targets for intervention of serious non-AIDS complications.
Collapse
Affiliation(s)
- Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Kanal Singh
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Lillian Haine
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Adam W. Rupert
- AIDS Monitoring Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D. Neaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Jens D. Lundgren
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
118
|
Brex D, Barbagallo C, Mirabella F, Caponnetto A, Battaglia R, Barbagallo D, Caltabiano R, Broggi G, Memeo L, Di Pietro C, Purrello M, Ragusa M. LINC00483 Has a Potential Tumor-Suppressor Role in Colorectal Cancer Through Multiple Molecular Axes. Front Oncol 2021; 10:614455. [PMID: 33552987 PMCID: PMC7855711 DOI: 10.3389/fonc.2020.614455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the most heterogeneous class of non-protein-coding RNAs involved in a broad spectrum of molecular mechanisms controlling genome function, including the generation of complex networks of RNA-RNA competitive interactions. Accordingly, their dysregulation contributes to the onset of many tumors, including colorectal cancer (CRC). Through a combination of in silico approaches (statistical screening of expression datasets) and in vitro analyses (enforced expression, artificial inhibition, or activation of pathways), we identified LINC00483 as a potential tumor suppressor lncRNA in CRC. LINC00483 was downregulated in CRC biopsies and metastases and its decreased levels were associated with severe clinical features. Inhibition of the MAPK pathway and cell cycle arrest by starvation induced an upregulation of LINC00483, while the epithelial to mesenchymal transition activation by TGFβ-1 and IL-6 caused its down-modulation. Moreover, enforced expression of LINC00483 provoked a slowing down of cell migration rate without affecting cell proliferation. Since LINC00483 was predominantly cytoplasmic, we hypothesized a “miRNA sponge” role for it. Accordingly, we computationally reconstructed the LINC00483/miRNA/mRNA axes and evaluated the expression of mRNAs in different experimental conditions inducing LINC00483 alteration. By this approach, we identified a set of mRNAs sharing the miRNA response elements with LINC00483 and modulated in accordance with it. Moreover, we found that LINC00483 is potentially under negative control of transcription factor HNF4α. In conclusion, we propose that LINC00483 is a tumor suppressor in CRC that, through an RNA-RNA network, may control cell migration and participate in proliferation signaling.
Collapse
Affiliation(s)
- Duilia Brex
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| |
Collapse
|
119
|
Fareed FMA, Korulu S, Özbil M, Çapan ÖY. HNF1A-MODY Mutations in Nuclear Localization Signal Impair HNF1A-Import Receptor KPNA6 Interactions. Protein J 2021; 40:512-521. [PMID: 33459938 DOI: 10.1007/s10930-020-09959-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
Mutations in hepatocyte nuclear factor (HNF)1A gene cause the most common form of Maturity-onset diabetes of the young (MODY), a monogenic subtype of diabetes mellitus. Functional characterization of mutant proteins reveals that mutations may disrupt DNA binding capacity, transactivation ability and nuclear localization of HNF1A depending on the position of the mutation. Previously identified Arg271Trp and Ser345Tyr mutations in HNF1A were found to be defective in nuclear localization. Arg271 residue resides in a region similar to classical nuclear localization signal (NLS) motif, while Ser345 does not. Importin α family members recognize NLS motifs on cargo proteins and subsequently translocate them into nucleus. Here, we first investigated the nuclear localization mechanism of wild type HNF1A protein. For this purpose, we analyzed the interaction of HNF1A with three mouse homolog importin α proteins (KPNA2, KPNA4 and KPNA6) by co-immunoprecipitation assay and molecular docking simulation. Hereby, KPNA6 was identified as the main import receptor, which is responsible for the transport of HNF1A into the nucleus. Immunolocalization studies in mouse pancreatic cells (Min6) also confirmed the co-localization of HNF1A and KPNA6 in the cytoplasm. Secondly, the interaction between KPNA6 and mutant HNF1A proteins (Arg271Trp and Ser345Tyr) was assessed. Co-immunoprecipitation studies revealed a reduced interaction compared to wild type HNF1A. Our study demonstrated for the first time that HNF1A transcription factor is recognized and transported by importin/karyopherin import family, and mutations in NLS motifs may disrupt the interaction leading to nuclear localization abnormalities and MODY phenotype.
Collapse
Affiliation(s)
- Fareed M A Fareed
- Department of Molecular Biology and Genetics, İstanbul Arel University, 34537, Istanbul, Turkey.,Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey
| | - Sirin Korulu
- Institute of Natural and Health Sciences, Tallinn University, 10120, Tallinn, Estonia
| | - Mehmet Özbil
- Biotechnology Institute, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Özlem Yalçın Çapan
- Department of Molecular Biology and Genetics, İstanbul Arel University, 34537, Istanbul, Turkey.
| |
Collapse
|
120
|
H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nat Cell Biol 2021; 23:1163-1175. [PMID: 34737442 PMCID: PMC8572725 DOI: 10.1038/s41556-021-00776-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023]
Abstract
The developmental role of histone H3K9 methylation (H3K9me), which typifies heterochromatin, remains unclear. In Caenorhabditis elegans, loss of H3K9me leads to a highly divergent upregulation of genes with tissue and developmental-stage specificity. During development H3K9me is lost from differentiated cell type-specific genes and gained at genes expressed in earlier developmental stages or other tissues. The continuous deposition of H3K9me2 by the SETDB1 homolog MET-2 after terminal differentiation is necessary to maintain repression. In differentiated tissues, H3K9me ensures silencing by restricting the activity of a defined set of transcription factors at promoters and enhancers. Increased chromatin accessibility following the loss of H3K9me is neither sufficient nor necessary to drive transcription. Increased ATAC-seq signal and gene expression correlate at a subset of loci positioned away from the nuclear envelope, while derepressed genes at the nuclear periphery remain poorly accessible despite being transcribed. In conclusion, H3K9me deposition can confer tissue-specific gene expression and maintain the integrity of terminally differentiated muscle by restricting transcription factor activity.
Collapse
|
121
|
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a powerful tool to identify binding profiles of transcriptional regulators and chromatin regulators as well as histone modification patterns in a genome-wide manner. ChIP-seq consists of five major steps: (1) preparation of cells and chromatin, (2) ChIP, (3) ChIP-seq library construction, (4) sequencing of ChIP DNA with a next-generation sequencer (NGS), and (5) computational analysis of sequence data. Recent ChIP-seq studies in skeletal tissues enable us to understand the modes of action of key skeletal regulators, functional interaction among the enhancers bound by the regulators, the complex nature of regulatory inputs, and thereby the gene regulatory landscape in skeletal development. Here we describe a ChIP-seq protocol that we have employed in our studies, with particular focus on chromatin preparation and subsequent ChIP in skeletal cells, including chondrocytes.
Collapse
Affiliation(s)
- Akira Yamakawa
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
122
|
Liu Y, Qu HQ, Wenocur AS, Qu J, Chang X, Glessner J, Sleiman P, Tian L, Hakonarson H. Interpretation of Maturity-Onset Diabetes of the Young Genetic Variants Based on American College of Medical Genetics and Genomics Criteria: Machine-Learning Model Development. JMIR BIOMEDICAL ENGINEERING 2020. [DOI: 10.2196/20506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background
Maturity-onset diabetes of the young (MODY) is a group of dominantly inherited monogenic diabetes, with HNF4A-MODY, GCK-MODY, and HNF1A-MODY as the three most common forms based on the causal genes. Molecular diagnosis of MODY is important for precise treatment. Although a DNA variant causing MODY can be assessed based on the criteria of the American College of Medical Genetics and Genomics (ACMG) guidelines, gene-specific assessment of disease-causing mutations is important to differentiate among MODY subtypes. As the ACMG criteria were not originally designed for machine-learning algorithms, they are not true independent variables.
Objective
The aim of this study was to develop machine-learning models for interpretation of DNA variants and MODY diagnosis using the ACMG criteria.
Methods
We applied machine-learning models for interpretation of DNA variants in MODY genes defined by the ACMG criteria based on the Human Gene Mutation Database (HGMD) and ClinVar database.
Results
With a machine-learning procedure, we found that the weight matrix of the ACMG criteria was significantly different between the three MODY genes HNF1A, HNF4A, and GCK. The models showed high predictive abilities with accuracy over 95%.
Conclusions
Our results highlight the need for applying different weights of the ACMG criteria in relation to different MODY genes for accurate functional classification. As proof of principle, we applied the ACMG criteria as feature vectors in a machine-learning model and obtained a precision-based result.
Collapse
|
123
|
An integrative atlas of chicken long non-coding genes and their annotations across 25 tissues. Sci Rep 2020; 10:20457. [PMID: 33235280 PMCID: PMC7686352 DOI: 10.1038/s41598-020-77586-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (LNC) regulate numerous biological processes. In contrast to human, the identification of LNC in farm species, like chicken, is still lacunar. We propose a catalogue of 52,075 chicken genes enriched in LNC (http://www.fragencode.org/), built from the Ensembl reference extended using novel LNC modelled here from 364 RNA-seq and LNC from four public databases. The Ensembl reference grew from 4,643 to 30,084 LNC, of which 59% and 41% with expression ≥ 0.5 and ≥ 1 TPM respectively. Characterization of these LNC relatively to the closest protein coding genes (PCG) revealed that 79% of LNC are in intergenic regions, as in other species. Expression analysis across 25 tissues revealed an enrichment of co-expressed LNC:PCG pairs, suggesting co-regulation and/or co-function. As expected LNC were more tissue-specific than PCG (25% vs. 10%). Similarly to human, 16% of chicken LNC hosted one or more miRNA. We highlighted a new chicken LNC, hosting miR155, conserved in human, highly expressed in immune tissues like miR155, and correlated with immunity-related PCG in both species. Among LNC:PCG pairs tissue-specific in the same tissue, we revealed an enrichment of divergent pairs with the PCG coding transcription factors, as for example LHX5, HXD3 and TBX4, in both human and chicken.
Collapse
|
124
|
Peng YC, Lv TH, Du ZK, Cun XN, Yang KM. Liver Macrophages Stimulate the Expression of Hepatocyte Nuclear Factor-6 and Promote Hepatocyte Proliferation at the Early Stage of Liver Regeneration. Bull Exp Biol Med 2020; 170:40-45. [PMID: 33222081 DOI: 10.1007/s10517-020-05000-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Hepatocyte nuclear factor (HNF-6) is a liver-specific protein and a key component in the differentiation process during the development of mature liver. The immunohistochemical staining and RT-PCR techniques were employed to examine the expression of HNF-6 and proliferation of Ki-67+ cells during the early regeneration of the liver on postsurgery in 3, 6, 12, and 24 h in original model of partial hepatectomy in rats. The earliest proliferating (Ki-67+) cells were observed in 3 h after surgery in liver sinusoids (liver macrophages) and then in liver parenchyma. Expression of HNF-6 in hepatocytes and epithelial cells of the bile ducts attained maximum in 6 h after surgery. At later terms, this parameter somewhat decreased, but still surpassed the control level.
Collapse
Affiliation(s)
- Y Ch Peng
- Department of Anatomy, School of Basic Medical Science, Dali University, Dali, PR China
| | - T H Lv
- Department of Surgery of Dali Prefecture People's Hospital, Dali, PR China
| | - Zh K Du
- Department of Anatomy, School of Basic Medical Science, Dali University, Dali, PR China
| | - X N Cun
- Department of Surgery of Affiliated Hospital of Dali University, Dali, PR China
| | - K M Yang
- Department of Anatomy, School of Basic Medical Science, Dali University, Dali, PR China.
| |
Collapse
|
125
|
Capello M, Fahrmann JF, Rios Perez MV, Vykoukal JV, Irajizad E, Tripathi SC, Roife D, Bantis LE, Kang Y, Kundnani DL, Xu H, Prakash LR, Long JP, Katayama H, Fleury A, Ferri-Borgogno S, Baluya DL, Dennison JB, Aguilar-Bonavides C, Casabar JP, Celiktas M, Do KA, Fiehn O, Maitra A, Wang H, Feng Z, Chiao PJ, Katz MH, Fleming JB, Hanash SM. CES2 Expression in Pancreatic Adenocarcinoma Is Predictive of Response to Irinotecan and Is Associated With Type 2 Diabetes. JCO Precis Oncol 2020; 4:426-436. [PMID: 35050739 PMCID: PMC10860959 DOI: 10.1200/po.19.00330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The combination chemotherapy of fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) has provided clinically meaningful improvement for pancreatic ductal adenocarcinoma (PDAC). We previously uncovered a role for the serine hydrolase carboxylesterase 2 (CES2) in mediating intratumoral activation of the prodrug irinotecan, a constituent of FOLFIRINOX. We aimed to further test the predictive value of CES2 for response to irinotecan using patient-derived xenograft (PDX) models and to elucidate the determinants of CES2 expression and response to FOLFIRINOX treatment among patients with PDAC. METHODS PDXs were engrafted subcutaneously into nude mice and treated for 4 weeks with either saline control or irinotecan. CES2 and hepatocyte nuclear factor 4 alpha (HNF4A) expression in PDAC tissues was evaluated by immunohistochemical and Western blot analysis. Kaplan-Meier and Cox regression analyses were applied to assess the association between overall survival and hemoglobin A1C (HbA1C) levels in patients who underwent neoadjuvant FOLFIRINOX treatment. RESULTS High CES2 activity in PDAC PDXs was associated with increased sensitivity to irinotecan. Integrated gene expression, proteomic analyses, and in vitro genetic experiments revealed that nuclear receptor HNF4A, which is upregulated in diabetes, is the upstream transcriptional regulator of CES2 expression. Elevated CES2 protein expression in PDAC tissues was positively associated with a history of type 2 diabetes (odds ratio, 4.84; P = .02). High HbA1C levels were associated with longer overall survival in patients who received neoadjuvant FOLFIRINOX treatment (P = .04). CONCLUSION To our knowledge, we provide, for the first time, evidence that CES2 expression is associated with a history of type 2 diabetes in PDAC and that elevated HbA1C, by predicting tumor CES2 expression, may represent a novel marker for stratifying patients most likely to respond to FOLFIRINOX therapy.
Collapse
Affiliation(s)
- Michela Capello
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mayrim V. Rios Perez
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jody V. Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Satyendra C. Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David Roife
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Leonidas E. Bantis
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS
| | - Ya’an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Deepali L. Kundnani
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hanwen Xu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Laura R. Prakash
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James P. Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alia Fleury
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sammy Ferri-Borgogno
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dodge L. Baluya
- Center for Radiation Oncology Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Clemente Aguilar-Bonavides
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Julian P. Casabar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muge Celiktas
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Oliver Fiehn
- University of California Davis Genome Center–Metabolomics, University of California, Davis, CA
| | - Anirban Maitra
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ziding Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew H. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason B. Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
126
|
Cai W, Zhou W, Han Z, Lei J, Zhuang J, Zhu P, Wu X, Yuan W. Master regulator genes and their impact on major diseases. PeerJ 2020; 8:e9952. [PMID: 33083114 PMCID: PMC7546222 DOI: 10.7717/peerj.9952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism’s development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
Collapse
Affiliation(s)
- Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wanbang Zhou
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Zhe Han
- University of Maryland School of Medicine, Center for Precision Disease Modeling, Baltimore, MD, USA
| | - Junrong Lei
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
127
|
Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells 2020; 9:cells9102185. [PMID: 32998360 PMCID: PMC7600215 DOI: 10.3390/cells9102185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor family whose expression and activities are restricted to a limited number of organs including the liver and gastrointestinal tract. In this review, we present robust evidence pointing to HNF4 as a master regulator of cellular differentiation during development and a safekeeper of acquired cell identity in adult organs. Importantly, we discuss that transient loss of HNF4 may represent a protective mechanism upon acute organ injury, while prolonged impairment of HNF4 activities could contribute to organ dysfunction. In this context, we describe in detail mechanisms involved in the pathophysiological control of cell identity by HNF4, including how HNF4 works as part of cell-specific TF networks and how its expression/activities are disrupted in injured organs.
Collapse
|
128
|
Kasano-Camones CI, Takizawa M, Iwasaki W, Sasaki S, Hamada M, Morimoto A, Sakaguchi M, Gonzalez FJ, Inoue Y. Synergistic regulation of hepatic Fsp27b expression by HNF4α and CREBH. Biochem Biophys Res Commun 2020; 530:432-439. [PMID: 32553626 DOI: 10.1016/j.bbrc.2020.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022]
Abstract
The CIDE (cell death-inducing DFF45-like effector) family composed of CIDEA, CIDEB, CIDEC/FSP27 (fat-specific protein 27), has a critical role in growth of lipid droplets. Of these, CIDEB and CIDEC2/FSP27B are abundant in the liver, and the steatotic livers, respectively. Hepatocyte nuclear factor 4α (HNF4α) has an important role in lipid homeostasis because liver-specific HNF4α-null mice (Hnf4aΔHep mice) exhibit hepatosteatosis. We investigated whether HNF4α directly regulates expression of CIDE family genes. Expression of Cideb and Fsp27b was largely decreased in Hnf4aΔHep mice, while expression of Cidea was increased. Similar results were observed only in CIDEC2, the human orthologue of the Fsp27b, in human hepatoma cell lines in which HNF4α expression was knocked down. Conversely, overexpression of HNF4α strongly induced CIDEC2 expression in hepatoma cell lines. Furthermore, HNF4α transactivated Fsp27b by direct binding to an HNF4α response element in the Fsp27b promoter. In addition, Fsp27b is known to be transactivated by CREBH that is regulated by HNF4α, and expression of CREBH was induced by HNF4α in human hepatoma cells. Co-transfection of HNF4α and CREBH resulted in synergistic transactivation and induction of Fsp27b compared to that of HNF4α or CREBH alone. These results suggest that HNF4α, in conjunction with CREBH, plays an important role in regulation of Fsp27b expression.
Collapse
Affiliation(s)
- Carlos Ichiro Kasano-Camones
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Masayuki Takizawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Wakana Iwasaki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Shota Sasaki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Mume Hamada
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Aoi Morimoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Yusuke Inoue
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan; Gunma University Center for Food Science and Wellness, Maebashi, Gunma, 371-8510, Japan.
| |
Collapse
|
129
|
Xia C, Tang W, Geng P, Zhu H, Zhou W, Huang H, Zhou P, Shi X. Baicalin down-regulating hepatitis B virus transcription depends on the liver-specific HNF4α-HNF1α axis. Toxicol Appl Pharmacol 2020; 403:115131. [PMID: 32687838 DOI: 10.1016/j.taap.2020.115131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Baicalin (BA) inhibits hepatitis B virus (HBV) RNAs production and reduces levels of the related hepatocyte nuclear factors (HNFs), although the underlying mechanism is unclear. In this study, we investigated the specific pathway by which BA regulates HBV transcription through the HBV-related HNFs. Following transfection of HepG2 cells with pHBV1.2, we observed that BA inhibited the production of HBV RNAs and viral proteins in a time- and dose-dependent manner. These effects were consistent with the downregulation of HNF1α, which was abolished by HNF1α-shRNA. The shRNA of HNF4α, the upstream gene of HNF1α, also remarkedly reduced HNF1α expression and impaired the anti-HBV efficacy of BA, indicating that this function of BA depended on HNF4α/HNF1α axis. Furthermore, chromatin immunoprecipitation assay showed that BA significantly reduced HNF4α-HNF1α transactivation activity. The similar effects of BA were observed in entecavir (ETV)-resistant HBVrtM204V/rtLl80M transfected HepG2 cells. Thus, we proposed a mechanism for the anti-HBV activity of BA in an HNF4α-HNF1α-dependent manner, which impaired HNF4α and HNF1α transactivation, and effectively inhibited HBV transcription and viral replication.
Collapse
Affiliation(s)
- Chengjie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Wenyi Tang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ping Geng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, PR China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Pei Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
130
|
Noncanonical Constitutive Androstane Receptor Signaling in Gene Regulation. Int J Mol Sci 2020; 21:ijms21186735. [PMID: 32937916 PMCID: PMC7555422 DOI: 10.3390/ijms21186735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
The constitutive androstane receptor (CAR, NR1I3) is extremely important for the regulation of many physiological processes, especially xenobiotic (drug) metabolism and transporters. CAR differs from steroid hormone receptors in that it can be activated using structurally unrelated chemicals, both through direct ligand-binding and ligand-independent (indirect) mechanisms. By binding to specific responsive elements on DNA, CAR increases the expression of its target genes encoding drug-metabolizing enzymes and transporters. Therefore, CAR is mainly characterized as a ligand-dependent or ligand-independent transcription factor, and the induction of gene expression is considered the canonical mode of CAR action. Consistent with its central role in xenobiotic metabolism, CAR signaling includes a collection of mechanisms that are employed alongside the core transcriptional machinery of the receptor. These so-called noncanonical CAR pathways allow the receptor to coordinate the regulation of many aspects of cell biology. In this mini-review, we review noncanonical CAR signaling, paying special attention to the role of CAR in energy homeostasis and cell proliferation.
Collapse
|
131
|
Villemain L, Prigent S, Abou-Lovergne A, Pelletier L, Chiral M, Pontoglio M, Foufelle F, Caruso S, Pineau R, Rebouissou S, Chevet E, Zucman-Rossi J, Combettes L. Sigma 1 Receptor is Overexpressed in Hepatocellular Adenoma: Involvement of ERα and HNF1α. Cancers (Basel) 2020; 12:cancers12082213. [PMID: 32784704 PMCID: PMC7464972 DOI: 10.3390/cancers12082213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1α on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ERα. HNF1α mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.
Collapse
Affiliation(s)
- Laure Villemain
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
| | - Sylvie Prigent
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
| | - Aurélie Abou-Lovergne
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
| | - Laura Pelletier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
| | - Magali Chiral
- Institut Necker - Enfants Malades (INEM), 14, rue Maria Héléna Vieira da Silva Bâtiment Leriche, 75014 Paris, France; (M.C.); (M.P.)
| | - Marco Pontoglio
- Institut Necker - Enfants Malades (INEM), 14, rue Maria Héléna Vieira da Silva Bâtiment Leriche, 75014 Paris, France; (M.C.); (M.P.)
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, Sorbonne University, Inserm, U1138” Metabolic diseases, diabetes and co-morbidities” F-75006 Paris, France;
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
| | - Raphael Pineau
- UMRs 1242 “Chemistry, Oncogenesis, stress, Signaling” (COSS), University de Rennes-1, 35042 Rennes, France; (R.P.); (E.C.)
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
| | - Eric Chevet
- UMRs 1242 “Chemistry, Oncogenesis, stress, Signaling” (COSS), University de Rennes-1, 35042 Rennes, France; (R.P.); (E.C.)
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
- Hôpital Européen Georges Pompidou, AP-HP, F-75015 Paris, France
| | - Laurent Combettes
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
- Correspondence: ; Tel.: +01-6915-6396
| |
Collapse
|
132
|
Goto K, Nishitsuji H, Sugiyama M, Nishida N, Mizokami M, Shimotohno K. Orchestration of Intracellular Circuits by G Protein-Coupled Receptor 39 for Hepatitis B Virus Proliferation. Int J Mol Sci 2020; 21:ijms21165661. [PMID: 32784555 PMCID: PMC7460832 DOI: 10.3390/ijms21165661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV), a highly persistent pathogen causing hepatocellular carcinoma (HCC), takes full advantage of host machinery, presenting therapeutic targets. Here we aimed to identify novel druggable host cellular factors using the reporter HBV we have recently generated. In an RNAi screen of G protein-coupled receptors (GPCRs), GPCR39 (GPR39) appeared as the top hit to facilitate HBV proliferation. Lentiviral overexpression of active GPR39 proteins and an agonist enhanced HBV replication and transcriptional activities of viral promoters, inducing the expression of CCAAT/enhancer binding protein (CEBP)-β (CEBPB). Meanwhile, GPR39 was uncovered to activate the heat shock response, upregulating the expression of proviral heat shock proteins (HSPs). In addition, glioma-associated oncogene homologue signaling, a recently reported target of GPR39, was suggested to inhibit HBV replication and eventually suppress expression of CEBPB and HSPs. Thus, GPR39 provirally governed intracellular circuits simultaneously affecting the carcinopathogenetic gene functions. GPR39 and the regulated signaling networks would serve as antiviral targets, and strategies with selective inhibitors of GPR39 functions can develop host-targeted antiviral therapies preventing HCC.
Collapse
Affiliation(s)
- Kaku Goto
- Correspondence: ; Tel.: +81-47-372-3501; Fax: +81-47-375-4766
| | | | | | | | | | | |
Collapse
|
133
|
Morin-Doré L, Blondin P, Vigneault C, Grand FX, Labrecque R, Sirard MA. DNA methylation status of bovine blastocysts obtained from peripubertal oocyte donors. Mol Reprod Dev 2020; 87:910-924. [PMID: 32677283 DOI: 10.1002/mrd.23399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/30/2020] [Indexed: 01/01/2023]
Abstract
In the dairy industry, the high selection pressure combined with the increased efficiency of assisted reproduction technologies (ART) are leading toward the use of younger females for reproduction purposes, with the aim to reduce the interval between generations. This situation could impair embryo quality, decreasing the success rate of the ART procedures and the values of resulting offspring. Young Holstein heifers (n = 10) were subjected to ovarian stimulation and oocyte collection at 8, 11, and 14 months of age. All the oocytes were fertilized in vitro with semen from one adult bull, generating three pools of embryos per animal. Each animal was its own control for the evaluation of the effects of age. The EmbryoGENE platform was used to compare the DNA methylation status of blastocysts obtained from oocytes collected at 8 versus 14 and 11 versus 14 months of age. Age-related contrast analysis identified 5,787 and 3,658 differentially methylated regions (DMRs) in blastocysts from heifers at 8 versus 14 and 11 versus 14 months of age, respectively. For both contrasts, the DMRs were distributed nonrandomly in the different DNA regions. The DNA from embryos from 8-month-old donors was more hypermethylated, while the DNA from embryos from 11-month-old donors displayed an intermediate phenotype. According to Ingenuity Pathway Analysis, the upstream regulator genes cellular tumor antigen p53, transforming growth factor β1, tumor necrosis factor, and hepatocyte nuclear factor 4α are particularly associated with methylation sensitive targets, which were more hypermethylated in embryos from younger donors.
Collapse
Affiliation(s)
- Léonie Morin-Doré
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Centre de recherche en Reproduction, Développement et santé Intergénérationnelle (CRDSI), Université Laval, Québec, Canada
| | | | | | | | | | - Marc-André Sirard
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Centre de recherche en Reproduction, Développement et santé Intergénérationnelle (CRDSI), Université Laval, Québec, Canada
| |
Collapse
|
134
|
3D culture of functional human iPSC-derived hepatocytes using a core-shell microfiber. PLoS One 2020; 15:e0234441. [PMID: 32525941 PMCID: PMC7289419 DOI: 10.1371/journal.pone.0234441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/25/2020] [Indexed: 01/28/2023] Open
Abstract
Human iPSC-derived hepatocytes hold great promise as a cell source for cell therapy and drug screening. However, the culture method for highly-quantified hepatocytes has not yet been established. Herein, we have developed an encapsulation and 3D cultivation method for iPSC-hepatocytes in core-shell hydrogel microfibers (a.k.a. cell fiber). In the fiber-shaped 3D microenvironment consisting of abundant extracellular matrix (ECM), the iPSC-hepatocytes exhibited many hepatic characteristics, including the albumin secretion, and the expression of the hepatic marker genes (ALB, HNF4α, ASGPR1, CYP2C19, and CYP3A4). Furthermore, we found that the fibers were mechanically stable and can be applicable to hepatocyte transplantation. Three days after transplantation of the microfibers into the abdominal cavity of immunodeficient mice, human albumin was detected in the peripheral blood of the transplanted mice. These results indicate that the iPSC-hepatocyte fibers are promising either as in vitro models for drug screening or as implantation grafts to treat liver failure.
Collapse
|
135
|
Hu L, Li H, Chi Z, He J. Loss of the RNA-binding protein Rbm15 disrupts liver maturation in zebrafish. J Biol Chem 2020; 295:11466-11472. [PMID: 32518161 PMCID: PMC7450140 DOI: 10.1074/jbc.ra120.014080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Liver organogenesis begins with hepatic precursors in the foregut endoderm, followed by hepatoblast specification, differentiation, outgrowth, and maturation for the formation of functional hepatocytes. Although several signaling pathways and critical factors that regulate liver specification, differentiation, and proliferation have been identified, little is known about how liver maturation is regulated. Here, we used a screen for mutations affecting liver development in zebrafish and identified a cq96 mutant that exhibits a specific defect in liver maturation. Results from positional cloning revealed that cq96 encodes an RNA-binding protein, Rbm15, which is an evolutionarily conserved Spen family protein and known to play a crucial role in RNA m6A modification, nuclear export, and alternative splicing. However, a function of Rbm15 in embryonic liver development has not been reported. We found that Rbm15 is specifically expressed in the liver after its differentiation. CRISPR/Cas9-mediated loss of rbm15 repressed hepatic maturation, but did not affect hepatoblast specification, differentiation, and hepatocyte proliferation and apoptosis. Additional experiments disclosed that the mTOR complex 1 (mTORC1) pathway is highly activated in rbm15-deficient hepatocytes. Moreover, rapamycin treatment partially restored normal hepatic gene expression as well as the nuclear location of the transcription factor Hnf4a. Taken together, these results reveal an unexpected role of Rbm15 in liver maturation.
Collapse
Affiliation(s)
- Liang Hu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Hongyan Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhiping Chi
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
136
|
Macchi F, Sadler KC. Unraveling the Epigenetic Basis of Liver Development, Regeneration and Disease. Trends Genet 2020; 36:587-597. [PMID: 32487496 DOI: 10.1016/j.tig.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
A wealth of studies over several decades has revealed an epigenetic prepattern that determines the competence of cellular differentiation in the developing liver. More recently, studies focused on the impact of epigenetic factors during liver regeneration suggest that an epigenetic code in the quiescent liver may establish its regenerative potential. We review work on the pioneer factors and other chromatin remodelers that impact the gene expression patterns instructing hepatocyte and biliary cell specification and differentiation, along with the requirement of epigenetic regulatory factors for hepatic outgrowth. We then explore recent studies involving the role of epigenetic regulators, Arid1a and Uhrf1, in efficient activation of proregenerative genes during liver regeneration, thus highlighting the epigenetic mechanisms of liver disease and tumor development.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
137
|
Qian FC, Li XC, Guo JC, Zhao JM, Li YY, Tang ZD, Zhou LW, Zhang J, Bai XF, Jiang Y, Pan Q, Wang QY, Li EM, Li CQ, Xu LY, Lin DC. SEanalysis: a web tool for super-enhancer associated regulatory analysis. Nucleic Acids Res 2020; 47:W248-W255. [PMID: 31028388 PMCID: PMC6602466 DOI: 10.1093/nar/gkz302] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
Super-enhancers (SEs) have prominent roles in biological and pathological processes through their unique transcriptional regulatory capability. To date, several SE databases have been developed by us and others. However, these existing databases do not provide downstream or upstream regulatory analyses of SEs. Pathways, transcription factors (TFs), SEs, and SE-associated genes form complex regulatory networks. Therefore, we designed a novel web server, SEanalysis, which provides comprehensive SE-associated regulatory network analyses. SEanalysis characterizes SE-associated genes, TFs binding to target SEs, and their upstream pathways. The current version of SEanalysis contains more than 330 000 SEs from more than 540 types of cells/tissues, 5042 TF ChIP-seq data generated from these cells/tissues, DNA-binding sequence motifs for ∼700 human TFs and 2880 pathways from 10 databases. SEanalysis supports searching by either SEs, samples, TFs, pathways or genes. The complex regulatory networks formed by these factors can be interactively visualized. In addition, we developed a customizable genome browser containing >6000 customizable tracks for visualization. The server is freely available at http://licpathway.net/SEanalysis.
Collapse
Affiliation(s)
- Feng-Cui Qian
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xue-Cang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jin-Cheng Guo
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, China
| | - Jian-Mei Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yan-Yu Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Zhi-Dong Tang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Li-Wei Zhou
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xue-Feng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yong Jiang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qi Pan
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qiu-Yu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China.,Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, China
| | - En-Min Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Chun-Quan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, China
| | - De-Chen Lin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
138
|
Early Transcriptional Changes within Liver, Adrenal Gland, and Lymphoid Tissues Significantly Contribute to Ebola Virus Pathogenesis in Cynomolgus Macaques. J Virol 2020; 94:JVI.00250-20. [PMID: 32213610 DOI: 10.1128/jvi.00250-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV) continues to pose a significant threat to human health, as evidenced by the 2013-2016 epidemic in West Africa and the ongoing outbreak in the Democratic Republic of the Congo. EBOV causes hemorrhagic fever, organ damage, and shock culminating in death, with case fatality rates as high as 90%. This high lethality combined with the paucity of licensed medical countermeasures makes EBOV a critical human pathogen. Although EBOV infection results in significant damage to the liver and the adrenal glands, little is known about the molecular signatures of injury in these organs. Moreover, while changes in peripheral blood cells are becoming increasingly understood, the host responses within organs and lymphoid tissues remain poorly characterized. To address this knowledge gap, we tracked longitudinal transcriptional changes in tissues collected from EBOV-Makona-infected cynomolgus macaques. Following infection, both liver and adrenal glands exhibited significant and early downregulation of genes involved in metabolism, coagulation, hormone synthesis, and angiogenesis; upregulated genes were associated with inflammation. Analysis of lymphoid tissues showed early upregulation of genes that play a role in innate immunity and inflammation and downregulation of genes associated with cell cycle and adaptive immunity. Moreover, transient activation of innate immune responses and downregulation of humoral immune responses in lymphoid tissues were confirmed with flow cytometry. Together, these data suggest that the liver, adrenal gland, and lymphatic organs are important sites of EBOV infection and that dysregulating the function of these vital organs contributes to the development of Ebola virus disease.IMPORTANCE Ebola virus (EBOV) remains a high-priority pathogen since it continues to cause outbreaks with high case fatality rates. Although it is well established that EBOV results in severe organ damage, our understanding of tissue injury in the liver, adrenal glands, and lymphoid tissues remains limited. We begin to address this knowledge gap by conducting longitudinal gene expression studies in these tissues, which were collected from EBOV-infected cynomolgus macaques. We report robust and early gene expression changes within these tissues, indicating they are primary sites of EBOV infection. Furthermore, genes involved in metabolism, coagulation, and adaptive immunity were downregulated, while inflammation-related genes were upregulated. These results indicate significant tissue damage consistent with the development of hemorrhagic fever and lymphopenia. Our study provides novel insight into EBOV-host interactions and elucidates how host responses within the liver, adrenal glands, and lymphoid tissues contribute to EBOV pathogenesis.
Collapse
|
139
|
Du ZQ, Dong J, Li MX, Zhang JF, Bi JB, Ren YF, Zhang LN, Wu RQ, Monga SP, Lv Y, Zhang XF, Wang HC. Overexpression of Platelet-Derived Growth Factor Receptor Α D842V Mutants Prevents Liver Regeneration and Chemically Induced Hepatocarcinogenesis via Inhibition of MET and EGFR. J Cancer 2020; 11:4614-4624. [PMID: 32489479 PMCID: PMC7255377 DOI: 10.7150/jca.44492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Platelet-derived growth receptor α (PDGFRα) is a key factor in many pathophysiological processes. The expression level of PDGFRα is significantly elevated in the early stage of liver development and maintained at a lower level in adult normal livers. In this study, we constructed a liver-specific PDGFRαD842 mutant transgenic (TG) mice model to explore the effect of continuous activation of PDGFRα on liver regeneration and hepatocarcinogenesis. 14-day-old TG and wild-type (WT) mice were intraperitoneally injected with diethylnitrosamine (DEN) at a dose of 25 μg/g body weight. Two-month-old male TG and WT mice were subjected to partial hepatectomy (PH). The liver tissues were collected for further analysis at different time points. Overexpression of PDGFRα D842V and its target genes, Akt, c-myc and cyclin D1 in hepatocytes with no overt phenotype versus WT mice were compared. Unexpectedly, a dramatic decrease in hepatocyte proliferation was noted after PH in TG versus WT mice, possibly due to the downregulation of hepatocyte growth factor receptor (MET) and epidermal growth factor receptor (EGFR). No TG mice developed HCC spontaneously after 14 months follow-up. However, TG mice were more resistant to DEN-induced hapatocarcinogenesis at 6, 10, and 12 months of age, showing delayed hepatocyte proliferation and apoptosis, lower tumor incidence, smaller size and fewer number, compared with age-matched WTs, partially through downregulation of MET and EGFR. In conclusion, continuous activation of PDGFRα signaling by expression of PDGFRα D842V does not promote, but inhibit hepatic regeneration and hepatocarcinogenesis, possibly through compensatory downregulation of MET and EGFR.
Collapse
Affiliation(s)
- Zhao-Qing Du
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
| | - Jian Dong
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
| | - Mu-Xing Li
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
- Department of General Surgery, Peking University Third Hospital, Beijing, 100083, China
| | - Jian-Fei Zhang
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Jian-Bin Bi
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
| | - Yi-Fan Ren
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
| | - Li-Na Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rong-Qian Wu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
| | - Satdarshan P.S. Monga
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yi Lv
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
| | - Hai-Chen Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi Province, 710061, China
| |
Collapse
|
140
|
Gong Z, Yu J, Yang S, Lai PBS, Chen GG. FOX transcription factor family in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2020; 1874:188376. [PMID: 32437734 DOI: 10.1016/j.bbcan.2020.188376] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multistep process, involving the progressive accumulation of molecular alterations and transcriptomic alterations. The Forkhead-box (FOX) transcription factor family is characterized by its unique DNA binding domain (FKH or winged-helix domain). Human FOX family consists of about 17 subfamilies, at least 43 members. Some of them are liver-enriched transcription factors, suggesting that they may play a crucial role in the development or/and functions of the liver. Dysregulation of FOX transcription factors may contribute to the pathogenesis of HCC because they can activate or suppress the expression of various tumor-related molecules, and pinpoint different molecular and cellular events. Here we summarized, analyzed and discussed the status and the functions of the human FOX family of transcription factors in HCC, aiming to help the further development of them as potential therapeutic targets or/and diagnostic/prognostic markers for HCC.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianqing Yu
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District people's Hospital of Shenzhen, Shenzhen, China
| | - Paul B S Lai
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - George G Chen
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
141
|
Lambert É, Babeu JP, Simoneau J, Raisch J, Lavergne L, Lévesque D, Jolibois É, Avino M, Scott MS, Boudreau F, Boisvert FM. Human Hepatocyte Nuclear Factor 4-α Encodes Isoforms with Distinct Transcriptional Functions. Mol Cell Proteomics 2020; 19:808-827. [PMID: 32123031 PMCID: PMC7196586 DOI: 10.1074/mcp.ra119.001909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.
Collapse
Affiliation(s)
- Élie Lambert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Philippe Babeu
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Joël Simoneau
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jennifer Raisch
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Laurie Lavergne
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Émilie Jolibois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Francois-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
142
|
Pan J, Silva TC, Gull N, Yang Q, Plummer JT, Chen S, Daigo K, Hamakubo T, Gery S, Ding LW, Jiang YY, Hu S, Xu LY, Li EM, Ding Y, Klempner SJ, Gayther SA, Berman BP, Koeffler HP, Lin DC. Lineage-Specific Epigenomic and Genomic Activation of Oncogene HNF4A Promotes Gastrointestinal Adenocarcinomas. Cancer Res 2020; 80:2722-2736. [PMID: 32332020 DOI: 10.1158/0008-5472.can-20-0390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Gastrointestinal adenocarcinomas (GIAC) of the tubular gastrointestinal (GI) tract including esophagus, stomach, colon, and rectum comprise most GI cancers and share a spectrum of genomic features. However, the unified epigenomic changes specific to GIAC are poorly characterized. Using 907 GIAC samples from The Cancer Genome Atlas, we applied mathematical algorithms to large-scale DNA methylome and transcriptome profiles to reconstruct transcription factor (TF) networks and identify a list of functionally hyperactive master regulator (MR) TF shared across different GIAC. The top candidate HNF4A exhibited prominent genomic and epigenomic activation in a GIAC-specific manner. A complex interplay between the HNF4A promoter and three distal enhancer elements was coordinated by GIAC-specific MRTF including ELF3, GATA4, GATA6, and KLF5. HNF4A also self-regulated its own promoter and enhancers. Functionally, HNF4A promoted cancer proliferation and survival by transcriptional activation of many downstream targets, including HNF1A and factors of interleukin signaling, in a lineage-specific manner. Overall, our study provides new insights into the GIAC-specific gene regulatory networks and identifies potential therapeutic strategies against these common cancers. SIGNIFICANCE: These findings show that GIAC-specific master regulatory transcription factors control HNF4A via three distal enhancers to promote GIAC cell proliferation and survival. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2722/F1.large.jpg.
Collapse
Affiliation(s)
- Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tiago C Silva
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicole Gull
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qian Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Jasmine T Plummer
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephanie Chen
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenji Daigo
- Department of Protein-protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Takao Hamakubo
- Department of Protein-protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - En-Min Li
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Samuel J Klempner
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California. .,Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,National University Cancer Institute, National University Hospital Singapore, Singapore
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
143
|
Matsuura VKSK, Yoshida CA, Komori H, Sakane C, Yamana K, Jiang Q, Komori T. Expression of a Constitutively Active Form of Hck in Chondrocytes Activates Wnt and Hedgehog Signaling Pathways, and Induces Chondrocyte Proliferation in Mice. Int J Mol Sci 2020; 21:E2682. [PMID: 32290615 PMCID: PMC7215647 DOI: 10.3390/ijms21082682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022] Open
Abstract
Runx2 is required for chondrocyte proliferation and maturation. In the search of Runx2 target genes in chondrocytes, we found that Runx2 up-regulated the expression of hematopoietic cell kinase (Hck), which is a member of the Src tyrosine kinase family, in chondrocytes, that Hck expression was high in cartilaginous limb skeletons of wild-type mice but low in those of Runx2-/- mice, and that Runx2 bound the promoter region of Hck. To investigate the functions of Hck in chondrocytes, transgenic mice expressing a constitutively active form of Hck (HckCA) were generated using the Col2a1 promoter/enhancer. The hind limb skeletons were fused, the tibia became a large, round mass, and the growth plate was markedly disorganized. Chondrocyte maturation was delayed until E16.5 but accelerated thereafter. BrdU-labeled, but not terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive, chondrocytes were increased. Furthermore, Hck knock-down reduced the proliferation of primary chondrocytes. In microarray and real-time RT-PCR analyses using hind limb RNA from HckCA transgenic mice, the expression of Wnt (Wnt10b, Tcf7, Lef1, Dkk1) and hedgehog (Ihh, Ptch1, and Gli1) signaling pathway genes was upregulated. These findings indicated that Hck, whose expression is regulated by Runx2, is highly expressed in chondrocytes, and that HckCA activates Wnt and hedgehog signaling pathways, and promotes chondrocyte proliferation without increasing apoptosis.
Collapse
Affiliation(s)
- Viviane K. S. Kawata Matsuura
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Carolina Andrea Yoshida
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Hisato Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Chiharu Sakane
- Division of Comparative Medicine, Life Science Support Center, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kei Yamana
- Teijin Institute for Bio-Medical Research, TEIJIN LIMITED, Tokyo 100-8585, Japan
| | - Qing Jiang
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
144
|
Chen L, Huang M, Plummer J, Pan J, Jiang YY, Yang Q, Silva TC, Gull N, Chen S, Ding LW, An O, Yang H, Cheng Y, Said JW, Doan N, Dinjens WN, Waters KM, Tuli R, Gayther SA, Klempner SJ, Berman BP, Meltzer SJ, Lin DC, Koeffler HP. Master transcription factors form interconnected circuitry and orchestrate transcriptional networks in oesophageal adenocarcinoma. Gut 2020; 69:630-640. [PMID: 31409603 PMCID: PMC8108390 DOI: 10.1136/gutjnl-2019-318325] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/25/2019] [Accepted: 07/21/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE While oesophageal squamous cell carcinoma remains infrequent in Western populations, the incidence of oesophageal adenocarcinoma (EAC) has increased sixfold to eightfold over the past four decades. We aimed to characterise oesophageal cancer-specific and subtypes-specific gene regulation patterns and their upstream transcription factors (TFs). DESIGN: To identify regulatory elements, we profiled fresh-frozen oesophageal normal samples, tumours and cell lines with chromatin immunoprecipitation sequencing (ChIP-Seq). Mathematical modelling was performed to establish (super)-enhancers landscapes and interconnected transcriptional circuitry formed by master TFs. Coregulation and cooperation between master TFs were investigated by ChIP-Seq, circularised chromosome conformation capture sequencing and luciferase assay. Biological functions of candidate factors were evaluated both in vitro and in vivo. RESULTS We found widespread and pervasive alterations of the (super)-enhancer reservoir in both subtypes of oesophageal cancer, leading to transcriptional activation of a myriad of novel oncogenes and signalling pathways, some of which may be exploited pharmacologically (eg, leukemia inhibitory factor (LIF) pathway). Focusing on EAC, we bioinformatically reconstructed and functionally validated an interconnected circuitry formed by four master TFs-ELF3, KLF5, GATA6 and EHF-which promoted each other's expression by interacting with each super-enhancer. Downstream, these master TFs occupied almost all EAC super-enhancers and cooperatively orchestrated EAC transcriptome. Each TF within the transcriptional circuitry was highly and specifically expressed in EAC and functionally promoted EAC cell proliferation and survival. CONCLUSIONS By establishing cancer-specific and subtype-specific features of the EAC epigenome, our findings promise to transform understanding of the transcriptional dysregulation and addiction of EAC, while providing molecular clues to develop novel therapeutic modalities against this malignancy.
Collapse
Affiliation(s)
- Li Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jasmine Plummer
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qian Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tiago Chedraoui Silva
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nicole Gull
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephanie Chen
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ling Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yulan Cheng
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ngan Doan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Winand Nm Dinjens
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Kevin M Waters
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samuel J Klempner
- The Angeles Clinic and Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen J Meltzer
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
145
|
Jiang Q, Qin X, Yoshida CA, Komori H, Yamana K, Ohba S, Hojo H, Croix BS, Kawata-Matsuura VKS, Komori T. Antxr1, Which is a Target of Runx2, Regulates Chondrocyte Proliferation and Apoptosis. Int J Mol Sci 2020; 21:E2425. [PMID: 32244499 PMCID: PMC7178079 DOI: 10.3390/ijms21072425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antxr1/Tem8 is highly expressed in tumor endothelial cells and is a receptor for anthrax toxin. Mutation of Antxr1 causes GAPO syndrome, which is characterized by growth retardation, alopecia, pseudo-anodontia, and optic atrophy. However, the mechanism underlying the growth retardation remains to be clarified. Runx2 is essential for osteoblast differentiation and chondrocyte maturation and regulates chondrocyte proliferation through Ihh induction. In the search of Runx2 target genes in chondrocytes, we found that Antxr1 expression is upregulated by Runx2. Antxr1 was highly expressed in cartilaginous tissues and was directly regulated by Runx2. In skeletal development, the process of endochondral ossification proceeded similarly in wild-type and Antxr1-/- mice. However, the limbs of Antxr1-/- mice were shorter than those of wild-type mice from embryonic day 16.5 due to the reduced chondrocyte proliferation. Chondrocyte-specific Antxr1 transgenic mice exhibited shortened limbs, although the process of endochondral ossification proceeded as in wild-type mice. BrdU-uptake and apoptosis were both increased in chondrocytes, and the apoptosis-high regions were mineralized. These findings indicated that Antxr1, of which the expression is regulated by Runx2, plays an important role in chondrocyte proliferation and that overexpression of Antxr1 causes chondrocyte apoptosis accompanied by matrix mineralization.
Collapse
Affiliation(s)
- Qing Jiang
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan (V.K.S.K.-M.)
| | - Xin Qin
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan (V.K.S.K.-M.)
| | - Carolina Andrea Yoshida
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan (V.K.S.K.-M.)
| | - Hisato Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan (V.K.S.K.-M.)
| | - Kei Yamana
- Teijin Institute for Bio-Medical Research, Teijin Limited, Tokyo 100-8585, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Hironori Hojo
- Department of Bioengineering, the University of Tokyo Graduate School of Engineering, Tokyo 113-0033, Japan
| | - Brad St. Croix
- Tumor Angiogenesis Unit, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Viviane K. S. Kawata-Matsuura
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan (V.K.S.K.-M.)
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan (V.K.S.K.-M.)
| |
Collapse
|
146
|
Fan Z, Fan K, Deng S, Gong Y, Qian Y, Huang Q, Yang C, Cheng H, Jin K, Luo G, Liu C, Yu X. HNF-1a promotes pancreatic cancer growth and apoptosis resistance via its target gene PKLR. Acta Biochim Biophys Sin (Shanghai) 2020; 52:241-250. [PMID: 32072180 DOI: 10.1093/abbs/gmz169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest malignant tumors, and many genes play important roles in its development. The hepatocyte nuclear factor-1a (HNF-1a) gene encodes HNF-1a, which is a transcriptional activator. HNF-1a regulates the tissue-specific expression of multiple genes, especially in pancreatic islet cells and in the liver. However, the role of the HNF-1a gene in the development of pancreatic cancer is still unclear. Here, we used immunohistochemical staining and real-time PCR to analyze HNF-1a expression in pancreatic cancer tissue. Stable cell lines with HNF-1a knockdown or overexpression were established to analyze the role of HNF-1a in pancreatic cancer cell proliferation and apoptosis by colony formation assay and flow cytometry. We also analyzed the L-type pyruvate kinase (PKLR) promoter sequence to identify the regulatory effect of HNF-1a on PKLR transcription and confirmed the HNF-1a binding site in the PKLR promoter via a chromatin immunoprecipitation assay. HNF-1a was found to be overexpressed in pancreatic cancer and promoted proliferation while inhibiting apoptosis in pancreatic cancer cells. PKLR was identified as the downstream target gene of HNF-1a and binding of HNF-1a at two sites in PKLR (-1931/-1926 and -966/-961) regulated PKLR transcription. In conclusion, HNF-1a is overexpressed in pancreatic cancer, and the transcription factor HNF-1a can promote pancreatic cancer growth and apoptosis resistance via its target gene PKLR.
Collapse
Affiliation(s)
- Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| |
Collapse
|
147
|
Chen S, Lencinas A, Nunez M, Selmin OI, Runyan RB. HNF4a transcription is a target of trichloroethylene toxicity in the embryonic mouse heart. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:824-832. [PMID: 32159184 PMCID: PMC7250168 DOI: 10.1039/c9em00597h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In exploration of congenital heart defects produced by TCE, Hepatocyte Nuclear Factor 4 alpha (HNF4a) transcriptional activity was identified as a central component. TCE exposure altered gene transcription in the chick heart in a non-monotonic pattern where only low dose exposure inhibited transcription by HNF4a. As the chick embryo is non-placental, we examine here HNF4a as a target of TCE in developing mouse embryos. Benfluorex and Bi6015, published agonist and antagonist, respectively, of HNF4a were compared to low dose TCE exposure. Pregnant mice were exposed to 10 ppb (76 nM) TCE, 5 μM Benfluorex, 5 μM Bi6015, or a combination of Bi6015 and TCE in drinking water. Litters (E12) were collected during a sensitive window in heart development. Embryonic hearts were collected, pooled for extraction of RNA and marker expression was examined by quantitative PCR. Multiple markers, previously identified as sensitive to TCE exposure in chicks or as published targets of HNF4a transcription were significantly affected by Benfluorex, Bi6015 and TCE. Activity of TCE and both HNF4a-specific reagents on transcription argues that HNF4a is a component of TCE cardiotoxicity and likely a proximal target of low dose exposure during development. The effectiveness of these reagents after delivery in maternal drinking water suggests that neither maternal metabolism, nor placental transport is protective of exposure.
Collapse
Affiliation(s)
- Sheri Chen
- Department of Cellular and Molecular Medicine, University of Arizona, 1501 N Campbell Ave, Tucson, Arizona 85724-5044, USA.
| | | | | | | | | |
Collapse
|
148
|
Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC, O’Sullivan JF, Larance M. Multi-omics Analysis of the Intermittent Fasting Response in Mice Identifies an Unexpected Role for HNF4α. Cell Rep 2020; 30:3566-3582.e4. [DOI: 10.1016/j.celrep.2020.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
|
149
|
Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S, Chiles E, Flores J, Gao N, Bonder EM, Su X, Verzi MP. HNF4 Regulates Fatty Acid Oxidation and Is Required for Renewal of Intestinal Stem Cells in Mice. Gastroenterology 2020; 158:985-999.e9. [PMID: 31759926 PMCID: PMC7062567 DOI: 10.1053/j.gastro.2019.11.031] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Functions of intestinal stem cells (ISCs) are regulated by diet and metabolic pathways. Hepatocyte nuclear factor 4 (HNF4) family are transcription factors that bind fatty acids. We investigated how HNF4 transcription factors regulate metabolism and their functions in ISCs in mice. METHODS We performed studies with Villin-CreERT2;Lgr5-EGFP-IRES-CreERT2;Hnf4αf/f;Hnf4γCrispr/Crispr mice, hereafter referred to Hnf4αγDKO. Mice were given tamoxifen to induce Cre recombinase. Mice transgenic with only Cre alleles (Villin-CreERT2, Lgr5-EGFP-IRES-CreERT2, Hnf4α+/+, and Hnf4γ+/+) or mice given vehicle were used as controls. Crypt and villus cells were isolated, incubated with fluorescently labeled fatty acids or glucose analog, and analyzed by confocal microscopy. Fatty acid oxidation activity and tricarboxylic acid (TCA) cycle metabolites were measured in cells collected from the proximal half of the small intestine of Hnf4αγDKO and control mice. We performed chromatin immunoprecipitation and gene expression profiling analyses to identify genes regulated by HNF4 factors. We established organoids from duodenal crypts, incubated them with labeled palmitate or acetate, and measured production of TCA cycle metabolites or fatty acids. Acetate, a precursor of acetyl coenzyme A (CoA) (a product of fatty acid β-oxidation [FAO]), or dichloroacetate, a compound that promotes pyruvate oxidation and generation of mitochondrial acetyl-CoA, were used for metabolic intervention. RESULTS Crypt cells rapidly absorbed labeled fatty acids, and messenger RNA levels of Lgr5+ stem cell markers (Lgr5, Olfm4, Smoc2, Msi1, and Ascl2) were down-regulated in organoids incubated with etomoxir, an inhibitor of FAO, indicating that FAO was required for renewal of ISCs. HNF4A and HNF4G were expressed in ISCs and throughout the intestinal epithelium. Single knockout of either HNF4A or HNF4G did not affect maintenance of ISCs, but double-knockout of HNF4A and HNF4G resulted in ISC loss; stem cells failed to renew. FAO supports ISC renewal, and HNF4 transcription factors directly activate FAO genes, including Acsl5 and Acsf2 (encode regulators of acyl-CoA synthesis), Slc27a2 (encodes a fatty acid transporter), Fabp2 (encodes fatty acid binding protein), and Hadh (encodes hydroxyacyl-CoA dehydrogenase). In the intestinal epithelium of Hnf4αγDKO mice, expression levels of FAO genes, FAO activity, and metabolites of TCA cycle were all significantly decreased, but fatty acid synthesis transcripts were increased, compared with control mice. The contribution of labeled palmitate or acetate to the TCA cycle was reduced in organoids derived from Hnf4αγDKO mice, compared with control mice. Incubation of organoids derived from double-knockout mice with acetate or dichloroacetate restored stem cells. CONCLUSIONS In mice, the transcription factors HNF4A and HNF4G regulate the expression of genes required for FAO and are required for renewal of ISCs.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Roshan P. Vasoya
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalie H. Toke
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Aditya Parthasarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Shirley Luo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Eric Chiles
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA,Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA,Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA,Correspondence: (M.P.V.)
| |
Collapse
|
150
|
Abstract
MODY (Maturity Onset Diabetes of the Young) is a type of diabetes resulting from a pathogenic effect of gene mutations. Up to date, 13 MODY genes are known. Gene HNF1A is one of the most common causes of MODY diabetes (HNF1A-MODY; MODY3). This gene is polymorphic and more than 1200 pathogenic and non-pathogenic HNF1A variants were described in its UTRs, exons and introns. For HNF1A-MODY, not just gene but also phenotype heterogeneity is typical. Although there are some clinical instructions, HNF1A-MODY patients often do not meet every diagnostic criteria or they are still misdiagnosed as type 1 and type 2 diabetics. There is a constant effort to find suitable biomarkers to help with in distinguishing of MODY3 from Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). DNA sequencing is still necessary for unambiguous confirmation of clinical suspicion of MODY. NGS (Next Generation Sequencing) methods brought discoveries of multiple new gene variants and new instructions for their pathogenicity classification were required. The most actual problem is classification of variants with uncertain significance (VUS) which is a stumbling-block for clinical interpretation. Since MODY is a hereditary disease, DNA analysis of family members is helpful or even crucial. This review is updated summary about HNF1A-MODY genetics, pathophysiology, clinics functional studies and variant classification.
Collapse
|