101
|
Rodriguez-R LM, Castro JC, Kyrpides NC, Cole JR, Tiedje JM, Konstantinidis KT. How Much Do rRNA Gene Surveys Underestimate Extant Bacterial Diversity? Appl Environ Microbiol 2018; 84:e00014-18. [PMID: 29305502 PMCID: PMC5835724 DOI: 10.1128/aem.00014-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 11/20/2022] Open
Abstract
The most common practice in studying and cataloguing prokaryotic diversity involves the grouping of sequences into operational taxonomic units (OTUs) at the 97% 16S rRNA gene sequence identity level, often using partial gene sequences, such as PCR-generated amplicons. Due to the high sequence conservation of rRNA genes, organisms belonging to closely related yet distinct species may be grouped under the same OTU. However, it remains unclear how much diversity has been underestimated by this practice. To address this question, we compared the OTUs of genomes defined at the 97% or 98.5% 16S rRNA gene identity level against OTUs of the same genomes defined at the 95% whole-genome average nucleotide identity (ANI), which is a much more accurate proxy for species. Our results show that OTUs resulting from a 98.5% 16S rRNA gene identity cutoff are more accurate than 97% compared to 95% ANI (90.5% versus 89.9% accuracy) but indistinguishable from any other threshold in the 98.29 to 98.78% range. Even with the more stringent thresholds, however, the 16S rRNA gene-based approach commonly underestimates the number of OTUs by ∼12%, on average, compared to the ANI-based approach (∼14% underestimation when using the 97% identity threshold). More importantly, the degree of underestimation can become 50% or more for certain taxa, such as the genera Pseudomonas, Burkholderia, Escherichia, Campylobacter, and Citrobacter These results provide a quantitative view of the degree of underestimation of extant prokaryotic diversity by 16S rRNA gene-defined OTUs and suggest that genomic resolution is often necessary.IMPORTANCE Species diversity is one of the most fundamental pieces of information for community ecology and conservational biology. Therefore, employing accurate proxies for what a species or the unit of diversity is are cornerstones for a large set of microbial ecology and diversity studies. The most common proxies currently used rely on the clustering of 16S rRNA gene sequences at some threshold of nucleotide identity, typically 97% or 98.5%. Here, we explore how well this strategy reflects the more accurate whole-genome-based proxies and determine the frequency with which the high conservation of 16S rRNA sequences masks substantial species-level diversity.
Collapse
Affiliation(s)
- Luis M Rodriguez-R
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Juan C Castro
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nikos C Kyrpides
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - James R Cole
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
102
|
Arnold BJ, Gutmann MU, Grad YH, Sheppard SK, Corander J, Lipsitch M, Hanage WP. Weak Epistasis May Drive Adaptation in Recombining Bacteria. Genetics 2018; 208:1247-1260. [PMID: 29330348 PMCID: PMC5844334 DOI: 10.1534/genetics.117.300662] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/01/2018] [Indexed: 11/18/2022] Open
Abstract
The impact of epistasis on the evolution of multi-locus traits depends on recombination. While sexually reproducing eukaryotes recombine so frequently that epistasis between polymorphisms is not considered to play a large role in short-term adaptation, many bacteria also recombine, some to the degree that their populations are described as "panmictic" or "freely recombining." However, whether this recombination is sufficient to limit the ability of selection to act on epistatic contributions to fitness is unknown. We quantify homologous recombination in five bacterial pathogens and use these parameter estimates in a multilocus model of bacterial evolution with additive and epistatic effects. We find that even for highly recombining species (e.g., Streptococcus pneumoniae or Helicobacter pylori), selection on weak interactions between distant mutations is nearly as efficient as for an asexual species, likely because homologous recombination typically transfers only short segments. However, for strong epistasis, bacterial recombination accelerates selection, with the dynamics dependent on the amount of recombination and the number of loci. Epistasis may thus play an important role in both the short- and long-term adaptive evolution of bacteria, and, unlike in eukaryotes, is not limited to strong effect sizes, closely linked loci, or other conditions that limit the impact of recombination.
Collapse
Affiliation(s)
- Brian J Arnold
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Michael U Gutmann
- School of Informatics, University of Edinburgh, EH8 9AB, United Kingdom
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Samuel K Sheppard
- Department of Biology and Biochemistry, University of Bath, BA2 7AY, United Kingdom
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Blindern, 0317, Norway
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, 00014 Finland
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - William P Hanage
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
103
|
Shoemaker WR, Lennon JT. Evolution with a seed bank: The population genetic consequences of microbial dormancy. Evol Appl 2018; 11:60-75. [PMID: 29302272 PMCID: PMC5748526 DOI: 10.1111/eva.12557] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Dormancy is a bet‐hedging strategy that allows organisms to persist through conditions that are suboptimal for growth and reproduction by entering a reversible state of reduced metabolic activity. Dormancy allows a population to maintain a reservoir of genetic and phenotypic diversity (i.e., a seed bank) that can contribute to the long‐term survival of a population. This strategy can be potentially adaptive and has long been of interest to ecologists and evolutionary biologists. However, comparatively little is known about how dormancy influences the fundamental evolutionary forces of genetic drift, mutation, selection, recombination, and gene flow. Here, we investigate how seed banks affect the processes underpinning evolution by reviewing existing theory, implementing novel simulations, and determining how and when dormancy can influence evolution as a population genetic process. We extend our analysis to examine how seed banks can alter macroevolutionary processes, including rates of speciation and extinction. Through the lens of population genetic theory, we can understand the extent that seed banks influence the evolutionary dynamics of microorganisms as well as other taxa.
Collapse
Affiliation(s)
| | - Jay T Lennon
- Department of Biology Indiana University Bloomington IN USA
| |
Collapse
|
104
|
What Microbial Population Genomics Has Taught Us About Speciation. POPULATION GENOMICS: MICROORGANISMS 2018. [DOI: 10.1007/13836_2018_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
105
|
A Reverse Ecology Framework for Bacteria and Archaea. POPULATION GENOMICS: MICROORGANISMS 2018. [DOI: 10.1007/13836_2018_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
106
|
Strain profiling and epidemiology of bacterial species from metagenomic sequencing. Nat Commun 2017; 8:2260. [PMID: 29273717 PMCID: PMC5741664 DOI: 10.1038/s41467-017-02209-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022] Open
Abstract
Microbial communities are often composed by complex mixtures of multiple strains of the same species, characterized by a wide genomic and phenotypic variability. Computational methods able to identify, quantify and classify the different strains present in a sample are essential to fully exploit the potential of metagenomic sequencing in microbial ecology, with applications that range from the epidemiology of infectious diseases to the characterization of the dynamics of microbial colonization. Here we present a computational approach that uses the available genomic data to reconstruct complex strain profiles from metagenomic sequencing, quantifying the abundances of the different strains and cataloging them according to the population structure of the species. We validate the method on synthetic data sets and apply it to the characterization of the strain distribution of several important bacterial species in real samples, showing how its application provides novel insights on the structure and complexity of the microbiota.
Collapse
|
107
|
Yuan X, Couto JM, Glidle A, Song Y, Sloan W, Yin H. Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior. ACS Synth Biol 2017; 6:2219-2227. [PMID: 28844132 DOI: 10.1021/acssynbio.7b00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.
Collapse
Affiliation(s)
- Xiaofei Yuan
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Jillian M. Couto
- College
of Science and Engineering, Division of Infrastructure and Environment,
School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Andrew Glidle
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Yanqing Song
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - William Sloan
- College
of Science and Engineering, Division of Infrastructure and Environment,
School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Huabing Yin
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
108
|
Zhang DF, Zhi XY, Zhang J, Paoli GC, Cui Y, Shi C, Shi X. Preliminary comparative genomics revealed pathogenic potential and international spread of Staphylococcus argenteus. BMC Genomics 2017; 18:808. [PMID: 29058585 PMCID: PMC5651615 DOI: 10.1186/s12864-017-4149-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/02/2017] [Indexed: 11/10/2022] Open
Abstract
Background Staphylococcus argenteus and S. schweitzeri, were recently proposed as novel species within S. aureus complex (SAC). S. argenteus has been reported in many countries and can threaten human health. S. schweitzeri has not been associated with human infections, but has been isolated from non-human primates. Questions regarding the evolution of pathogenicity of these two species will remain elusive until an exploratory evolutionary framework is established. Results We present genomic comparison analysis among members of SAC based on a pan-genome definition, which included 15 S. argenteus genomes (five newly sequenced), six S. schweitzeri genomes and 30 divergent S. aureus genomes. The three species had divergent core genomes and rare interspecific recombination was observed among the core genes. However, some subtypes of staphylococcal cassette chromosome mec (SCCmec) elements and prophages were present in different species. Of 111 tested virulence genes of S. aureus, 85 and 86 homologous genes were found in S. argenteus and S. schweitzeri, respectively. There was no difference in virulence gene content among the three species, but the sequence of most core virulence genes was divergent. Analysis of the agr locus and the genes in the capsular polysaccharides biosynthetic operon revealed that they both diverged before the speciation of SAC members. Furthermore, the widespread geographic distribution of S. argenteus, sequence type 2250, showed ambiguous biogeographical structure among geographically isolated populations, demonstrating an international spread of this pathogen. Conclusions S. argenteus has spread among several countries, and invasive infections and persistent carriage may be not limited to currently reported regions. S. argenteus probably had undergone a recent host adaption and can cause human infections with a similar pathogenic potential. Electronic supplementary material The online version of this article (10.1186/s12864-017-4149-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dao-Feng Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Jing Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - George C Paoli
- USDA-MOST Joint Research Center for Food Safety & Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, 19038, USA
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China. .,, Present address: No. 800 Dongchuan RD. Minhang District, Shanghai, 200240, China.
| |
Collapse
|
109
|
Hoetzinger M, Hahn MW. Genomic divergence and cohesion in a species of pelagic freshwater bacteria. BMC Genomics 2017; 18:794. [PMID: 29037158 PMCID: PMC5644125 DOI: 10.1186/s12864-017-4199-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 10/08/2017] [Indexed: 11/15/2022] Open
Abstract
Background In many prokaryotic genera a clustered phylogeny is observed, akin to the occurrence of species in sexually reproducing organisms. For some taxa, homologous recombination has been invoked as the underlying mechanism providing genomic cohesion among conspecific individuals. Whether this mechanism is applicable to prokaryotes in freshwaters with low habitat connectivity – i.e. elevated geographic barriers to gene flow – is unclear. To investigate further we studied genomic trends within the globally abundant PnecC cluster (genus Polynucleobacter, Betaproteobacteria) and analyzed homologous recombination within the affiliated species P. asymbioticus. Results Comparisons among 20 PnecC genomes revealed a clearly discontinuous distribution of nucleotide sequence similarities. Among the nine conspecific individuals (P. asymbioticus) all average nucleotide identity (ANI) values were greater than 97%, whereas all other comparisons exhibited ANI values lower than 85%. The reconstruction of recombination and mutation events for the P. asymbioticus core genomes yielded an r/m ratio of 7.4, which is clearly above estimated thresholds for recombination to act as a cohesive force. Hotspots of recombination were found to be located in the flanking regions of genomic islands. Even between geographically separated habitats a high flux of recombination was evident. While a biogeographic population structure was suggested from MLST data targeting rather conserved loci, such a structure was barely visible when whole genome data was considered. However, both MLST and whole genome data showed evidence of differentiation between two lineages of P. asymbioticus. The ratios of non-synonymous to synonymous substitution rates as well as growth rates in transplantation experiments suggested that this divergence was not selectively neutral. Conclusions The high extent of homologous recombination among P. asymbioticus bacteria can act as a cohesive force that effectively counteracts genetic divergence. At least on a regional scale, homologous recombination can act across geographically separated ecosystems and therefore plays an important role in the evolution and consistency of bacterial freshwater species. A species model akin to the biological species concept may be applicable for P. asymbioticus. Nonetheless, two genetically distinct lineages have emerged and further research may clarify if their divergence has been initiated by reinforced geographical barriers or has been evolving in sympatry. Electronic supplementary material The online version of this article (10.1186/s12864-017-4199-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Hoetzinger
- Research Institute for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310, Mondsee, Austria.
| | - Martin W Hahn
- Research Institute for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310, Mondsee, Austria
| |
Collapse
|
110
|
Le S, Serrano E, Kawamura R, Carrasco B, Yan J, Alonso JC. Bacillus subtilis RecA with DprA-SsbA antagonizes RecX function during natural transformation. Nucleic Acids Res 2017; 45:8873-8885. [PMID: 28911099 PMCID: PMC5587729 DOI: 10.1093/nar/gkx583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023] Open
Abstract
Bacillus subtilis DprA and RecX proteins, which interact with RecA, are crucial for efficient chromosomal and plasmid transformation. We showed that RecA, in the rATP·Mg2+ bound form (RecA·ATP), could not compete with RecX, SsbA or SsbB for assembly onto single-stranded (ss)DNA, but RecA·dATP partially displaced these proteins from ssDNA. RecX promoted reversible depolymerization of preformed RecA·ATP filaments. The two-component DprA–SsbA mediator reversed the RecX negative effect on RecA filament extension, but not DprA or DprA and SsbB. In the presence of DprA–SsbA, RecX added prior to RecA·ATP inhibited DNA strand exchange, but this inhibition was reversed when RecX was added after RecA. We propose that RecA nucleation is more sensitive to RecX action than is RecA filament growth. DprA–SsbA facilitates formation of an active RecA filament that directly antagonizes the inhibitory effects of RecX. RecX and DprA enable chromosomal transformation by altering RecA filament dynamics. DprA–SsbA and RecX proteins constitute a new regulatory network of RecA function. DprA–SsbA contributes to the formation of an active RecA filament and directly antagonizes the inhibitory effects of RecX during natural transformation.
Collapse
Affiliation(s)
- Shimin Le
- Department of Physics, National University of Singapore, 117551, Singapore.,Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Ryo Kawamura
- Department of Physics, National University of Singapore, 117551, Singapore.,Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Jie Yan
- Department of Physics, National University of Singapore, 117551, Singapore.,Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
111
|
Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP, Marttinen P. Efficient Inference of Recent and Ancestral Recombination within Bacterial Populations. Mol Biol Evol 2017; 34:1167-1182. [PMID: 28199698 PMCID: PMC5400400 DOI: 10.1093/molbev/msx066] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Prokaryotic evolution is affected by horizontal transfer of genetic material through recombination. Inference of an evolutionary tree of bacteria thus relies on accurate identification of the population genetic structure and recombination-derived mosaicism. Rapidly growing databases represent a challenge for computational methods to detect recombinations in bacterial genomes. We introduce a novel algorithm called fastGEAR which identifies lineages in diverse microbial alignments, and recombinations between them and from external origins. The algorithm detects both recent recombinations (affecting a few isolates) and ancestral recombinations between detected lineages (affecting entire lineages), thus providing insight into recombinations affecting deep branches of the phylogenetic tree. In simulations, fastGEAR had comparable power to detect recent recombinations and outstanding power to detect the ancestral ones, compared with state-of-the-art methods, often with a fraction of computational cost. We demonstrate the utility of the method by analyzing a collection of 616 whole-genomes of a recombinogenic pathogen Streptococcus pneumoniae, for which the method provided a high-resolution view of recombination across the genome. We examined in detail the penicillin-binding genes across the Streptococcus genus, demonstrating previously undetected genetic exchanges between different species at these three loci. Hence, fastGEAR can be readily applied to investigate mosaicism in bacterial genes across multiple species. Finally, fastGEAR correctly identified many known recombination hotspots and pointed to potential new ones. Matlab code and Linux/Windows executables are available at https://users.ics.aalto.fi/~pemartti/fastGEAR/ (last accessed February 6, 2017).
Collapse
Affiliation(s)
- Rafal Mostowy
- Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Nicholas J Croucher
- Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Cheryl P Andam
- Department of Epidemiology, Harvard TH Chan School of Public Health, Center for Communicable Disease Dynamics, Boston, MA
| | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology HIIT, University of Helsinki, Helsinki, Finland.,Department of Biostatistics, University of Oslo, Oslo, Norway
| | - William P Hanage
- Department of Epidemiology, Harvard TH Chan School of Public Health, Center for Communicable Disease Dynamics, Boston, MA
| | - Pekka Marttinen
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Espoo, Finland
| |
Collapse
|
112
|
Bartling P, Brinkmann H, Bunk B, Overmann J, Göker M, Petersen J. The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316 T-A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae. Front Microbiol 2017; 8:1787. [PMID: 28983283 PMCID: PMC5613091 DOI: 10.3389/fmicb.2017.01787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia.
Collapse
Affiliation(s)
- Pascal Bartling
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Henner Brinkmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Markus Göker
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|
113
|
Larsen BB, Miller EC, Rhodes MK, Wiens JJ. Inordinate Fondness Multiplied and Redistributed: the Number of Species on Earth and the New Pie of Life. QUARTERLY REVIEW OF BIOLOGY 2017. [DOI: 10.1086/693564] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
114
|
Hosseini SR, Wagner A. Constraint and Contingency Pervade the Emergence of Novel Phenotypes in Complex Metabolic Systems. Biophys J 2017; 113:690-701. [PMID: 28793223 DOI: 10.1016/j.bpj.2017.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 06/19/2017] [Indexed: 01/23/2023] Open
Abstract
An evolutionary constraint is a bias or limitation in phenotypic variation that a biological system produces. We know examples of such constraints, but we have no systematic understanding about their extent and causes for any one biological system. We here study metabolisms, genomically encoded complex networks of enzyme-catalyzed biochemical reactions, and the constraints they experience in bringing forth novel phenotypes that allow survival on novel carbon sources. Our computational approach does not limit us to analyzing constrained variation in any one organism, but allows us to quantify constraints experienced by any metabolism. Specifically, we study metabolisms that are viable on one of 50 different carbon sources, and quantify how readily alterations of their chemical reactions create the ability to survive on a novel carbon source. We find that some metabolic phenotypes are much less likely to originate than others. For example, metabolisms viable on D-glucose are 1835 times more likely to give rise to metabolisms viable on D-fructose than on acetate. Likewise, we observe that some novel metabolic phenotypes are more contingent on parental phenotypes than others. Biochemical similarities among carbon sources can help explain the causes of these constraints. In addition, we study metabolisms that can be produced by recombination among 55 metabolisms of different bacterial strains or species, and show that their novel phenotypes are also contingent on and constrained by parental genotypes. To our knowledge, our analysis is the first to systematically quantify the incidence of constrained evolution in a broad class of biological system that is central to life and its evolution.
Collapse
Affiliation(s)
- Sayed-Rzgar Hosseini
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; The Swiss Institute of Bioinformatics, Bioinformatics, Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; The Swiss Institute of Bioinformatics, Bioinformatics, Lausanne, Switzerland; The Santa Fe Institute, Santa Fe, New Mexico.
| |
Collapse
|
115
|
Genotyping ofBartonellabacteria and their animal hosts: current status and perspectives. Parasitology 2017; 145:543-562. [DOI: 10.1017/s0031182017001263] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SUMMARYGrowing evidence demonstrates that bacterial species diversity is substantial, and many of these species are pathogenic in some contexts or hosts. At the same time, laboratories and museums have collected valuable animal tissue and ectoparasite samples that may contain substantial novel information on bacterial prevalence and diversity. However, the identification of bacterial species is challenging, partly due to the difficulty in culturing many microbes and the reliance on molecular data. Although the genomics revolution will surely add to our knowledge of bacterial systematics, these approaches are not accessible to all researchers and rely predominantly on cultured isolates. Thus, there is a need for comprehensive molecular analyses capable of accurately genotyping bacteria from animal tissues or ectoparasites using common methods that will facilitate large-scale comparisons of species diversity and prevalence. To illustrate the challenges of genotyping bacteria, we focus on the genusBartonella, vector-borne bacteria common in mammals. We highlight the value and limitations of commonly used techniques for genotyping bartonellae and make recommendations for researchers interested in studying the diversity of these bacteria in various samples. Our recommendations could be applicable to many bacterial taxa (with some modifications) and could lead to a more complete understanding of bacterial species diversity.
Collapse
|
116
|
Recombination-Driven Genome Evolution and Stability of Bacterial Species. Genetics 2017; 207:281-295. [PMID: 28751420 DOI: 10.1534/genetics.117.300061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/18/2017] [Indexed: 01/21/2023] Open
Abstract
While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well.
Collapse
|
117
|
Marttinen P, Hanage WP. Speciation trajectories in recombining bacterial species. PLoS Comput Biol 2017; 13:e1005640. [PMID: 28671999 PMCID: PMC5542674 DOI: 10.1371/journal.pcbi.1005640] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/03/2017] [Accepted: 06/15/2017] [Indexed: 01/26/2023] Open
Abstract
It is generally agreed that bacterial diversity can be classified into genetically and ecologically cohesive units, but what produces such variation is a topic of intensive research. Recombination may maintain coherent species of frequently recombining bacteria, but the emergence of distinct clusters within a recombining species, and the impact of habitat structure in this process are not well described, limiting our understanding of how new species are created. Here we present a model of bacterial evolution in overlapping habitat space. We show that the amount of habitat overlap determines the outcome for a pair of clusters, which may range from fast clonal divergence with little interaction between the clusters to a stationary population structure, where different clusters maintain an equilibrium distance between each other for an indefinite time. We fit our model to two data sets. In Streptococcus pneumoniae, we find a genomically and ecologically distinct subset, held at a relatively constant genetic distance from the majority of the population through frequent recombination with it, while in Campylobacter jejuni, we find a minority population we predict will continue to diverge at a higher rate. This approach may predict and define speciation trajectories in multiple bacterial species.
Collapse
Affiliation(s)
- Pekka Marttinen
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo, Finland
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
118
|
David S, Sánchez-Busó L, Harris SR, Marttinen P, Rusniok C, Buchrieser C, Harrison TG, Parkhill J. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet 2017. [PMID: 28650958 PMCID: PMC5507463 DOI: 10.1371/journal.pgen.1006855] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Legionella pneumophila is an environmental bacterium and the causative agent of Legionnaires' disease. Previous genomic studies have shown that recombination accounts for a high proportion (>96%) of diversity within several major disease-associated sequence types (STs) of L. pneumophila. This suggests that recombination represents a potentially important force shaping adaptation and virulence. Despite this, little is known about the biological effects of recombination in L. pneumophila, particularly with regards to homologous recombination (whereby genes are replaced with alternative allelic variants). Using newly available population genomic data, we have disentangled events arising from homologous and non-homologous recombination in six major disease-associated STs of L. pneumophila (subsp. pneumophila), and subsequently performed a detailed characterisation of the dynamics and impact of homologous recombination. We identified genomic "hotspots" of homologous recombination that include regions containing outer membrane proteins, the lipopolysaccharide (LPS) region and Dot/Icm effectors, which provide interesting clues to the selection pressures faced by L. pneumophila. Inference of the origin of the recombined regions showed that isolates have most frequently imported DNA from isolates belonging to their own clade, but also occasionally from other major clades of the same subspecies. This supports the hypothesis that the possibility for horizontal exchange of new adaptations between major clades of the subspecies may have been a critical factor in the recent emergence of several clinically important STs from diverse genomic backgrounds. However, acquisition of recombined regions from another subspecies, L. pneumophila subsp. fraseri, was rarely observed, suggesting the existence of a recombination barrier and/or the possibility of ongoing speciation between the two subspecies. Finally, we suggest that multi-fragment recombination may occur in L. pneumophila, whereby multiple non-contiguous segments that originate from the same molecule of donor DNA are imported into a recipient genome during a single episode of recombination.
Collapse
Affiliation(s)
- Sophia David
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Leonor Sánchez-Busó
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Simon R. Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Pekka Marttinen
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Aalto, Espoo, Finland
| | - Christophe Rusniok
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, Paris, France
| | - Timothy G. Harrison
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
119
|
Millán-Aguiñaga N, Chavarria KL, Ugalde JA, Letzel AC, Rouse GW, Jensen PR. Phylogenomic Insight into Salinispora (Bacteria, Actinobacteria) Species Designations. Sci Rep 2017; 7:3564. [PMID: 28620214 PMCID: PMC5472633 DOI: 10.1038/s41598-017-02845-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 11/12/2022] Open
Abstract
Bacteria represent the most genetically diverse kingdom of life. While great progress has been made in describing this diversity, it remains difficult to identify the phylogenetic and ecological characteristics that delineate groups of bacteria that possess species-like properties. One major challenge associated with species delineations is that not all shared genes have the same evolutionary history, and thus the choice of loci can have a major impact on phylogenetic reconstruction. Sequencing the genomes of large numbers of closely related strains provides new opportunities to distinguish ancestral from acquired alleles and assess the effects of recombination on phylogenetic inference. Here we analyzed the genomes of 119 strains of the marine actinomycete genus Salinispora, which is currently comprised of three named species that share 99% 16S rRNA gene sequence identity. While 63% of the core genome showed evidence of recombination, this had no effect on species-level phylogenomic resolution. Recombination did however blur intra-species relationships and biogeographic resolution. The genome-wide average nucleotide identity provided a new perspective on Salinispora diversity, revealing as many as seven new species. Patterns of orthologous group distributions reveal a genetic basis to delineation the candidate taxa and insight into the levels of genetic cohesion associated with bacterial species.
Collapse
Affiliation(s)
- Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Universidad Autónoma de Baja California. Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - Krystle L Chavarria
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Juan A Ugalde
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bella, Santiago, Chile
| | - Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Greg W Rouse
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States. .,Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.
| |
Collapse
|
120
|
Geographic variation in pneumococcal vaccine efficacy estimated from dynamic modeling of epidemiological data post-PCV7. Sci Rep 2017; 7:3049. [PMID: 28607461 PMCID: PMC5468270 DOI: 10.1038/s41598-017-02955-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/28/2017] [Indexed: 11/09/2022] Open
Abstract
Although mean efficacy of multivalent pneumococcus vaccines has been intensively studied, variance in vaccine efficacy (VE) has been overlooked. Different net individual protection across settings can be driven by environmental conditions, local serotype and clonal composition, as well as by socio-demographic and genetic host factors. Understanding efficacy variation has implications for population-level effectiveness and other eco-evolutionary feedbacks. Here I show that realized VE can vary across epidemiological settings, by applying a multi-site-one-model approach to data post-vaccination. I analyse serotype prevalence dynamics following PCV7, in asymptomatic carriage in children attending day care in Portugal, Norway, France, Greece, Hungary and Hong-Kong. Model fitting to each dataset provides site-specific estimates for vaccine efficacy against acquisition, and pneumococcal transmission parameters. According to this model, variable serotype replacement across sites can be explained through variable PCV7 efficacy, ranging from 40% in Norway to 10% in Hong-Kong. While the details of how this effect is achieved remain to be determined, here I report three factors negatively associated with the VE readout, including initial prevalence of serotype 19F, daily mean temperature, and the Gini index. The study warrants more attention on local modulators of vaccine performance and calls for predictive frameworks within and across populations.
Collapse
|
121
|
Hadfield J, Harris SR, Seth-Smith HMB, Parmar S, Andersson P, Giffard PM, Schachter J, Moncada J, Ellison L, Vaulet MLG, Fermepin MR, Radebe F, Mendoza S, Ouburg S, Morré SA, Sachse K, Puolakkainen M, Korhonen SJ, Sonnex C, Wiggins R, Jalal H, Brunelli T, Casprini P, Pitt R, Ison C, Savicheva A, Shipitsyna E, Hadad R, Kari L, Burton MJ, Mabey D, Solomon AW, Lewis D, Marsh P, Unemo M, Clarke IN, Parkhill J, Thomson NR. Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion. Genome Res 2017; 27:1220-1229. [PMID: 28588068 PMCID: PMC5495073 DOI: 10.1101/gr.212647.116] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/27/2017] [Indexed: 01/26/2023]
Abstract
Chlamydia trachomatis is the world's most prevalent bacterial sexually transmitted infection and leading infectious cause of blindness, yet it is one of the least understood human pathogens, in part due to the difficulties of in vitro culturing and the lack of available tools for genetic manipulation. Genome sequencing has reinvigorated this field, shedding light on the contemporary history of this pathogen. Here, we analyze 563 full genomes, 455 of which are novel, to show that the history of the species comprises two phases, and conclude that the currently circulating lineages are the result of evolution in different genomic ecotypes. Temporal analysis indicates these lineages have recently expanded in the space of thousands of years, rather than the millions of years as previously thought, a finding that dramatically changes our understanding of this pathogen's history. Finally, at a time when almost every pathogen is becoming increasingly resistant to antimicrobials, we show that there is no evidence of circulating genomic resistance in C. trachomatis.
Collapse
Affiliation(s)
- James Hadfield
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Simon R Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Helena M B Seth-Smith
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Surendra Parmar
- Public Health England, Public Health Laboratory Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QW, United Kingdom
| | - Patiyan Andersson
- Menzies School of Health Research, Darwin, Northern Territory 0810, Australia
| | - Philip M Giffard
- Menzies School of Health Research, Darwin, Northern Territory 0810, Australia.,School of Psychological and Clinical Sciences, Charles Darwin University, Darwin 0909, Australia
| | - Julius Schachter
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94110, USA
| | - Jeanne Moncada
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94110, USA
| | - Louise Ellison
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - María Lucía Gallo Vaulet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Microbiología Clínica, Buenos Aires C1113AAD, Argentina
| | - Marcelo Rodríguez Fermepin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Microbiología Clínica, Buenos Aires C1113AAD, Argentina
| | - Frans Radebe
- Centre for HIV and Sexually Transmitted Infections, National Institute for Communicable Diseases, National Health Laboratory Service, 2192 Johannesburg, South Africa
| | - Suyapa Mendoza
- Jefe Laboratorio de ITS, Laboratorio Nacional de Vigilancia, FM1100, Honduras
| | - Sander Ouburg
- Department of Medical Microbiology and Infection Control, Laboratory of Immunogenetics, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands
| | - Servaas A Morré
- Department of Medical Microbiology and Infection Control, Laboratory of Immunogenetics, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands.,Department of Genetics and Cell Biology, Institute of Public Health Genomics, School for Oncology & Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, University of Maastricht, 6229 ER Maastricht, The Netherlands
| | - Konrad Sachse
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), 07743 Jena, Germany
| | - Mirja Puolakkainen
- Department of Virology, University of Helsinki and Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland
| | - Suvi J Korhonen
- Department of Virology, University of Helsinki and Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland
| | - Chris Sonnex
- Public Health England, Public Health Laboratory Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QW, United Kingdom
| | - Rebecca Wiggins
- Department of Biology, University of York, York CB2 2QQ, United Kingdom
| | - Hamid Jalal
- Public Health England, Public Health Laboratory Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QW, United Kingdom
| | - Tamara Brunelli
- Clinical Chemistry and Microbiology Laboratory, Santo Stefano Hospital, ASL4, 59100 Prato, Italy
| | - Patrizia Casprini
- Clinical Chemistry and Microbiology Laboratory, Santo Stefano Hospital, ASL4, 59100 Prato, Italy
| | - Rachel Pitt
- Sexually Transmitted Bacteria Reference Unit, Microbiological Services, Public Health England, London NW9 5HT, United Kingdom
| | - Cathy Ison
- Sexually Transmitted Bacteria Reference Unit, Microbiological Services, Public Health England, London NW9 5HT, United Kingdom
| | - Alevtina Savicheva
- Laboratory of Microbiology, D.O. Ott Research Institute of Obstetrics and Gynecology, St. Petersburg, Russia 199034
| | - Elena Shipitsyna
- Laboratory of Microbiology, D.O. Ott Research Institute of Obstetrics and Gynecology, St. Petersburg, Russia 199034.,WHO Collaborating Centre for Gonorrhoea and other STIs, Faculty of Medicine and Health, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Ronza Hadad
- WHO Collaborating Centre for Gonorrhoea and other STIs, Faculty of Medicine and Health, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Laszlo Kari
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | - Matthew J Burton
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - David Mabey
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Anthony W Solomon
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - David Lewis
- Centre for HIV and Sexually Transmitted Infections, National Institute for Communicable Diseases, National Health Laboratory Service, 2192 Johannesburg, South Africa.,Centre for Infectious Diseases and Microbiology and Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead Clinical School, University of Sydney, Sydney 2192, Australia
| | - Peter Marsh
- Public Health England, Public Health Laboratory Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Faculty of Medicine and Health, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Ian N Clarke
- Molecular Microbiology Group, University Medical School, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Julian Parkhill
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Nicholas R Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.,Department of Pathogen Molecular Biology, The London School of Hygiene and Tropical Medicine, London WC1 7HT, United Kingdom
| |
Collapse
|
122
|
Choudoir MJ, Panke-Buisse K, Andam CP, Buckley DH. Genome Surfing As Driver of Microbial Genomic Diversity. Trends Microbiol 2017; 25:624-636. [PMID: 28283403 DOI: 10.1016/j.tim.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 01/20/2023]
Abstract
Historical changes in population size, such as those caused by demographic range expansions, can produce nonadaptive changes in genomic diversity through mechanisms such as gene surfing. We propose that demographic range expansion of a microbial population capable of horizontal gene exchange can result in genome surfing, a mechanism that can cause widespread increase in the pan-genome frequency of genes acquired by horizontal gene exchange. We explain that patterns of genetic diversity within Streptomyces are consistent with genome surfing, and we describe several predictions for testing this hypothesis both in Streptomyces and in other microorganisms.
Collapse
Affiliation(s)
- Mallory J Choudoir
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA
| | - Kevin Panke-Buisse
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA
| | - Cheryl P Andam
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham NH 03824, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA.
| |
Collapse
|
123
|
Coletta-Filho HD, Francisco CS, Lopes JRS, Muller C, Almeida RPP. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America. PHYTOPATHOLOGY 2017; 107:305-312. [PMID: 27827008 DOI: 10.1094/phyto-09-16-0321-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.
Collapse
Affiliation(s)
- Helvécio D Coletta-Filho
- First and second authors: IAC, Centro de Citricultura Sylvio Moreira, Cordeirópolis, São Paulo, Brazil; second author: UNESP, Universidade Estadual Paulista, Campus de Jaboticabal, Graduate Program in Genetics and Plant Breeding, São Paulo, Brazil; third and fourth authors: Departamento de Entomologia, ESALQ, Universidade de São Paulo, Piracicaba, São Paulo, Brazil; and fifth author: Department of Environmental Science, Policy, and Management, University of California, Berkeley
| | - Carolina S Francisco
- First and second authors: IAC, Centro de Citricultura Sylvio Moreira, Cordeirópolis, São Paulo, Brazil; second author: UNESP, Universidade Estadual Paulista, Campus de Jaboticabal, Graduate Program in Genetics and Plant Breeding, São Paulo, Brazil; third and fourth authors: Departamento de Entomologia, ESALQ, Universidade de São Paulo, Piracicaba, São Paulo, Brazil; and fifth author: Department of Environmental Science, Policy, and Management, University of California, Berkeley
| | - João R S Lopes
- First and second authors: IAC, Centro de Citricultura Sylvio Moreira, Cordeirópolis, São Paulo, Brazil; second author: UNESP, Universidade Estadual Paulista, Campus de Jaboticabal, Graduate Program in Genetics and Plant Breeding, São Paulo, Brazil; third and fourth authors: Departamento de Entomologia, ESALQ, Universidade de São Paulo, Piracicaba, São Paulo, Brazil; and fifth author: Department of Environmental Science, Policy, and Management, University of California, Berkeley
| | - Christiane Muller
- First and second authors: IAC, Centro de Citricultura Sylvio Moreira, Cordeirópolis, São Paulo, Brazil; second author: UNESP, Universidade Estadual Paulista, Campus de Jaboticabal, Graduate Program in Genetics and Plant Breeding, São Paulo, Brazil; third and fourth authors: Departamento de Entomologia, ESALQ, Universidade de São Paulo, Piracicaba, São Paulo, Brazil; and fifth author: Department of Environmental Science, Policy, and Management, University of California, Berkeley
| | - Rodrigo P P Almeida
- First and second authors: IAC, Centro de Citricultura Sylvio Moreira, Cordeirópolis, São Paulo, Brazil; second author: UNESP, Universidade Estadual Paulista, Campus de Jaboticabal, Graduate Program in Genetics and Plant Breeding, São Paulo, Brazil; third and fourth authors: Departamento de Entomologia, ESALQ, Universidade de São Paulo, Piracicaba, São Paulo, Brazil; and fifth author: Department of Environmental Science, Policy, and Management, University of California, Berkeley
| |
Collapse
|
124
|
Bobay LM, Ochman H. Biological species are universal across Life's domains. Genome Biol Evol 2017; 9:2982379. [PMID: 28186559 PMCID: PMC5381558 DOI: 10.1093/gbe/evx026] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
Abstract
Delineation of species is fundamental to organizing and understanding biological diversity. The most widely applied criterion for distinguishing species is the Biological Species Concept (BSC), which defines species as groups of interbreeding individuals that remain reproductively isolated from other such groups. The BSC has broad appeal; however, many organisms, most notably asexual lineages, cannot be classified according to the BSC. Despite their exclusively asexual mode of reproduction, Bacteria and Archaea can transfer and exchange genes though homologous recombination. Here we show that barriers to homologous gene exchange define biological species in prokaryotes with the same efficacy as in sexual eukaryotes. By analyzing the impact of recombination on the polymorphisms in thousands of genome sequences, we find that over half of named bacterial species undergo continuous recombination among sequenced constituents, indicative of true biological species. However, nearly a quarter of named bacterial species show sharp discontinuities and comprise multiple biological species. These interruptions of gene flow are not a simple function of genome identity, indicating that bacterial speciation does not uniformly proceed by the gradual divergence of genome sequences. The same genomic approach based on recombinant polymorphisms retrieves known species boundaries in sexually reproducing eukaryotes. Thus, a single biological species definition based on gene flow, once thought to be limited only to sexually reproducing organisms, is applicable to all cellular lifeforms.
Collapse
Affiliation(s)
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin
| |
Collapse
|
125
|
Baltrus DA, McCann HC, Guttman DS. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:152-168. [PMID: 27798954 PMCID: PMC6638251 DOI: 10.1111/mpp.12506] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.
Collapse
Affiliation(s)
| | - Honour C. McCann
- New Zealand Institute for Advanced StudyMassey UniversityAuckland 0632New Zealand
| | - David S. Guttman
- Department of Cell and Systems BiologyUniversity of TorontoTorontoON M5S 3B2Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoON M5S 3B2Canada
| |
Collapse
|
126
|
Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLoS Biol 2016; 14:e2000234. [PMID: 28027292 PMCID: PMC5189939 DOI: 10.1371/journal.pbio.2000234] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids—the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation. Isolated populations accumulate genetic differences across their genomes as they diverge, whereas gene flow between populations counteracts divergence and tends to restore genetic homogeneity. Speciation proceeds by the accumulation at specific loci of mutations that reduce the fitness of hybrids, therefore preventing gene flow—the so-called species barriers. Importantly, species barriers are expected to act locally within the genome, leading to the prediction of a mosaic pattern of genetic differentiation between populations at intermediate levels of divergence—the genic view of speciation. At the same time, linked selection also contributes to speed up differentiation in low-recombining and gene-dense regions. We used a modelling approach that accounts for both sources of genomic heterogeneity and explored a wide continuum of genomic divergence made by 61 pairs of species/populations in animals. Our analysis provides a unifying picture of the relationship between molecular divergence and ability to exchange genes. We show that the "grey zone" of speciation—the intermediate state in which species definition is controversial—spans from 0.5% to 2% of molecular divergence, with these thresholds being independent of species life history traits and ecology. Semi-isolated species, between which alleles can be exchanged at some but not all loci, are numerous, with the earliest species barriers being detected at divergences as low as 0.075%. These results have important implications regarding taxonomy, conservation biology, and the management of biodiversity.
Collapse
|
127
|
Correlated Mutations and Homologous Recombination Within Bacterial Populations. Genetics 2016; 205:891-917. [PMID: 28007887 DOI: 10.1534/genetics.116.189621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Inferring the rate of homologous recombination within a bacterial population remains a key challenge in quantifying the basic parameters of bacterial evolution. Due to the high sequence similarity within a clonal population, and unique aspects of bacterial DNA transfer processes, detecting recombination events based on phylogenetic reconstruction is often difficult, and estimating recombination rates using coalescent model-based methods is computationally expensive, and often infeasible for large sequencing data sets. Here, we present an efficient solution by introducing a set of mutational correlation functions computed using pairwise sequence comparison, which characterize various facets of bacterial recombination. We provide analytical expressions for these functions, which precisely recapitulate simulation results of neutral and adapting populations under different coalescent models. We used these to fit correlation functions measured at synonymous substitutions using whole-genome data on Escherichia coli and Streptococcus pneumoniae populations. We calculated and corrected for the effect of sample selection bias, i.e., the uneven sampling of individuals from natural microbial populations that exists in most datasets. Our method is fast and efficient, and does not employ phylogenetic inference or other computationally intensive numerics. By simply fitting analytical forms to measurements from sequence data, we show that recombination rates can be inferred, and the relative ages of different samples can be estimated. Our approach, which is based on population genetic modeling, is broadly applicable to a wide variety of data, and its computational efficiency makes it particularly attractive for use in the analysis of large sequencing datasets.
Collapse
|
128
|
Ma CJ, Gibb B, Kwon Y, Sung P, Greene EC. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res 2016; 45:749-761. [PMID: 27903895 PMCID: PMC5314761 DOI: 10.1093/nar/gkw1125] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly.
Collapse
Affiliation(s)
- Chu Jian Ma
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Bryan Gibb
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - YoungHo Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
129
|
Marston MF, Martiny JBH. Genomic diversification of marine cyanophages into stable ecotypes. Environ Microbiol 2016; 18:4240-4253. [DOI: 10.1111/1462-2920.13556] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Marcia F. Marston
- Department of Biology and Marine Biology; Roger Williams University; Bristol RI 02809 USA
| | - Jennifer B. H. Martiny
- Department of Ecology and Evolutionary Biology; University of California; Irvine CA 92697 USA
| |
Collapse
|
130
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
131
|
Hosseini SR, Martin OC, Wagner A. Phenotypic innovation through recombination in genome-scale metabolic networks. Proc Biol Sci 2016; 283:rspb.2016.1536. [PMID: 27683361 DOI: 10.1098/rspb.2016.1536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
Recombination is an important source of metabolic innovation, especially in prokaryotes, which have evolved the ability to survive on many different sources of chemical elements and energy. Metabolic systems have a well-understood genotype-phenotype relationship, which permits a quantitative and biochemically principled understanding of how recombination creates novel phenotypes. Here, we investigate the power of recombination to create genome-scale metabolic reaction networks that enable an organism to survive in new chemical environments. To this end, we use flux balance analysis, an experimentally validated computational method that can predict metabolic phenotypes from metabolic genotypes. We show that recombination is much more likely to create novel metabolic abilities than random changes in chemical reactions of a metabolic network. We also find that phenotypic innovation is more likely when recombination occurs between parents that are genetically closely related, phenotypically highly diverse, and viable on few rather than many carbon sources. Survival on a new carbon source preferentially involves reactions that are superessential, that is, essential in many metabolic networks. We validate our observations with data from 61 reconstructed prokaryotic metabolic networks. Our systematic and quantitative analysis of metabolic systems helps understand how recombination creates innovation.
Collapse
Affiliation(s)
- Sayed-Rzgar Hosseini
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Building Y27, Winterthurerstrasse 190, 8057 Zurich, Switzerland The Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015 Lausanne, Switzerland
| | - Olivier C Martin
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Building Y27, Winterthurerstrasse 190, 8057 Zurich, Switzerland The Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015 Lausanne, Switzerland The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
132
|
Ellegaard KM, Engel P. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota. Front Microbiol 2016; 7:1475. [PMID: 27708630 PMCID: PMC5030217 DOI: 10.3389/fmicb.2016.01475] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities.
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
133
|
Booth A, Mariscal C, Doolittle WF. The Modern Synthesis in the Light of Microbial Genomics. Annu Rev Microbiol 2016; 70:279-97. [DOI: 10.1146/annurev-micro-102215-095456] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Austin Booth
- Department of Philosophy, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada;
| | - Carlos Mariscal
- Department of Philosophy, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada;
- Department of Philosophy, University of Nevada, Reno, Nevada 89557
| | - W. Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada;
| |
Collapse
|
134
|
Perez M, Juniper SK. Insights into Symbiont Population Structure among Three Vestimentiferan Tubeworm Host Species at Eastern Pacific Spreading Centers. Appl Environ Microbiol 2016; 82:5197-205. [PMID: 27316954 PMCID: PMC4988177 DOI: 10.1128/aem.00953-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The symbiotic relationship between vestimentiferan tubeworms and their intracellular chemosynthetic bacteria is one of the more noteworthy examples of adaptation to deep-sea hydrothermal vent environments. The tubeworm symbionts have never been cultured in the laboratory. Nucleotide sequences from the small subunit rRNA gene suggest that the intracellular symbionts of the eastern Pacific vent tubeworms Oasisia alvinae, Riftia pachyptila, Tevnia jerichonana, and Ridgeia piscesae belong to the same phylotype of gammaproteobacteria, "Candidatus Endoriftia persephone." Comparisons of symbiont genomes between the East Pacific Rise tubeworms R. pachyptila and T. jerichonana confirmed that these two hosts share the same symbionts. Two Ridgeia symbiont genomes were assembled from trophosome metagenomes from worms collected from the Juan de Fuca Ridge (one and five individuals, respectively). We compared these assemblies to those of the sequenced Riftia and Tevnia symbionts. Pangenome composition, genome-wide comparisons of the nucleotide sequences, and pairwise comparisons of 2,313 orthologous genes indicated that "Ca Endoriftia persephone" symbionts are structured on large geographical scales but also on smaller scales and possibly through host specificity. IMPORTANCE Remarkably, the intracellular symbionts of four to six species of eastern Pacific vent tubeworms all belong to the same phylotype of gammaproteobacteria, "Candidatus Endoriftia persephone." Understanding the structure, dynamism, and interconnectivity of "Ca Endoriftia persephone" populations is important to advancing our knowledge of the ecology and evolution of their host worms, which are often keystone species in vent communities. In this paper, we present the first genomes for symbionts associated with the species R. piscesae, from the Juan de Fuca Ridge. We then combine these genomes with published symbiont genomes from the East Pacific Rise tubeworms R. pachyptila and T. jerichonana to develop a portrait of the "Ca Endoriftia persephone" pangenome and an initial outline of symbiont population structure in the different host species. Our study is the first to apply genome-wide comparisons of "Ca Endoriftia persephone" assemblies in the context of population genetics and molecular evolution.
Collapse
Affiliation(s)
- Maëva Perez
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
| | - S Kim Juniper
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
135
|
Pérez Carrascal OM, VanInsberghe D, Juárez S, Polz MF, Vinuesa P, González V. Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris. Environ Microbiol 2016; 18:2660-76. [PMID: 27312778 DOI: 10.1111/1462-2920.13415] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/13/2016] [Indexed: 11/28/2022]
Abstract
Cultivated common beans are the primary protein source for millions of people around the world who subsist on low-input agriculture, enabled by the symbiotic N2 -fixation these legumes perform in association with rhizobia. Within a single agricultural plot, multiple Rhizobium species can nodulate bean roots, but it is unclear how genetically isolated these species remain in sympatry. To better understand this issue, we sequenced and compared the genomes of 33 strains isolated from the rhizosphere and root nodules of a particular bean variety grown in the same agricultural plot. We found that the Rhizobium species we observed coexist with low genetic recombination across their core genomes. Accessory plasmids thought to be necessary for the saprophytic lifestyle in soil show similar levels of genetic isolation, but with higher rates of recombination than the chromosomes. However, the symbiotic plasmids are extremely similar, with high rates of recombination and do not appear to have co-evolved with the chromosome or accessory plasmids. Therefore, while Rhizobium species are genetically isolated units within the microbial community, a common symbiotic plasmid allows all Rhizobium species to engage in symbiosis with the same host in a single agricultural plot.
Collapse
Affiliation(s)
- Olga M Pérez Carrascal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - David VanInsberghe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Soledad Juárez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
136
|
Pirogov S, Rybko A, Kalinina A, Gelfand M. Recombination Processes and Nonlinear Markov Chains. J Comput Biol 2016; 23:711-7. [PMID: 27386932 DOI: 10.1089/cmb.2016.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.
Collapse
Affiliation(s)
- Sergey Pirogov
- 1 A.A. Kharkevich Institute for Information Transmission Problems , RAS, Moscow, Russia
| | - Alexander Rybko
- 1 A.A. Kharkevich Institute for Information Transmission Problems , RAS, Moscow, Russia
| | - Anastasia Kalinina
- 1 A.A. Kharkevich Institute for Information Transmission Problems , RAS, Moscow, Russia
| | - Mikhail Gelfand
- 1 A.A. Kharkevich Institute for Information Transmission Problems , RAS, Moscow, Russia .,2 Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University , Moscow, Russia
| |
Collapse
|
137
|
Bendall ML, Stevens SLR, Chan LK, Malfatti S, Schwientek P, Tremblay J, Schackwitz W, Martin J, Pati A, Bushnell B, Froula J, Kang D, Tringe SG, Bertilsson S, Moran MA, Shade A, Newton RJ, McMahon KD, Malmstrom RR. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. THE ISME JOURNAL 2016; 10:1589-601. [PMID: 26744812 PMCID: PMC4918448 DOI: 10.1038/ismej.2015.241] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/22/2015] [Accepted: 11/18/2015] [Indexed: 12/30/2022]
Abstract
Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005-2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the 'ecotype model' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.
Collapse
Affiliation(s)
| | - Sarah LR Stevens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | - Joel Martin
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Jeff Froula
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Dongwan Kang
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mary A Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Ashley Shade
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
138
|
Hanage WP. Not So Simple After All: Bacteria, Their Population Genetics, and Recombination. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018069. [PMID: 27091940 DOI: 10.1101/cshperspect.a018069] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pervasive nature of bacterial recombination has become clear. Despite this, the population genetics of bacteria persist in being viewed as simple. Here, I argue against that characterization. After summarizing the history of the topic, I survey the evidence for remarkable and unexplained variation in recombination rate among and within bacterial species. I finally argue that despite recent assertions that recombination means bacterial genes are "public goods," in bacteria the level of selection is the gene, and genes can be understood to have niches with dimensions including the other contents of the genome in which they find themselves.
Collapse
Affiliation(s)
- William P Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
139
|
The fitness effects of a point mutation in Escherichia coli change with founding population density. Genetica 2016; 144:417-24. [PMID: 27344657 DOI: 10.1007/s10709-016-9910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Although intraspecific competition plays a seminal role in organismal evolution, little is known about the fitness effects of mutations at different population densities. We identified a point mutation in the cyclic AMP receptor protein (CRP) gene in Escherichia coli that confers significantly higher fitness than the wildtype at low founding population density, but significantly lower fitness at high founding density. Because CRP is a transcription factor that regulates the expression of nearly 500 genes, we compared global gene expression profiles of the mutant and wildtype strains. This mutation (S63F) does not affect expression of crp itself, but it does significantly affect expression of 170 and 157 genes at high and low founding density, respectively. Interestingly, acid resistance genes, some of which are known to exhibit density-dependent effects in E. coli, were consistently differentially expressed at high but not low density. As such, these genes may play a key role in reducing the crp mutant's fitness at high density, although other differentially expressed genes almost certainly also contribute to the fluctuating fitness differences we observed. Whatever the causes, we suspect that many mutations may exhibit density-dependent fitness effects in natural populations, so the fate of new mutations may frequently depend on the effective population size when they originate.
Collapse
|
140
|
Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids. PLoS Biol 2016; 14:e1002478. [PMID: 27270455 PMCID: PMC4896427 DOI: 10.1371/journal.pbio.1002478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial genes that confer crucial phenotypes, such as antibiotic resistance, can spread horizontally by residing on mobile genetic elements (MGEs). Although many mobile genes provide strong benefits to their hosts, the fitness consequences of the process of transfer itself are less clear. In previous studies, transfer has been interpreted as a parasitic trait of the MGEs because of its costs to the host but also as a trait benefiting host populations through the sharing of a common gene pool. Here, we show that costly donation is an altruistic act when it spreads beneficial MGEs favoured when it increases the inclusive fitness of donor ability alleles. We show mathematically that donor ability can be selected when relatedness at the locus modulating transfer is sufficiently high between donor and recipients, ensuring high frequency of transfer between cells sharing donor alleles. We further experimentally demonstrate that either population structure or discrimination in transfer can increase relatedness to a level selecting for chromosomal transfer alleles. Both mechanisms are likely to occur in natural environments. The simple process of strong dilution can create sufficient population structure to select for donor ability. Another mechanism observed in natural isolates, discrimination in transfer, can emerge through coselection of transfer and discrimination alleles. Our work shows that horizontal gene transfer in bacteria can be promoted by bacterial hosts themselves and not only by MGEs. In the longer term, the success of cells bearing beneficial MGEs combined with biased transfer leads to an association between high donor ability, discrimination, and mobile beneficial genes. However, in conditions that do not select for altruism, host bacteria promoting transfer are outcompeted by hosts with lower transfer rate, an aspect that could be relevant in the fight against the spread of antibiotic resistance. Altruistic host bacteria can preferentially enhance the horizontal transfer of beneficial plasmids (such as those conferring antibiotic resistance or virulence) to others of their kind. In bacteria, genes can move between cells, sometimes with the donor host cell actively involved in the gene transfer mechanisms. This movement of genes is called horizontal gene transfer, and it increases the prevalence of mobile genes in bacterial populations. However, it is not clear if donor host cells benefit from gene spread, or are simply exploited by selfish genes. Here, we show with both modelling and experiments that for the donor host, investing in the transfer of beneficial genes—such as those conferring antibiotic resistance—can be understood as an altruistic behaviour. This behaviour is costly to the donor but beneficial to recipients and can be selected for if a sufficient proportion of recipient cells share the donors’ transfer allele. Preferential transfer from donors towards recipients that share this allele occurs when dispersal is limited or if discrimination mechanisms are present. Our work suggests that both processes are likely to be widespread in nature, promoting horizontal gene spread by host donor cells. As many antimicrobial resistance and virulence genes are mobile, our work further implies that the spread of harmful traits among human pathogens may be modulated by host bacteria in a direction that depends on the bacterial ability to transfer the traits specifically to their kind.
Collapse
|
141
|
Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci U S A 2016; 113:5658-63. [PMID: 27140615 DOI: 10.1073/pnas.1603257113] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Restriction-modification (R-M) systems are often regarded as bacteria's innate immune systems, protecting cells from infection by mobile genetic elements (MGEs). Their diversification has been recently associated with the emergence of particularly virulent lineages. However, we have previously found more R-M systems in genomes carrying more MGEs. Furthermore, it has been suggested that R-M systems might favor genetic transfer by producing recombinogenic double-stranded DNA ends. To test whether R-M systems favor or disfavor genetic exchanges, we analyzed their frequency with respect to the inferred events of homologous recombination and horizontal gene transfer within 79 bacterial species. Genetic exchanges were more frequent in bacteria with larger genomes and in those encoding more R-M systems. We created a recognition target motif predictor for Type II R-M systems that identifies genomes encoding systems with similar restriction sites. We found more genetic exchanges between these genomes, independently of their evolutionary distance. Our results reconcile previous studies by showing that R-M systems are more abundant in promiscuous species, wherein they establish preferential paths of genetic exchange within and between lineages with cognate R-M systems. Because the repertoire and/or specificity of R-M systems in bacterial lineages vary quickly, the preferential fluxes of genetic transfer within species are expected to constantly change, producing time-dependent networks of gene transfer.
Collapse
|
142
|
The impact of host metapopulation structure on the population genetics of colonizing bacteria. J Theor Biol 2016; 396:53-62. [DOI: 10.1016/j.jtbi.2016.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/15/2016] [Accepted: 02/13/2016] [Indexed: 11/17/2022]
|
143
|
Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME JOURNAL 2016; 10:1642-55. [PMID: 26943621 PMCID: PMC4913878 DOI: 10.1038/ismej.2015.237] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 11/30/2022]
Abstract
Transplantation experiments and genome comparisons were used to determine if lineages of planktonic Polynucleobacter almost indistinguishable by their 16S ribosomal RNA (rRNA) sequences differ distinctively in their ecophysiological and genomic traits. The results of three transplantation experiments differing in complexity of biotic interactions revealed complete ecological isolation between some of the lineages. This pattern fits well to the previously detected environmental distribution of lineages along chemical gradients, as well as to differences in gene content putatively providing adaptation to chemically distinct habitats. Patterns of distribution of iron transporter genes across 209 Polynucleobacter strains obtained from freshwater systems and representing a broad pH spectrum further emphasize differences in habitat-specific adaptations. Genome comparisons of six strains sharing ⩾99% 16S rRNA similarities suggested that each strain represents a distinct species. Comparison of sequence diversity among genomes with sequence diversity among 240 cultivated Polynucleobacter strains indicated a large cryptic species complex not resolvable by 16S rRNA sequences. The revealed ecological isolation and cryptic diversity in Polynucleobacter bacteria is crucial in the interpretation of diversity studies on freshwater bacterioplankton based on ribosomal sequences.
Collapse
|
144
|
Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict. PLoS Biol 2016; 14:e1002394. [PMID: 26934590 PMCID: PMC4774983 DOI: 10.1371/journal.pbio.1002394] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/29/2016] [Indexed: 01/21/2023] Open
Abstract
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rafal Mostowy
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Christopher Wymant
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
145
|
Lee JY, Terakawa T, Qi Z, Steinfeld JB, Redding S, Kwon Y, Gaines WA, Zhao W, Sung P, Greene EC. DNA RECOMBINATION. Base triplet stepping by the Rad51/RecA family of recombinases. Science 2016; 349:977-81. [PMID: 26315438 DOI: 10.1126/science.aab2666] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA strand exchange plays a central role in genetic recombination across all kingdoms of life, but the physical basis for these reactions remains poorly defined. Using single-molecule imaging, we found that bacterial RecA and eukaryotic Rad51 and Dmc1 all stabilize strand exchange intermediates in precise three-nucleotide steps. Each step coincides with an energetic signature (0.3 kBT) that is conserved from bacteria to humans. Triplet recognition is strictly dependent on correct Watson-Crick pairing. Rad51, RecA, and Dmc1 can all step over mismatches, but only Dmc1 can stabilize mismatched triplets. This finding provides insight into why eukaryotes have evolved a meiosis-specific recombinase. We propose that canonical Watson-Crick base triplets serve as the fundamental unit of pairing interactions during DNA recombination.
Collapse
Affiliation(s)
- Ja Yil Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tsuyoshi Terakawa
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Department of Biophysics, Kyoto University, Sakyo, Kyoto, Japan
| | - Zhi Qi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Justin B Steinfeld
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sy Redding
- Department of Chemistry, Columbia University, New York, NY, USA
| | - YoungHo Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - William A Gaines
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
146
|
Andam CP, Choudoir MJ, Vinh Nguyen A, Sol Park H, Buckley DH. Contributions of ancestral inter-species recombination to the genetic diversity of extant Streptomyces lineages. ISME JOURNAL 2016; 10:1731-41. [PMID: 26849310 DOI: 10.1038/ismej.2015.230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022]
Abstract
Streptomyces species produce many important antibiotics and have a crucial role in soil nutrient cycling. However, their evolutionary history remains poorly characterized. We have evaluated the impact of homologous recombination on the evolution of Streptomyces using multi-locus sequence analysis of 234 strains that represent at least 11 species clusters. Evidence of inter-species recombination is widespread but not uniform within the genus and levels of mosaicism vary between species clusters. Most phylogenetically incongruent loci are monophyletic at the scale of species clusters and their subclades, suggesting that these recombination events occurred in shared ancestral lineages. Further investigation of two mosaic species clusters suggests that genes acquired by inter-species recombination may have become fixed in these lineages during periods of demographic expansion; implicating a role for phylogeography in determining contemporary patterns of genetic diversity. Only by examining the phylogeny at the scale of the genus is apparent that widespread phylogenetically incongruent loci in Streptomyces are derived from a far smaller number of ancestral inter-species recombination events.
Collapse
Affiliation(s)
- Cheryl P Andam
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| | - Mallory J Choudoir
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| | - Anh Vinh Nguyen
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| | - Han Sol Park
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| | - Daniel H Buckley
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| |
Collapse
|
147
|
Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community. Saudi J Biol Sci 2016; 24:901-906. [PMID: 28490963 PMCID: PMC5415123 DOI: 10.1016/j.sjbs.2016.01.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 11/23/2022] Open
Abstract
Routine manufacture, detonation and disposal of explosives in land and groundwater have resulted in complete pollution. Explosives are xenobiotic compounds, being toxic to biological systems, and their recalcitrance leads to persistence in the environment. The methods currently used for the remediation of explosive contaminated sites are expensive and can result in the formation of toxic products. The present study aimed to investigate the bacterial strains using the Biolog plates in the soil from the Riyadh community. The microbial strains were isolated using the spread plate technique and were identified using the Biolog method. In this study we have analyzed from bacterial families of soil samples, obtained from the different sites in 5 regions at Explosive Institute. Our results conclude that Biolog MicroPlates were developed for the rapid identification of bacterial isolates by sole-carbon source utilization and can be used for the identification of bacteria. Out of five communities, only four families of bacteria indicate that the microbial community lacks significant diversity in region one from the Riyadh community in Saudi Arabia. More studies are needed to be carried out in different regions to validate our results.
Collapse
|
148
|
Maddamsetti R. Gene flow in microbial communities could explain unexpected patterns of synonymous variation in the Escherichia coli core genome. Mob Genet Elements 2016; 6:e1137380. [PMID: 27066306 PMCID: PMC4802760 DOI: 10.1080/2159256x.2015.1137380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022] Open
Abstract
Researchers contest the importance of gene flow in bacterial core genomes, as traditionalists view microbes as predominantly clonal, asexually reproducing organisms. Contrary to the traditional perspective, Escherichia coli core genes vary greatly in their levels of synonymous genetic diversity. This observation indicates that the relative importance of evolutionary forces such as mutation, selection, and recombination varies from gene to gene. In this paper, I highlight why the synonymous diversity observation is broadly relevant to researchers interested in the evolutionary dynamics of microbial populations and communities. I explain how a model of evolution called the coalescent relates neutral diversity (i.e. mutations with negligible fitness effects) to mutation rates, evolutionary time, and a parameter called effective population size. I then describe the possible ways in which mutation, selection, and recombination can explain observed patterns of synonymous diversity in E. coli. Finally, I describe a model for E. coli genome evolution in which different loci are subject to varying levels of gene flow among co-occurring microbes and viruses in the environment. Researchers can falsify the gene flow hypothesis by sequencing genes and strains isolated from stable microbiomes or by carrying out evolution experiments that trace gene genealogies in real-time.
Collapse
Affiliation(s)
- Rohan Maddamsetti
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA; BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
149
|
Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes. mBio 2015; 6:e01302-15. [PMID: 26670382 PMCID: PMC4701828 DOI: 10.1128/mbio.01302-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (Ne) by orders of magnitude. For example, for a well-mixed population with 1012 individuals and a typical level of homologous recombination (r/m = 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that Ne is <107. An argument for high Ne values for bacteria has been the high genetic diversity within many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate Ne correctly. Given an estimate of Ne, standard population genetics models imply that selection should be sufficient to drive evolution if Ne × s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force if s is above 10−7 or so. Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10−9 per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the evolution of the sites. We used simulations to confirm that during multisite evolution with realistic levels of recombination, only larger effects are important. We propose that advantages of less than 10−7 are effectively neutral.
Collapse
|
150
|
Lassalle F, Muller D, Nesme X. Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Res Microbiol 2015; 166:729-41. [DOI: 10.1016/j.resmic.2015.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/28/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
|