101
|
Ubezio B, Blanco RA, Geudens I, Stanchi F, Mathivet T, Jones ML, Ragab A, Bentley K, Gerhardt H. Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion. eLife 2016; 5. [PMID: 27074663 PMCID: PMC4894757 DOI: 10.7554/elife.12167] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Formation of a regularly branched blood vessel network is crucial in development and physiology. Here we show that the expression of the Notch ligand Dll4 fluctuates in individual endothelial cells within sprouting vessels in the mouse retina in vivo and in correlation with dynamic cell movement in mouse embryonic stem cell-derived sprouting assays. We also find that sprout elongation and branching associates with a highly differential phase pattern of Dll4 between endothelial cells. Stimulation with pathologically high levels of Vegf, or overexpression of Dll4, leads to Notch dependent synchronization of Dll4 fluctuations within clusters, both in vitro and in vivo. Our results demonstrate that the Vegf-Dll4/Notch feedback system normally operates to generate heterogeneity between endothelial cells driving branching, whilst synchronization drives vessel expansion. We propose that this sensitive phase transition in the behaviour of the Vegf-Dll4/Notch feedback loop underlies the morphogen function of Vegfa in vascular patterning.
Collapse
Affiliation(s)
- Benedetta Ubezio
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Raquel Agudo Blanco
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Ilse Geudens
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium.,Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium.,Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium.,Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Martin L Jones
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Anan Ragab
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Katie Bentley
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Holger Gerhardt
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom.,Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium.,Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
102
|
Abstract
The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.
Collapse
Affiliation(s)
- J Richard Brewer
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Pierre Mazot
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
103
|
Abstract
Notch controls skeletogenesis, but its role in the remodeling of adult bone remains conflicting. In mature mice, the skeleton can become osteopenic or osteosclerotic depending on the time point at which Notch is activated or inactivated. Using adult EGFP reporter mice, we find that Notch expression is localized to osteocytes embedded within bone matrix. Conditional activation of Notch signaling in osteocytes triggers profound bone formation, mainly due to increased mineralization, which rescues both age-associated and ovariectomy-induced bone loss and promotes bone healing following osteotomy. In parallel, mice rendered haploinsufficient in γ-secretase presenilin-1 (Psen1), which inhibits downstream Notch activation, display almost-absent terminal osteoblast differentiation. Consistent with this finding, pharmacologic or genetic disruption of Notch or its ligand Jagged1 inhibits mineralization. We suggest that stimulation of Notch signaling in osteocytes initiates a profound, therapeutically relevant, anabolic response.
Collapse
|
104
|
Webb AB, Lengyel IM, Jörg DJ, Valentin G, Jülicher F, Morelli LG, Oates AC. Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock. eLife 2016; 5. [PMID: 26880542 PMCID: PMC4803185 DOI: 10.7554/elife.08438] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
In vertebrate development, the sequential and rhythmic segmentation of the body axis
is regulated by a “segmentation clock”. This clock is comprised of a population of
coordinated oscillating cells that together produce rhythmic gene expression patterns
in the embryo. Whether individual cells autonomously maintain oscillations, or
whether oscillations depend on signals from neighboring cells is unknown. Using a
transgenic zebrafish reporter line for the cyclic transcription factor Her1, we
recorded single tailbud cells in vitro. We demonstrate that individual cells can
behave as autonomous cellular oscillators. We described the observed variability in
cell behavior using a theory of generic oscillators with correlated noise. Single
cells have longer periods and lower precision than the tissue, highlighting the role
of collective processes in the segmentation clock. Our work reveals a population of
cells from the zebrafish segmentation clock that behave as self-sustained, autonomous
oscillators with distinctive noisy dynamics. DOI:http://dx.doi.org/10.7554/eLife.08438.001 The timing and pattern of gene activity in cells can be very important. For example,
precise gene activity patterns in 24-hour circadian clocks help to set daily cycles
of rest and activity in organisms. In such scenarios, cells often communicate with
each other to coordinate the activity of their genes. To fully understand how the
behavior of the population emerges, scientists must first understand the gene
activity patterns in individual cells. Rhythmic gene activity is essential for the spinal column to form in fish and other
vertebrate embryos. A group of cells that switch genes on/off in a coordinated
pattern act like a clock to regulate the timing of the various steps in the process
of backbone formation. However, it is not clear if each cell is able to maintain a
rhythm of gene expression on their own, or whether they rely on messages from
neighboring cells to achieve it. Now, Webb et al. use time-lapse videos of individual cells isolated from the tail of
zebrafish embryos to show that each cell can maintain a pattern of rhythmic activity
in a gene called Her1. In the experiments, individual cells were
removed from zebrafish and placed under a microscope to record and track the activity
of Her1 over time using fluorescent proteins. These experiments show
that each cell is able to maintain a rhythmic pattern of Her1
expression on its own. Webb et al. then compared the Her1 activity patterns in individual
cells with the Her1 patterns present in a larger piece of zebrafish
tissue. The experiments showed that the rhythms in the individual cells are slower
and less precise in their timing than in the tissue. This suggests that groups of
cells must work together to create the synchronized rhythms of gene expression with
the right precision and timing needed for the spinal column to be patterned
correctly. In the future, further experiment with these cells will allow researchers to
investigate the genetic basis of the rhythms in single cells, and find out how
individual cells work together with their neighbors to allow tissues to work
properly. DOI:http://dx.doi.org/10.7554/eLife.08438.002
Collapse
Affiliation(s)
- Alexis B Webb
- MRC-National Institute for Medical Research, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Iván M Lengyel
- Departamento de Física, FCEyN UBA and IFIBA, CONICET, Buenos Aires, Argentina
| | - David J Jörg
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Guillaume Valentin
- MRC-National Institute for Medical Research, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Luis G Morelli
- Departamento de Física, FCEyN UBA and IFIBA, CONICET, Buenos Aires, Argentina
| | - Andrew C Oates
- MRC-National Institute for Medical Research, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
105
|
Tsiairis CD, Aulehla A. Self-Organization of Embryonic Genetic Oscillators into Spatiotemporal Wave Patterns. Cell 2016; 164:656-67. [PMID: 26871631 PMCID: PMC4752819 DOI: 10.1016/j.cell.2016.01.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 11/20/2015] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
In vertebrate embryos, somites, the precursor of vertebrae, form from the presomitic mesoderm (PSM), which is composed of cells displaying signaling oscillations. Cellular oscillatory activity leads to periodic wave patterns in the PSM. Here, we address the origin of such complex wave patterns. We employed an in vitro randomization and real-time imaging strategy to probe for the ability of cells to generate order from disorder. We found that, after randomization, PSM cells self-organized into several miniature emergent PSM structures (ePSM). Our results show an ordered macroscopic spatial arrangement of ePSM with evidence of an intrinsic length scale. Furthermore, cells actively synchronize oscillations in a Notch-signaling-dependent manner, re-establishing wave-like patterns of gene activity. We demonstrate that PSM cells self-organize by tuning oscillation dynamics in response to surrounding cells, leading to collective synchronization with an average frequency. These findings reveal emergent properties within an ensemble of coupled genetic oscillators.
Collapse
Affiliation(s)
- Charisios D Tsiairis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
106
|
Williams DR, Shifley ET, Braunreiter KM, Cole SE. Disruption of somitogenesis by a novel dominant allele of Lfng suggests important roles for protein processing and secretion. Development 2016; 143:822-30. [PMID: 26811377 DOI: 10.1242/dev.128538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022]
Abstract
Vertebrate somitogenesis is regulated by a segmentation clock. Clock-linked genes exhibit cyclic expression, with a periodicity matching the rate of somite production. In mice, lunatic fringe (Lfng) expression oscillates, and LFNG protein contributes to periodic repression of Notch signaling. We hypothesized that rapid LFNG turnover could be regulated by protein processing and secretion. Here, we describe a novel Lfng allele (Lfng(RLFNG)), replacing the N-terminal sequences of LFNG, which allow for protein processing and secretion, with the N-terminus of radical fringe (a Golgi-resident protein). This allele is predicted to prevent protein secretion without altering the activity of LFNG, thus increasing the intracellular half-life of the protein. This allele causes dominant skeletal and somite abnormalities that are distinct from those seen in Lfng loss-of-function embryos. Expression of clock-linked genes is perturbed and mature Hes7 transcripts are stabilized in the presomitic mesoderm of mutant mice, suggesting that both transcriptional and post-transcriptional regulation of clock components are perturbed by RLFNG expression. Contrasting phenotypes in the segmentation clock and somite patterning of mutant mice suggest that LFNG protein may have context-dependent effects on Notch activity.
Collapse
Affiliation(s)
- Dustin R Williams
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T Shifley
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kara M Braunreiter
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Susan E Cole
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
107
|
Analysis of the Fam181 gene family during mouse development reveals distinct strain-specific expression patterns, suggesting a role in nervous system development and function. Gene 2016; 575:438-451. [DOI: 10.1016/j.gene.2015.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/05/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
|
108
|
The many roles of Notch signaling during vertebrate somitogenesis. Semin Cell Dev Biol 2016; 49:68-75. [DOI: 10.1016/j.semcdb.2014.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
|
109
|
Webb AB, Oates AC. Timing by rhythms: Daily clocks and developmental rulers. Dev Growth Differ 2016; 58:43-58. [PMID: 26542934 PMCID: PMC4832293 DOI: 10.1111/dgd.12242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 01/10/2023]
Abstract
Biological rhythms are widespread, allowing organisms to temporally organize their behavior and metabolism in advantageous ways. Such proper timing of molecular and cellular events is critical to their development and health. This is best understood in the case of the circadian clock that orchestrates the daily sleep/wake cycle of organisms. Temporal rhythms can also be used for spatial organization, if information from an oscillating system can be recorded within the tissue in a manner that leaves a permanent periodic pattern. One example of this is the "segmentation clock" used by the vertebrate embryo to rhythmically and sequentially subdivide its elongating body axis. The segmentation clock moves with the elongation of the embryo, such that its period sets the segment length as the tissue grows outward. Although the study of this system is still relatively young compared to the circadian clock, outlines of molecular, cellular, and tissue-level regulatory mechanisms of timing have emerged. The question remains, however, is it truly a clock? Here we seek to introduce the segmentation clock to a wider audience of chronobiologists, focusing on the role and control of timing in the system. We compare and contrast the segmentation clock with the circadian clock, and propose that the segmentation clock is actually an oscillatory ruler, with a primary function to measure embryonic space.
Collapse
Affiliation(s)
- Alexis B Webb
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Andrew C Oates
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
- University College London, Gower Street, London, UK
| |
Collapse
|
110
|
Sheeba CJ, Andrade RP, Palmeirim I. Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development. Semin Cell Dev Biol 2016; 49:125-34. [DOI: 10.1016/j.semcdb.2016.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 01/02/2023]
|
111
|
Martin BL. Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension. Semin Cell Dev Biol 2016; 49:59-67. [DOI: 10.1016/j.semcdb.2015.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
|
112
|
Mallo M. Revisiting the involvement of signaling gradients in somitogenesis. FEBS J 2015; 283:1430-7. [DOI: 10.1111/febs.13622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/19/2015] [Accepted: 12/03/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciencia; Oeiras Portugal
| |
Collapse
|
113
|
Yabe T, Takada S. Molecular mechanism for cyclic generation of somites: Lessons from mice and zebrafish. Dev Growth Differ 2015; 58:31-42. [PMID: 26676827 DOI: 10.1111/dgd.12249] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022]
Abstract
The somite is the most prominent metameric structure observed during vertebrate embryogenesis, and its metamerism preserves the characteristic structures of the vertebrae and muscles in the adult body. During vertebrate somitogenesis, sequential formation of epithelialized cell boundaries generates the somites. According to the "clock and wavefront model," the periodical and sequential generation of somites is achieved by the integration of spatiotemporal information provided by the segmentation clock and wavefront. In the anterior region of the presomitic mesoderm, which is the somite precursor, the orchestration between the segmentation clock and the wavefront achieves morphogenesis of somites through multiple processes such as determination of somite boundary position, generation of morophological boundary, and establishment of the rostrocaudal polarity within a somite. Recently, numerous studies using various model animals including mouse, zebrafish, and chick have gradually revealed the molecular aspect of the "clock and wavefront" model and the molecular mechanism connecting the segmentation clock and the wavefront to the multiple processes of somite morphogenesis. In this review, we first summarize the current knowledge about the molecular mechanisms underlying the clock and the wavefront and then describe those of the three processes of somite morphogenesis. Especially, we will discuss the conservation and diversification in the molecular network of the somitigenesis among vertebrates, focusing on two typical model animals used for genetic analyses, i.e., the mouse and zebrafish. In this review, we described molecular mechanism for the generation of somites based on the spatiotemporal information provided by "segmentation clock" and "wavefront" focusing on the evidences obtained from mouse and zebrafish.
Collapse
Affiliation(s)
- Taijiro Yabe
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
114
|
Jenkins RP, Hanisch A, Soza-Ried C, Sahai E, Lewis J. Stochastic Regulation of her1/7 Gene Expression Is the Source of Noise in the Zebrafish Somite Clock Counteracted by Notch Signalling. PLoS Comput Biol 2015; 11:e1004459. [PMID: 26588097 PMCID: PMC4654481 DOI: 10.1371/journal.pcbi.1004459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/09/2015] [Indexed: 12/30/2022] Open
Abstract
The somite segmentation clock is a robust oscillator used to generate regularly-sized segments during early vertebrate embryogenesis. It has been proposed that the clocks of neighbouring cells are synchronised via inter-cellular Notch signalling, in order to overcome the effects of noisy gene expression. When Notch-dependent communication between cells fails, the clocks of individual cells operate erratically and lose synchrony over a period of about 5 to 8 segmentation clock cycles (2-3 hours in the zebrafish). Here, we quantitatively investigate the effects of stochasticity on cell synchrony, using mathematical modelling, to investigate the likely source of such noise. We find that variations in the transcription, translation and degradation rate of key Notch signalling regulators do not explain the in vivo kinetics of desynchronisation. Rather, the analysis predicts that clock desynchronisation, in the absence of Notch signalling, is due to the stochastic dissociation of Her1/7 repressor proteins from the oscillating her1/7 autorepressed target genes. Using in situ hybridisation to visualise sites of active her1 transcription, we measure an average delay of approximately three minutes between the times of activation of the two her1 alleles in a cell. Our model shows that such a delay is sufficient to explain the in vivo rate of clock desynchronisation in Notch pathway mutant embryos and also that Notch-mediated synchronisation is sufficient to overcome this stochastic variation. This suggests that the stochastic nature of repressor/DNA dissociation is the major source of noise in the segmentation clock.
Collapse
Affiliation(s)
- Robert P. Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
- Vertebrate Development Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Anja Hanisch
- Vertebrate Development Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Cristian Soza-Ried
- Vertebrate Development Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Julian Lewis
- Vertebrate Development Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| |
Collapse
|
115
|
Economou C, Tsakiridis A, Wymeersch FJ, Gordon-Keylock S, Dewhurst RE, Fisher D, Medvinsky A, Smith AJH, Wilson V. Intrinsic factors and the embryonic environment influence the formation of extragonadal teratomas during gestation. BMC DEVELOPMENTAL BIOLOGY 2015; 15:35. [PMID: 26453549 PMCID: PMC4599726 DOI: 10.1186/s12861-015-0084-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/18/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pluripotent cells are present in early embryos until the levels of the pluripotency regulator Oct4 drop at the beginning of somitogenesis. Elevating Oct4 levels in explanted post-pluripotent cells in vitro restores their pluripotency. Cultured pluripotent cells can participate in normal development when introduced into host embryos up to the end of gastrulation. In contrast, pluripotent cells efficiently seed malignant teratocarcinomas in adult animals. In humans, extragonadal teratomas and teratocarcinomas are most frequently found in the sacrococcygeal region of neonates, suggesting that these tumours originate from cells in the posterior of the embryo that either reactivate or fail to switch off their pluripotent status. However, experimental models for the persistence or reactivation of pluripotency during embryonic development are lacking. METHODS We manually injected embryonic stem cells into conceptuses at E9.5 to test whether the presence of pluripotent cells at this stage correlates with teratocarcinoma formation. We then examined the effects of reactivating embryonic Oct4 expression ubiquitously or in combination with Nanog within the primitive streak (PS)/tail bud (TB) using a transgenic mouse line and embryo chimeras carrying a PS/TB-specific heterologous gene expression cassette respectively. RESULTS Here, we show that pluripotent cells seed teratomas in post-gastrulation embryos. However, at these stages, induced ubiquitous expression of Oct4 does not lead to restoration of pluripotency (indicated by Nanog expression) and tumour formation in utero, but instead causes a severe phenotype in the extending anteroposterior axis. Use of a more restricted T(Bra) promoter transgenic system enabling inducible ectopic expression of Oct4 and Nanog specifically in the posteriorly-located primitive streak (PS) and tail bud (TB) led to similar axial malformations to those induced by Oct4 alone. These cells underwent induction of pluripotency marker expression in Epiblast Stem Cell (EpiSC) explants derived from somitogenesis-stage embryos, but no teratocarcinoma formation was observed in vivo. CONCLUSIONS Our findings show that although pluripotent cells with teratocarcinogenic potential can be produced in vitro by the overexpression of pluripotency regulators in explanted somitogenesis-stage somatic cells, the in vivo induction of these genes does not yield tumours. This suggests a restrictive regulatory role of the embryonic microenvironment in the induction of pluripotency.
Collapse
Affiliation(s)
- Constantinos Economou
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Filip J Wymeersch
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sabrina Gordon-Keylock
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Robert E Dewhurst
- Drug Discovery Unit, Telethon Kids Institute, PO Box 855, West Perth, WA, 6872, Australia
| | - Dawn Fisher
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Andrew J H Smith
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
116
|
Zubbair Malik M, Ali S, Alam MJ, Ishrat R, Brojen Singh RK. Dynamics of p53 and Wnt cross talk. Comput Biol Chem 2015; 59 Pt B:55-66. [PMID: 26375870 DOI: 10.1016/j.compbiolchem.2015.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/07/2015] [Accepted: 07/27/2015] [Indexed: 01/10/2023]
Abstract
We present the mechanism of interaction of Wnt network module, which is responsible for periodic somitogenesis, with p53 regulatory network, which is one of the main regulators of various cellular functions, and switching of various oscillating states by investigating p53-Wnt model. The variation in Nutlin concentration in p53 regulating network drives the Wnt network module to different states, stabilized, damped and sustain oscillation states, and even to cycle arrest. Similarly, the change in Axin2 concentration in Wnt could able to modulate the p53 dynamics at these states. We then solve the set of coupled ordinary differential equations of the model using quasi steady state approximation. We, further, demonstrate the change of p53 and GSK3 interaction rate, due to hypothetical catalytic reaction or external stimuli, can able to regulate the dynamics of the two network modules, and even can control their dynamics to protect the system from cycle arrest (apoptosis).
Collapse
Affiliation(s)
- Md Zubbair Malik
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Md Jahoor Alam
- College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail, Kingdom of Saudi Arabia; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
117
|
Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs. Proc Natl Acad Sci U S A 2015; 112:E4884-93. [PMID: 26283362 DOI: 10.1073/pnas.1512655112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Hox genes play a central role in patterning the embryonic anterior-to-posterior axis. An important function of Hox activity in vertebrates is the specification of different vertebral morphologies, with an additional role in axis elongation emerging. The miR-196 family of microRNAs (miRNAs) are predicted to extensively target Hox 3' UTRs, although the full extent to which miR-196 regulates Hox expression dynamics and influences mammalian development remains to be elucidated. Here we used an extensive allelic series of mouse knockouts to show that the miR-196 family of miRNAs is essential both for properly patterning vertebral identity at different axial levels and for modulating the total number of vertebrae. All three miR-196 paralogs, 196a1, 196a2, and 196b, act redundantly to pattern the midthoracic region, whereas 196a2 and 196b have an additive role in controlling the number of rib-bearing vertebra and positioning of the sacrum. Independent of this, 196a1, 196a2, and 196b act redundantly to constrain total vertebral number. Loss of miR-196 leads to a collective up-regulation of numerous trunk Hox target genes with a concomitant delay in activation of caudal Hox genes, which are proposed to signal the end of axis extension. Additionally, we identified altered molecular signatures associated with the Wnt, Fgf, and Notch/segmentation pathways and demonstrate that miR-196 has the potential to regulate Wnt activity by multiple mechanisms. By feeding into, and thereby integrating, multiple genetic networks controlling vertebral number and identity, miR-196 is a critical player defining axial formulae.
Collapse
|
118
|
Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O, Hick A, Bousson F, Zidouni Y, Mursch C, Moncuquet P, Tassy O, Vincent S, Miyanari A, Bera A, Garnier JM, Guevara G, Hestin M, Kennedy L, Hayashi S, Drayton B, Cherrier T, Gayraud-Morel B, Gussoni E, Relaix F, Tajbakhsh S, Pourquié O. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 2015; 33:962-9. [PMID: 26237517 DOI: 10.1038/nbt.3297] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7(+) cells with satellite cell characteristics, including the ability to form dystrophin(+) fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France.,Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Masayuki Oginuma
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Olga Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden, France
| | - Fanny Bousson
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden, France
| | - Yasmine Zidouni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Caroline Mursch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Philippe Moncuquet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Stéphane Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Ayako Miyanari
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Agata Bera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Getzabel Guevara
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Marie Hestin
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Leif Kennedy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Shinichiro Hayashi
- UPMC Paris 06, UMRS 787, INSERM, Avenir team, Pitié-Salpêtrière, Paris, France.,Institut de Myologie, Paris, France
| | - Bernadette Drayton
- UPMC Paris 06, UMRS 787, INSERM, Avenir team, Pitié-Salpêtrière, Paris, France.,Institut de Myologie, Paris, France
| | - Thomas Cherrier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | | | - Emanuela Gussoni
- Division of Genetics and Genomics Boston Children's Hospital, Boston, Massachusetts, USA
| | - Frédéric Relaix
- UPMC Paris 06, UMRS 787, INSERM, Avenir team, Pitié-Salpêtrière, Paris, France.,Institut de Myologie, Paris, France
| | | | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France.,Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Kansas City, Missouri, USA
| |
Collapse
|
119
|
Stern CD, Piatkowska AM. Multiple roles of timing in somite formation. Semin Cell Dev Biol 2015; 42:134-9. [PMID: 26116228 DOI: 10.1016/j.semcdb.2015.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/15/2015] [Indexed: 12/11/2022]
Abstract
During development, vertebrate embryos produce serially repeated elements, the somites, on each side of the midline. These generate the vertebral column, skeletal musculature and dermis. They form sequentially, one pair at a time, from mesenchymal tissue near the tail. Somite development is a complex process. The embryo must control the number, size, and timing of somite formation, their subdivision into functional regions along three axes, regional identity such that somites develop in a region-specific way, and interactions with neighbouring tissues that coordinate them with nearby structures. Here we discuss many timing-related mechanisms that contribute to set up the spatial pattern.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Agnieszka M Piatkowska
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
120
|
Ventre S, Indrieri A, Fracassi C, Franco B, Conte I, Cardone L, di Bernardo D. Metabolic regulation of the ultradian oscillator Hes1 by reactive oxygen species. J Mol Biol 2015; 427:1887-902. [PMID: 25796437 DOI: 10.1016/j.jmb.2015.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/07/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022]
Abstract
Ultradian oscillators are cyclically expressed genes with a period of less than 24h, found in the major signalling pathways. The Notch effector hairy and enhancer of split Hes genes are ultradian oscillators. The physiological signals that synchronise and entrain Hes oscillators remain poorly understood. We investigated whether cellular metabolism modulates Hes1 cyclic expression. We demonstrated that, in mouse myoblasts (C2C12), Hes1 oscillation depends on reactive oxygen species (ROS), which are generated by the mitochondria electron transport chain and by NADPH oxidases NOXs. In vitro, the regulation of Hes1 by ROS occurs via the calcium-mediated signalling. The modulation of Hes1 by ROS was relevant in vivo, since perturbing ROS homeostasis was sufficient to alter Medaka (Oryzias latipes) somitogenesis, a process that is dependent on Hes1 ultradian oscillation during embryo development. Moreover, in a Medaka model for human microphthalmia with linear skin lesions syndrome, in which mitochondrial ROS homeostasis was impaired, we documented important somitogenesis defects and the deregulation of Hes homologues genes involved in somitogenesis. Notably, both molecular and developmental defects were rescued by antioxidant treatments. Our studies provide the first evidence of a coupling between cellular redox metabolism and an ultradian biological oscillator with important pathophysiological implication for somitogenesis.
Collapse
Affiliation(s)
- Simona Ventre
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy
| | - Chiara Fracassi
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy
| | - Brunella Franco
- Department of Medical Translational Sciences, University of Naples Federico II, 80138 Napoli, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy
| | - Luca Cardone
- Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy.
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy; Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80138 Napoli, Italy.
| |
Collapse
|
121
|
Kok K, Arnosti DN. Dynamic reprogramming of chromatin: paradigmatic palimpsests and HES factors. Front Genet 2015; 6:29. [PMID: 25713582 PMCID: PMC4322839 DOI: 10.3389/fgene.2015.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/20/2015] [Indexed: 12/02/2022] Open
Abstract
Temporal and spatial control of transcription in development is dictated to a great extent by transcriptional repressors. Some repressor complexes, such as Polycomp-group proteins, induce relatively long-term non-permissive states, whereas others such as hairy/enhancer of split (HES) family repressors are linked to dynamically modulated chromatin states associated with cycling expression of target genes. The mode of action and specificity of repressors involved in mediating this latter form of epigenetic control are unknown. Oscillating expression of HES repressors controlled by signaling pathways such as Notch suggests that the entire ensemble of HES–associated co-repressors and histone modifying complexes readily cycle on and off genes. Dynamic interactions between these factors and chromatin seem to be crucial in maintaining multipotency of progenitor cells, but the significance of such interactions in more differentiated cells is less well understood. We discuss here how genome-wide analyses and real-time gene expression measurements of HES regulated genes can help decipher the detailed mechanisms and biological importance of highly dynamic transcriptional switching mediated by epigenetic changes.
Collapse
Affiliation(s)
- Kurtulus Kok
- Genetics Program, Michigan State University , East Lansing, MI, USA
| | - David N Arnosti
- Genetics Program, Michigan State University , East Lansing, MI, USA ; Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, MI, USA
| |
Collapse
|
122
|
Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation. HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2015. [DOI: 10.1007/978-94-017-9822-8_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
123
|
Casaca A, Nóvoa A, Mallo M. Hoxb6 can interfere with somitogenesis in the posterior embryo through a mechanism independent of its rib-promoting activity. Development 2015; 143:437-48. [DOI: 10.1242/dev.133074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 01/19/2023]
Abstract
Formation of the vertebrate axial skeleton requires coordinated Hox gene activity. Hox group 6 genes are involved in the formation of the thoracic area due to their unique rib-promoting properties. We show here that the linker region (LR) connecting the homeodomain and the hexapeptide is essential for Hoxb6 rib-promoting activity. The LR-defective Hoxb6 protein was still able to bind a target enhancer together with Pax3 producing a dominant negative effect, indicating that the LR brings additional regulatory factors to target DNA elements. We also found an unexpected association between Hoxb6 and segmentation in the paraxial mesoderm. In particular, Hoxb6 can disturb somitogenesis and anterior-posterior somite patterning by deregulating Lfng expression. Interestingly, this interaction occurred differently in thoracic and more caudal embryonic areas, indicating functional differences in somitogenesis before and after the trunk to tail transition. Our results suggest the requirement of precisely regulated Hoxb6 expression for proper segmentation at tailbud stages.
Collapse
Affiliation(s)
- Ana Casaca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
124
|
Pace RM, Eskridge PC, Grbić M, Nagy LM. Evidence for the plasticity of arthropod signal transduction pathways. Dev Genes Evol 2014; 224:209-22. [PMID: 25213332 PMCID: PMC10492230 DOI: 10.1007/s00427-014-0479-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 01/23/2023]
Abstract
Metazoans are known to contain a limited, yet highly conserved, set of signal transduction pathways that instruct early developmental patterning mechanisms. Genomic surveys that have compared gene conservation in signal transduction pathways between various insects and Drosophila support the conclusion that these pathways are conserved in evolution. However, the degree to which individual components of signal transduction pathways vary among more divergent arthropods is not known. Here, we report our results of a survey of the genome of the two-spotted spider mite Tetranychus urticae, using a set of 294 Drosophila orthologs of genes that function in signal transduction. We find a third of all genes surveyed absent from the spider mite genome. We also identify several novel duplications that have not been previously reported for a chelicerate. In comparison with previous insect surveys, Tetranychus contains a decrease in overall gene conservation, as well as an unusual ratio of ligands to receptors and other modifiers. These findings suggest that gene loss and duplication among components of signal transduction pathways are common among arthropods and suggest that signal transduction pathways in arthropods are more evolutionarily labile than previously hypothesized.
Collapse
Affiliation(s)
- Ryan M Pace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | |
Collapse
|
125
|
Lee Y, Manegold JE, Kim AD, Pouget C, Stachura DL, Clements WK, Traver D. FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. Nat Commun 2014; 5:5583. [PMID: 25428693 PMCID: PMC4271318 DOI: 10.1038/ncomms6583] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/16/2014] [Indexed: 01/07/2023] Open
Abstract
Hematopoietic stem cells (HSCs) derive from hemogenic endothelial cells of the primitive dorsal aorta (DA) during vertebrate embryogenesis. The molecular mechanisms governing this unique endothelial to hematopoietic transition remain unclear. Here, we demonstrate a novel requirement for fibroblast growth factor (FGF) signaling in HSC emergence. This requirement is non-cell-autonomous, and acts within the somite to bridge the Wnt and Notch signaling pathways. We previously demonstrated that Wnt16 regulates the somitic expression of two Notch ligands, deltaC (dlc) and deltaD (dld), whose combined function is required for HSC fate. How Wnt16 connects to Notch function has remained an open question. Our current studies demonstrate that FGF signaling, via FGF receptor 4 (Fgfr4), mediates a signal transduction pathway between Wnt16 and Dlc, but not Dld, to regulate HSC specification. Our findings demonstrate that FGF signaling acts as a key molecular relay within the developmental HSC niche to instruct HSC fate.
Collapse
Affiliation(s)
- Yoonsung Lee
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Jennifer E Manegold
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Albert D Kim
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Claire Pouget
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - David L Stachura
- 1] Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Biological Sciences, California State University, Chico, California 95929, USA
| | - Wilson K Clements
- 1] Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David Traver
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
126
|
|
127
|
Moreno-Risueno MA, Benfey PN. Time-based patterning in development: The role of oscillating gene expression. Transcription 2014; 2:124-129. [PMID: 21826283 DOI: 10.4161/trns.2.3.15637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/12/2023] Open
Abstract
Oscillating gene expression is a mechanism of patterning during development in both plants and animals. In vertebrates, oscillating gene expression establishes the musculoskeletal precursors (somites), while in plant roots it establishes the position of future organs (lateral roots). Both mechanisms constitute a specialized type of biological clock that converts temporal information into precise spatial patterns. Similarities, differences, and their functionality in organisms that evolved independently are discussed.
Collapse
|
128
|
Caudal regulates the spatiotemporal dynamics of pair-rule waves in Tribolium. PLoS Genet 2014; 10:e1004677. [PMID: 25329152 PMCID: PMC4199486 DOI: 10.1371/journal.pgen.1004677] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022] Open
Abstract
In the short-germ beetle Tribolium castaneum, waves of pair-rule gene expression propagate from the posterior end of the embryo towards the anterior and eventually freeze into stable stripes, partitioning the anterior-posterior axis into segments. Similar waves in vertebrates are assumed to arise due to the modulation of a molecular clock by a posterior-to-anterior frequency gradient. However, neither a molecular candidate nor a functional role has been identified to date for such a frequency gradient, either in vertebrates or elsewhere. Here we provide evidence that the posterior gradient of Tc-caudal expression regulates the oscillation frequency of pair-rule gene expression in Tribolium. We show this by analyzing the spatiotemporal dynamics of Tc-even-skipped expression in strong and mild knockdown of Tc-caudal, and by correlating the extension, level and slope of the Tc-caudal expression gradient to the spatiotemporal dynamics of Tc-even-skipped expression in wild type as well as in different RNAi knockdowns of Tc-caudal regulators. Further, we show that besides its absolute importance for stripe generation in the static phase of the Tribolium blastoderm, a frequency gradient might serve as a buffer against noise during axis elongation phase in Tribolium as well as vertebrates. Our results highlight the role of frequency gradients in pattern formation. One of the most popular problems in development is how the anterior-posterior axis of vertebrates, arthropods and annelids is partitioned into segments. In vertebrates, and recently shown in the beetle Tribolium castaneum, segments are demarcated by means of gene expression waves that propagate from posterior to anterior as the embryo elongates. These waves are assumed to arise due to the regulation of a molecular clock by a frequency gradient. However, to date, neither a candidate nor a functional role has been identified for such a frequency gradient. Here we provide evidence that a static expression gradient of caudal regulates pair-rule oscillations during blastoderm stage in Tribolium. In such a static setup, a frequency gradient is essential to convert clock oscillations into a striped pattern. We further show that a frequency gradient might be essential even in the presence of axis elongation as a buffer against noise. Our work also provides the best evidence to date that Caudal acts as a type of morphogen gradient in the blastoderm of short-germ arthropods; however, Caudal seems to convey positional information through frequency regulation of pair-rule oscillations, rather than through threshold concentration levels in the gradient.
Collapse
|
129
|
Tiedemann HB, Schneltzer E, Zeiser S, Wurst W, Beckers J, Przemeck GKH, Hrabě de Angelis M. Fast synchronization of ultradian oscillators controlled by delta-notch signaling with cis-inhibition. PLoS Comput Biol 2014; 10:e1003843. [PMID: 25275459 PMCID: PMC4196275 DOI: 10.1371/journal.pcbi.1003843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/03/2014] [Indexed: 01/09/2023] Open
Abstract
While it is known that a large fraction of vertebrate genes are under the control of a gene regulatory network (GRN) forming a clock with circadian periodicity, shorter period oscillatory genes like the Hairy-enhancer-of split (Hes) genes are discussed mostly in connection with the embryonic process of somitogenesis. They form the core of the somitogenesis-clock, which orchestrates the periodic separation of somites from the presomitic mesoderm (PSM). The formation of sharp boundaries between the blocks of many cells works only when the oscillators in the cells forming the boundary are synchronized. It has been shown experimentally that Delta-Notch (D/N) signaling is responsible for this synchronization. This process has to happen rather fast as a cell experiences at most five oscillations from its 'birth' to its incorporation into a somite. Computer simulations describing synchronized oscillators with classical modes of D/N-interaction have difficulties to achieve synchronization in an appropriate time. One approach to solving this problem of modeling fast synchronization in the PSM was the consideration of cell movements. Here we show that fast synchronization of Hes-type oscillators can be achieved without cell movements by including D/N cis-inhibition, wherein the mutual interaction of DELTA and NOTCH in the same cell leads to a titration of ligand against receptor so that only one sort of molecule prevails. Consequently, the symmetry between sender and receiver is partially broken and one cell becomes preferentially sender or receiver at a given moment, which leads to faster entrainment of oscillators. Although not yet confirmed by experiment, the proposed mechanism of enhanced synchronization of mesenchymal cells in the PSM would be a new distinct developmental mechanism employing D/N cis-inhibition. Consequently, the way in which Delta-Notch signaling was modeled so far should be carefully reconsidered.
Collapse
Affiliation(s)
- Hendrik B. Tiedemann
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Elida Schneltzer
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Chair of Developmental Genetics, Freising, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
| | - Gerhard K. H. Przemeck
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
- * E-mail:
| |
Collapse
|
130
|
Hes7 3'UTR is required for somite segmentation function. Sci Rep 2014; 4:6462. [PMID: 25248974 PMCID: PMC4173035 DOI: 10.1038/srep06462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/01/2014] [Indexed: 01/27/2023] Open
Abstract
A set of genes in the posterior end of developing mouse embryos shows oscillatory expression, thereby regulating periodic somite segmentation. Although the mechanism for generating oscillation has extensively been clarified, what regulates the oscillation period is still unclear. We attempted to elongate the oscillation period by increasing the time to transcribe Hes7 in this research. We generated knock-in mice, in which a large intron was inserted into Hes7 3′UTR. The exogenous intron was unexpectedly not properly spliced out and the transcripts were prematurely terminated. Consequently, Hes7 mRNA lost its 3′UTR, thereby reducing the amount of Hes7 protein. Oscillation was damped in the knock-in embryos and periodic somite segmentation does not occur properly. Thus, we demonstrated that Hes7 3′UTR is essential to accumulate adequate amounts of Hes7 protein for the somite segmentation clock that orchestrates periodic somite formation.
Collapse
|
131
|
Curran KL, Allen L, Porter BB, Dodge J, Lope C, Willadsen G, Fisher R, Johnson N, Campbell E, VonBergen B, Winfrey D, Hadley M, Kerndt T. Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis. PLoS One 2014; 9:e108266. [PMID: 25238599 PMCID: PMC4169625 DOI: 10.1371/journal.pone.0108266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/20/2014] [Indexed: 02/06/2023] Open
Abstract
We have been investigating whether xBmal1 and xNocturnin play a role in somitogenesis, a cyclic developmental process with an ultradian period. Previous work from our lab shows that circadian genes (xPeriod1, xPeriod2, xBmal1, and xNocturnin) are expressed in developing somites. Somites eventually form the vertebrae, muscles of the back, and dermis. In Xenopus, a pair of somites is formed about every 50 minutes from anterior to posterior. We were intrigued by the co-localization of circadian genes in an embryonic tissue known to be regulated by an ultradian clock. Cyclic expression of genes involved in Notch signaling has been implicated in the somite clock. Disruption of Notch signaling in humans has been linked to skeletal defects in the vertebral column. We found that both depletion (morpholino) and overexpression (mRNA) of xBMAL1 protein (bHLH transcription factor) or xNOCTURNIN protein (deadenylase) on one side of the developing embryo led to a significant decrease in somite number with respect to the untreated side (p<0.001). These manipulations also significantly affect expression of a somite clock component (xESR9; p<0.05). We observed opposing effects on somite size. Depletion of xBMAL1 or xNOCTURNIN caused a statistically significant decrease in somite area (quantified using NIH ImageJ; p<0.002), while overexpression of these proteins caused a significant dose dependent increase in somite area (p<0.02; p<0.001, respectively). We speculate that circadian genes may play two separate roles during somitogenesis. Depletion and overexpression of xBMAL1 and NOCTURNIN both decrease somite number and influence expression of a somite clock component, suggesting that these proteins may modulate the timing of the somite clock in the undifferentiated presomitic mesoderm. The dosage dependent effects on somite area suggest that xBMAL1 and xNOCTURNIN may also act during somite differentiation to promote myogenesis.
Collapse
Affiliation(s)
- Kristen L. Curran
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Latoya Allen
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Brittany Bronson Porter
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Joseph Dodge
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Chelsea Lope
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Gail Willadsen
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Rachel Fisher
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Nicole Johnson
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Elizabeth Campbell
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Brett VonBergen
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Devon Winfrey
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Morgan Hadley
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Thomas Kerndt
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| |
Collapse
|
132
|
Collu GM, Hidalgo-Sastre A, Brennan K. Wnt-Notch signalling crosstalk in development and disease. Cell Mol Life Sci 2014; 71:3553-67. [PMID: 24942883 PMCID: PMC11113451 DOI: 10.1007/s00018-014-1644-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The Notch and Wnt pathways are two of only a handful of highly conserved signalling pathways that control cell-fate decisions during animal development (Pires-daSilva and Sommer in Nat Rev Genet 4: 39-49, 2003). These two pathways are required together to regulate many aspects of metazoan development, ranging from germ layer patterning in sea urchins (Peter and Davidson in Nature 474: 635-639, 2011) to the formation and patterning of the fly wing (Axelrod et al in Science 271:1826-1832, 1996; Micchelli et al in Development 124:1485-1495, 1997; Rulifson et al in Nature 384:72-74, 1996), the spacing of the ciliated cells in the epidermis of frog embryos (Collu et al in Development 139:4405-4415, 2012) and the maintenance and turnover of the skin, gut lining and mammary gland in mammals (Clayton et al in Nature 446:185-189, 2007; Clevers in Cell 154:274-284, 2013; Doupe et al in Dev Cell 18:317-323, 2010; Lim et al in Science 342:1226-1230, 2013; Lowell et al in Curr Biol 10:491-500, 2000; van et al in Nature 435:959-963, 2005; Yin et al in Nat Methods 11:106-112, 2013). In addition, many diseases, including several cancers, are caused by aberrant signalling through the two pathways (Bolós et al in Endocr Rev 28: 339-363, 2007; Clevers in Cell 127: 469-480, 2006). In this review, we will outline the two signalling pathways, describe the different points of interaction between them, and cover how these interactions influence development and disease.
Collapse
Affiliation(s)
- Giovanna M Collu
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK,
| | | | | |
Collapse
|
133
|
Oksenberg N, Haliburton GDE, Eckalbar WL, Oren I, Nishizaki S, Murphy K, Pollard KS, Birnbaum RY, Ahituv N. Genome-wide distribution of Auts2 binding localizes with active neurodevelopmental genes. Transl Psychiatry 2014; 4:e431. [PMID: 25180570 PMCID: PMC4199417 DOI: 10.1038/tp.2014.78] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/14/2014] [Accepted: 07/26/2014] [Indexed: 12/16/2022] Open
Abstract
The autism susceptibility candidate 2 gene (AUTS2) has been associated with multiple neurological diseases including autism spectrum disorders (ASDs). Previous studies showed that AUTS2 has an important neurodevelopmental function and is a suspected master regulator of genes implicated in ASD-related pathways. However, the regulatory role and targets of Auts2 are not well known. Here, by using ChIP-seq (chromatin immunoprecipitation followed by deep sequencing) and RNA-seq on mouse embryonic day 16.5 forebrains, we elucidated the gene regulatory networks of Auts2. We find that the majority of promoters bound by Auts2 belong to genes highly expressed in the developing forebrain, suggesting that Auts2 is involved in transcriptional activation. Auts2 non-promoter-bound regions significantly overlap developing brain-associated enhancer marks and are located near genes involved in neurodevelopment. Auts2-marked sequences are enriched for binding site motifs of neurodevelopmental transcription factors, including Pitx3 and TCF3. In addition, we characterized two functional brain enhancers marked by Auts2 near NRXN1 and ATP2B2, both ASD-implicated genes. Our results implicate Auts2 as an active regulator of important neurodevelopmental genes and pathways and identify novel genomic regions that could be associated with ASD and other neurodevelopmental diseases.
Collapse
Affiliation(s)
- N Oksenberg
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - G D E Haliburton
- Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Gladstone Institutes, San
Francisco, CA, USA
| | - W L Eckalbar
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - I Oren
- Department of Life Sciences, Ben Gurion University of
the Negev, Beer Sheva, Israel
| | - S Nishizaki
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - K Murphy
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - K S Pollard
- Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Gladstone Institutes, San
Francisco, CA, USA,Division of Biostatistics, University of California
San Francisco, San Francisco, CA, USA
| | - R Y Birnbaum
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Department of Life Sciences, Ben Gurion University of
the Negev, Beer Sheva, Israel,Department of Bioengineering and Therapeutic Sciences, University of
California San Francisco, 1550 4th Street, Rock Hall, RH584C, San Francisco,
CA
94158, USA. E-mails: or
| | - N Ahituv
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Department of Bioengineering and Therapeutic Sciences, University of
California San Francisco, 1550 4th Street, Rock Hall, RH584C, San Francisco,
CA
94158, USA. E-mails: or
| |
Collapse
|
134
|
Rashid DJ, Chapman SC, Larsson HC, Organ CL, Bebin AG, Merzdorf CS, Bradley R, Horner JR. From dinosaurs to birds: a tail of evolution. EvoDevo 2014; 5:25. [PMID: 25621146 PMCID: PMC4304130 DOI: 10.1186/2041-9139-5-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/10/2014] [Indexed: 01/09/2023] Open
Abstract
A particularly critical event in avian evolution was the transition from long- to short-tailed birds. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. These changes, among others, occurred over a very short evolutionary interval, which brings into focus the underlying mechanisms behind those changes. Despite the wealth of studies delving into avian evolution, virtually nothing is understood about the genetic and developmental events responsible for the emergence of short, fused tails. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. To generate a list of candidate genes that may have been modulated in the transition to short-tailed birds, we analyzed a comprehensive set of mouse mutants. Interestingly, a prevalent pleiotropic effect of mutations that cause fused caudal vertebral bodies (as in the pygostyles of birds) is tail truncation. We identified 23 mutations in this class, and these were primarily restricted to genes involved in axial extension. At least half of the mutations that cause short, fused tails lie in the Notch/Wnt pathway of somite boundary formation or differentiation, leading to changes in somite number or size. Several of the mutations also cause additional bone fusions in the trunk skeleton, reminiscent of those observed in primitive and modern birds. All of our findings were correlated to the fossil record. An open question is whether the relatively sudden appearance of short-tailed birds in the fossil record could be accounted for, at least in part, by the pleiotropic effects generated by a relatively small number of mutational events.
Collapse
Affiliation(s)
- Dana J Rashid
- Museum of the Rockies, Montana State University, 600 West Kagy Blvd, Bozeman, MT 59717, USA
| | - Susan C Chapman
- Department of Biological Sciences, Clemson University, 340 Long Hall, Clemson, SC 29634, USA
| | - Hans Ce Larsson
- Redpath Museum, McGill University, 859 Sherbrooke Street W., Montreal, Quebec H3A 0C4, Canada
| | - Chris L Organ
- Museum of the Rockies, Montana State University, 600 West Kagy Blvd, Bozeman, MT 59717, USA ; Department of Earth Sciences, Montana State University, 226 Traphagen Hall, Bozeman, MT 59717, USA
| | - Anne-Gaelle Bebin
- Museum of the Rockies, Montana State University, 600 West Kagy Blvd, Bozeman, MT 59717, USA ; Current address: Vaccine and Gene Therapy FL, 9801 Discovery Way, Port Lucie, FL 34987, USA
| | - Christa S Merzdorf
- Department of Cell Biology & Neuroscience, Montana State University, 513 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Roger Bradley
- Department of Cell Biology & Neuroscience, Montana State University, 513 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - John R Horner
- Museum of the Rockies, Montana State University, 600 West Kagy Blvd, Bozeman, MT 59717, USA
| |
Collapse
|
135
|
Abstract
The Notch signalling pathway is evolutionarily conserved and is crucial for the development and homeostasis of most tissues. Deregulated Notch signalling leads to various diseases, such as T cell leukaemia, Alagille syndrome and a stroke and dementia syndrome known as CADASIL, and so strategies to therapeutically modulate Notch signalling are of interest. Clinical trials of Notch pathway inhibitors in patients with solid tumours have been reported, and several approaches are under preclinical evaluation. In this Review, we focus on aspects of the pathway that are amenable to therapeutic intervention, diseases that could be targeted and the various Notch pathway modulation strategies that are currently being explored.
Collapse
|
136
|
Harima Y, Imayoshi I, Shimojo H, Kobayashi T, Kageyama R. The roles and mechanism of ultradian oscillatory expression of the mouse Hes genes. Semin Cell Dev Biol 2014; 34:85-90. [PMID: 24865153 DOI: 10.1016/j.semcdb.2014.04.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/10/2014] [Accepted: 04/30/2014] [Indexed: 12/22/2022]
Abstract
Somites, metameric structures, give rise to the vertebral column, ribs, skeletal muscles and subcutaneous tissues. In mouse embryos, a pair of somites is formed every 2h by segmentation of the anterior parts of the presomitic mesoderm. This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 oscillation is regulated by negative feedback with a delayed timing. This process has been mathematically simulated by differential-delay equations, which predict that negative feedback with shorter delays would abolish oscillations or produce dampened but more rapid oscillations. We found that reducing the number of introns within the Hes7 gene shortens the delay and abolishes Hes7 oscillation or results in a more rapid tempo of Hes7 oscillation, increasing the number of somites and vertebrae in the cervical and upper thoracic region. We also found that Hes1, a Hes7-related gene, is expressed in an oscillatory manner by many cell types, including fibroblasts and neural stem cells. In these cells, Hes1 expression oscillates with a period of about 2-3h, and this oscillation is important for cell cycle progression. Furthermore, in neural stem cells, Hes1 oscillation drives cyclic expression of the proneural genes Ascl1 and Neurogenin2 and regulates multipotency. Hes1 expression oscillates more slowly in embryonic stem cells, and Hes1 oscillation regulates their fate preferences. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) is important for many biological events.
Collapse
Affiliation(s)
- Yukiko Harima
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Itaru Imayoshi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; The Hakubi Center, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromi Shimojo
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taeko Kobayashi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
137
|
Timing embryo segmentation: dynamics and regulatory mechanisms of the vertebrate segmentation clock. BIOMED RESEARCH INTERNATIONAL 2014; 2014:718683. [PMID: 24895605 PMCID: PMC4033425 DOI: 10.1155/2014/718683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022]
Abstract
All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations.
Collapse
|
138
|
Fongang B, Kudlicki A. The precise timeline of transcriptional regulation reveals causation in mouse somitogenesis network. BMC DEVELOPMENTAL BIOLOGY 2013; 13:42. [PMID: 24304493 PMCID: PMC4235037 DOI: 10.1186/1471-213x-13-42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/15/2013] [Indexed: 11/23/2022]
Abstract
Background In vertebrate development, the segmental pattern of the body axis is established as somites, masses of mesoderm distributed along the two sides of the neural tube, are formed sequentially in the anterior-posterior axis. This mechanism depends on waves of gene expression associated with the Notch, Fgf and Wnt pathways. The underlying transcriptional regulation has been studied by whole-transcriptome mRNA profiling; however, interpretation of the results is limited by poor resolution, noisy data, small sample size and by the absence of a wall clock to assign exact time for recorded points. Results We present a method of Maximum Entropy deconvolution in both space and time and apply it to extract, from microarray timecourse data, the full spatiotemporal expression profiles of genes involved in mouse somitogenesis. For regulated genes, we have reconstructed the temporal profiles and determined the timing of expression peaks along the somite cycle to a single-minute resolution. Our results also indicate the presence of a new class of genes (including Raf1 and Hes7) with two peaks of activity in two distinct phases of the somite cycle. We demonstrate that the timeline of gene expression precisely reflects their functions in the biochemical pathways and the direction of causation in the regulatory networks. Conclusions By applying a novel framework for data analysis, we have shown a striking correspondence between gene expression times and their interactions and regulations during somitogenesis. These results prove the key role of finely tuned transcriptional regulation in the process. The presented method can be readily applied to studying somite formation in other datasets and species, and to other spatiotemporal processes.
Collapse
Affiliation(s)
| | - Andrzej Kudlicki
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
139
|
Brigandt I. Systems biology and the integration of mechanistic explanation and mathematical explanation. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2013; 44:477-492. [PMID: 23863399 DOI: 10.1016/j.shpsc.2013.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
The paper discusses how systems biology is working toward complex accounts that integrate explanation in terms of mechanisms and explanation by mathematical models-which some philosophers have viewed as rival models of explanation. Systems biology is an integrative approach, and it strongly relies on mathematical modeling. Philosophical accounts of mechanisms capture integrative in the sense of multilevel and multifield explanations, yet accounts of mechanistic explanation (as the analysis of a whole in terms of its structural parts and their qualitative interactions) have failed to address how a mathematical model could contribute to such explanations. I discuss how mathematical equations can be explanatorily relevant. Several cases from systems biology are discussed to illustrate the interplay between mechanistic research and mathematical modeling, and I point to questions about qualitative phenomena (rather than the explanation of quantitative details), where quantitative models are still indispensable to the explanation. Systems biology shows that a broader philosophical conception of mechanisms is needed, which takes into account functional-dynamical aspects, interaction in complex networks with feedback loops, system-wide functional properties such as distributed functionality and robustness, and a mechanism's ability to respond to perturbations (beyond its actual operation). I offer general conclusions for philosophical accounts of explanation.
Collapse
Affiliation(s)
- Ingo Brigandt
- Department of Philosophy, University of Alberta, 2-40 Assiniboia Hall, Edmonton, AB T6G2E7, Canada.
| |
Collapse
|
140
|
Nitanda Y, Matsui T, Matta T, Higami A, Kohno K, Nakahata Y, Bessho Y. 3'-UTR-dependent regulation of mRNA turnover is critical for differential distribution patterns of cyclic gene mRNAs. FEBS J 2013; 281:146-56. [PMID: 24165510 DOI: 10.1111/febs.12582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022]
Abstract
Somite segmentation, a prominent periodic event in the development of vertebrates, is instructed by cyclic expression of several genes, including Hes7 and Lunatic fringe (Lfng). Transcriptional regulation accounts for the cyclic expression. In addition, because the expression patterns vary in a cycle, rapid turnover of mRNAs should be involved in the cyclic expression, although its contribution remains unclear. Here, we demonstrate that 3'-UTR-dependent rapid turnover of Lfng and Hes7 plays a critical role in their dynamic expression patterns. The regions active in the transcription of Lfng and Hes7 are wholly overlapped in the posterior presomitic mesoderm (PSM) of the mouse embryo. However, their distribution patterns are slightly different; Hes7 mRNA shows a broader distribution pattern than Lfng mRNA in the posterior PSM. Lfng mRNA is less stable than Hes7 mRNA, where their 3'-UTRs are responsible for the different stability. Using transgenic mice expressing Venus under the control of the Hes7 promoter, which leads to cyclic transcription in the PSM, we reveal that the Lfng 3'-UTR provides the narrow distribution pattern of Lfng mRNA, whereas the Hes7 3'-UTR contributes the relatively broad distribution pattern of Hes7 mRNA. Thus, we conclude that 3'-UTR-dependent mRNA stability accounts for the differential distribution patterns of Lfng and Hes7 mRNA. Our findings suggest that 3'-UTR-dependent regulation of mRNA turnover plays a crucial role in the diverse patterns of mRNA distribution during development.
Collapse
Affiliation(s)
- Yasuhide Nitanda
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
141
|
Rodríguez-Seguel E, Mah N, Naumann H, Pongrac IM, Cerdá-Esteban N, Fontaine JF, Wang Y, Chen W, Andrade-Navarro MA, Spagnoli FM. Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. Genes Dev 2013; 27:1932-46. [PMID: 24013505 PMCID: PMC3778245 DOI: 10.1101/gad.220244.113] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A key question in stem cell biology is how distinct cell types arise from common multipotent progenitor cells. It is unknown how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates. Using RNA-seq, Spagnoli and colleagues define the gene expression programs of liver and pancreas progenitors and identify the noncanonical Wnt pathway as a potential developmental regulator of this fate decision. Furthermore, this study provides a framework for lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells. Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells.
Collapse
|
142
|
Tiana G, Jensen MH. The dynamics of genetic control in the cell: the good and bad of being late. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120469. [PMID: 23960227 DOI: 10.1098/rsta.2012.0469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The expression of genes in the cell is controlled by a complex interaction network involving proteins, RNA and DNA. The molecular events associated with the nodes of such a network take place on a variety of time scales, and thus cannot be regarded as instantaneous. In many cases, the cell is robust with respect to the delay in gene expression control, behaving as if it were instantaneous. However, there are specific cases in which delay gives rise to temporal oscillations. This is the case, for example, of the expression of tumour-suppressor protein p53, of protein Hes1, involved in the differentiation of stem cells, of NFkB and Wnt, in which case delay arises implicitly from the structure of the associated network. By means of delay rate equations, we study the kinetics of small regulatory networks, emphasizing the role of delay in an evolutionary context. These models suggest that oscillations are a typical outcome of the dynamics of regulatory networks, and evolution has to work to avoid them when not required (and not vice versa).
Collapse
Affiliation(s)
- G Tiana
- Department of Physics, Universitá degli Studi di Milano and INFN, via Celoria 16, 20133 Milan, Italy
| | | |
Collapse
|
143
|
Oksenberg N, Ahituv N. The role of AUTS2 in neurodevelopment and human evolution. Trends Genet 2013; 29:600-8. [PMID: 24008202 DOI: 10.1016/j.tig.2013.08.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 12/31/2022]
Abstract
The autism susceptibility candidate 2 (AUTS2) gene is associated with multiple neurological diseases, including autism, and has been implicated as an important gene in human-specific evolution. Recent functional analysis of this gene has revealed a potential role in neuronal development. Here, we review the literature regarding AUTS2, including its discovery, expression, association with autism and other neurological and non-neurological traits, implication in human evolution, function, regulation, and genetic pathways. Through progress in clinical genomic analysis, the medical importance of this gene is becoming more apparent, as highlighted in this review, but more work needs to be done to discover the precise function and the genetic pathways associated with AUTS2.
Collapse
Affiliation(s)
- Nir Oksenberg
- Department of Bioengineering and Therapeutic Sciences, and Institute for Human Genetics, University of California, San Francisco (UCSF), 1550 4th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
144
|
Kusumi K, May CM, Eckalbar WL. A large-scale view of the evolution of amniote development: insights from somitogenesis in reptiles. Curr Opin Genet Dev 2013; 23:491-7. [DOI: 10.1016/j.gde.2013.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/30/2022]
|
145
|
Abstract
Body axis elongation and segmentation are major morphogenetic events that take place concomitantly during vertebrate embryonic development. Establishment of the final body plan requires tight coordination between these two key processes. In this review, we detail the cellular and molecular as well as the physical processes underlying body axis formation and patterning. We discuss how formation of the anterior region of the body axis differs from that of the posterior region. We describe the developmental mechanism of segmentation and the regulation of body length and segment numbers. We focus mainly on the chicken embryo as a model system. Its accessibility and relatively flat structure allow high-quality time-lapse imaging experiments, which makes it one of the reference models used to study morphogenesis. Additionally, we illustrate conservation and divergence of specific developmental mechanisms by discussing findings in other major embryonic model systems, such as mice, frogs, and zebrafish.
Collapse
Affiliation(s)
- Bertrand Bénazéraf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Université de Strasbourg, Illkirch F-67400, France;
| | | |
Collapse
|
146
|
Lopez TP, Fan CM. Dynamic CREB family activity drives segmentation and posterior polarity specification in mammalian somitogenesis. Proc Natl Acad Sci U S A 2013; 110:E2019-27. [PMID: 23671110 PMCID: PMC3670316 DOI: 10.1073/pnas.1222115110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The segmented body plan of vertebrates is prefigured by reiterated embryonic mesodermal structures called somites. In the mouse embryo, timely somite formation from the presomitic mesoderm (PSM) is controlled by the "segmentation clock," a molecular oscillator that triggers progressive waves of Notch activity throughout the PSM. Notch clock activity is suppressed in the posterior PSM by FGF signaling until it crosses a determination front at which its net activity is sufficiently high to effect segmentation. Here, Notch and Wnt signaling directs somite anterior/posterior (A/P) polarity specification and boundary formation via regulation of the segmentation effector gene Mesoderm posterior 2. How Notch and Wnt signaling becomes coordinated at this front is incompletely defined. Here we show that the activity of the cAMP responsive element binding protein (CREB) family of transcription factors exhibits Wnt3a-dependent oscillatory behavior near the determination front and is in unison with Notch activity. Inhibition of CREB family in the mesoderm causes defects in somite segmentation and a loss in somite posterior polarity leading to fusions of vertebrae and ribs. Among the CREB family downstream genes, several are known to be regulated by Wnt3a. Of those, we show that the CREB family occupies a conserved binding site in the promoter region of Delta-like 1, encoding a Notch ligand, in the anterior PSM as a mechanism to specify posterior identity of somites. Together, these data support that the CREB family acts at the determination front to modulate Wnt signaling and strengthen Notch signaling as a means to orchestrate cells for somite segmentation and anterior/posterior patterning.
Collapse
Affiliation(s)
- T. Peter Lopez
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218; and
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218
| | - Chen-Ming Fan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218; and
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218
| |
Collapse
|
147
|
|
148
|
Ten Tusscher KHWJ. Mechanisms and constraints shaping the evolution of body plan segmentation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:54. [PMID: 23708840 DOI: 10.1140/epje/i2013-13054-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Segmentation of the major body axis into repeating units is arguably one of the major inventions in the evolution of animal body plan pattering. It is found in current day vertebrates, annelids and arthropods. Most segmented animals seem to use a clock-and-wavefront type mechanism in which oscillations emanating from a posterior growth zone become transformed into an anterior posterior sequence of segments. In contrast, few animals such as Drosophila use a complex gene regulatory hierarchy to simultaneously subdivide their entire body axis into segments. Here I discuss how in silico models simulating the evolution of developmental patterning can be used to investigate the forces and constraints that helped shape these two developmental modes. I perform an analysis of a series of previous simulation studies, exploiting the similarities and differences in their outcomes in relation to model characteristics to elucidate the circumstances and constraints likely to have been important for the evolution of sequential and simultaneous segmentation modes. The analysis suggests that constraints arising from the involved growth process and spatial patterning signal--posterior elongation producing a propagating wavefront versus a tissue wide morphogen gradient--and the evolutionary history--ancestral versus derived segmentation mode--strongly shaped both segmentation mechanisms. Furthermore, this implies that these patterning types are to be expected rather than random evolutionary outcomes and supports the likelihood of multiple parallel evolutionary origins.
Collapse
Affiliation(s)
- K H W J Ten Tusscher
- Theoretical Biology and Bioinformactics Group, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands.
| |
Collapse
|
149
|
Wang HY, Huang YX, Qi YF, Zhang Y, Bao YL, Sun LG, Zheng LH, Zhang YW, Ma ZQ, Li YX. Mathematical models for the Notch and Wnt signaling pathways and the crosstalk between them during somitogenesis. Theor Biol Med Model 2013; 10:27. [PMID: 23602012 PMCID: PMC3648501 DOI: 10.1186/1742-4682-10-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/15/2013] [Indexed: 12/03/2022] Open
Abstract
Background Somitogenesis is a fundamental characteristic feature of development in various animal embryos. Molecular evidence has proved that the Notch and Wnt pathways play important roles in regulating the process of somitogenesis and there is crosstalk between these two pathways. However, it is difficult to investigate the detailed mechanism of these two pathways and their interactions in somitogenesis through biological experiments. In recent years some mathematical models have been proposed for the purpose of studying the dynamics of the Notch and Wnt pathways in somitogenesis. Unfortunately, only a few of these models have explored the interactions between them. Results In this study, we have proposed three mathematical models for the Notch signalling pathway alone, the Wnt signalling pathway alone, and the interactions between them. These models can simulate the dynamics of the Notch and Wnt pathways in somitogenesis, and are capable of reproducing the observations derived from wet experiments. They were used to investigate the molecular mechanisms of the Notch and Wnt pathways and their crosstalk in somitogenesis through the model simulations. Conclusions Three mathematical models are proposed for the Notch and Wnt pathways and their interaction during somitogenesis. The simulations demonstrate that the extracellular Notch and Wnt signals are essential for the oscillating expressions of both Notch and Wnt target genes. Moreover, the internal negative feedback loops and the three levels of crosstalk between these pathways play important but distinct roles in maintaining the system oscillation. In addition, the results of the parameter sensitivity analysis of the models indicate that the Notch pathway is more sensitive to perturbation in somitogenesis.
Collapse
Affiliation(s)
- Hong-yan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Grabias BM, Konstantopoulos K. Notch4-dependent antagonism of canonical TGF-β1 signaling defines unique temporal fluctuations of SMAD3 activity in sheared proximal tubular epithelial cells. Am J Physiol Renal Physiol 2013; 305:F123-33. [PMID: 23576639 DOI: 10.1152/ajprenal.00594.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is thought to drive fibrogenesis in numerous organ systems. However, we recently established that ectopic expression of TGF-β1 abrogates collagen accumulation via canonical SMAD signaling mechanisms in a shear-induced model of kidney fibrosis. We herein delineate the temporal control of endogenous TGF-β1 signaling that generates sustained synchronous fluctuations in TGF-β1 cascade activation in shear-stimulated proximal tubule epithelial cells (PTECs). During 8-h exposure to physiological shear stress (0.3 dyn/cm²), PTECs experience in situ oscillatory concentrations of active endogenous TGF-β1 that are ~10-fold greater than those detected under higher stress regimes (2-4 dyn/cm²). The elevated levels of intrinsic TGF-β1 maturation observed under physiological conditions are accompanied by persistent downstream SMAD3 activation. Pathological shear stresses (2 dyn/cm²) first elicit temporal variations in phosphorylated SMAD3 with an apparent period of ~6 h, whereas even higher stresses (4 dyn/cm²) abolish SMAD3 activation. These divergent patterns of SMAD3 activation are attributed to varying levels of Notch4-dependent phospho-SMAD3 degradation. Depletion of Notch4 in shear-stimulated PTECs eventually increases the levels of active TGF-β1 protein by approximately fivefold, recovers stable SMAD phosphorylation and ubiquitinated SMAD species, and attenuates collagen accumulation. Collectively, these data establish Notch4 as a critical mediator of shear-induced fibrosis and further reinforce the renoprotective effects of canonical TGF-β1 signaling.
Collapse
Affiliation(s)
- Bryan M Grabias
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|