101
|
Kreslavsky T, Gleimer M, Garbe AI, von Boehmer H. αβ versus γδ fate choice: counting the T-cell lineages at the branch point. Immunol Rev 2011; 238:169-81. [PMID: 20969592 DOI: 10.1111/j.1600-065x.2010.00947.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both αβ and γδ T cells develop in the thymus from a common progenitor. Historically distinguished by their T-cell receptor (TCR), these lineages are now defined on the basis of distinct molecular programs. Intriguingly, in many transgenic and knockout systems these programs are mismatched with the TCR type, leading to the development of γδ lineage cells driven by αβTCR and vice versa. These puzzling observations were recently explained by the demonstration that TCR signal strength, rather than TCR type per se, instructs lineage fate, with stronger TCR signal favoring γδ and weaker signal favoring αβ lineage fates. These studies also highlighted the ERK (extracellular signal regulated kinase)-Egr (early growth response)-Id3 (inhibitor of differentiation 3) axis as a potential molecular switch downstream of TCR that determines lineage choice. Indeed, removal of Id3 was sufficient to redirect TCRγδ transgenic cells to the αβ lineage, even in the presence of strong TCR signal. However, in TCR non-transgenic Id3 knockout mice the overall number of γδ lineage cells was increased due to an outgrowth of a Vγ1Vδ6.3 subset, suggesting that not all γδ T cells depend on this molecular switch for lineage commitment. Thus, the γδ lineage may in fact be a collection of two or more lineages not sharing a common molecular program and thus equipollent to the αβ lineage. TCR signaling is not the only factor that is required for development of αβ and γδ lineage cells; other pathways, such as signaling from Notch and CXCR4 receptors, cooperate with the TCR in this process.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Laboratory of Lymphocyte Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
102
|
Zhong L, Wang D, Gan X, Yang T, He S. Parallel expansions of Sox transcription factor group B predating the diversifications of the arthropods and jawed vertebrates. PLoS One 2011; 6:e16570. [PMID: 21305035 PMCID: PMC3029401 DOI: 10.1371/journal.pone.0016570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/21/2010] [Indexed: 12/31/2022] Open
Abstract
Group B of the Sox transcription factor family is crucial in embryo development in the insects and vertebrates. Sox group B, unlike the other Sox groups, has an unusually enlarged functional repertoire in insects, but the timing and mechanism of the expansion of this group were unclear. We collected and analyzed data for Sox group B from 36 species of 12 phyla representing the major metazoan clades, with an emphasis on arthropods, to reconstruct the evolutionary history of SoxB in bilaterians and to date the expansion of Sox group B in insects. We found that the genome of the bilaterian last common ancestor probably contained one SoxB1 and one SoxB2 gene only and that tandem duplications of SoxB2 occurred before the arthropod diversification but after the arthropod-nematode divergence, resulting in the basal repertoire of Sox group B in diverse arthropod lineages. The arthropod Sox group B repertoire expanded differently from the vertebrate repertoire, which resulted from genome duplications. The parallel increases in the Sox group B repertoires of the arthropods and vertebrates are consistent with the parallel increases in the complexity and diversification of these two important organismal groups.
Collapse
Affiliation(s)
- Lei Zhong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dengqiang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoni Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tong Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
103
|
Feng N, Vegh P, Rothenberg EV, Yui MA. Lineage divergence at the first TCR-dependent checkpoint: preferential γδ and impaired αβ T cell development in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2010; 186:826-37. [PMID: 21148803 DOI: 10.4049/jimmunol.1002630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first TCR-dependent checkpoint in the thymus determines αβ versus γδ T lineage fate and sets the stage for later T cell differentiation decisions. We had previously shown that early T cells in NOD mice that are unable to rearrange a TCR exhibit a defect in checkpoint enforcement at this stage. To determine if T cell progenitors from wild-type NOD mice also exhibit cell-autonomous defects in development, we investigated their differentiation in the Notch-ligand-presenting OP9-DL1 coculture system, as well as by analysis of T cell development in vivo. Cultured CD4 and CD8 double-negative cells from NOD mice exhibited major defects in the generation of CD4 and CD8 double-positive αβ T cells, whereas γδ T cell development from bipotent precursors was enhanced. Limiting dilution and single-cell experiments show that the divergent effects on αβ and γδ T cell development did not spring from biased lineage choice but from increased proliferation of γδ T cells and impaired accumulation of αβ T lineage double-positive cells. In vivo, NOD early T cell subsets in the thymus also show characteristics indicative of defective β-selection, and peripheral αβ T cells are poorly established in mixed bone marrow chimeras, contrasting with strong γδ T as well as B cell repopulation. Thus, NOD T cell precursors reveal divergent, lineage-specific differentiation abnormalities in vitro and in vivo from the first TCR-dependent developmental choice point, which may have consequences for subsequent lineage decisions and effector functions.
Collapse
Affiliation(s)
- Ni Feng
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
104
|
Laird RM, Laky K, Hayes SM. Unexpected role for the B cell-specific Src family kinase B lymphoid kinase in the development of IL-17-producing γδ T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:6518-27. [PMID: 20974990 DOI: 10.4049/jimmunol.1002766] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ag receptors on αβ and γδ T cells differ not only in the nature of the ligands that they recognize but also in their signaling potential. We hypothesized that the differences in αβ- and γδTCR signal transduction were due to differences in the intracellular signaling pathways coupled to these two TCRs. To investigate this, we used transcriptional profiling to identify genes encoding signaling molecules that are differentially expressed in mature αβ and γδ T cell populations. Unexpectedly, we found that B lymphoid kinase (Blk), a Src family kinase expressed primarily in B cells, is expressed in γδ T cells but not in αβ T cells. Analysis of Blk-deficient mice revealed that Blk is required for the development of IL-17-producing γδ T cells. Furthermore, Blk is expressed in lymphoid precursors and, in this capacity, plays a role in regulating thymus cellularity during ontogeny.
Collapse
Affiliation(s)
- Renee M Laird
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
105
|
Abstract
T lymphocytes bearing γ- and δ-chain T-cell receptor heterodimers are named γδ T cells. Interestingly, γδ and αβ T cells share the same progenitors, and they undergo a fate decision in the thymus. Functional differentiation of γδ T cells occurs both inside and outside the thymus. Antigen recognition of γδ T-cell receptors is very unique, and the responses frequently exhibit innate characteristics. Nevertheless, peripheral γδ T cells exert a number of effector and regulatory functions. γδ T cells rapidly produce cytokines like interferon (IFN)-γ and IL-17 and promote inflammation, partly due to the inherent epigenetic and transcriptional programs, which facilitates a quick and extensive response. Moreover, γδ T cells lyse target cells directly, and this is necessary for pathogen or tumor clearance. γδ T cells can even serve as regulatory cells, and may contribute to immune suppression. Orchestration of γδ T-cell and other immune cell interactions may be critical for host defense and immune regulation. Recently, γδ T cells have been used for immunotherapy for infectious diseases and malignancy. In this review, we summarize the abstracts presented at the recent γδ T cell Conference held from 19 to 21 May 2010, in Kiel, Germany (please see the website for details: http://www.gammadelta-conference.uni-kiel.de/index.html).
Collapse
|
106
|
Abstract
The thymus produces several types of functionally distinct T cell subsets. However, at a more fundamental level only two genetically distinct T cell lineages exist: the γδ and αß T cell lineages. Precisely how these two T cell lineages are generated from common thymocyte progenitor cells remains to be fully elucidated and is under intense investigation. Here, we highlight recent findings that have helped to provide important clues to the mechanisms that underpin the generation of γδ T cells in the mouse thymus.
Collapse
|
107
|
Lee SY, Stadanlick J, Kappes DJ, Wiest DL. Towards a molecular understanding of the differential signals regulating alphabeta/gammadelta T lineage choice. Semin Immunol 2010; 22:237-46. [PMID: 20471282 PMCID: PMC2906684 DOI: 10.1016/j.smim.2010.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
While insights into the molecular processes that specify adoption of the alphabeta and gammadelta fates are beginning to emerge, the basis for control of specification remains highly controversial. This review highlights the current models attempting to explain T lineage commitment. Recent observations support the hypothesis that the T cell receptor (TCR) provides instructive cues through differences in TCR signaling intensity and/or longevity. Accordingly, we review evidence addressing the importance of differences in signal strength/longevity, how signals differing in intensity/longevity may be generated, and finally how such signals modulate the activity of downstream effectors to promote the opposing developmental fates.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Humans
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sang-Yun Lee
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Jason Stadanlick
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Dietmar J. Kappes
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L. Wiest
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
108
|
Abstract
The development of T cells in the thymus involves several differentiation and proliferation events, during which hematopoietic precursors give rise to T cells ready to respond to antigen stimulation and undergo effector differentiation. This review addresses signaling and transcriptional checkpoints that control the intrathymic journey of T cell precursors. We focus on the divergence of alphabeta and gammadelta lineage cells and the elaboration of the alphabeta T cell repertoire, with special emphasis on the emergence of transcriptional programs that direct lineage decisions.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage
- Gene Expression Regulation/immunology
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Andrea C Carpenter
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
109
|
Kreslavsky T, von Boehmer H. gammadeltaTCR ligands and lineage commitment. Semin Immunol 2010; 22:214-21. [PMID: 20447836 PMCID: PMC2912151 DOI: 10.1016/j.smim.2010.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/05/2010] [Indexed: 11/23/2022]
Abstract
Two major T lymphocyte lineages--alphabeta and gammadelta T cells--develop in the thymus from common precursors. Differentiation of both lineages requires signals coming from TCRs. Development of alphabeta T cells is driven at early stages by signaling from the pre-TCR, most likely in a ligand-independent fashion, and later--by signals delivered by alphabetaTCRs binding to their ligands--classical or non-classical MHC molecules. gammadelta lineage cells likewise require TCR signaling for their differentiation. Recent work from several groups suggests that TCR signaling not only ensures the developmental progression towards alphabeta and gammadelta lineages but that signal strength instructs lineage fate: weaker TCR signal results in alphabeta and stronger--in gammadelta lineage commitment. However, as most gammadeltaTCRs remain orphan receptors, it is still debated whether strong signals from gammadeltaTCRs in development are generated in a ligand-dependent manner (as in the case of alphabetaTCRs), ligand-independent manner (as for pre-TCR) or both. Here we summarize evidence supporting a possible role for ligands in gammadelta T cell lineage commitment and the generation of gammadelta sublineages.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Laboratory of Lymphocyte Biology, Cancer Immunology & AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Smith 736, Boston, MA 02115, USA
| | | |
Collapse
|
110
|
Hayes SM, Laird RM, Love PE. Beyond alphabeta/gammadelta lineage commitment: TCR signal strength regulates gammadelta T cell maturation and effector fate. Semin Immunol 2010; 22:247-51. [PMID: 20452783 PMCID: PMC3129014 DOI: 10.1016/j.smim.2010.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/02/2010] [Accepted: 04/14/2010] [Indexed: 12/25/2022]
Abstract
Signaling by the gammadelta T cell receptor (TCR) is required not only for alphabeta/gammadelta lineage commitment but also to activate and elicit effector functions in mature gammadelta T cells. Notably, at both of these stages, the signal delivered by the gammadeltaTCR is more robust than the one delivered by either the preTCR or the alphabetaTCR. Recent studies now provide evidence that signaling by the gammadeltaTCR is also required at other stages during gammadelta T cell development. Remarkably, the strength of the gammadeltaTCR signal also plays a role at these other stages, as evidenced by the findings that genetic manipulation of gammadeltaTCR signal strength affects gammadelta T cell maturation and effector fate. In this review, we discuss how a strong TCR signal is a recurring theme in gammadelta T cell development and activation.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sandra M Hayes
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
111
|
Narayan K, Kang J. Disorderly conduct in gammadelta versus alphabeta T cell lineage commitment. Semin Immunol 2010; 22:222-7. [PMID: 20451409 DOI: 10.1016/j.smim.2010.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/05/2010] [Indexed: 12/22/2022]
Abstract
The mechanism of T cell precursor commitment to the gammadelta or alphabeta T cell lineage remains unclear. While TCR signal strength has emerged as a key factor in lineage commitment based on TCR transgenic models, the entire TCR repertoire may not possess the same discriminatory power. A counterbalance to the TCR as the lineage determinant is the pre-existing heterogeneity in gene expression among precursors, which suggests that single precursors are unlikely to respond homogeneously to a given instructive signal.
Collapse
Affiliation(s)
- Kavitha Narayan
- Department of Pathology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, S3-137, Worcester, MA 01655, USA
| | | |
Collapse
|
112
|
Born WK, Yin Z, Hahn YS, Sun D, O'Brien RL. Analysis of gamma delta T cell functions in the mouse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4055-61. [PMID: 20368285 PMCID: PMC4476288 DOI: 10.4049/jimmunol.0903679] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse models of disease and injury have been invaluable in investigations of the functional role of gammadelta T cells. They show that gammadelta T cells engage in immune responses both early and late, that they can function both polyclonally and as peripherally selected clones, and that they can be effector cells and immune regulators. They also suggest that functional development of gammadelta T cells occurs stepwise in thymus and periphery, and that it is governed by gammadelta TCR-signaling and other signals. Finally, they indicate that gammadelta T cell functions often segregate with TCR-defined subsets, in contrast to conventional T cells. From the functional studies in mice and other animal models, gammadelta T cells emerge as a distinct lymphocyte population with a unique and broad functional repertoire, and with important roles in Ab responses, inflammation and tissue repair. They also are revealed as a potentially useful target for immune intervention.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Disease Models, Animal
- Humans
- Inflammation Mediators/physiology
- Mice
- Models, Animal
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/classification
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Thymus Gland/embryology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Willi K Born
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | |
Collapse
|
113
|
Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Dev Dyn 2010; 239:56-68. [PMID: 19655378 DOI: 10.1002/dvdy.22046] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The SOX family of transcription factors have emerged as modulators of canonical Wnt/beta-catenin signaling in diverse development and disease contexts. There are over 20 SOX proteins encoded in the vertebrate genome and recent evidence suggests that many of these can physically interact with beta-catenin and modulate the transcription of Wnt-target genes. The precise mechanisms by which SOX proteins regulate beta-catenin/TCF activity are still being resolved and there is evidence to support a number of models including: protein-protein interactions, the binding of SOX factors to Wnt-target gene promoters, the recruitment of co-repressors or co-activators, modulation of protein stability, and nuclear translocation. In some contexts, Wnt signaling also regulates SOX expression resulting in feedback regulatory loops that fine-tune cellular responses to beta-catenin/TCF activity. In this review, we summarize the examples of Sox-Wnt interactions and examine the underlying mechanisms of this potentially widespread and underappreciated mode of Wnt-regulation.
Collapse
Affiliation(s)
- Jay D Kormish
- Division of Developmental Biology, Cincinnati Children's Research Foundation and University of Cincinnati Department of Pediatrics, College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
114
|
Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci U S A 2010; 107:6544-9. [PMID: 20308572 DOI: 10.1073/pnas.0910200107] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Biologists have long used model organisms to study human diseases, particularly when the model bears a close resemblance to the disease. We present a method that quantitatively and systematically identifies nonobvious equivalences between mutant phenotypes in different species, based on overlapping sets of orthologous genes from human, mouse, yeast, worm, and plant (212,542 gene-phenotype associations). These orthologous phenotypes, or phenologs, predict unique genes associated with diseases. Our method suggests a yeast model for angiogenesis defects, a worm model for breast cancer, mouse models of autism, and a plant model for the neural crest defects associated with Waardenburg syndrome, among others. Using these models, we show that SOX13 regulates angiogenesis, and that SEC23IP is a likely Waardenburg gene. Phenologs reveal functionally coherent, evolutionarily conserved gene networks-many predating the plant-animal divergence-capable of identifying candidate disease genes.
Collapse
|
115
|
Dy P, Smits P, Silvester A, Penzo-Méndez A, Dumitriu B, Han Y, de la Motte CA, Kingsley DM, Lefebvre V. Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage. Dev Biol 2010; 341:346-59. [PMID: 20206616 DOI: 10.1016/j.ydbio.2010.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/04/2010] [Accepted: 02/16/2010] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying synovial joint development remain poorly understood. Here we use complete and cell-specific gene inactivation to identify the roles of the redundant chondrogenic transcription factors Sox5 and Sox6 in this process. We show that joint development aborts early in complete mutants (Sox5(-/-)6(-/-)). Gdf5 and Wnt9a expression is punctual in articular progenitor cells, but Sox9 downregulation and cell condensation in joint interzones are late. Joint cell differentiation is unsuccessful, regardless of lineage, and cavitation fails. Sox5 and Sox6 restricted expression to chondrocytes in wild-type embryos and continued Erg expression and weak Ihh expression in Sox5(-/-)6(-/-) growth plates suggest that growth plate failure contribute to this Sox5(-/-)6(-/-) joint morphogenesis block. Sox5/6 inactivation in specified joint cells and chondrocytes (Sox5(fl/fl)6(fl/fl)Col2Cre) also results in a joint morphogenesis block, whereas Sox5/6 inactivation in specified joint cells only (Sox5(fl/fl)6(fl/fl)Gdf5Cre) results in milder joint defects and normal growth plates. Sox5(fl/fl)6(fl/fl)Gdf5Cre articular chondrocytes remain undifferentiated, as shown by continued Gdf5 expression and pancartilaginous gene downregulation. Along with Prg4 downregulation, these defects likely account for joint tissue overgrowth and incomplete cavitation in adult mice. Together, these data suggest that synovial joint morphogenesis relies on essential roles for Sox5/6 in promoting both growth plate and articular chondrocyte differentiation.
Collapse
Affiliation(s)
- Peter Dy
- Department of Cell Biology, and Orthopaedic and Rheumatologic Research Center, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue (NC-10), Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Inhibitor of DNA binding 3 limits development of murine slam-associated adaptor protein-dependent "innate" gammadelta T cells. PLoS One 2010; 5:e9303. [PMID: 20174563 PMCID: PMC2824806 DOI: 10.1371/journal.pone.0009303] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 01/27/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Id3 is a dominant antagonist of E protein transcription factor activity that is induced by signals emanating from the alphabeta and gammadelta T cell receptor (TCR). Mice lacking Id3 were previously shown to have subtle defects in positive and negative selection of TCRalphabeta+ T lymphocytes. More recently, Id3(-/-) mice on a C57BL/6 background were shown to have a dramatic expansion of gammadelta T cells. METHODOLOGY/PRINCIPAL FINDINGS Here we report that mice lacking Id3 have reduced thymocyte numbers but increased production of gammadelta T cells that express a Vgamma1.1+Vdelta6.3+ receptor with restricted junctional diversity. These Vgamma1.1+Vdelta6.3+ T cells have multiple characteristics associated with "innate" lymphocytes such as natural killer T (NKT) cells including an activated phenotype, expression of the transcription factor PLZF, and rapid production of IFNg and interleukin-4. Moreover, like other "innate" lymphocyte populations, development of Id3(-/-) Vgamma1.1+Vdelta6.3+ T cells requires the signaling adapter protein SAP. CONCLUSIONS Our data provide novel insight into the requirements for development of Vgamma1.1+Vdelta6.3+ T cells and indicate a role for Id3 in repressing the response of "innate" gammadelta T cells to SAP-mediated expansion or survival.
Collapse
|
117
|
Chew LJ, Gallo V. The Yin and Yang of Sox proteins: Activation and repression in development and disease. J Neurosci Res 2010; 87:3277-87. [PMID: 19437544 DOI: 10.1002/jnr.22128] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The general view of development consists of the acquisition of committed/differentiated phenotypes following a period of self-renewal and progenitor expansion. Lineage specification and progression are phenomena of antagonistic events, silencing tissue-specific gene expression in precursors to allow self-renewal and multipotentiality, and subsequently suppressing proliferation and embryonic gene expression to promote the restricted expression of tissue-specific genes during maturation. The high mobility group-containing Sox family of transcription factors constitutes one of the earliest classes of genes to be expressed during embryonic development. These proteins not only are indispensable for progenitor cell specification but also are critical for terminal differentiation of multiple cell types in a wide variety of lineages. Sox transcription factors are now known to induce or repress progenitor cell characteristics and cell proliferation or to activate the expression of tissue-specific genes. Sox proteins fulfill their diverse functions in developmental regulation by distinct molecular mechanisms. Not surprisingly, in addition to DNA binding and bending, Sox transcription factors also interact with different protein partners to function as coactivators or corepressors of downstream target genes. Here we seek to provide an overview of the current knowledge of Sox gene functional mechanisms, in an effort to understand their roles in both development and pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
118
|
Kreslavsky T, Gleimer M, von Boehmer H. Alphabeta versus gammadelta lineage choice at the first TCR-controlled checkpoint. Curr Opin Immunol 2010; 22:185-92. [PMID: 20074925 DOI: 10.1016/j.coi.2009.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/22/2009] [Indexed: 01/13/2023]
Abstract
Alphabeta and gammadelta T cells develop in the thymus from a common precursor. Although lineages initially were defined by the type of TCR they express, it soon became clear that the TCR type per se does not play a deterministic role in the lineage decision, since in various transgenic and knockout models, as well as in a small fraction of cells in wt mice, the TCRgammadelta can drive the differentiation of alphabeta lineage cells and the TCRalphabeta can drive differentiation of gammadelta lineage cells. Thus until recently it was unclear what determines lineage choice and at which stage the two lineages diverge. Recent observations suggest that TCR signal strength determines lineage fate and that lineage choice is made at or shortly after the first TCR-controlled checkpoint. While it is clear that the decision between alphabeta and gammadelta lineages is made at the first TCR-controlled checkpoint and the alphabeta sublineages split off later, it is less clear whether gammadelta sublineages divert already at the first TCR-controlled checkpoint or later. Recent experiments support the former view.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Laboratory of Lymphocyte Biology, Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
119
|
Marfil V, Moya M, Pierreux CE, Castell JV, Lemaigre FP, Real FX, Bort R. Interaction between Hhex and SOX13 modulates Wnt/TCF activity. J Biol Chem 2009; 285:5726-37. [PMID: 20028982 DOI: 10.1074/jbc.m109.046649] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fine-tuning of the Wnt/TCF pathway is crucial for multiple embryological processes, including liver development. Here we describe how the interaction between Hhex (hematopoietically expressed homeobox) and SOX13 (SRY-related high mobility group box transcription factor 13), modulates Wnt/TCF pathway activity. Hhex is a homeodomain factor expressed in multiple endoderm-derived tissues, like the liver, where it is essential for proper development. The pleiotropic expression of Hhex during embryonic development and its dual role as a transcriptional repressor and activator suggest the presence of different tissue-specific partners capable of modulating its activity and function. While searching for developmentally regulated Hhex partners, we set up a yeast two-hybrid screening using an E9.5-10.5 mouse embryo library and the N-terminal domain of Hhex as bait. Among the putative protein interactors, we selected SOX13 for further characterization. We found that SOX13 interacts directly with full-length Hhex, and we delineated the interaction domains within the two proteins. SOX13 is known to repress Wnt/TCF signaling by interacting with TCF1. We show that Hhex is able to block the SOX13-dependent repression of Wnt/TCF activity by displacing SOX13 from the SOX13 x TCF1 complex. Moreover, Hhex de-repressed the Wnt/TCF pathway in the ventral foregut endoderm of cultured mouse embryos electroporated with a SOX13-expressing plasmid. We conclude that the interaction between Hhex and SOX13 may contribute to control Wnt/TCF signaling in the early embryo.
Collapse
Affiliation(s)
- Vanessa Marfil
- Unitat de Biologia Cellular i Molecular, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | | | | | | | | | | |
Collapse
|
120
|
Archbold JK. To be gammadelta or not to be gammadelta? Signaling pathways in alphabeta versus gammadelta T cell maturation. Sci Signal 2009; 2:jc2. [PMID: 19996455 DOI: 10.1126/scisignal.2100jc2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Maturation of T cells in the thymus involves input from a number of signaling pathways; their combined input determines whether thymic precursor cells will differentiate into mature alphabeta or gammadelta T cells. This Journal Club article highlights recent research showing that the role of Notch signaling in human T cell maturation differs from that in mice. In mice, reducing Notch gene dosage in vivo promotes gammadelta T cell differentiation. In humans, an increase in Notch activity early in development will trigger gammadelta T cell development. This research emphasizes how the molecular events controlling T cell development are fundamentally different in humans and mice.
Collapse
Affiliation(s)
- Julia K Archbold
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
121
|
Lauritsen JPH, Wong GW, Lee SY, Lefebvre JM, Ciofani M, Rhodes M, Kappes DJ, Zúñiga-Pflücker JC, Wiest DL. Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation Notch independent. Immunity 2009; 31:565-75. [PMID: 19833086 DOI: 10.1016/j.immuni.2009.07.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 05/27/2009] [Accepted: 07/28/2009] [Indexed: 12/25/2022]
Abstract
alphabeta and gammadelta T cells arise from a common thymocyte progenitor during development in the thymus. Emerging evidence suggests that the pre-T cell receptor (pre-TCR) and gammadelta T cell receptor (gammadeltaTCR) play instructional roles in specifying the alphabeta and gammadelta T-lineage fates, respectively. Nevertheless, the signaling pathways differentially engaged to specify fate and promote the development of these lineages remain poorly understood. Here, we show that differential activation of the extracellular signal-related kinase (ERK)-early growth response gene (Egr)-inhibitor of DNA binding 3 (Id3) pathway plays a defining role in this process. In particular, Id3 expression served to regulate adoption of the gammadelta fate. Moreover, Id3 was both necessary and sufficient to enable gammadelta-lineage cells to differentiate independently of Notch signaling and become competent IFNgamma-producing effectors. Taken together, these findings identify Id3 as a central player that controls both adoption of the gammadelta fate and its maturation in the thymus.
Collapse
Affiliation(s)
- Jens Peter Holst Lauritsen
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
An exon-based comparative variant analysis pipeline to study the scale and role of frameshift and nonsense mutation in the human-chimpanzee divergence. Comp Funct Genomics 2009:406421. [PMID: 19859573 PMCID: PMC2765723 DOI: 10.1155/2009/406421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/14/2009] [Accepted: 07/18/2009] [Indexed: 11/18/2022] Open
Abstract
Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the
molecular mechanisms behind the differences are yet to be understood. Here I report ExonVar, a novel computational pipeline for Exon-based human-chimpanzee comparative Variant analysis. The objective is to comparatively
analyze mutations specifically those that caused the frameshift and nonsense mutations and to assess their scale and potential impacts on human-chimpanzee divergence. Genomewide analysis of human and chimpanzee exons with ExonVar identified a number of species-specific, exon-disrupting mutations in chimpanzees but much fewer in humans. Many were found on genes involved in
important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A “less-is-more” model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing.
Collapse
|
123
|
Lefebvre V. The SoxD transcription factors--Sox5, Sox6, and Sox13--are key cell fate modulators. Int J Biochem Cell Biol 2009; 42:429-32. [PMID: 19647094 DOI: 10.1016/j.biocel.2009.07.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/02/2009] [Accepted: 07/23/2009] [Indexed: 01/14/2023]
Abstract
Sox5, Sox6, and Sox13 constitute the group D of sex-determining region (Sry)-related transcription factors. They are highly conserved in the family-specific high-mobility-group (HMG) box DNA-binding domain and in a group-specific coiled-coil domain. The latter mediates SoxD protein dimerization and thereby preferential binding to pairs of DNA recognition sites. The SoxD genes have overlapping expression and cell-autonomously control discrete lineages. Sox5 and Sox6 redundantly enhance chondrogenesis, but retard gliogenesis. Sox5 hinders melanogenesis, promotes neural crest generation, and controls the pace of neurogenesis. Sox6 promotes erythropoiesis, and Sox13 modulates T cell specification and is an autoimmune antigen. SoxD proteins enhance transactivation by Sox9 in chondrocytes, but antagonize Sox9 and other SoxE proteins in oligodendrocytes and melanocytes, and also repress transcription through various mechanisms in several other lineages. While their biological and molecular functions remain incompletely understood, the SoxD proteins have thus already proven that they critically modulate cell fate in major lineages.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Cell Biology and Orthopaedic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
124
|
Identification and analysis of the human CD160 promoter: implication of a potential AML-1 binding site in promoter activation. Genes Immun 2009; 10:616-23. [DOI: 10.1038/gene.2009.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
125
|
Laird RM, Hayes SM. Profiling of the early transcriptional response of murine gammadelta T cells following TCR stimulation. Mol Immunol 2009; 46:2429-38. [PMID: 19439358 DOI: 10.1016/j.molimm.2009.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/28/2009] [Indexed: 10/20/2022]
Abstract
Gammadelta T cells represent one of the three lineages of lymphocytes, along with alphabeta T cells and B cells, which express antigen receptors. Since their discovery over two decades ago, considerable effort has been made to understand their antigen specificity and their contribution to the immune response. From these studies, we have learned that gammadelta T cells recognize a different set of antigens than alphabeta T cells, acquire effector functions faster than alphabeta T cells, regulate the response of other immune cells during infection, and play distinct roles in immunity. The molecular basis for how gammadelta T cells manifest their unique functions, however, remains unknown. To address this, we profiled the genes upregulated soon after TCR stimulation in order to identify which gene networks associated with T cell effector function are induced in gammadelta T cells. Interestingly, most of the genes in this transcriptional profile were not unique to activated gammadelta T cells, as they were also expressed in activated alphabeta T cells. However, many of the genes within this profile were upregulated with faster kinetics and/or greater magnitude in activated gammadelta T cells than in activated alphabeta T cells. In addition, we found that the genes in the transcriptional profile of activated wild-type gammadelta T cells can be used as a standard to screen activated gammadelta T cells from mice with potential signaling defects for alterations in gammadelta TCR signal transduction. Thus, by defining the early transcriptional response of activated wild-type gammadelta T cells and by comparing their transcriptional profile to that of activated wild-type alphabeta T cells as well as to that of activated gammadelta T cells from signaling defective mice, we are able to gain important insights into the molecular basis for gammadelta T cell function.
Collapse
Affiliation(s)
- Renee M Laird
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 E Adams Street, 2220 Weiskotten Hall, Syracuse, NY 13210, USA
| | | |
Collapse
|
126
|
Prince AL, Yin CC, Enos ME, Felices M, Berg LJ. The Tec kinases Itk and Rlk regulate conventional versus innate T-cell development. Immunol Rev 2009; 228:115-31. [PMID: 19290924 DOI: 10.1111/j.1600-065x.2008.00746.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tec family kinases are important components of antigen receptor signaling pathways in B cells, T cells, and mast cells. In T cells, three members of this family, inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk), and Tec, are expressed. In the absence of Itk and Rlk, T-cell receptor signaling is impaired, with defects in mitogen-activated protein kinase activation, Ca(2+) mobilization, and actin polymerization. During T-cell development in the thymus, no role has been found for these kinases in the CD4(+) versus CD8(+) T-cell lineage decision; however, several studies indicate that Itk and Rlk contribute to the signaling leading to positive and negative selection. In addition, we and others have recently described an important role for Itk and Rlk in the development of conventional as opposed to innate CD4(+) and CD8(+) T cells. Natural killer T and gammadelta T-cell populations are also altered in Itk- and Rlk/Itk-deficient mice. These findings strongly suggest that the strength of T-cell receptor signaling during development determines whether T cells mature into conventional versus innate lymphocyte lineages. This lineage decision is also influenced by signaling via signaling lymphocytic activation molecule (SLAM) family receptors. Here we discuss these two signaling pathways that each contribute to conventional versus innate T-cell lineage commitment.
Collapse
Affiliation(s)
- Amanda L Prince
- Department of Pathology, University of Massachussets Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
127
|
|
128
|
Taghon T, Rothenberg EV. Molecular mechanisms that control mouse and human TCR-alphabeta and TCR-gammadelta T cell development. Semin Immunopathol 2008; 30:383-98. [PMID: 18925397 DOI: 10.1007/s00281-008-0134-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/30/2008] [Indexed: 12/22/2022]
Abstract
Following specification of hematopoietic precursor cells into the T cell lineage, several developmental options remain available to the immature thymocytes. The paradigm is that the outcome of the T cell receptor rearrangements and the corresponding T cell receptor signaling events will be predominant to determine the first of these choices: the alphabeta versus gammadelta T cell pathways. Here, we review the thymus-derived environmental signals, the transcriptional mediators, and other molecular mechanisms that are also involved in this decision in both the mouse and human. We discuss the differences in cellular events between the alphabeta and gammadelta developmental pathways and try to correlate these with a corresponding complexity of the molecular mechanisms that support them.
Collapse
Affiliation(s)
- Tom Taghon
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University Hospital, Ghent University, De Pintelaan 185, 4 Blok A, 9000, Ghent, Belgium.
| | | |
Collapse
|
129
|
Stolt CC, Lommes P, Hillgärtner S, Wegner M. The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucleic Acids Res 2008; 36:5427-40. [PMID: 18703590 PMCID: PMC2553580 DOI: 10.1093/nar/gkn527] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Sox5 has previously been shown in chicken to be expressed in early neural crest cells and neural crest-derived peripheral glia. Here, we show in mouse that Sox5 expression also continues after neural crest specification in the melanocyte lineage. Despite its continued expression, Sox5 has little impact on melanocyte development on its own as generation of melanoblasts and melanocytes is unaltered in Sox5-deficient mice. Loss of Sox5, however, partially rescued the strongly reduced melanoblast generation and marker gene expression in Sox10 heterozygous mice arguing that Sox5 functions in the melanocyte lineage by modulating Sox10 activity. This modulatory activity involved Sox5 binding and recruitment of CtBP2 and HDAC1 to the regulatory regions of melanocytic Sox10 target genes and direct inhibition of Sox10-dependent promoter activation. Both binding site competition and recruitment of corepressors thus help Sox5 to modulate the activity of Sox10 in the melanocyte lineage.
Collapse
Affiliation(s)
- C Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen, Fahrstrasse 17, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
130
|
Tamashiro DAA, Alarcón VB, Marikawa Y. Ectopic expression of mouse Sry interferes with Wnt/beta-catenin signaling in mouse embryonal carcinoma cell lines. Biochim Biophys Acta Gen Subj 2008; 1780:1395-402. [PMID: 18675318 DOI: 10.1016/j.bbagen.2008.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 12/14/2022]
Abstract
In mammals, Sry is the master regulator of male sex determination, although how it functions is still unclear. By contrast, female sex determination depends on the action of Rspo1 and Wnt4, the regulators of Wnt/beta-catenin signaling. To seek a possible interaction between male and female sex determination mechanisms, we examined whether Sry affects Wnt/beta-catenin signaling. Using the TOPFLASH reporter system to measure Lef/Tcf-dependent transcriptional activity, we showed that ectopic expression of mouse Sry strongly suppressed Wnt/beta-catenin signaling in mouse embryonal carcinoma and human embryonic kidney cell lines. This inhibition occurred downstream of beta-catenin but upstream of Lef/Tcf, and depended on both the HMG-box and the C-terminal transcriptional activation domain. By contrast, TOPFLASH was not inhibited by human SRY, which apparently lacks a transcriptional activation domain. However, a fusion construct consisting of human SRY attached to the C-terminal domain of mouse Sry was able to inhibit TOPFLASH effectively. Furthermore, Sry constructs carrying point mutations equivalent to those in human sex reversal mutations were less effective in inhibiting Wnt/beta-catenin signaling. Also, we showed that the action of Sry as a transcriptional activator was both necessary and sufficient to inhibit Wnt/beta-catenin signaling, suggesting that the transcriptional targets of Sry are responsible for the inhibition of signaling. Sox9 is a potential transcriptional target of Sry, although quantitative RT-PCR analysis indicates that the expression of Sox9 was not up-regulated by the ectopic expression of mouse Sry in mouse embryonal carcinoma cells. While the present study demonstrates an impact of mouse Sry on Wnt/beta-catenin signaling at an in vitro level, it requires further investigations to assess whether such action also takes place in vivo to regulate male sex determination.
Collapse
Affiliation(s)
- Dana Ann A Tamashiro
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii School of Medicine, Honolulu, HI 96813, USA
| | | | | |
Collapse
|
131
|
Pla P, Hirsch MR, Le Crom S, Reiprich S, Harley VR, Goridis C. Identification of Phox2b-regulated genes by expression profiling of cranial motoneuron precursors. Neural Dev 2008; 3:14. [PMID: 18565209 PMCID: PMC2441621 DOI: 10.1186/1749-8104-3-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 06/19/2008] [Indexed: 12/19/2022] Open
Abstract
Background Branchiomotor neurons comprise an important class of cranial motor neurons that innervate the branchial-arch-derived muscles of the face, jaw and neck. They arise in the ventralmost progenitor domain of the rhombencephalon characterized by expression of the homeodomain transcription factors Nkx2.2 and Phox2b. Phox2b in particular plays a key role in the specification of branchiomotor neurons. In its absence, generic neuronal differentiation is defective in the progenitor domain and no branchiomotor neurons are produced. Conversely, ectopic expression of Phox2b in spinal regions of the neural tube promotes cell cycle exit and neuronal differentiation and, at the same time, induces genes and an axonal phenotype characteristic for branchiomotor neurons. How Phox2b exerts its pleiotropic functions, both as a proneural gene and a neuronal subtype determinant, has remained unknown. Results To gain further insights into the genetic program downstream of Phox2b, we searched for novel Phox2b-regulated genes by cDNA microarray analysis of facial branchiomotor neuron precursors from heterozygous and homozygous Phox2b mutant embryos. We selected for functional studies the genes encoding the axonal growth promoter Gap43, the Wnt antagonist Sfrp1 and the transcriptional regulator Sox13, which were not previously suspected to play roles downstream of Phox2b and whose expression was affected by Phox2b misexpression in the spinal cord. While Gap43 did not produce an obvious phenotype when overexpressed in the neural tube, Sfrp1 induced the interneuron marker Lhx1,5 and Sox13 inhibited neuronal differentiation. We then tested whether Sfrp1 and Sox13, which are down-regulated by Phox2b in the facial neuron precursors, would antagonize some aspects of Phox2b activity. Co-expression of Sfrp1 prevented Phox2b from repressing Lhx1,5 and alleviated the commissural axonal phenotype. When expressed together with Sox13, Phox2b was still able to promote cell cycle exit and neuronal differentiation, but the cells failed to relocate to the mantle layer and to extinguish the neural stem cell marker Sox2. Conclusion Our results suggest novel roles for Sfrp1 and Sox13 in neuronal subtype specification and generic neuronal differentiation, respectively, and indicate that down-regulation of Sfrp1 and Sox13 are essential aspects of the genetic program controlled by Phox2b in cranial motoneurons.
Collapse
Affiliation(s)
- Patrick Pla
- Ecole normale supérieure, Département de Biologie, 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
132
|
Zhang W, Glöckner SC, Guo M, Machida EO, Wang DH, Easwaran H, Van Neste L, Herman JG, Schuebel KE, Watkins DN, Ahuja N, Baylin SB. Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res 2008; 68:2764-72. [PMID: 18413743 DOI: 10.1158/0008-5472.can-07-6349] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SRY-box containing gene 17 (Sox17) is a member of the high mobility group (HMG) transcription factor superfamily, which plays critical roles in the regulation of development and stem/precursor cell function, at least partly through repression of Wnt pathway activity. Modulators controlling aberrant Wnt signaling activation are frequently disrupted in human cancers through complementary effects of epigenetic and genetic changes. Our recent global analysis of CpG island hypermethylation and gene expression in colorectal cancer (CRC) cell lines revealed that SOX17 gene silencing is associated with DNA hypermethylation of a CpG island in the promoter region. Here, we report that CpG island methylation-dependent silencing of SOX17 occurs in 100% of CRC cell lines, 86% of colorectal adenomas, 100% of stage I and II CRC, 89% of stage III CRC, 89% of primary esophageal cancer, and 50% of non-small cell lung cancer. Overexpression of SOX17 in HCT116 CRC cells inhibits colony growth and beta-catenin/T-cell factor-dependent transcription. Structure-based deletion analysis further shows the presence of a Wnt signaling repression domain in the SOX17 HMG box. Together, our studies suggest that SOX17 is a negative modulator of canonical Wnt signaling, and that SOX17 silencing due to promoter hypermethylation is an early event during tumorigenesis and may contribute to aberrant activation of Wnt signaling in CRC.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Cancer Biology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
|
134
|
Egawa T, Kreslavsky T, Littman DR, von Boehmer H. Lineage diversion of T cell receptor transgenic thymocytes revealed by lineage fate mapping. PLoS One 2008; 3:e1512. [PMID: 18231598 PMCID: PMC2211402 DOI: 10.1371/journal.pone.0001512] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 12/27/2007] [Indexed: 12/29/2022] Open
Abstract
Background The binding of the T cell receptor (TCR) to major histocompatibility complex (MHC) molecules in the thymus determines fates of TCRαβ lymphocytes that subsequently home to secondary lymphoid tissue. TCR transgenic models have been used to study thymic selection and lineage commitment. Most TCR transgenic mice express the rearranged TCRαβ prematurely at the double negative stage and abnormal TCRαβ populations of T cells that are not easily detected in non-transgenic mice have been found in secondary lymphoid tissue of TCR transgenic mice. Methodology and Principal Findings To determine developmental pathways of TCR-transgenic thymocytes, we used Cre-LoxP-mediated fate mapping and show here that premature expression of a transgenic TCRαβ diverts some developing thymocytes to a developmental pathway which resembles that of gamma delta cells. We found that most peripheral T cells with the HY-TCR in male mice have bypassed the RORγt-positive CD4+8+ (double positive, DP) stage to accumulate either as CD4−8− (double negative, DN) or as CD8α+ T cells in lymph nodes or gut epithelium. Likewise, DN TCRαβ cells in lymphoid tissue of female mice were not derived from DP thymocytes. Conclusion The results further support the hypothesis that the premature expression of the TCRαβ can divert DN thymocytes into gamma delta lineage cells.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Flow Cytometry
- Mice
- Mice, Transgenic
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Thymus Gland/cytology
Collapse
Affiliation(s)
- Takeshi Egawa
- Molecular Pathogenesis Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Taras Kreslavsky
- The Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dan R. Littman
- Molecular Pathogenesis Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
- Howard Hughes Medical Institute, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (DL); (Hv)
| | - Harald von Boehmer
- The Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (DL); (Hv)
| |
Collapse
|
135
|
Abstract
Multipotent blood progenitor cells enter the thymus and begin a protracted differentiation process in which they gradually acquire T-cell characteristics while shedding their legacy of developmental plasticity. Notch signalling and basic helix-loop-helix E-protein transcription factors collaborate repeatedly to trigger and sustain this process throughout the period leading up to T-cell lineage commitment. Nevertheless, the process is discontinuous with separately regulated steps that demand roles for additional collaborating factors. This Review discusses new evidence on the coordination of specification and commitment in the early T-cell pathway; effects of microenvironmental signals; the inheritance of stem-cell regulatory factors; and the ensemble of transcription factors that modulate the effects of Notch and E proteins, to distinguish individual stages and to polarize T-cell-lineage fate determination.
Collapse
|
136
|
Abstract
Like all hematopoietic cells, T lymphocytes are derived from bone-marrow-resident stem cells. However, whereas most blood lineages are generated within the marrow, the majority of T cell development occurs in a specialized organ, the thymus. This distinction underscores the unique capacity of the thymic microenvironment to support T lineage restriction and differentiation. Although the identity of many of the contributing thymus-derived signals is well established and rooted in highly conserved pathways involving Notch, morphogenetic, and protein tyrosine kinase signals, the manner in which the ensuing cascades are integrated to orchestrate the underlying processes of T cell development remains under investigation. This review focuses on the current definition of the early stages of T cell lymphopoiesis, with an emphasis on the nature of thymus-derived signals delivered to T cell progenitors that support the commitment and differentiation of T cells toward the alphabeta and gammadelta T cell lineages.
Collapse
Affiliation(s)
- Maria Ciofani
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
137
|
Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 2007; 39:2195-214. [PMID: 17625949 PMCID: PMC2080623 DOI: 10.1016/j.biocel.2007.05.019] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Maintain stemness, commit to a specific lineage, differentiate, proliferate, or die. These are essential decisions that every cell is constantly challenged to make in multi-cellular organisms to ensure proper development, adult maintenance, and adaptability. SRY-related high-mobility-group box (Sox) transcription factors have emerged in the animal kingdom to help cells effect such decisions. They are encoded by 20 genes in humans and mice. They share a highly conserved high-mobility-group box domain that was originally identified in SRY, the sex-determining gene on the Y chromosome, and that has derived from a canonical high-mobility-group domain characteristic of chromatin-associated proteins. The high-mobility-group box domain binds DNA in the minor groove and increases its DNA binding affinity and specificity by interacting with many types of transcription factors. It also bends DNA and may thereby confer on Sox proteins a unique and critical role in the assembly of transcriptional enhanceosomes. Sox proteins fall into eight groups. Most feature a transactivation or transrepression domain and thereby also act as typical transcription factors. Each gene has distinct expression pattern and molecular properties, often redundant with those in the same group and overlapping with those in other groups. As a whole the Sox family controls cell fate and differentiation in a multitude of processes, such as male differentiation, stemness, neurogenesis, and skeletogenesis. We review their specific molecular properties and in vivo roles, stress recent advances in the field, and suggest directions for future investigations.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Cell Biology, Lerner Research Institute and Orthopaedic Research Center, Cleveland Clinic, 9500 Euclid Avenue (NC10), Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
138
|
Spicuglia S, Bonnet M, Ferrier P. [Alpha/beta versus gamma/delta T cell development: a choice linked to the transcription factor Sox13]. Med Sci (Paris) 2007; 23:457-8. [PMID: 17502053 DOI: 10.1051/medsci/2007235457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
139
|
The SOX switch. Nat Rev Immunol 2007. [DOI: 10.1038/nri2044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
140
|
Narayan K, Kang J. Molecular events that regulate alphabeta versus gammadelta T cell lineage commitment: old suspects, new players and different game plans. Curr Opin Immunol 2007; 19:169-75. [PMID: 17291740 DOI: 10.1016/j.coi.2007.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 01/26/2007] [Indexed: 01/09/2023]
Abstract
The divergence of alphabeta and gammadelta T cells from a common precursor in the thymus is regulated by multiple cell-intrinsic and cell-extrinsic factors, most of which are not well defined. Recent studies have provided crucial data regarding the precise timing of lineage commitment and some clarification on the extent of the involvement of Notch and T-cell receptor signaling in this process. Combined with new insights into the differential regulation of molecular pathways active in alphabeta and gammadelta precursors, these data have led to the generation of a revised model of lineage commitment.
Collapse
MESH Headings
- Animals
- Cell Lineage/genetics
- Lymphopoiesis/genetics
- Mice
- Multipotent Stem Cells/chemistry
- Multipotent Stem Cells/immunology
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Notch/physiology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Kavitha Narayan
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|