101
|
Yan C, Wang F, Liu H, Liu H, Pu S, Lin F, Geng H, Ma S, Zhang Y, Tian Z, Chen H, Zhou B, Yuan R. Deciphering the toxic effects of metals in gold mining area: Microbial community tolerance mechanism and change of antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2020; 189:109869. [PMID: 32678731 DOI: 10.1016/j.envres.2020.109869] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Mine tailing dumps represent significant threats to ecological environments due to the presence of toxic substances. The present work investigated the relationship among microbial activity, the community, antibiotic resistance genes (ARGs) and trace metals in soil surrounding gold mine tailings. Using microbial metabolic activity and high-throughput sequencing analysis, we found the trace metals Cd and Hg could be main factors influencing the microbial community. According to bacterial co-occurrence pattern analysis, the effects of total cadmium and total mercury on bacterial diversity are potentially mediated by influencing bacteria community in the keystone module II. Additionally, most of metal-resistant bacteria belong to Actinobacteria and Proteobacteria, and the metal tolerance suggested to be linked with various functions including replication, recombination and repair, as well as inorganic ion transport and metabolism based on PICRUSt2 analysis. We also found that metals generated by mining activity may trigger the co-selection of antibiotic resistance in the phyla Actinobacteria and Proteobacteria due to co-resistance or cross resistance. Additionally, PLS-PM analysis revealed that metals could indirectly affect ARGs by influencing bacterial diversity in gold mining areas.
Collapse
Affiliation(s)
- Changchun Yan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, 1318 Jixian North Road, 246133, Anqing, Anhui, China
| | - Huafeng Liu
- Shandong Institute of Geological Survey, 35 Jianzhuxincun South Road, Lixia District, 250014, Jinan, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, 610059, Chengdu, Sichuan, China
| | - Fanyu Lin
- Analytical and Testing Center, Third Institute of Oceanography, Ministry of Natural Resources, 178 University Road, Siming District, 361000, Xiamen, Fujian, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Yiyue Zhang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Zhijun Tian
- Beijing Geo-engineering Design and Research Institute, 6 East Yuanlin Road, Miyun District, 101500, Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| |
Collapse
|
102
|
Sajjad W, Rafiq M, Din G, Hasan F, Iqbal A, Zada S, Ali B, Hayat M, Irfan M, Kang S. Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139275. [PMID: 32480145 DOI: 10.1016/j.scitotenv.2020.139275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The present world faces a new threat of ancient microbes and resistomes that are locked in the cryosphere and now releasing upon thawing due to climate change and anthropogenic activities. The cryosphere act as the best preserving place for these microbes and resistomes that stay alive for millions of years. Current reviews extensively discussed whether the resurrection of microbes and resistomes existing in these pristine environments is true or just a hype. Release of these ancient microorganisms and naked DNA is of great concern for society as these microbes can either cause infections directly or they can interact with contemporary microorganisms and affect their fitness, survival, and mutation rate. Moreover, the contemporary microorganisms may uptake the unlocked naked DNA, which might transform non-pathogenic microorganisms into deadly antibiotic-resistant microbes. Additionally, the resurrection of glacial microorganisms can cause adverse effects on ecosystems downstream. The release of glacial pathogens and naked DNA is real and can lead to fatal outbreaks; therefore, we must prepare ourselves for the possible reemergence of diseases caused by these microbes. This study provides a scientific base for the adoption of actions by international cooperation to develop preventive measures.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Ghufranud Din
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Hayat
- Institute of Microbial Technology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao Campus, China
| | - Muhammad Irfan
- College of Dentistry, Department of Oral Biology, University of Florida, Gainesville, FL. USA
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
103
|
Liu C, Yao H, Chapman SJ, Su J, Wang C. Changes in gut bacterial communities and the incidence of antibiotic resistance genes during degradation of antibiotics by black soldier fly larvae. ENVIRONMENT INTERNATIONAL 2020; 142:105834. [PMID: 32540627 DOI: 10.1016/j.envint.2020.105834] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
As a saprophytic insect, the black soldier fly can digest organic waste efficiently in an environmentally friendly way. However, the ability and efficiency of this insect, and the microbial mechanisms involved, in the degradation of antibiotics are largely uncharacterized. To obtain further details during the degradation of OTC (oxytetracycline) by black soldier fly larvae (larvae), the changes in intestinal bacterial communities were examined. Both ARGs (antibiotic resistance genes) and MGEs (mobile genetic elements) were found within the larval guts. At the end of the degradation period, 82.7%, 77.6% and 69.3% of OTC was degraded by larvae when the initial concentrations were 100, 1000 and 2000 mg kg-1 (dry weight), respectively, which was much higher than the degradation efficiencies (19.3-22.2%) without larvae. There was no obvious effect of OTC on the development of the larvae. Although the larval gut microorganisms were affected by OTC, they adapted to the altered environment. Enterococcus, Ignatzschineria, Providencia, Morganella, Paenalcaligenes and Actinomyces in the gut responded strongly to antibiotic exposure. Interestingly, numerous ARGs (specifically, 180 ARGs and 10 MGEs) were discovered, and significantly correlated with those of both integron-integrase gene and transposases in the larval gut. Of all the detected ARGs, tetracycline resistance genes expressed at relatively high levels and accounted for up to 67% of the total ARGs. In particular, Enterococcus, Ignatzschineria, Bordetella, Providencia and Proteus were all hosts of enzymatic modification genes of tetracycline in the guts that enabled effective degradation of OTC. These findings demonstrate that OTC can be degraded effectively and prove that the bioremediation of antibiotic contamination is enhanced by larvae. In addition, the abundance of ARGs and MGEs formed should receive attention and be considered in environmental health risk assessment systems.
Collapse
Affiliation(s)
- Cuncheng Liu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| | - Stephen J Chapman
- The James Hutton Research Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|
104
|
Cheng J, Tang X, Liu C. Occurrence and distribution of antibiotic resistance genes in various rural environmental media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29191-29203. [PMID: 32436087 DOI: 10.1007/s11356-020-09287-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) in rural environments have been poorly characterized in the literature. In this study, the diversity, abundance, and distribution of ARGs in surface waters, soils, and sediments of a typical hilly rural area in the Upper Yangtze River watershed were investigated using the high-throughput quantitative polymerase chain reaction, and their relationships with chemical properties of the samples were analyzed. No significant differences in the diversity and abundance of ARGs were observed among the three medium types while the ARG distribution pattern in the sediments was obviously different from that of the surface waters. According to the co-occurrence pattern of ARGs subtypes obtained by network analysis, blaOXA10-02, blaPSE, lnuB-02, and qacEΔ1-01 can be used to estimate the relative abundance of total ARGs for the study area. It appeared that the prevalence of ARGs in the sediments was promoted by the horizontal gene transfer (HGT) and vertical gene transfer together, while their spread in the surface waters and soils were facilitated by the supply of biogenic elements and HGT, respectively. Mobile genetic elements (MGEs) were abundant and detected in all samples, and their abundance was significantly and positively correlated with that of ARGs, implying that the potential horizontal transfer of ARGs to other bacteria and pathogens in rural environments should not be overlooked.
Collapse
Affiliation(s)
- Jianhua Cheng
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiangyu Tang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Chen Liu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
105
|
Globally Abundant " Candidatus Udaeobacter" Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. mSphere 2020; 5:5/4/e00186-20. [PMID: 32641424 PMCID: PMC7343977 DOI: 10.1128/msphere.00186-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Verrucomicrobia affiliated with "Candidatus Udaeobacter" belong to the most abundant soil bacteria worldwide. Although the synthesis of antibiotics presumably evolved in soil, and environmental pollution with antimicrobials increases, the impact of these complex molecules on "Ca Udaeobacter" remains to be elucidated. In this study, we demonstrate that "Ca. Udaeobacter" representatives residing in grassland as well as forest soil ecosystems show multidrug resistance and even take advantage of antibiotics release. Soils treated with up to six different antibiotics exhibited a higher "Ca. Udaeobacter" abundance than corresponding controls after 3, 8, and 20 days of incubation. In this context, we provide evidence that "Ca. Udaeobacter" representatives may utilize nutrients which are released due to antibiotic-driven lysis of other soil microbes and thereby reduce energetically expensive synthesis of required biomolecules. Moreover, genomic analysis revealed the presence of genes conferring resistance to multiple classes of antibiotics and indicated that "Ca. Udaeobacter" representatives most likely oxidize the trace gas H2 to generate energy. This energy might be required for long-term persistence in terrestrial habitats, as already suggested for other dominant soil bacteria. Our study illustrates, for the first time, that globally abundant "Ca. Udaeobacter" benefits from release of antibiotics, which confers advantages over other soil bacteria and represents a so-far overlooked fundamental lifestyle feature of this poorly characterized verrucomicrobial genus. Furthermore, our study suggests that "Ca. Udaeobacter" representatives can utilize H2 as an alternative electron donor.IMPORTANCE Soil bacteria have been investigated for more than a century, but one of the most dominant terrestrial groups on Earth, "Candidatus Udaeobacter," remains elusive and largely unexplored. Its natural habitat is considered a major reservoir of antibiotics, which directly or indirectly impact phylogenetically diverse microorganisms. Here, we found that "Ca. Udaeobacter" representatives exhibit multidrug resistance and not only evade harmful effects of antimicrobials but even benefit from antibiotic pressure in soil. Therefore, "Ca. Udaeobacter" evidently affects the composition of soil resistomes worldwide and might represent a winner of rising environmental pollution with antimicrobials. In addition, our study indicates that "Ca. Udaeobacter" representatives utilize H2 and thereby contribute to global hydrogen cycling. The here-reported findings provide insights into elementary lifestyle features of "Ca. Udaeobacter," potentially contributing to its successful global dissemination.
Collapse
|
106
|
Perri R, Kolvenbach BA, Corvini PFX. Subsistence and complexity of antimicrobial resistance on a community-wide level. Environ Microbiol 2020; 22:2463-2468. [PMID: 32286010 PMCID: PMC7383678 DOI: 10.1111/1462-2920.15018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
There are a multitude of resistance strategies that microbes can apply to avoid inhibition by antimicrobials. One of these strategies is the enzymatic modification of the antibiotic, in a process generally termed inactivation. Furthermore, some microorganisms may not be limited to the mere inactivation of the antimicrobial compounds. They can continue by further enzymatic degradation of the compounds' carbon backbone, taking nutritional and energetic advantage of the former antibiotic. This driving force to harness an additional food source in a complex environment adds another level of complexity to the reasonably well-understood process of antibiotic resistance proliferation on a single cell level: It brings bioprotection into play at the level of microbial community. Despite the possible implications of a resistant community in a host and a lurking antibiotic failure, knowledge of degradation pathways of antibiotics and their connections is scarce. Currently, it is limited to only a few families of antibiotics (e.g. β-lactams and sulfonamides). In this article, we discuss the fluctuating nature of the relationship between antibiotic resistance and the biodegradation of antibiotics. This distinction mainly depends on the genetic background of the microbe, as general resistance genes can be recruited to function in a biodegradation pathway.
Collapse
Affiliation(s)
- Riccardo Perri
- Institute for Ecopreneurship, School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Boris A. Kolvenbach
- Institute for Ecopreneurship, School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Philippe F. X. Corvini
- Institute for Ecopreneurship, School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| |
Collapse
|
107
|
Perez MF, Kurth D, Farías ME, Soria MN, Castillo Villamizar GA, Poehlein A, Daniel R, Dib JR. First Report on the Plasmidome From a High-Altitude Lake of the Andean Puna. Front Microbiol 2020; 11:1343. [PMID: 32655530 PMCID: PMC7324554 DOI: 10.3389/fmicb.2020.01343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Mobile genetic elements, including plasmids, drive the evolution of prokaryotic genomes through the horizontal transfer of genes allowing genetic exchange between bacteria. Moreover, plasmids carry accessory genes, which encode functions that may offer an advantage to the host. Thus, it is expected that in a certain ecological niche, plasmids are enriched in accessory functions, which are important for their hosts to proliferate in that niche. Puquio de Campo Naranja is a high-altitude lake from the Andean Puna exposed to multiple extreme conditions, including high UV radiation, alkalinity, high concentrations of arsenic, heavy metals, dissolved salts, high thermal amplitude and low O2 pressure. Microorganisms living in this lake need to develop efficient mechanisms and strategies to cope under these conditions. The aim of this study was to characterize the plasmidome of microbialites from Puquio de Campo Naranja, and identify potential hosts and encoded functions using a deep-sequencing approach. The potential ecological impact of the plasmidome, including plasmids from cultivable and non-cultivable microorganisms, is described for the first time in a lake representing an extreme environment of the Puna. This study showed that the recovered genetic information for the plasmidome was novel in comparison to the metagenome derived from the same environment. The study of the total plasmid population allowed the identification of genetic features typically encoded by plasmids, such as resistance and virulence factors. The resistance genes comprised resistances to heavy metals, antibiotics and stress factors. These results highlight the key role of plasmids for their hosts and impact of extrachromosomal elements to thrive in a certain ecological niche.
Collapse
Affiliation(s)
- María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Mariana Noelia Soria
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Genis Andrés Castillo Villamizar
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany.,Línea Tecnológica Biocorrosión, Corporación para la Investigación de la Corrosión C.I.C., Piedecuesta, Colombia
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Instituto de Microbiología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
108
|
Sosa-Moreno A, Comstock SS, Sugino KY, Ma TF, Paneth N, Davis Y, Olivero R, Schein R, Maurer J, Zhang L. Perinatal risk factors for fecal antibiotic resistance gene patterns in pregnant women and their infants. PLoS One 2020; 15:e0234751. [PMID: 32555719 PMCID: PMC7302573 DOI: 10.1371/journal.pone.0234751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Perinatal factors can shape fecal microbiome patterns among pregnant women and their infants. However, there is scarce information about the effect of maternal demographics and perinatal exposures on antibiotic resistance genes (ARG) and mobile genetic element (MGE) patterns in pregnant women and infants. We examined fecal samples from pregnant women during their third trimester of pregnancy (n = 51) and 6-month-old infants (n = 40). Of the 91 participants, 72 represented 36 maternal-infant dyads, 15 were additional pregnant women, and 4 were additional infants. We assessed the effects of demographics, pre-pregnancy BMI, smoking and parity in the pregnancy resistome and the effects of demographics, delivery mode, feeding habits and prenatal antibiotic treatment on the infancy resistome. ARG and MGE richness and abundance were assessed using a SmartChip qPCR-array. Alpha diversity (Shannon and Inverse Simpson index) and beta diversity (Sorensen and Bray-Curtis index) were calculated. The Wilcoxon and the Kruskal non-parametric test were used for comparisons. There is a high variability in shared resistome patterns between pregnant women and their infants. An average of 29% of ARG and 24% of MGE were shared within dyads. Infants had significantly greater abundance and higher diversity of ARG and MGE compared to pregnant women. Pregnancy and infancy samples differed in ARG and MGE gene composition and structure. Composition of the fecal resistome was significantly associated with race in pregnant women, with non-white women having different patterns than white women, and, in infants, with extent of solid food consumption. Our data showed that the pregnancy and infancy resistome had different structure and composition patterns, with maternal race and infant solid food consumption as possible contributors to ARG. By characterizing resistome patterns, our results can inform the mechanism of antibiotic resistome development in pregnant women and their infants.
Collapse
Affiliation(s)
- Andrea Sosa-Moreno
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States of America
| | - Kameron Y. Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States of America
| | - Teng F. Ma
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Yelena Davis
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, United States of America
- Helen DeVos Children’s Hospital of Spectrum Health, Grand Rapids, MI, United States of America
| | - Rosemary Olivero
- Helen DeVos Children’s Hospital of Spectrum Health, Grand Rapids, MI, United States of America
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Rebecca Schein
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Joel Maurer
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
109
|
Gurmessa B, Pedretti EF, Cocco S, Cardelli V, Corti G. Manure anaerobic digestion effects and the role of pre- and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137532. [PMID: 32179343 DOI: 10.1016/j.scitotenv.2020.137532] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 05/23/2023]
Abstract
This review was aimed to summarize and critically evaluate studies on removal of veterinary antibiotics (VAs), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) with anaerobic digestion (AD) of manure and demonstrate areas of focus for improved removal efficiency. The environmental risks associated to the release of the same were also critically evaluated. The potential of AD and advanced AD of manure on removal rate of VAs, ARGs and MGEs was thoroughly assessed. In addition, the role of post and pre-AD treatments and their potential to support VAs and ARGs removal efficiency were evaluated. The overall review results show disparity among the different groups of VAs in terms of removal rate with relatively higher efficiency for β-lactams and tetracyclines compared to the other groups. Some of sulfonamides, fluoroquinolones and macrolides were reported to be highly persistent with removal rates as low as zero. Within group differences were also reported in many literatures. Moreover, removal of ARGs and MGEs by AD was widely reported although complete removal was hardly possible. Even in rare scenarios, some AD conditions were reported to increase copies of specific groups of the genes. Temperature pretreatments and temperature phased advanced AD were also reported to improve removal efficiency of VAs while contributing to increased biogas production. Moreover, a few studies also showed the possibility of further removal by post-AD treatments such as liquid-solid separation, drying and composting. In conclusion, the various studies revealed that AD in its current technological level is not a guarantee for complete removal of VAs, ARGs and MGEs from manure. Consequently, their possible release to the soils with digestate could threaten the healthcare and disturb soil microbial ecology. Thus, intensive management strategies need to be designed to increase removal efficiency at the different manure management points along the anaerobic digestion process.
Collapse
Affiliation(s)
- Biyensa Gurmessa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Stefania Cocco
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Valeria Cardelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giuseppe Corti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
110
|
Franzellitti S, Prada F, Viarengo A, Fabbri E. Evaluating bivalve cytoprotective responses and their regulatory pathways in a climate change scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137733. [PMID: 32325610 DOI: 10.1016/j.scitotenv.2020.137733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Temperature is a relevant abiotic factor affecting physiological performance and distribution of marine animals in natural environments. The changes in global seawater temperatures make it necessary to understand how molecular mechanisms operate under the cumulative effects of global climate change and chemical pollution to promote/hamper environmental acclimatization. Marine mussels are excellent model organisms to infer the impacts of those anthropogenic threats on coastal ecosystems. In this study, Mediterranean mussels (Mytilus galloprovincialis) were exposed to different concentrations of the metal copper (Cu as CuCl2: 2.5, 5, 10, 20, 40 μg/L) or the antibiotic oxytetracycline (OTC: 0.1, 1, 10, 100, 1000 μg/L) at increasing seawater temperatures (16 °C, 20 °C, 24 °C). Transcriptional modulation of a 70-kDa heat shock protein (HSP70) and of the ABC transporter P-glycoprotein (P-gp, encoded by the ABCB gene) was assessed along with the cAMP/PKA signaling pathway regulating both gene expressions. At the physiological temperature of mussels (16 °C), Cu and OTC induced bimodal changes of cAMP levels and PKA activities in gills of exposed animals. A correlation between OTC- or Cu- induced changes of PKA activity and expression of hsp70 and ABCB was observed. Temperature increases (up to 24 °C) altered ABCB and hsp70 responses to the pollutants and disrupted their relationship with cAMP/PKA modulation, leading to loss of correlation between the biological endpoints. On the whole, the results indicate that temperature may impair the effects of inorganic and organic chemicals on the cAMP/PKA signaling pathway of mussels, in turn altering key molecular mediators of physiological plasticity and cytoprotection.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy; Fano Marine Center, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Fano, Italy.
| | - Fiorella Prada
- Fano Marine Center, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Fano, Italy; Marine Science Group, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Aldo Viarengo
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elena Fabbri
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| |
Collapse
|
111
|
Abstract
In the wake of sustainable development, materials research is going through a green revolution that is putting energy-efficient and environmentally friendly materials and methods in the limelight. In this quest for greener alternatives, covalent organic frameworks (COFs) have emerged as a new generation of designable crystalline porous polymers for a wide array of clean-energy and environmental applications. In this contribution, we categorically review the merits and shortcomings of COF bulk powders, nanosheets, freestanding thin films/membranes, and membranes on porous supports in various separation processes, including separation of gases, pervaporation, organic solvent nanofiltration, water purification, radionuclide sequestration, and chiral separations, with particular reference to COF material pore size, host–guest interactions, stability, selectivity, and permeability. This review covers the fabrication strategies of nanosheets, films, and membranes, as well as performance parameters, and provides an overview of the separation landscape with COFs in relation to other porous polymers, while seeking to interpret the future research opportunities in this field.
Collapse
Affiliation(s)
- Saikat Das
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| |
Collapse
|
112
|
Elokil AA, Abouelezz KF, Ahmad HI, Pan Y, Li S. Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals (Basel) 2020; 10:ani10050896. [PMID: 32455745 PMCID: PMC7278382 DOI: 10.3390/ani10050896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Broad-spectrum antibiotics have been a cornerstone in the treatment of bacterial diseases. However, growing evidence suggests that antibiotics have effects on host-associated gut microbiota communities. In this study, we report persistent significant changes in the abundance of gut microbiota and their functional metabolite pathways in chickens due to enrofloxacin and diclazuril exposure. These changes may affect the taxonomic, genomic, and functional capacity of the chicken gut microbiota, reducing bacterial diversity while expanding and collapsing membership of specific indigenous taxa. Understanding the biology of competitive exclusion of adaptive functions during antibiotic exposure in the gut may inform the design of new strategies to treat infections, while preserving the ecology of chicken-beneficial constituents. Abstract The dynamic microbiota in chickens can be affected by exposure to antibiotics, which may alter the composition and substrate availability of functional pathways. Here, 120 Jing Hong chicks at 30 days of age were randomly divided into four treatments totaling seven experimental groups: control chicks not exposed to antibiotics; and chicks exposed to enrofloxacin, diclazuril, and their mixture at 1:1 for 14 days and then not exposed for a withdrawal period of 15 days. Fecal samples were collected from the 7 groups at 8 time-points (exposure to 4 antibiotics and 4 withdrawal periods) to perform in-depth 16S rRNA sequencing of the gut microbiota. Taxon-independent analysis showed that the groups had significantly distinct microbial compositions (p < 0.01). Based on the microbial composition, as compared with the control group, the abundances of the phyla Firmicutes, Actinobacteria, Thermi, and Verrucomicrobia, as well as the families Lactobacillus, Lactococcus, S24-7, and Corynebacterium, were decreased in the antibiotic-exposed chicks (p < 0.01). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses revealed significant differences in microbiota metabolite pathways due to the genera of the antibiotic-responsive microbes (p < 0.01), especially the pathways relating to cell growth and death, immune system diseases, carbohydrate metabolism, and nucleotide metabolism. Oral treatment with enrofloxacin, diclazuril, and their mixture modified the gut microbiota composition and the microbial metabolic profiles in chickens, with persistent effects (during the withdrawal period) that prevented the return to the original community and led to the formation of a new community.
Collapse
Affiliation(s)
- Abdelmotaleb A. Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Khaled F.M. Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt;
| | - Hafiz I. Ahmad
- Department of Livestock Production, University of Veterinary and Animal sciences, Ravi Campus, Pattoki 55300, Pakistan;
| | - Yuanhu Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
- Correspondence: ; Tel.: +86-27-8738-7480; Fax: +86-27-8728-0408
| |
Collapse
|
113
|
Li Q, Zhang Q. Prevalence and pollution characteristics of antibiotic resistant genes in one high anthropogenically-impacted river. PLoS One 2020; 15:e0231128. [PMID: 32271821 PMCID: PMC7145097 DOI: 10.1371/journal.pone.0231128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
The objectives of this study were to comprehensively investigate the occurrence, distribution, and mobility of antibiotic resistant genes (ARGs) in the biofilm, water, and sediment from a section of the Weihe-river, in the northern Henan province, China. The abundances of nine ARGs belonging to four commonly used antibiotic classes (tetracyclines, sulfonamides, fluoroquinolones, and multidrug) and class 1 integron-integrase gene (intI1) were quantified. Sulfonamides gene (sulI) accounted for the highest percentage of detected ARGs in most sampling sites, including in water, biofilm, and sediment. Among the resistance genes, IntI1 and sul1 were significantly correlated (r>0.800, p<0.01) with a fecal coliform (FC) detected in the biofilm, and there was also a significantly positive correlation between the abundances of 16SrRNA and intI1 in the biofilms. Compared with the sediment and water samples, the biofilms contained sufficient nutrients to promote bacterial reproduction. Under sufficient total nitrogen and phosphorus concentrations, the horizontal gene transfer due to intI1 plays a key role in the formation and migration of ARGs within biofilms.
Collapse
Affiliation(s)
- Qingzhao Li
- Research Center of Environment Pollution Control and Restoration, Zhengzhou University of Aeronautics, Zhengzhou, China
- * E-mail:
| | - Qiuling Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
114
|
Wang X, Chen Z, Mu Q, Wu X, Zhang J, Mao D, Luo Y, Alvarez PJJ. Ionic Liquid Enriches the Antibiotic Resistome, Especially Efflux Pump Genes, Before Significantly Affecting Microbial Community Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4305-4315. [PMID: 31944684 DOI: 10.1021/acs.est.9b04116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An expanding list of chemicals may permeabilize bacterial cells and facilitate horizontal gene transfer (HGT), which enhances propagation of antibiotic resistance genes (ARGs) in the environment. Previous studies showed that 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), an ionic liquid, can facilitate HGT of some ARGs among bacteria. However, the dynamic response of a wider range of ARGs and associated mobile genetic elements (MGEs) in different environments is unknown. Here, we used metagenomic tools to study shifts of the resistome and microbiome in both sediments and freshwater microcosms exposed to [BMIm][PF6]. Exposure for 16 h to 0.1 or 1.0 g/L significantly enriched more than 207 ARG subtypes primarily encoding efflux pumps in freshwater microcosms as well as cultivable antibiotic-resistant bacteria. This resistome enrichment was attributed to HGT facilitated by MGEs (428 plasmids, 61 integron-integrase genes, and 45 gene cassettes were enriched) as well as to HGT-related functional genes. Interestingly, resistome enrichment occurred fast (within 16 h) after [BMIm][PF6] exposure, before any significant changes in bacterial community structure. Similar ARG enrichment occurred in sediment microcosms exposed to [BMIm][PF6] for 28 d, and this longer exposure affected the microbial community structure (e.g., Proteobacteria abundance increased significantly). Overall, this study suggests that [BMIm][PF6] releases could rapidly enrich the antibiotic resistome in receiving environments by increasing HGT and fortuitously selecting for efflux pump genes, thus contributing to ARG propagation.
Collapse
Affiliation(s)
- Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Quanhua Mu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xinyan Wu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Jingjing Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Pedro J J Alvarez
- Dept of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
115
|
Shen X, Jin G, Zhao Y, Shao X. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134626. [PMID: 31812375 DOI: 10.1016/j.scitotenv.2019.134626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
This study examined the profiles of antibiotic resistance genes (ARGs) in water and sediments from one large-scale freshwater pond farming system. A qPCR array was used to quantify ARGs (16S, Tetx, Tetw, TetG, Intll, and Sull) and microbial community structure was analyzed by 16S rRNA gene sequencing. A large number of ARGs (2 8 8) were detected. The ARG richness of the sediments was significantly higher than that of water and an average of 15 more genes were detected (p < 0.01). Sediment samples showed significantly higher taxonomic diversity and higher abundance of Gammaproteobacteria, Betaproteobacteria, and Flavobacteria. A significant correlation was observed between antibiotic resistance genes and breeding periods. The taxonomic diversity of the samples in ponds was significantly higher than that in ditch samples (p < 0.05), suggesting that pond farming systems could act as a local reservoir to spread ARGs into aquatic environments of rural communities.
Collapse
Affiliation(s)
- Xiaoxiao Shen
- College of Agricultural Engineering, HoHai University, Nanjing, 210098, PR China
| | - Guangqiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, PR China
| | - Yongjun Zhao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Xiaohou Shao
- College of Agricultural Engineering, HoHai University, Nanjing, 210098, PR China.
| |
Collapse
|
116
|
Gallagher MT, Reisinger AJ. Effects of ciprofloxacin on metabolic activity and algal biomass of urban stream biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135728. [PMID: 31940730 DOI: 10.1016/j.scitotenv.2019.135728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs), such as the commonly prescribed antibiotic ciprofloxacin, are present and persistent in freshwaters, yet their effects on aquatic ecosystem functions at environmentally-relevant concentrations are rarely explored. Stream biofilms provide multiple functions in stream ecosystems, but their functional response to PPCP contaminants such as ciprofloxacin is unclear. To establish the effect of ciprofloxacin on aquatic biofilms, we colonized biofilms in situ on tiles (n = 80) at four sites along an urban stream in Gainesville, Florida, including two sites above and two sites below a wastewater treatment plant (WWTP). We then incubated the tiles and associated biofilms in the laboratory for 6 d exposing biofilms to either 0, 0.01, 0.1, or 1.0 μg/L (target concentrations) of ciprofloxacin. At the end of the 6 d laboratory exposure, we quantified gross primary production (GPP), respiration (R), and biomass (as chlorophyll a) of biofilms, and calculated response ratios for each response. All response metrics were significantly differed across sites (p < 0.01). Ciprofloxacin significantly decreased GPP (p < 0.05) regardless of treatment concentration, most notably at the site immediately below the WWTP, where there was no measurable GPP on any ciprofloxacin-treated biofilms. In contrast, respiration (R) was not significantly affected by ciprofloxacin, despite an apparent increase in R at the WWTP site. However, the WWTP site R was significantly different from the most upstream and downstream sites (p < 0.001) but was not significantly different from a nearby site upstream of the WWTP (p > 0.05). These results indicate that chronic exposure to ciprofloxacin through WWTP effluent can alter ecosystem functions performed by biofilms, which can have consequences for higher trophic levels and stream processes. By quantifying biofilm metabolic responses to ciprofloxacin exposure, this study supports the concept that pharmaceuticals and personal care products can induce sub-lethal effects on ecological processes at environmentally-relevant concentrations.
Collapse
Affiliation(s)
- Morgan T Gallagher
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America.
| | - Alexander J Reisinger
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States of America.
| |
Collapse
|
117
|
Gao Q, Dong Q, Wu L, Yang Y, Hale L, Qin Z, Xie C, Zhang Q, Van Nostrand JD, Zhou J. Environmental antibiotics drives the genetic functions of resistome dynamics. ENVIRONMENT INTERNATIONAL 2020; 135:105398. [PMID: 31862641 DOI: 10.1016/j.envint.2019.105398] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The increasing prevalence of antibiotic-resistant microorganisms imposes a global threat to public health. The over reliant use of antibiotics in the food industry has contributed considerably to the dissemination of antibiotics into various environments, yet the mechanisms by which antibiotic dissemination influences the assembly of the microbial community continues to remain obscure. Here, we examine bacterial and fungal community assemblies in swine manure, compost, compost amended, and unamended agricultural soil in five suburban areas of Beijing, China. Total antibiotic concentration decreased by factors of 10-1000 from manure and compost to soils. The bacterial α-diversity was found to be low in manure and compost samples, while the fungal α-diversity was similar across all samples. We detected significantly (p < 0.05) higher relative abundances of well recognized pathogenic microbial taxa, virulence associated genes, and antibiotic resistance genes (ARGs) in manure and compost than those in agricultural soils, revealing the higher microbial capacity of pathogenicity, virulence and antibiotic resistance. Unexpectedly, the relative abundances of both bacterial and fungal taxa did not predict the antibiotic concentration. A possible explanation was that bacterial and fungal communities were mainly shaped by random assemblies. Rather, antibiotic concentration could be well predicted by relative abundances of antibiotic resistance, stress and virulence associated genes. Despite the weak interconnection between ARGs and the microbiome, we demonstrate that microbial genes should be the focal point in tracking the ecological effects of antibiotic dissemination by revealing microbial community patterns along the dissemination chain of antibiotics.
Collapse
Affiliation(s)
- Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing 102205, China
| | - Linwei Wu
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Lauren Hale
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, USDA, Parlier, CA 93648-9757, USA
| | - Ziyan Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Changyi Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiuting Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
118
|
Osei Sekyere J, Maningi NE, Fourie PB. Mycobacterium tuberculosis, antimicrobials, immunity, and lung-gut microbiota crosstalk: current updates and emerging advances. Ann N Y Acad Sci 2020; 1467:21-47. [PMID: 31989644 DOI: 10.1111/nyas.14300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
Increasingly, gut microbiota distortions are being implicated in the pathogenesis of several infectious and noninfectious diseases. Specifically, in the absence of an eubiotic microbiota, mice are more prone to colonization and infection by Mycobacterium tuberculosis (Mtb). In this qualitative analysis, the following were observed: (1) antimicrobials cause long-term gut microbiota perturbations; (2) Mtb causes limited and transient disturbances to the lung-gut microbiota; (3) pathogens (e.g., Helicobacter hepaticus) affect microbiota integrity and reduce resistance to Mtb; (4) dysbiosis depletes bacterial species regulating proper immune functioning, reducing resistance to Mtb; (5) dysregulated immune cells fail to express important pathogen-recognition receptors (e.g., macrophage-inducible C-type lectin; MINCLE) and Mtb-killing cytokines (e.g., IFN-γ, TNF-α, and IL-17), with hampered phagocytic capability; (6) autophagy is central to the immune system's clearance of Mtb, control of inflammation, and immunity-microbiome balance; (7) microbiota-produced short-chain fatty acids, which are reduced by dysbiosis, affect immune cells and increase Mtb proliferation; (8) commensal species (e.g., Lactobacillus plantarum) and microbiota metabolites (e.g., indole propionic acid) reduce tuberculosis progression; and (9) fecal transplants mostly restored eubiosis, increased immune resistance to Mtb, restricted dissemination of Mtb, and reduced tuberculosis-associated organ pathologies. Overuse of antimicrobials, as shown in mice, is a risk factor for reactivating latent or treated tuberculosis.
Collapse
Affiliation(s)
- John Osei Sekyere
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Nontuthuko E Maningi
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Petrus B Fourie
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
119
|
Biodegradation of antibiotics: The new resistance determinants – part II. N Biotechnol 2020; 54:13-27. [DOI: 10.1016/j.nbt.2019.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/17/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
|
120
|
Biodegradation of antibiotics: The new resistance determinants – part I. N Biotechnol 2020; 54:34-51. [DOI: 10.1016/j.nbt.2019.08.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/07/2022]
|
121
|
Junaid M, Wang Y, Hamid N, Deng S, Li WG, Pei DS. Prioritizing selected PPCPs on the basis of environmental and toxicogenetic concerns: A toxicity estimation to confirmation approach. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120828. [PMID: 31301631 DOI: 10.1016/j.jhazmat.2019.120828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs), the pollutants of emerging concerns, present potential risks to the ecological environment. This study focused on the prioritization of widely used selected PPCPs belonging to two categories:personal care products (PCPs) and non-steroidal anti-inflammatory drugs (NSAIDs). We predicted the toxicogenetic endpoints of PPCPs and then confirmed them using experimental approaches. Our results revealed a significant similarity in the findings obtained through both approaches, indicating NSAIDs with relatively high environmental impacts and in vitro/vivo toxicity. Experimental approach revealed that musk xylene (MX) from PCPs and DIC from NSAIDs as individual chemicals of priority concern showed elevated environmental impacts and significantly induced pi3k-akt-mTOR in vitro. Similarly, propyl paraben (PP) from PCPs and diclofenac (DIC) from NSAIDs caused significant cytotoxicity and DNA damage in vitro. Moreover, PP and MX from the PCPs group and naproxen (NAP) and DIC from the NSAIDs group induced developmental toxicity and perturbations to phases I, II, and III detoxification pathways in vivo. In addition, MX and DIC as priority PPCPs inhibited hematopoiesis and hepatogenesis in vivo. Apart from the specific effects, PPCPs can be ranked as: MX > PP > methylparaben (MP) for PCPs, and DIC > NAP > ibuprofen (IBU) for NSAIDs, regarding their toxic and environmental concerns.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Life Science, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naima Hamid
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun Deng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - De-Sheng Pei
- College of Life Science, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
122
|
Awaisheh SS, Khalifeh MS, Rahahleh RJ, Al-Khaza’leh JM, Algroom RM. Sulfamethazine contamination level and exposure assessment in domestic and imported poultry meats in Jordan. Vet World 2019; 12:1992-1997. [PMID: 32095052 PMCID: PMC6989328 DOI: 10.14202/vetworld.2019.1992-1997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Sulfamethazine (SMZ) is an important and widely used antibiotic in poultry industry due to its high efficacy in fighting diseases and promoting growth. In addition, SMZ is a possible human carcinogen and has been found in many food types including poultry meat. Accordingly, this study aimed to survey the contamination level and estimated daily intake (EDI) of SMZ in domestic and imported poultry meat samples in Jordan. MATERIALS AND METHODS A total of 120 samples; 60, 30, and 30 of fresh and frozen domestic and frozen imported poultry samples, respectively, were collected from different cities in Jordan. Poultry samples were analyzed for SMZ incidence rate and contamination level using a competitive enzyme-linked immunosorbent assay technique. EDI values were calculated from the SMZ concentration, average poultry daily consumption rate, and adult body weight (b.w.). RESULTS Of the 120 surveyed samples, 20 samples (16.7%) were SMZ violative positive and exceeded the European Union maximum limit (100 µg/kg) and accordingly were unfit for human consumption. Whereas, 51 samples (42.5%) were with SMZ concentrations of 10-100 µg/kg. The average SMZ concentration was 235.58 µg/kg, with a range of 11.47-800 µg/kg poultry meat. It is also noteworthy the high EDI of SMZ by Jordanian adults, 0.286 µg SMZ/kg b.w./day. Moreover, results prevailed that the highest SMZ incidence rate and contamination level were for imported poultry samples followed by domestic poultry samples, which may indicate that SMZ contamination in poultry meat is an international issue. CONCLUSION The current study prevailed high SMZ incidence rate, contamination level, and EDI values, which is likely due to indiscriminate use of SMZ in poultry production. Results also prevailed the high risk that consumers in Jordan may expose due to SMZ residues. Therefore, more strict program and good agricultural practices should be applied to monitor antibiotic withdrawal periods in animals used for human consumption to ensure the legal residue requirements of these antibiotics.
Collapse
Affiliation(s)
- Saddam S. Awaisheh
- Department of Nutrition and Food Processing, Al-Balqa Applied University, Salt 19117, Jordan
| | - Mohammad S. Khalifeh
- Department of Veterinary Basic Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Razan J. Rahahleh
- Department of Nutrition and Food Processing, Al-Balqa Applied University, Salt 19117, Jordan
| | - Ja’far M. Al-Khaza’leh
- Department of Nutrition and Food Processing, Al-Balqa Applied University, Salt 19117, Jordan
| | - Rania M. Algroom
- Department of Food Science, Al-Balqa Applied University, Zarqa 19237, Jordan
| |
Collapse
|
123
|
Antibiotic Resistome Biomarkers associated to the Pelagic Sediments of the Gulfs of Kathiawar Peninsula and Arabian Sea. Sci Rep 2019; 9:17281. [PMID: 31754151 PMCID: PMC6872816 DOI: 10.1038/s41598-019-53832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Antibiotic resistance has been one of the most persistent global issue. Specifically, marine microbiomes have served as complex reservoirs of antibiotic resistant genes. Molecular advancements have enabled exploration of the uncultured microbial portion from hitherto difficult to sample niches such as deeper oceans. The Gulfs of Kathiawar Peninsula have been known for their unique properties like extreme tidal variations, different sediment textures and physicochemical variations. Pelagic sediment cores across four coordinates each of the Gulf of Kutch, Gulf of Khambhat and an open Arabian Sea were collected, processed for metagenomic sequencing and assessed for antibiotic and metal resistome. The dominant genes were mostly resistant to macrolides, glycopeptides and tetracycline drugs. Studied samples divided into three clusters based on their resistome with carA, macB, bcrA, taeA, srmB, tetA, oleC and sav1866 among the abundant genes. Samples from creek of Gulf of Kutch and mouth of Gulf of Khambhat were most diverse in resistance gene profile. Biomarkers observed include gyrA mutation conferring resistance gene in the Arabian Sea; Proteobacteria species in Gulf of Kutch and Arabian sea; while Aquificae, Acidobacteria and Firmicutes species in the Gulf of Khambhat. Region-wise differentially abundant 23 genes and 3 taxonomic biomarkers were proposed for antibiotic resistance monitoring.
Collapse
|
124
|
Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J Mol Evol 2019; 88:26-40. [PMID: 31659373 DOI: 10.1007/s00239-019-09914-3] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/02/2019] [Indexed: 01/29/2023]
Abstract
In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets.
Collapse
|
125
|
Kobylka J, Kuth MS, Müller RT, Geertsma ER, Pos KM. AcrB: a mean, keen, drug efflux machine. Ann N Y Acad Sci 2019; 1459:38-68. [PMID: 31588569 DOI: 10.1111/nyas.14239] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022]
Abstract
Gram-negative bacteria are intrinsically resistant against cytotoxic substances by means of their outer membrane and a network of multidrug efflux systems, acting in synergy. Efflux pumps from various superfamilies with broad substrate preferences sequester and pump drugs across the inner membrane to supply the highly polyspecific and powerful tripartite resistance-nodulation-cell division (RND) efflux pumps with compounds to be extruded across the outer membrane barrier. In Escherichia coli, the tripartite efflux system AcrAB-TolC is the archetype RND multiple drug efflux pump complex. The homotrimeric inner membrane component acriflavine resistance B (AcrB) is the drug specificity and energy transduction center for the drug/proton antiport process. Drugs are bound and expelled via a cycle of mainly three consecutive states in every protomer, constituting a flexible alternating access channel system. This review recapitulates the molecular basis of drug and inhibitor binding, including mechanistic insights into drug efflux by AcrB. It also summarizes 17 years of mutational analysis of the gene acrB, reporting the effect of every substitution on the ability of E. coli to confer resistance toward antibiotics (http://goethe.link/AcrBsubstitutions). We emphasize the functional robustness of AcrB toward single-site substitutions and highlight regions that are more sensitive to perturbation.
Collapse
Affiliation(s)
- Jessica Kobylka
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Miriam S Kuth
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Reinke T Müller
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
126
|
Wright GD. Environmental and clinical antibiotic resistomes, same only different. Curr Opin Microbiol 2019; 51:57-63. [DOI: 10.1016/j.mib.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
127
|
Do MT, Stuckey DC. Fate and removal of Ciprofloxacin in an anaerobic membrane bioreactor (AnMBR). BIORESOURCE TECHNOLOGY 2019; 289:121683. [PMID: 31238291 DOI: 10.1016/j.biortech.2019.121683] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
This study examined the removal of varying concentrations of the antibiotic Ciprofloxacin (CIP) over the long-term (120 days) in an anaerobic membrane bioreactor (AnMBR). The results showed that 50-76% CIP was removed with 0.5-1.5 mg CIP/L in the feed, although at 4.7 mg/L its removal efficiency decreased to <20%. It was found that biological degradation was the main mechanism for removing CIP, while adsorption onto the sludge only contributed a small fraction, and an even smaller fraction was due to the waste sludge discharged. CIP was biodegraded to some degree in the AnMBR, with some intermediate compounds detected using LC-MS/MS and GC-MS. This work showed the effectiveness of an AnMBR in removing CIP at low concentrations of <1.5 mg/L, and hence may be an effective treatment for removing other antibiotics from wastewater.
Collapse
Affiliation(s)
- Mai T Do
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore
| | - David C Stuckey
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
128
|
Durso LM, Cook KL. One Health and Antibiotic Resistance in Agroecosystems. ECOHEALTH 2019; 16:414-419. [PMID: 29541967 PMCID: PMC6858902 DOI: 10.1007/s10393-018-1324-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 05/23/2023]
Abstract
Agriculture reflects One Health principals, with the job of the farmer being to sustainably balance human, animal, and soil health. It is imperative to include an agricultural perspective when addressing antibiotic resistance (AR) from a One Health perspective, as the farmers, ranchers, and agricultural professionals have an intimate working knowledge of these complex systems, and they will be on the front lines of implementing on-farm control measures. Currently, communication across the One Health triad (humans, animals, environment) regarding agricultural AR is hindered by ambiguous language, complicated by cultural and linguistic differences that can lead to the conclusion that the other participant is not aware of the facts, or has ulterior motives. This work explores and identifies the language and vocabulary of AR in the context of supporting strategic short- and long-term problem solving in a One Health context.
Collapse
Affiliation(s)
- Lisa M Durso
- USDA, ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL East Campus, Lincoln, NE, 68583, USA.
| | - Kimberly L Cook
- USDA, ARS, Bacterial Epidemiology and Antimicrobial Resistance Research Unit, 950 College Station Rd., Athens, GA, 30605, USA
| |
Collapse
|
129
|
Ghosh SK, Bupasha ZB, Nine HSMZ, Sen A, Ahad A, Sarker MS. Antibiotic resistance of Escherichia coli isolated from captive Bengal tigers at Safari parks in Bangladesh. J Adv Vet Anim Res 2019; 6:341-345. [PMID: 31583230 PMCID: PMC6760496 DOI: 10.5455/javar.2019.f352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The present study was carried out to assess the antibiotic resistance and to identify the resistance genes in Escherichia coli from captive Bengal tigers at two Safari parks in Bangladesh. MATERIALS AND METHODS A number of 24 environmental fecal swab samples of Bengal tigers were collected from two different Safari parks in Bangladesh. For the isolation of E. coli, samples were submitted to a number of bacteriological screening and biochemical tests. The antibiotic susceptibility of E. coli isolates was determined by disk diffusion method. RESULTS Results demonstrated that 18 environmental fecal samples were positive to E. coli in bacteriological screening and biochemical test. The overall prevalence of E. coli in Bengal tiger was 75% (n = 18/24). The antibiogram study unveiled that all the isolates were resistant to ampicillin. Sulfamethoxazole-trimethoprim, nalidixic acid, and tetracycline were 89% (n = 16/18) resistant. On the contrary, 100% (n = 18/18) of the isolates were sensitive to colistin sulfate. bla TEM was detected in 78% (n = 14/18) ampicillin-resistant isolates, whereas sul2 was found in 31% (n = 5/16) of the sulfamethoxazole-trimethoprim-resistant isolates. CONCLUSION This study, first time in Bangladesh, highlights a significant proportion of environmental fecal samples from captive Bengal tigers at Safari parks harboring antibiotic resistant E. coli. Transmission of resistant E. coli from Bengal tigers to humans and the environment could pose a public health risk at Safari parks in Bangladesh.
Collapse
Affiliation(s)
- Saurav Kumar Ghosh
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Zamila Bueaza Bupasha
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Arup Sen
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Abdul Ahad
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Samun Sarker
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
130
|
Abstract
Nonribosomal peptides are assemblages, including antibiotics, of canonical amino acids and other molecules. β-lactam antibiotics act on bacterial cell walls and can be cleaved by β-lactamases. β-lactamase activity in humans has been neglected, even though eighteen enzymes have already been annotated such in human genome. Their hydrolysis activities on antibiotics have not been previously investigated. Here, we report that human cells were able to digest penicillin and this activity was inhibited by β-lactamase inhibitor, i.e. sulbactam. Penicillin degradation in human cells was microbiologically demonstrated on Pneumococcus. We expressed a MBLAC2 human β-lactamase, known as an exosome biogenesis enzyme. It cleaved penicillin and was inhibited by sulbactam. Finally, β-lactamases are widely distributed, archaic, and have wide spectrum, including digesting anticancer and β-lactams, that can be then used as nutriments. The evidence of the other MBLAC2 role as a bona fide β-lactamase allows for reassessment of β-lactams and β-lactamases role in humans.
Collapse
|
131
|
Chu L, Chen D, Wang J, Yang Z, Shen Y. Degradation of antibiotics and antibiotic resistance genes in erythromycin fermentation residues using radiation coupled with peroxymonosulfate oxidation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:190-197. [PMID: 31376964 DOI: 10.1016/j.wasman.2019.07.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation coupled with peroxymonosulfate (PMS) oxidation was developed to degrade antibiotics and antibiotic resistance genes (ARGs) from the erythromycin fermentation (EryF) residual wastes. The experimental results showed that the ERY content and ARGs abundance decreased with increase of the absorbed dose and PMS dosage and gamma irradiation was more effective to abate ARGs from the EryF wastes. The removal efficiency of ERY reached 49-55% and more than 96-99% of ARGs (1.32-2.55 log) was eliminated with the absorbed dose of 25-50 kGy and PMS dosage of 50-100 mM. Illumina pyrosequencing revealed that 3 bacterial phyla, Proteobacteria, Firmicutes and Fusobacteria were highly enriched and the ARGs-linked hosts were affiliated to the genera Aeromonas, Enterobacteriaceae and Enterobacter in the phylum Proteobacteria. The abundance of the ARGs-linked bacteria decreased by gamma/PMS treatment. Ionizing radiation/PMS treatment with the doses of 25 kGy and 50 mM PMS is proposed for potential practical application.
Collapse
Affiliation(s)
- Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Dan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Zhiling Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yunpeng Shen
- Yili Chuanning Biotechnology Company, Ltd., Xinjiang 835007, PR China; School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| |
Collapse
|
132
|
Steiner PA, De Corte D, Geijo J, Mena C, Yokokawa T, Rattei T, Herndl GJ, Sintes E. Highly variable mRNA half-life time within marine bacterial taxa and functional genes. Environ Microbiol 2019; 21:3873-3884. [PMID: 31298776 PMCID: PMC7379614 DOI: 10.1111/1462-2920.14737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/04/2023]
Abstract
Messenger RNA can provide valuable insights into the variability of metabolic processes of microorganisms. However, due to uncertainties that include the stability of RNA, its application for activity profiling of environmental samples is questionable. We explored different factors affecting the decay rate of transcripts of three marine bacterial isolates using qPCR and determined mRNA half‐life time of specific bacterial taxa and of functional genes by metatranscriptomics of a coastal environmental prokaryotic community. The half‐life time of transcripts from 11 genes from bacterial isolates ranged from 1 to 46 min. About 80% of the analysed transcripts exhibited half‐live times shorter than 10 min. Significant differences were found in the half‐life time between mRNA and rRNA. The half‐life time of mRNA obtained from a coastal metatranscriptome ranged from 9 to 400 min. The shortest half‐life times of the metatranscriptome corresponded to transcripts from the same clusters of orthologous groups (COGs) in all bacterial classes. The prevalence of short mRNA half‐life time in genes related to defence mechanisms and motility indicate a tight connection of RNA decay rate to environmental stressors. The short half‐life time of RNA and its high variability needs to be considered when assessing metatranscriptomes especially in environmental samples.
Collapse
Affiliation(s)
- Paul A Steiner
- Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Daniele De Corte
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natushima 2-15, Yokosuka, Kanagawa, Japan
| | - Javier Geijo
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Catalina Mena
- Instituto Español de Oceanografia, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015, Palma, Spain
| | - Taichi Yokokawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natushima 2-15, Yokosuka, Kanagawa, Japan
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Gerhard J Herndl
- Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, PO Box 59, Alberta Den Burg, 1790, The Netherlands
| | - Eva Sintes
- Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Instituto Español de Oceanografia, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015, Palma, Spain
| |
Collapse
|
133
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
134
|
Wencewicz TA. Crossroads of Antibiotic Resistance and Biosynthesis. J Mol Biol 2019; 431:3370-3399. [PMID: 31288031 DOI: 10.1016/j.jmb.2019.06.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The biosynthesis of antibiotics and self-protection mechanisms employed by antibiotic producers are an integral part of the growing antibiotic resistance threat. The origins of clinically relevant antibiotic resistance genes found in human pathogens have been traced to ancient microbial producers of antibiotics in natural environments. Widespread and frequent antibiotic use amplifies environmental pools of antibiotic resistance genes and increases the likelihood for the selection of a resistance event in human pathogens. This perspective will provide an overview of the origins of antibiotic resistance to highlight the crossroads of antibiotic biosynthesis and producer self-protection that result in clinically relevant resistance mechanisms. Some case studies of synergistic antibiotic combinations, adjuvants, and hybrid antibiotics will also be presented to show how native antibiotic producers manage the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
135
|
Singh H, Das S, Yadav J, Srivastava VK, Jyoti A, Kaushik S. In search of novel protein drug targets for treatment of Enterococcus faecalis infections. Chem Biol Drug Des 2019; 94:1721-1739. [PMID: 31260188 DOI: 10.1111/cbdd.13582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
Abstract
Enterococcus faecalis (Ef) is one of the major pathogens involved in hospital-acquired infections. It can cause nosocomial bacteremia, surgical wound infection, and urinary tract infection. It is important to mention here that Ef is developing resistance against many commonly occurring antibiotics. The occurrence of multidrug resistance (MDR) and extensive-drug resistance (XDR) is now posing a major challenge to the medical community. In this regard, to combat the infections caused by Ef, we have to look for an alternative. Rational structure-based drug design exploits the three-dimensional structure of the target protein, which can be unraveled by various techniques such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. In this review, we have discussed the complete picture of Ef infections, the possible treatment available at present, and the alternative treatment options to be explored. This study will help in better understanding of novel biological targets against Ef and the compounds, which are likely to bind with these targets. Using these detailed structural informations, rational structure-based drug design is achievable and tight inhibitors against Ef can be prepared.
Collapse
Affiliation(s)
- Harpreet Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
136
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
137
|
Sarker MS, Mannan MS, Ali MY, Bayzid M, Ahad A, Bupasha ZB. Antibiotic resistance of Escherichia coli isolated from broilers sold at live bird markets in Chattogram, Bangladesh. J Adv Vet Anim Res 2019; 6:272-277. [PMID: 31583222 PMCID: PMC6760497 DOI: 10.5455/javar.2019.f344] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/03/2022] Open
Abstract
Objective The present study was carried out to appraise the antibiotic resistance and to detect some of the target resistant genes in Escherichia coli (E. coli) isolated from apparently healthy broilers. Materials and Methods Cloacal swab samples (n = 60) were collected from apparently healthy broilers (n = 60) sold at two different live bird markets (LBMs) of Chattogram, Bangladesh. Isolation and identification of the Escherichia coli was done by the following standard bacteriological techniques followed by biochemical tests. The antibiotic susceptibility of E. coli isolates was determined by the disk diffusion method. The antibiotic resistant genes were detected by polymerase chain reaction (PCR) using specific primers. Results The overall prevalence of E. coli in broilers was 61.67% (n = 37/60) (95% CI = 49-72.93). The antibiogram study showed that the isolates were 100% resistant to ampicillin and tetracycline followed by sulfomethoxazole-trimethoprim (94.59%, n = 35/37) and nalidixic acid (91.89%, n = 34/37). To the contrary, 56.76% (n = 21/37) isolates were sensitive to both ceftriaxone and gentamicin followed by colistin (48.65%, n = 18/37). All of E. coli isolates were multidrug resistant (MDR) and carried bla TEM, tetA, and Sul2 genes. Conclusion The presence of MDR genes in E. coli isolates in broilers could pose a serious public health threat.
Collapse
Affiliation(s)
- Md Samun Sarker
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Shahriar Mannan
- Veterinary Surgeon, Upazila Livestock Office, Thakurgaon Sadar, Thakurgaon, Bangladesh
| | - Md Younus Ali
- Veterinary Surgeon, Upazila Livestock Office, Birganj, Dinajpur, Bangladesh
| | - Md Bayzid
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Abdul Ahad
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Zamila Bueaza Bupasha
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
138
|
Islam GM, Gilbride KA. The effect of tetracycline on the structure of the bacterial community in a wastewater treatment system and its effects on nitrogen removal. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:130-137. [PMID: 30849567 DOI: 10.1016/j.jhazmat.2019.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
This study examined the impact of tetracycline at two environmentally relevant concentrations (1 μg/L and 10 μg/L) and one synthetically high concentration (500 μg/L) on the structure and function of the microbial community from the secondary treatment process of a municipal wastewater treatment plant (WWTP). Specifically, this study examined whether the introduction of tetracycline into bench scale reactors at two different replacement volume rates would cause a shift in the composition profile of the bacterial community. Furthermore concentrations of ammonia, nitrate/nitrite and total Kjeldahl nitrogen were monitored to examine the effect of the antibiotic on ammonia and nitrogen removal. At the low volume replacement rate, tetracycline was observed to have a positive impact on nitrogen removal. Total Kjeldahl nitrogen concentrations were also observed to decrease suggesting a role for tetracycline as a carbon source. However, at the higher volume replacement rate, the removal of ammonia and nitrogen were not significantly different from reactors that did not contain tetracycline. Over time, the bacterial composition profiles changed under all the conditions studied, however, the bacterial composition profiles appeared to be more influenced by the replacement volume rate than the presence of tetracycline even at concentrations many times higher than environmentally relevant amounts.
Collapse
Affiliation(s)
- G M Islam
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - K A Gilbride
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
139
|
Temperate Bacteriophages from Chronic Pseudomonas aeruginosa Lung Infections Show Disease-Specific Changes in Host Range and Modulate Antimicrobial Susceptibility. mSystems 2019; 4:4/4/e00191-18. [PMID: 31164451 PMCID: PMC6550368 DOI: 10.1128/msystems.00191-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperate bacteriophages are a common feature of Pseudomonas aeruginosa genomes, but their role in chronic lung infections is poorly understood. This study was designed to identify the diverse communities of mobile P. aeruginosa phages by employing novel metagenomic methods, to determine cross infectivity, and to demonstrate the influence of phage infection on antimicrobial susceptibility. Mixed temperate phage populations were chemically mobilized from individual P. aeruginosa, isolated from patients with cystic fibrosis (CF) or bronchiectasis (BR). The infectivity phenotype of each temperate phage lysate was evaluated by performing a cross-infection screen against all bacterial isolates and tested for associations with clinical variables. We utilized metagenomic sequencing data generated for each phage lysate and developed a novel bioinformatic approach allowing resolution of individual temperate phage genomes. Finally, we used a subset of the temperate phages to infect P. aeruginosa PAO1 and tested the resulting lysogens for their susceptibility to antibiotics. Here, we resolved 105 temperate phage genomes from 94 lysates that phylogenetically clustered into 8 groups. We observed disease-specific phage infectivity profiles and found that phages induced from bacteria isolated from more advanced disease infected broader ranges of P. aeruginosa isolates. Importantly, when infecting PAO1 in vitro with 20 different phages, 8 influenced antimicrobial susceptibility. This study shows that P. aeruginosa isolated from CF and BR patients harbors diverse communities of inducible phages, with hierarchical infectivity profiles that relate to the progression of the disease. Temperate phage infection altered the antimicrobial susceptibility of PAO1 at subinhibitory concentrations of antibiotics, suggesting they may be precursory to antimicrobial resistance.IMPORTANCE Pseudomonas aeruginosa is a key opportunistic respiratory pathogen in patients with cystic fibrosis and non-cystic fibrosis bronchiectasis. The genomes of these pathogens are enriched with mobile genetic elements including diverse temperate phages. While the temperate phages of the Liverpool epidemic strain have been shown to be active in the human lung and enhance fitness in a rat lung infection model, little is known about their mobilization more broadly across P. aeruginosa in chronic respiratory infection. Using a novel metagenomic approach, we identified eight groups of temperate phages that were mobilized from 94 clinical P. aeruginosa isolates. Temperate phages from P. aeruginosa isolated from more advanced disease showed high infectivity rates across a wide range of P. aeruginosa genotypes. Furthermore, we showed that multiple phages altered the susceptibility of PAO1 to antibiotics at subinhibitory concentrations.
Collapse
|
140
|
Kim DW, Thawng CN, Lee K, Wellington EMH, Cha CJ. A novel sulfonamide resistance mechanism by two-component flavin-dependent monooxygenase system in sulfonamide-degrading actinobacteria. ENVIRONMENT INTERNATIONAL 2019; 127:206-215. [PMID: 30928844 DOI: 10.1016/j.envint.2019.03.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 05/19/2023]
Abstract
Sulfonamide-degrading bacteria have been discovered in various environments, suggesting the presence of novel resistance mechanisms via drug inactivation. In this study, Microbacterium sp. CJ77 capable of utilizing various sulfonamides as a sole carbon source was isolated from a composting facility. Genome and proteome analyses revealed that a gene cluster containing a flavin-dependent monooxygenase and a flavin reductase was highly up-regulated in response to sulfonamides. Biochemical analysis showed that the two-component monooxygenase system was key enzymes for the initial cleavage of sulfonamides. Co-expression of the two-component system in Escherichia coli conferred decreased susceptibility to sulfamethoxazole, indicating that the genes encoding drug-inactivating enzymes are potential resistance determinants. Comparative genomic analysis revealed that the gene cluster containing sulfonamide monooxygenase (renamed as sulX) and flavin reductase (sulR) was highly conserved in a genomic island shared among sulfonamide-degrading actinobacteria, all of which also contained sul1-carrying class 1 integrons. These results suggest that the sulfonamide metabolism may have evolved in sulfonamide-resistant bacteria which had already acquired the class 1 integron under sulfonamide selection pressures. Furthermore, the presence of multiple insertion sequence elements and putative composite transposon structures containing the sulX gene cluster indicated potential mobilization. This is the first study to report that sulX responsible for both sulfonamide degradation and resistance is prevalent in sulfonamide-degrading actinobacteria and its genetic signatures indicate horizontal gene transfer of the novel resistance gene.
Collapse
Affiliation(s)
- Dae-Wi Kim
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Cung Nawl Thawng
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea
| | | | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea.
| |
Collapse
|
141
|
Noman E, Al-Gheethi A, Mohamed RMSR, Talip BA. Myco-Remediation of Xenobiotic Organic Compounds for a Sustainable Environment: A Critical Review. Top Curr Chem (Cham) 2019; 377:17. [DOI: 10.1007/s41061-019-0241-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
|
142
|
Danner MC, Robertson A, Behrends V, Reiss J. Antibiotic pollution in surface fresh waters: Occurrence and effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:793-804. [PMID: 30763859 DOI: 10.1016/j.scitotenv.2019.01.406] [Citation(s) in RCA: 464] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 05/25/2023]
Abstract
Worldwide, antibiotic usage exceeds 100,000 tons per year and there is increasing concern over the fate of these substances. Antibiotics are ubiquitous in the environment and significant concentrations have been detected in fresh waters. In this review, we highlight important aspects of antibiotic pollution in fresh waters: that concentrations of antibiotics in the environment are substantial, that micro-organisms are susceptible to this, that bacteria can evolve resistance in the environment, and that antibiotic pollution affects natural food webs while interacting with other stressors; which taken together poses a number of challenges for environmental scientists. In the literature, we found examples of considerable antibiotic pollution in fresh waters. In the Americas, antibiotic concentrations of up to 15 μg/L have been measured; with higher concentrations reported from European and African studies (over 10 μg/L and 50 μg/L respectively), and in Asian-pacific countries concentrations over 450 μg/L have been detected. While these concentrations might not be deemed harmful to humans, non-target freshwater organisms could be affected by them. Bioassays show that some of the antibiotics found in surface waters affect microbes at concentrations below 10 μg/L. Among the most potent antibiotics are those that prevail in streams and rivers in these concentrations, such as ciprofloxacin. Sub-lethal concentrations might not kill prokaryotes but contribute to increased bacterial resistance and change the composition of single-celled communities, as demonstrated in laboratory experiments. This has implications for the microbial food web (e.g. interactions among and between bacteria and their protozoan consumers) and by extension, larger organisms and ecosystem health. The fact that the effects of antibiotics are extremely context-dependent represents a challenge, particularly for in vitro research. We suggest future research avenues, taking into account food web experiments, antibiotics interacting with one another (and other stressors) and discuss how these can help to answer multi-layered research questions.
Collapse
Affiliation(s)
- Marie-Claire Danner
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom.
| | - Anne Robertson
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Volker Behrends
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Julia Reiss
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| |
Collapse
|
143
|
Ma X, Qi M, Li Z, Zhao Y, Yan P, Liang B, Wang A. Characterization of an efficient chloramphenicol-mineralizing bacterial consortium. CHEMOSPHERE 2019; 222:149-155. [PMID: 30703654 DOI: 10.1016/j.chemosphere.2019.01.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/25/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Obtaining efficient antibiotic-mineralizing consortium or pure cultures is a central issue for the deep elimination of antibiotic-contaminated environments. However, the antibiotic chloramphenicol (CAP) mineralizing consortium has not yet been reported. In this study, an efficient CAP-mineralizing consortium was successfully obtained with municipal activated sludge as the initial inoculum. This consortium is capable of aerobically subsisting on CAP as the sole carbon, nitrogen and energy sources and completely degrading 50 mg L-1 CAP within 24 h. After 5 d, 71.50 ± 2.63% of CAP was mineralized and Cl- recovery efficiency was 90.80 ± 7.34%. Interestingly, the CAP degradation efficiency obviously decreased to 18.22 ± 3.52% within 12 h with co-metabolic carbon source glucose. p-nitrobenzoic acid (p-NBA) was identified as an intermediate product during CAP biodegradation. The consortium is also able to utilize p-NBA as the sole carbon and nitrogen sources and almost completely degrade 25 mg L-1p-NBA within 24 h. Microbial community analysis indicated that the dominant genera in the CAP-mineralizing consortium all belong to Proteobacteria (especially Sphingobium with the relative abundance over 63%), and most bacteria could degrade aromatics including p-NBA, suggesting these genera involved in the upstream and downstream pathway of CAP degradation. Although the acclimated consortium has been successively passaged 152 times, the microbial community structure and core genera were not obviously changed, which was consistent with the stable CAP degradation efficiency observed under different generations. This is the first report that the acclimated consortium is able to mineralize CAP through an oxidative pathway with p-NBA as an intermediate product.
Collapse
Affiliation(s)
- Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peisheng Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
144
|
Zeng J, Pan Y, Yang J, Hou M, Zeng Z, Xiong W. Metagenomic insights into the distribution of antibiotic resistome between the gut-associated environments and the pristine environments. ENVIRONMENT INTERNATIONAL 2019; 126:346-354. [PMID: 30826613 DOI: 10.1016/j.envint.2019.02.052] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs) in the environment are promoted by anthropogenic activities, which cause potential risks to human health. However, large-scale quantitative data on antibiotic resistome from the pristine and anthropogenic environments remains largely unexplored. Here, we used metagenome-wide analysis to investigate the share and divergence in ARG profiles and their potential bacterial hosts between the pristine and gut-associated environments. We found that the abundance of total ARGs in gut-associated environments was significantly higher than the pristine environments (P < 0.001). The mcr-1 and tetX, the genes resistant to the last resort antibiotics (colistin and tigecycline, respectively), were in high abundance (4.57 copies/Gb and 3.39 copies/Gb, respectively) in gut-associated environments, suggesting the ARG pollution caused by anthropogenic antibiotics. Metagenomic assembly-based host-tracking analysis identified Escherichia, Bacteroides, and Clostridium as the predominant bacterial hosts of ARGs in gut-associated environments, while Alteromonas, Vibrio, and Proteobacteria as the predominant bacterial hosts of ARGs in pristine environments. We first described the broad diversity of ARG hosts in different environments using metagenome-wide analysis. Our results revealed the heterogeneous distribution of ARGs and their hosts among different microbial niches in gut-associated environments and the pristine environments.
Collapse
Affiliation(s)
- Jiaxiong Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jintao Yang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Mengtian Hou
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.
| | - Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
145
|
Zhao Y, Cocerva T, Cox S, Tardif S, Su JQ, Zhu YG, Brandt KK. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:512-520. [PMID: 30529954 DOI: 10.1016/j.scitotenv.2018.11.372] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance genes (ARGs) constitute emerging environmental pollutants and pose risks to public health. Toxic metals are known to select for metal-resistant bacteria in metal-contaminated soils, but there is growing concern that metal contaminants can also act as co-selective agents thereby causing environmental proliferation of antibiotic resistance. In this study, we quantified ARGs and selected mobile genetic elements (MGEs) known to constitute potential ARG hosts in 50 archived urban and suburban soils from the Belfast metropolitan area using a high-throughput qPCR ARG chip. ARG prevalence was linked to concentrations of individual metals and a soil metal toxicity index calculated based on the relative toxicity of different metals to soil microbial processes. A total of 164 ARGs were detected across the 50 soils analyzed with an average absolute abundance of 3.4 × 107 ARG gene copies per gram of soil. A significant correlation between abundance of ARGs and MGEs was observed, suggesting the importance of horizontal gene transfer for ARG dissemination. Network analysis revealed significant co-occurrence patterns between specific metals (As, Cd, Co, Cr, Cu. Hg, Ni and Zn) and associated ARGs. Path analysis further indicated that the soil metal toxicity index significantly affected the number of detected ARGs (λ = 0.32, P < 0.001) and the abundance of metal co-occurring ARGs (λ = 0.612, P < 0.001) via effects on MGEs. Collectively, our results indicate a role of soil metals in co-selection of ARGs and MGEs in urban and semi-urban soils and suggest a risk for environmental ARG dissemination via horizontal gene transfer.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Tatiana Cocerva
- School of Natural and Built Environment, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast BT9 6AX, United Kingdom
| | - Siobhan Cox
- School of Natural and Built Environment, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast BT9 6AX, United Kingdom
| | - Stacie Tardif
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Sino-Danish Centre for Education and Research, Huairou District, Beijing, China.
| |
Collapse
|
146
|
Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Front Microbiol 2019; 10:338. [PMID: 30906284 PMCID: PMC6418018 DOI: 10.3389/fmicb.2019.00338] [Citation(s) in RCA: 429] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/08/2019] [Indexed: 01/11/2023] Open
Abstract
Antibiotics play a key role in the management of infectious diseases in humans, animals, livestock, and aquacultures all over the world. The release of increasing amount of antibiotics into waters and soils creates a potential threat to all microorganisms in these environments. This review addresses issues related to the fate and degradation of antibiotics in soils and the impact of antibiotics on the structural, genetic and functional diversity of microbial communities. Due to the emergence of bacterial resistance to antibiotics, which is considered a worldwide public health problem, the abundance and diversity of antibiotic resistance genes (ARGs) in soils are also discussed. When antibiotic residues enter the soil, the main processes determining their persistence are sorption to organic particles and degradation/transformation. The wide range of DT50 values for antibiotic residues in soils shows that the processes governing persistence depend on a number of different factors, e.g., physico-chemical properties of the residue, characteristics of the soil, and climatic factors (temperature, rainfall, and humidity). The results presented in this review show that antibiotics affect soil microorganisms by changing their enzyme activity and ability to metabolize different carbon sources, as well as by altering the overall microbial biomass and the relative abundance of different groups (i.e., Gram-negative bacteria, Gram-positive bacteria, and fungi) in microbial communities. Studies using methods based on analyses of nucleic acids prove that antibiotics alter the biodiversity of microbial communities and the presence of many types of ARGs in soil are affected by agricultural and human activities. It is worth emphasizing that studies on ARGs in soil have resulted in the discovery of new genes and enzymes responsible for bacterial resistance to antibiotics. However, many ambiguous results indicate that precise estimation of the impact of antibiotics on the activity and diversity of soil microbial communities is a great challenge.
Collapse
Affiliation(s)
- Mariusz Cycoń
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Sosnowiec, Poland
| | - Agnieszka Mrozik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
147
|
Santos F, Almeida CMRD, Ribeiro I, Ferreira AC, Mucha AP. Removal of veterinary antibiotics in constructed wetland microcosms - Response of bacterial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:894-901. [PMID: 30597789 DOI: 10.1016/j.ecoenv.2018.11.078] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to evaluate the response of bacteria, in terms of microbial community structure, from constructed wetland (CW) microcosms exposed to two veterinary antibiotics, enrofloxacin (ENR) and ceftiofur (CEF), alone or in a mixture, identifying which bacterial groups were dominant in CWs substrate during livestock wastewater treatment. Wastewater, not-doped or doped with ENR and/or CEF (100 µg/L each), was treated during 18 one-week cycles. Systems showed removal percentages > 85% for the added antibiotics, showing also high removal percentages for nutrients and organic matter and confirming CWs systems were working properly. However, both time of exposure and presence of antibiotics influenced significantly CWs substrate bacterial community structure. Pyrosequencing results showed bacterial communities were dominated by phyla Proteobacteria (38-48%), Firmicutes (20-27%), Bacteroidetes (12-15%) and Actinobacteria (4-9%), and that their relative abundance was clearly affected by the presence of the antibiotics. Results suggest the applicability of CWs for the removal of veterinary antibiotics from livestock wastewaters and provide new knowledge about the bacteria within the system, which can potentially be involved in removal processes. This information could in the future be used to improve CWs removal rates of pharmaceuticals from livestock wastewaters.
Collapse
Affiliation(s)
- Filipa Santos
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cristina Marisa Ribeiro de Almeida
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Iolanda Ribeiro
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Catarina Ferreira
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Paula Mucha
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
148
|
Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M. Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:177-189. [PMID: 30445319 DOI: 10.1016/j.scitotenv.2018.11.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 05/07/2023]
Abstract
Pesticides are an important agricultural input, and the introduction of new active ingredients with increased efficiencies drives their higher production and consumption worldwide. Inappropriate application and storage of these chemicals often contaminate plant tissues, air, water, or soil environments. The presence of pesticides can lead to developing tolerance, resistance or persistence and even the capabilities to degrade them by the microbiomes of theses environments. The pesticide-degrading microorganisms gain and employ several mechanisms for attraction (chemotaxis), membrane transport systems, efflux pumps, enzymes and genetical make-up with plasmid and chromosome encoded catabolic genes for degradation. Even the evolution and the mechanisms of inheritance for pesticide-degradation as a functional trait in several microorganisms are beginning to be understood. Because of the commonalities in the microbial responses of sensing and uptake, and adaptation due to the selection pressures of pesticides and antimicrobial substances including antibiotics, the pesticide-degraders have higher chances of possessing antimicrobial resistance as a surplus functional trait. This review critically examines the probabilities of pesticide contamination of soil and foliage, the knowledge gaps in the regulation and storage of pesticide chemicals, and the human implications of pesticide-degrading microorganisms with antimicrobial resistance in the global strategy of 'One Health'.
Collapse
Affiliation(s)
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Nambrattil Sethunathan
- Flat No. 103, Ushodaya Apartments, Sri Venkateswara Officers Colony, Ramakrishnapuram, Secunderabad 500056, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER) and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.
| |
Collapse
|
149
|
Li B, Zhang Z, Ma Y, Li Y, Zhu C, Li H. Electrokinetic remediation of antibiotic-polluted soil with different concentrations of tetracyclines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8212-8225. [PMID: 30697655 DOI: 10.1007/s11356-019-04294-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the efficacy of electrokinetic remediation of soils polluted with different concentrations of tetracyclines (TCs). Three widely used TCs (oxytetracycline, chlortetracycline, and tetracycline) were selected, and concentrations of 0, 5, 10, 20, and 50 mg/kg (C0, C5, C10, C20, C50) were selected for comparison. Antibiotic-polluted soils with no electric field served as controls. The average removal rates of TCs in different treatments ranged from 25 to 48% after 7-day remediation. The contributing ratios of electrokinetics to TCs removal varied from 22 to 84%. The concentrations of NH4+ increased in soils and electrolytes, which indicated the decomposition of TCs in the electric field. The highest removal amount of TCs was obtained in the C50 treatment, due to efficient reactions of TCs with oxidative radicals generated during the electrolysis. The fluctuant range of pH in the electrolytes was decreased with increasing concentration of TCs, while the soil pH was increased. The removal rate of antibiotic-resistant bacteria (ARB) in the C5 treatment was significantly higher than that in other treatments. The abundance of antibiotic resistance genes (ARGs) increased with the concentrations of TCs in soils. It might result from the induction of increasing selective pressure of antibiotics. Significant removal of ARGs occurred in the C50 treatment (38-60%). In terms of controlling ARB and ARGs, which were more resistant, the electrokinetic technology showed advantageous effects. Above all, electrokinetic technology provides an effective remediation method, especially for TC-polluted soil with a concentration of 20-50 mg/kg.
Collapse
Affiliation(s)
- Binxu Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Zhiguo Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Yanlin Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Yanling Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China.
| |
Collapse
|
150
|
Jin J, Yang Z, Xiong W, Zhou Y, Xu R, Zhang Y, Cao J, Li X, Zhou C. Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:408-418. [PMID: 30199685 DOI: 10.1016/j.scitotenv.2018.08.434] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/12/2018] [Accepted: 08/31/2018] [Indexed: 05/27/2023]
Abstract
Chromium metal-organic framework (MIL-101(Cr)) has been widely studied for removing organic contaminants from aqueous solutions due to its excellent water stability and giant pore size, but its low adsorption capacity limits the application. In this study, a new adsorbent MIL-101 loaded with CuCo bimetallic nanoparticles (CuCo/MIL-101) was successfully fabricated and applied in removal of tetracycline (TC) from aqueous solutions. The adsorption capacity of CuCo/MIL-101 for TC increased by 140% compared with that of pure MIL-101, which may be attributed to the chemical bonding between Cu and Co BNPs in MIL-101 and TC molecules. The effects of pH, ionic strength, humic acid and contact time on the adsorption were also discussed in detail. The results showed that the removal efficiency of TC solution with high concentration (100 mg L-1) by CuCo/MIL-101 was still as high as 82.9%. The data of adsorption kinetics and isotherms could be well fitted by Elovich model and Freundlich model, respectively. According to the fitting parameters, the maximum adsorption capacity of CuCo/MIL-101 reached up to 225.179 mg g-1. Additionally, the adsorption process of TC onto CuCo/MIL-101 was spontaneous and endothermic. Electrostatic interactions could play an important role in the adsorption process. The enhanced adsorption capacity, excellent reusability and water stability demonstrated the potential of CuCo/MIL-101 composite as a novel adsorbent for the removal of TC from aqueous solutions.
Collapse
Affiliation(s)
- Jiahui Jin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Rui Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yanru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Jiao Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|