101
|
Puustinen MC, Sistonen L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells 2020; 9:cells9051202. [PMID: 32408596 PMCID: PMC7290425 DOI: 10.3390/cells9051202] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant transformation is accompanied by alterations in the key cellular pathways that regulate development, metabolism, proliferation and motility as well as stress resilience. The members of the transcription factor family, called heat shock factors (HSFs), have been shown to play important roles in all of these biological processes, and in the past decade it has become evident that their activities are rewired during tumorigenesis. This review focuses on the expression patterns and functions of HSF1, HSF2, and HSF4 in specific cancer types, highlighting the mechanisms by which the regulatory functions of these transcription factors are modulated. Recently developed therapeutic approaches that target HSFs are also discussed.
Collapse
Affiliation(s)
- Mikael Christer Puustinen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-2215-3311
| |
Collapse
|
102
|
Schiffer JA, Servello FA, Heath WR, Amrit FRG, Stumbur SV, Eder M, Martin OMF, Johnsen SB, Stanley JA, Tam H, Brennan SJ, McGowan NG, Vogelaar AL, Xu Y, Serkin WT, Ghazi A, Stroustrup N, Apfeld J. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 2020; 9:e56186. [PMID: 32367802 PMCID: PMC7213980 DOI: 10.7554/elife.56186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode Caenorhabditis elegans that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism. We found that catalases produced by Escherichia coli, the nematode's food source, can deplete hydrogen peroxide from the local environment and thereby protect the nematodes. In the presence of E. coli, the nematode's neurons signal via TGFβ-insulin/IGF1 relay to target tissues to repress expression of catalases and other hydrogen peroxide defenses. This adaptive strategy is the first example of a multicellular organism modulating its defenses when it expects to freeload from the protection provided by molecularly orthologous defenses from another species.
Collapse
Affiliation(s)
| | | | - William R Heath
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sean B Johnsen
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Hannah Tam
- Biology Department, Northeastern UniversityBostonUnited States
| | - Sarah J Brennan
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Yuyan Xu
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburghUnited States
- Departments of Developmental Biology and Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
103
|
Sandhof CA, Hoppe SO, Druffel-Augustin S, Gallrein C, Kirstein J, Voisine C, Nussbaum-Krammer C. Reducing INS-IGF1 signaling protects against non-cell autonomous vesicle rupture caused by SNCA spreading. Autophagy 2020; 16:878-899. [PMID: 31354022 PMCID: PMC7144869 DOI: 10.1080/15548627.2019.1643657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/28/2023] Open
Abstract
Aging is associated with a gradual decline of cellular proteostasis, giving rise to devastating protein misfolding diseases, such as Alzheimer disease (AD) or Parkinson disease (PD). These diseases often exhibit a complex pathology involving non-cell autonomous proteotoxic effects, which are still poorly understood. Using Caenorhabditis elegans we investigated how local protein misfolding is affecting neighboring cells and tissues showing that misfolded PD-associated SNCA/α-synuclein is accumulating in highly dynamic endo-lysosomal vesicles. Irrespective of whether being expressed in muscle cells or dopaminergic neurons, accumulated proteins were transmitted into the hypodermis with increasing age, indicating that epithelial cells might play a role in remote degradation when the local endo-lysosomal degradation capacity is overloaded. Cell biological and genetic approaches revealed that inter-tissue dissemination of SNCA was regulated by endo- and exocytosis (neuron/muscle to hypodermis) and basement membrane remodeling (muscle to hypodermis). Transferred SNCA conformers were, however, inefficiently cleared and induced endo-lysosomal membrane permeabilization. Remarkably, reducing INS (insulin)-IGF1 (insulin-like growth factor 1) signaling provided protection by maintaining endo-lysosomal integrity. This study suggests that the degradation of lysosomal substrates is coordinated across different tissues in metazoan organisms. Because the chronic dissemination of poorly degradable disease proteins into neighboring tissues exerts a non-cell autonomous toxicity, this implies that restoring endo-lysosomal function not only in cells with pathological inclusions, but also in apparently unaffected cell types might help to halt disease progression.Abbreviations: AD: Alzheimer disease; BM: basement membrane; BWM: body wall muscle; CEP: cephalic sensilla; CLEM: correlative light and electron microscopy; CTNS-1: cystinosin (lysosomal protein) homolog; DA: dopaminergic; DAF-2: abnormal dauer formation; ECM: extracellular matrix; FLIM: fluorescence lifetime imaging microscopy; fps: frames per second; GFP: green fluorescent protein; HPF: high pressure freezing; IGF1: insulin-like growth factor 1; INS: insulin; KD: knockdown; LMP: lysosomal membrane permeabilization; MVB: multivesicular body; NOC: nocodazole; PD: Parkinson disease; RFP: red fluorescent protein; RNAi: RNA interference; sfGFP: superfolder GFP; SNCA: synuclein alpha; TEM: transmission electron microscopy; TNTs: tunneling nanotubes; TCSPC: time correlated single photon counting; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Carl Alexander Sandhof
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Simon Oliver Hoppe
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silke Druffel-Augustin
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Gallrein
- Department of Molecular Physiology and Cell Biology, Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V, Berlin, Germany
| | - Janine Kirstein
- Department of Molecular Physiology and Cell Biology, Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V, Berlin, Germany
| | - Cindy Voisine
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
104
|
Das S, Ooi FK, Cruz Corchado J, Fuller LC, Weiner JA, Prahlad V. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020; 9:e55246. [PMID: 32324136 PMCID: PMC7237211 DOI: 10.7554/elife.55246] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | | | | | - Joshua A Weiner
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
105
|
Frakes AE, Metcalf MG, Tronnes SU, Bar-Ziv R, Durieux J, Gildea HK, Kandahari N, Monshietehadi S, Dillin A. Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in C. elegans. Science 2020; 367:436-440. [PMID: 31974253 DOI: 10.1126/science.aaz6896] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022]
Abstract
The ability of the nervous system to sense cellular stress and coordinate protein homeostasis is essential for organismal health. Unfortunately, stress responses that mitigate disturbances in proteostasis, such as the unfolded protein response of the endoplasmic reticulum (UPRER), become defunct with age. In this work, we expressed the constitutively active UPRER transcription factor, XBP-1s, in a subset of astrocyte-like glia, which extended the life span in Caenorhabditis elegans Glial XBP-1s initiated a robust cell nonautonomous activation of the UPRER in distal cells and rendered animals more resistant to protein aggregation and chronic ER stress. Mutants deficient in neuropeptide processing and secretion suppressed glial cell nonautonomous induction of the UPRER and life-span extension. Thus, astrocyte-like glial cells play a role in regulating organismal ER stress resistance and longevity.
Collapse
Affiliation(s)
- Ashley E Frakes
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Melissa G Metcalf
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Sarah U Tronnes
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Raz Bar-Ziv
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Holly K Gildea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Nazineen Kandahari
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Samira Monshietehadi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
106
|
Cruz-Corchado J, Ooi FK, Das S, Prahlad V. Global Transcriptome Changes That Accompany Alterations in Serotonin Levels in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:1225-1246. [PMID: 31996358 PMCID: PMC7144078 DOI: 10.1534/g3.120.401088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/25/2020] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), is a phylogenetically ancient molecule best characterized as a neurotransmitter that modulates multiple aspects of mood and social cognition. The roles that 5-HT plays in normal and abnormal behavior are not fully understood but have been posited to be due to its common function as a 'defense signal'. However, 5-HT levels also systemically impact cell physiology, modulating cell division, migration, apoptosis, mitochondrial biogenesis, cellular metabolism and differentiation. Whether these diverse cellular effects of 5-HT also share a common basis is unclear. C. elegans provides an ideal system to interrogate the systemic effects of 5-HT, since lacking a blood-brain barrier, 5-HT synthesized and released by neurons permeates the organism to modulate neuronal as well as non-neuronal cells throughout the body. Here we used RNA-Seq to characterize the systemic changes in gene expression that occur in C. elegans upon altering 5-HT levels, and compared the transcriptomes to published datasets. We find that an acute increase in 5-HT is accompanied by a global decrease in gene expression levels, upregulation of genes involved in stress pathways, changes that significantly correlate with the published transcriptomes of animals that have activated defense and immune responses, and an increase in levels of phosphorylated eukaryotic initiation factor, eIF2α. In 5-HT deficient animals lacking tryptophan hydroxylase (tph-1(mg280)II) there is a net increase in gene expression, with an overrepresentation of genes related to development and chromatin. Surprisingly, the transcriptomes of animals with acute increases in 5-HT levels, and 5-HT deficiency do not overlap with transcriptomes of mutants with whom they share striking physiological resemblance. These studies are the first to catalog systemic transcriptome changes that occur upon alterations in 5-HT levels. They further show that in C. elegans changes in gene expression upon altering 5-HT levels, and changes in physiology, are not directly correlated.
Collapse
Affiliation(s)
- Johnny Cruz-Corchado
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| |
Collapse
|
107
|
Abstract
The functional health of the proteome is determined by properties of the proteostasis network (PN) that regulates protein synthesis, folding, macromolecular assembly, translocation, and degradation. In eukaryotes, the PN also integrates protein biogenesis across compartments within the cell and between tissues of metazoans for organismal health and longevity. Additionally, in metazoans, proteome stability and the functional health of proteins is optimized for development and yet declines throughout aging, accelerating the risk for misfolding, aggregation, and cellular dysfunction. Here, I describe the cell-nonautonomous regulation of organismal PN by tissue communication and cell stress-response pathways. These systems are robust from development through reproductive maturity and are genetically programmed to decline abruptly in early adulthood by repression of the heat shock response and other cell-protective stress responses, thus compromising the ability of cells and tissues to properly buffer against the cumulative stress of protein damage during aging. While the failure of multiple protein quality control processes during aging challenges cellular function and tissue health, genetic studies, and the identification of small-molecule proteostasis regulators suggests strategies that can be employed to reset the PN with potential benefit on cellular health and organismal longevity.
Collapse
Affiliation(s)
- Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
108
|
Sala AJ, Bott LC, Brielmann RM, Morimoto RI. Embryo integrity regulates maternal proteostasis and stress resilience. Genes Dev 2020; 34:678-687. [PMID: 32217667 PMCID: PMC7197353 DOI: 10.1101/gad.335422.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
The proteostasis network is regulated by transcellular communication to promote health and fitness in metazoans. In Caenorhabditis elegans, signals from the germline initiate the decline of proteostasis and repression of cell stress responses at reproductive maturity, indicating that commitment to reproduction is detrimental to somatic health. Here we show that proteostasis and stress resilience are also regulated by embryo-to-mother communication in reproductive adults. To identify genes that act directly in the reproductive system to regulate somatic proteostasis, we performed a tissue targeted genetic screen for germline modifiers of polyglutamine aggregation in muscle cells. We found that inhibiting the formation of the extracellular vitelline layer of the fertilized embryo inside the uterus suppresses aggregation, improves stress resilience in an HSF-1-dependent manner, and restores the heat-shock response in the somatic tissues of the parent. This pathway relies on DAF-16/FOXO activation in vulval tissues to maintain stress resilience in the mother, suggesting that the integrity of the embryo is monitored by the vulva to detect damage and initiate an organismal protective response. Our findings reveal a previously undescribed transcellular pathway that links the integrity of the developing progeny to proteostasis regulation in the parent.
Collapse
Affiliation(s)
- Ambre J Sala
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura C Bott
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Renee M Brielmann
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
109
|
Díaz-Hung ML, Martínez G, Hetz C. Emerging roles of the unfolded protein response (UPR) in the nervous system: A link with adaptive behavior to environmental stress? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:29-61. [PMID: 32138903 DOI: 10.1016/bs.ircmb.2020.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stressors elicit a neuroendocrine response leading to increased levels of glucocorticoids, allowing the organism to adapt to environmental changes and maintain homeostasis. Glucocorticoids have a broad effect in the body, modifying the activity of the immune system, metabolism, and behavior through the activation of receptors in the limbic system. Chronic exposition to stressors operates as a risk factor for psychiatric diseases such as depression and posttraumatic stress disorder. Among the cellular alterations observed as a consequence of environmental stress, alterations to organelle function at the level of mitochondria and endoplasmic reticulum (ER) are emerging as possible factors contributing to neuronal dysfunction. ER proteostasis alterations elicit the unfolded protein response (UPR), a conserved signaling network that re-establish protein homeostasis. In addition, in the context of brain function, the UPR has been associated to neurodevelopment, synaptic plasticity and neuronal connectivity. Recent studies suggest a role of the UPR in the adaptive behavior to stress, suggesting a mechanistic link between environmental and cellular stress. Here, we revise recent evidence supporting an evolutionary connection between the neuroendocrine system and the UPR to modulate behavioral adaptive responses.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
110
|
Burnaevskiy N, Sands B, Yun S, Tedesco PM, Johnson TE, Kaeberlein M, Brent R, Mendenhall A. Chaperone biomarkers of lifespan and penetrance track the dosages of many other proteins. Nat Commun 2019; 10:5725. [PMID: 31844058 PMCID: PMC6914778 DOI: 10.1038/s41467-019-13664-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/11/2019] [Indexed: 12/27/2022] Open
Abstract
Many traits vary among isogenic individuals in homogeneous environments. In microbes, plants and animals, variation in the protein chaperone system affects many such traits. In the animal model C. elegans, the expression level of hsp-16.2 chaperone biomarkers correlates with or predicts the penetrance of mutations and lifespan after heat shock. But the physiological mechanisms causing cells to express different amounts of the biomarker were unknown. Here, we used an in vivo microscopy approach to dissect different contributions to cell-to-cell variation in hsp-16.2 expression in the intestines of young adult animals, which generate the most lifespan predicting signal. While we detected both cell autonomous intrinsic noise and signaling noise, we found both contributions were relatively unimportant. The major contributor to cell-to-cell variation in biomarker expression was general differences in protein dosage. The hsp-16.2 biomarker reveals states of high or low effective dosage for many genes.
Collapse
Affiliation(s)
| | - Bryan Sands
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Soo Yun
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Patricia M Tedesco
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Thomas E Johnson
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Roger Brent
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | |
Collapse
|
111
|
Gecse E, Gilányi B, Csaba M, Hajdú G, Sőti C. A cellular defense memory imprinted by early life toxic stress. Sci Rep 2019; 9:18935. [PMID: 31831768 PMCID: PMC6908573 DOI: 10.1038/s41598-019-55198-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
Stress exposure early in life is implicated in various behavioural and somatic diseases. Experiences during the critical perinatal period form permanent, imprinted memories promoting adult survival. Although imprinting is widely recognized to dictate behaviour, whether it actuates specific transcriptional responses at the cellular level is unknown. Here we report that in response to early life stresses, Caenorhabditis elegans nematodes form an imprinted cellular defense memory. We show that exposing newly-born worms to toxic antimycin A and paraquat, respectively, stimulates the expression of toxin-specific cytoprotective reporters. Toxin exposure also induces avoidance of the toxin-containing bacterial lawn. In contrast, adult worms do not exhibit aversive behaviour towards stress-associated bacterial sensory cues. However, the mere re-encounter with the same cues reactivates the previously induced cytoprotective reporters. Learned adult defenses require memory formation during the L1 larval stage and do not appear to confer increased protection against the toxin. Thus, exposure of C. elegans to toxic stresses in the critical period elicits adaptive behavioural and cytoprotective responses, which do not form imprinted aversive behaviour, but imprint a cytoprotective memory. Our findings identify a novel form of imprinting and suggest that imprinted molecular defenses might underlie various pathophysiological alterations related to early life stress.
Collapse
Affiliation(s)
- Eszter Gecse
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Beatrix Gilányi
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Márton Csaba
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Gábor Hajdú
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
112
|
O'Brien D, Jones LM, Good S, Miles J, Vijayabaskar MS, Aston R, Smith CE, Westhead DR, van Oosten-Hawle P. A PQM-1-Mediated Response Triggers Transcellular Chaperone Signaling and Regulates Organismal Proteostasis. Cell Rep 2019; 23:3905-3919. [PMID: 29949773 PMCID: PMC6045774 DOI: 10.1016/j.celrep.2018.05.093] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/04/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
In metazoans, tissues experiencing proteotoxic stress induce "transcellular chaperone signaling" (TCS) that activates molecular chaperones, such as hsp-90, in distal tissues. How this form of inter-tissue communication is mediated to upregulate systemic chaperone expression and whether it can be utilized to protect against protein misfolding diseases remain open questions. Using C. elegans, we identified key components of a systemic stress signaling pathway that links the innate immune response with proteostasis maintenance. We show that mild perturbation of proteostasis in the neurons or the intestine activates TCS via the GATA zinc-finger transcription factor PQM-1. PQM-1 coordinates neuron-activated TCS via the innate immunity-associated transmembrane protein CLEC-41, whereas intestine-activated TCS depends on the aspartic protease ASP-12. Both TCS pathways can induce hsp-90 in muscle cells and facilitate amelioration of Aβ3-42-associated toxicity. This may have powerful implications for the treatment of diseases related to proteostasis dysfunction.
Collapse
Affiliation(s)
- Daniel O'Brien
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Laura M Jones
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Sarah Good
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Jo Miles
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - M S Vijayabaskar
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca Aston
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Catrin E Smith
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - David R Westhead
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
113
|
Schreiner WP, Pagliuso DC, Garrigues JM, Chen JS, Aalto AP, Pasquinelli AE. Remodeling of the Caenorhabditis elegans non-coding RNA transcriptome by heat shock. Nucleic Acids Res 2019; 47:9829-9841. [PMID: 31396626 PMCID: PMC6765114 DOI: 10.1093/nar/gkz693] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Elevated temperatures activate a heat shock response (HSR) to protect cells from the pathological effects of protein mis-folding, cellular mis-organization, organelle dysfunction and altered membrane fluidity. This response includes activation of the conserved transcription factor heat shock factor 1 (HSF-1), which binds heat shock elements (HSEs) in the promoters of genes induced by heat shock (HS). The upregulation of protein-coding genes (PCGs), such as heat shock proteins and cytoskeletal regulators, is critical for cellular survival during elevated temperatures. While the transcriptional response of PCGs to HS has been comprehensively analyzed in a variety of organisms, the effect of this stress on the expression of non-coding RNAs (ncRNAs) has not been systematically examined. Here we show that in Caenorhabditis elegans HS induces up- and downregulation of specific ncRNAs from multiple classes, including miRNA, piRNA, lincRNA, pseudogene and repeat elements. Moreover, some ncRNA genes appear to be direct targets of the HSR, as they contain HSF-1 bound HSEs in their promoters and their expression is regulated by this factor during HS. These results demonstrate that multiple ncRNA genes respond to HS, some as direct HSF-1 targets, providing new candidates that may contribute to organismal survival during this stress.
Collapse
Affiliation(s)
- William P Schreiner
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Delaney C Pagliuso
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Jacob M Garrigues
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Jerry S Chen
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Antti P Aalto
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
114
|
Weinstein DJ, Allen SE, Lau MCY, Erasmus M, Asalone KC, Walters-Conte K, Deikus G, Sebra R, Borgonie G, van Heerden E, Onstott TC, Bracht JR. The genome of a subterrestrial nematode reveals adaptations to heat. Nat Commun 2019; 10:5268. [PMID: 31754114 PMCID: PMC6872716 DOI: 10.1038/s41467-019-13245-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
The nematode Halicephalobus mephisto was originally discovered inhabiting a deep terrestrial aquifer 1.3 km underground. H. mephisto can thrive under conditions of abiotic stress including heat and minimal oxygen, where it feeds on a community of both chemolithotrophic and heterotrophic prokaryotes in an unusual ecosystem isolated from the surface biosphere. Here we report the comprehensive genome and transcriptome of this organism, identifying a signature of adaptation: an expanded repertoire of 70 kilodalton heat-shock proteins (Hsp70) and avrRpt2 induced gene 1 (AIG1) proteins. The expanded Hsp70 genes are transcriptionally induced upon growth under heat stress, and we find that positive selection is detectable in several members of this family. We further show that AIG1 may have been acquired by horizontal gene transfer (HGT) from a rhizobial fungus. Over one-third of the genes of H. mephisto are novel, highlighting the divergence of this nematode from other sequenced organisms. This work sheds light on the genomic basis of heat tolerance in a complete subterrestrial eukaryotic genome.
Collapse
Affiliation(s)
| | - Sarah E Allen
- Biology Department, American University, Washington, DC, 20016, USA
- Biology Department, Cornell University, Ithaca, NY, 14853, USA
| | - Maggie C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, No. 28, Luhuitou Road, Sanya, 572000, Hainan Province, P.R. China
| | - Mariana Erasmus
- UFS/TIA Saense Platform, Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | | | | | - Gintaras Deikus
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Esta van Heerden
- UFS/TIA Saense Platform, Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
- North West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - John R Bracht
- Biology Department, American University, Washington, DC, 20016, USA.
| |
Collapse
|
115
|
How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019; 212:25-51. [PMID: 31053616 PMCID: PMC6499529 DOI: 10.1534/genetics.118.300241] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
Caenorhabditis elegans lives in a complex habitat in which they routinely experience large fluctuations in temperature, and encounter physical obstacles that vary in size and composition. Their habitat is shared by other nematodes, by beneficial and harmful bacteria, and nematode-trapping fungi. Not surprisingly, these nematodes can detect and discriminate among diverse environmental cues, and exhibit sensory-evoked behaviors that are readily quantifiable in the laboratory at high resolution. Their ability to perform these behaviors depends on <100 sensory neurons, and this compact sensory nervous system together with powerful molecular genetic tools has allowed individual neuron types to be linked to specific sensory responses. Here, we describe the sensory neurons and molecules that enable C. elegans to sense and respond to physical stimuli. We focus primarily on the pathways that allow sensation of mechanical and thermal stimuli, and briefly consider this animal’s ability to sense magnetic and electrical fields, light, and relative humidity. As the study of sensory transduction is critically dependent upon the techniques for stimulus delivery, we also include a section on appropriate laboratory methods for such studies. This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies. We also describe the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues. These studies have shown that the protein partners that form mechanotransduction channels are drawn from multiple superfamilies of ion channel proteins, and that signal transduction pathways responsible for temperature sensing in C. elegans share many features with those responsible for phototransduction in vertebrates.
Collapse
|
116
|
De Rosa MJ, Veuthey T, Florman J, Grant J, Blanco MG, Andersen N, Donnelly J, Rayes D, Alkema MJ. The flight response impairs cytoprotective mechanisms by activating the insulin pathway. Nature 2019; 573:135-138. [PMID: 31462774 PMCID: PMC7986477 DOI: 10.1038/s41586-019-1524-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/31/2019] [Indexed: 11/09/2022]
Abstract
An animal's stress response requires different adaptive strategies depending on the nature and duration of the stressor. Whereas acute stressors, such as predation, induce a rapid and energy-demanding fight-or-flight response, long-term environmental stressors induce the gradual and long-lasting activation of highly conserved cytoprotective processes1-3. In animals across the evolutionary spectrum, continued activation of the fight-or-flight response weakens the animal's resistance to environmental challenges4,5. However, the molecular and cellular mechanisms that regulate the trade-off between the flight response and long-term stressors are poorly understood. Here we show that repeated induction of the flight response in Caenorhabditis elegans shortens lifespan and inhibits conserved cytoprotective mechanisms. The flight response activates neurons that release tyramine, an invertebrate analogue of adrenaline and noradrenaline. Tyramine stimulates the insulin-IGF-1 signalling (IIS) pathway and precludes the induction of stress response genes by activating an adrenergic-like receptor in the intestine. By contrast, long-term environmental stressors, such as heat or oxidative stress, reduce tyramine release and thereby allow the induction of cytoprotective genes. These findings demonstrate that a neural stress hormone supplies a state-dependent neural switch between acute flight and long-term environmental stress responses and provides mechanistic insights into how the flight response impairs cellular defence systems and accelerates ageing.
Collapse
Affiliation(s)
- María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeff Grant
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jamie Donnelly
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina. .,Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
117
|
Zhao Y, Fan JH, Luo Y, Talukder M, Li XN, Zuo YZ, Li JL. Di-(2-ethylhexyl) phthalate (DEHP)-induced hepatotoxicity in quail (Coturnix japonica) via suppression of the heat shock response. CHEMOSPHERE 2019; 228:685-693. [PMID: 31063915 DOI: 10.1016/j.chemosphere.2019.04.172] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widespread environmental toxicant that severely impacts agricultural production and animal and human health. Nevertheless, DEHP-induced hepatotoxicity at the molecular level in quail remains unexplored. The heat shock response (HSR), involving heat shock proteins (HSPs) and heat shock transcription factors (HSFs), is a highly conserved molecular response that is triggered by stressors, especially exposure to toxicants. To explore the DEHP-induced hepatotoxicity that occurs via regulation of HSR in birds, female quail were dosed with DEHP by oral gavage (0, 250, 500 and 1000 mg/kg) for 45 days. Based on histopathological analysis, the livers of the DEHP-treated groups exhibited structural alterations of hepatocytes, including mitochondrial swelling, derangement of hepatic plates, inflammatory cell infiltration and adipose degeneration. Ultrastructural evaluation of the livers of DEHP-treated quail revealed swollen mitochondria, partial disappearance of mitochondrial membranes and cristae, nuclear chromatin margination and nuclear condensation. The expression of HSF1 and HSF3 significantly decreased after DEHP exposure. The levels of HSPs (HSP10, HSP25, HSP27, HSP40, HSP47, HSP60, HSP70 and HSP90) were significantly downregulated in the livers of DEHP-treated quail. In this study, we concluded that DEHP exposure resulted in liver function damage and hepatotoxicity by reducing the expression of HSFs and HSPs in quail liver, which inhibited the protective effect of the HSR signaling pathway.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing-Hui Fan
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, PR China
| | - Yu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu-Zhu Zuo
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
118
|
Lee HJ, Noormohammadi A, Koyuncu S, Calculli G, Simic MS, Herholz M, Trifunovic A, Vilchez D. Prostaglandin signals from adult germ stem cells delay somatic aging of Caenorhabditis elegans. Nat Metab 2019; 1:790-810. [PMID: 31485561 PMCID: PMC6726479 DOI: 10.1038/s42255-019-0097-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A moderate reduction of body temperature can induce a remarkable lifespan extension. Here we examine the link between cold temperature, germ line fitness and organismal longevity. We show that low temperature reduces age-associated exhaustion of germ stem cells (GSCs) in Caenorhabditis elegans, a process modulated by thermosensory neurons. Notably, robust self-renewal of adult GSCs delays reproductive aging and is required for extended lifespan at cold temperatures. These cells release prostaglandin E2 (PGE2) to induce cbs-1 expression in the intestine, increasing somatic production of hydrogen sulfide (H2S), a gaseous signaling molecule that prolongs lifespan. Whereas loss of adult GSCs reduces intestinal cbs-1 expression and cold-induced longevity, application of exogenous PGE2 rescues these phenotypes. Importantly, tissue-specific intestinal overexpression of cbs-1 mimics cold-temperature conditions and extends longevity even at warm temperatures. Thus, our results indicate that GSCs communicate with somatic tissues to coordinate extended reproductive capacity with longevity.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alireza Noormohammadi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Giuseppe Calculli
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Milos S Simic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Marija Herholz
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
119
|
Miles J, Scherz-Shouval R, van Oosten-Hawle P. Expanding the Organismal Proteostasis Network: Linking Systemic Stress Signaling with the Innate Immune Response. Trends Biochem Sci 2019; 44:927-942. [PMID: 31303384 DOI: 10.1016/j.tibs.2019.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
Stress response pathways regulate proteostasis and mitigate macromolecular damage to promote long-term cellular health. Intercellular signaling is an essential layer of systemic proteostasis in an organism and is facilitated via transcellular signaling molecules that orchestrate the activation of stress responses across tissues and organs. Accumulating evidence indicates that components of the immune response act as signaling factors that regulate the cell-non-autonomous proteostasis network. Here, we review emergent advances in our understanding of cell-non-autonomous regulators of proteostasis networks in multicellular settings, from the model organism, Caenorhabditis elegans, to humans. We further discuss how innate immune responses can be players of the organismal proteostasis network and discuss how both are linked in cancer.
Collapse
Affiliation(s)
- Jay Miles
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
120
|
Frere S, Slutsky I. Alzheimer's Disease: From Firing Instability to Homeostasis Network Collapse. Neuron 2019; 97:32-58. [PMID: 29301104 DOI: 10.1016/j.neuron.2017.11.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) starts from pure cognitive impairments and gradually progresses into degeneration of specific brain circuits. Although numerous factors initiating AD have been extensively studied, the common principles underlying the transition from cognitive deficits to neuronal loss remain unknown. Here we describe an evolutionarily conserved, integrated homeostatic network (IHN) that enables functional stability of central neural circuits and safeguards from neurodegeneration. We identify the critical modules comprising the IHN and propose a central role of neural firing in controlling the complex homeostatic network at different spatial scales. We hypothesize that firing instability and impaired synaptic plasticity at early AD stages trigger a vicious cycle, leading to dysregulation of the whole IHN. According to this hypothesis, the IHN collapse represents the major driving force of the transition from early memory impairments to neurodegeneration. Understanding the core elements of homeostatic control machinery, the reciprocal connections between distinct IHN modules, and the role of firing homeostasis in this hierarchy has important implications for physiology and should offer novel conceptual approaches for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
121
|
Jones LM, Eves-van den Akker S, van-Oosten Hawle P, Atkinson HJ, Urwin PE. Duplication of hsp-110 Is Implicated in Differential Success of Globodera Species under Climate Change. Mol Biol Evol 2019; 35:2401-2413. [PMID: 29955862 PMCID: PMC6188557 DOI: 10.1093/molbev/msy132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Managing the emergence and spread of crop pests and pathogens is essential for global food security. Understanding how organisms have adapted to their native climate is key to predicting the impact of climate change. The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens that cause yield losses of up to 50% in potato. The two species have different thermal optima that may relate to differences in the altitude of their regions of origin in the Andes. Here, we demonstrate that juveniles of G. pallida are less able to recover from heat stress than those of G. rostochiensis. Genome-wide analysis revealed that while both Globodera species respond to heat stress by induction of various protective heat-inducible genes, G. pallida experiences heat stress at lower temperatures. We use C. elegans as a model to demonstrate the dependence of the heat stress response on expression of Heat Shock Factor-1 (HSF-1). Moreover, we show that hsp-110 is induced by heat stress in G. rostochiensis, but not in the less thermotolerant G. pallida. Sequence analysis revealed that this gene and its promoter was duplicated in G. rostochiensis and acquired thermoregulatory properties. We show that hsp-110 is required for recovery from acute thermal stress in both C. elegans and in G. rostochiensis. Our findings point towards an underlying molecular mechanism that allows the differential expansion of one species relative to another closely related species under current climate change scenarios. Similar mechanisms may be true of other invertebrate species with pest status.
Collapse
Affiliation(s)
- Laura M Jones
- Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Patricija van-Oosten Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Howard J Atkinson
- Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter E Urwin
- Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
122
|
Boczek E, Gaglia G, Olshina M, Sarraf S. The first Autumn School on Proteostasis: from molecular mechanisms to organismal consequences. Cell Stress Chaperones 2019; 24:481-492. [PMID: 31073902 PMCID: PMC6527634 DOI: 10.1007/s12192-019-00998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
The first Autumn School on Proteostasis was held at the Mediterranean Institute for Life Sciences (MedILS) in Split, Croatia, from November 12th-16th, 2018, bringing together 44 graduate students and postdoctoral fellows and 22 principal investigators from around the world. This meeting was geared towards providing students with an in-depth understanding of the field of proteostasis, with the aim of broadening their perspectives of the field. Session topics covered multiple aspects of cellular and organismal proteostasis, including fundamental principles, responses to heat shock, aging and disease, and protein folding, misfolding, and degradation. The structure of the meeting and the restricted number of participants afforded the students and postdocs the opportunity to interact with principal investigators to discuss not only their latest research, but also their career prospects and progression in a close, supportive environment.
Collapse
Affiliation(s)
- Edgar Boczek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Giorgio Gaglia
- Brigham Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Maya Olshina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shireen Sarraf
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
123
|
Tsakiri EN, Gumeni S, Vougas K, Pendin D, Papassideri I, Daga A, Gorgoulis V, Juhász G, Scorrano L, Trougakos IP. Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy. Autophagy 2019; 15:1757-1773. [PMID: 31002009 PMCID: PMC6735541 DOI: 10.1080/15548627.2019.1596477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is central to proteostasis network (PN) functionality and proteome quality control. Yet, the functional implication of the UPP in tissue homeodynamics at the whole organism level and its potential cross-talk with other proteostatic or mitostatic modules are not well understood. We show here that knock down (KD) of proteasome subunits in Drosophila flies, induced, for most subunits, developmental lethality. Ubiquitous or tissue specific proteasome dysfunction triggered systemic proteome instability and activation of PN modules, including macroautophagy/autophagy, molecular chaperones and the antioxidant cncC (the fly ortholog of NFE2L2/Nrf2) pathway. Also, proteasome KD increased genomic instability, altered metabolic pathways and severely disrupted mitochondrial functionality, triggering a cncC-dependent upregulation of mitostatic genes and enhanced rates of mitophagy. Whereas, overexpression of key regulators of antioxidant responses (e.g., cncC or foxo) could not suppress the deleterious effects of proteasome dysfunction; these were alleviated in both larvae and adult flies by modulating mitochondrial dynamics towards increased fusion or by enhancing autophagy. Our findings reveal the extensive functional wiring of genomic, proteostatic and mitostatic modules in higher metazoans. Also, they support the notion that age-related increase of proteotoxic stress due to decreased UPP activity deregulates all aspects of cellular functionality being thus a driving force for most age-related diseases. Abbreviations: ALP: autophagy-lysosome pathway; ARE: antioxidant response element; Atg8a: autophagy-related 8a; ATPsynβ: ATP synthase, β subunit; C-L: caspase-like proteasomal activity; cncC: cap-n-collar isoform-C; CT-L: chymotrypsin-like proteasomal activity; Drp1: dynamin related protein 1; ER: endoplasmic reticulum; foxo: forkhead box, sub-group O; GLU: glucose; GFP: green fluorescent protein; GLY: glycogen; Hsf: heat shock factor; Hsp: Heat shock protein; Keap1: kelch-like ECH-associated protein 1; Marf: mitochondrial assembly regulatory factor; NFE2L2/Nrf2: nuclear factor, erythroid 2 like 2; Opa1: optic atrophy 1; PN: proteostasis network; RNAi: RNA interference; ROS: reactive oxygen species; ref(2)P: refractory to sigma P; SQSTM1: sequestosome 1; SdhA: succinate dehydrogenase, subunit A; T-L: trypsin-like proteasomal activity; TREH: trehalose; UAS: upstream activation sequence; Ub: ubiquitin; UPR: unfolded protein response; UPP: ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| | - Konstantinos Vougas
- Genomics and Proteomics Research Units, Center of Basic Research II, Biomedical Research Foundation, Academy of Athens , Athens , Greece
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padova , Padova , Italy
| | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| | - Andrea Daga
- Laboratory of Molecular Biology, Scientific Institute, IRCCS E. Medea , Lecco , Italy
| | - Vassilis Gorgoulis
- Genomics and Proteomics Research Units, Center of Basic Research II, Biomedical Research Foundation, Academy of Athens , Athens , Greece.,Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece.,Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary and Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine and Department of Biology, University of Padua , Padova , Italy
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
124
|
Pokhrel B, Chen Y, Biro JJ. CFP-1 interacts with HDAC1/2 complexes in C. elegans development. FEBS J 2019; 286:2490-2504. [PMID: 30941832 DOI: 10.1111/febs.14833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 01/27/2023]
Abstract
CXXC finger binding protein 1 (CFP-1) is an evolutionarily conserved protein that binds to non-methylated CpG-rich promoters in mammals and Caenorhabditis elegans. This conserved epigenetic regulator is part of the COMPASS complex that contains the H3K4me3 methyltransferase SET1 in mammals and SET-2 in C. elegans. Previous studies have indicated the importance of CFP1 in embryonic stem cell differentiation and cell fate specification. However, neither the function nor the mechanism of action of CFP1 is well understood at the organismal level. Here, we have used cfp-1(tm6369) and set-2(bn129) C. elegans mutants to investigate the function of CFP-1 in gene induction and development. We have characterised C. elegansCOMPASS mutants cfp-1(tm6369) and set-2(bn129) and found that both cfp-1 and set-2 play an important role in the regulation of fertility and development of the organism. Furthermore, we found that both cfp-1 and set-2 are required for H3K4 trimethylation and play a repressive role in the expression of heat shock and salt-inducible genes. Interestingly, we found that cfp-1 but not set-2 genetically interacts with histone deacetylase (HDAC1/2) complexes to regulate fertility, suggesting a function of CFP-1 outside of the COMPASS complex. Additionally, we found that cfp-1 and set-2 independently regulate fertility and development of the organism. Our results suggest that CFP-1 genetically interacts with HDAC1/2 complexes to regulate fertility, independent of its function within the COMPASS complex. We propose that CFP-1 could cooperate with the COMPASS complex and/or HDAC1/2 in a context-dependent manner.
Collapse
Affiliation(s)
- Bharat Pokhrel
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Yannic Chen
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Jonathan Joseph Biro
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
125
|
Xu A, Zhang Z, Ko SH, Fisher AL, Liu Z, Chen L. Microtubule regulators act in the nervous system to modulate fat metabolism and longevity through DAF-16 in C. elegans. Aging Cell 2019; 18:e12884. [PMID: 30638295 PMCID: PMC6413656 DOI: 10.1111/acel.12884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022] Open
Abstract
Microtubule (MT) regulation is involved in both neuronal function and the maintenance of neuronal structure, and MT dysregulation appears to be a general downstream indicator and effector of age‐related neurodegeneration. But the role of MTs in natural aging is largely unknown. Here, we demonstrate a role of MT regulators in regulating longevity. We find that loss of EFA‐6, a modulator of MT dynamics, can delay both neuronal aging and extend the lifespan of C. elegans. Through the use of genetic mutants affecting other MT‐regulating genes in C. elegans, we find that loss of MT stabilizing genes (including ptrn‐1 and ptl‐1) shortens lifespan, while loss of MT destabilizing gene hdac‐6 extends lifespan. Via the use of tissue‐specific transgenes, we further show that these MT regulators can act in the nervous system to modulate lifespan. Through RNA‐seq analyses, we found that genes involved in lipid metabolism were differentially expressed in MT regulator mutants, and via the use of Nile Red and Oil Red O staining, we show that the MT regulator mutants have altered fat storage. We further find that the increased fat storage and extended lifespan of the long‐lived MT regulator mutants are dependent on the DAF‐16/FOXO transcription factor. Our results suggest that neuronal MT status might affect organismal aging through DAF‐16‐regulated changes in fat metabolism, and therefore, MT‐based therapies might represent a novel intervention to promote healthy aging.
Collapse
Affiliation(s)
- Aiping Xu
- Barshop Institute for Longevity and Aging Studies; San Antonio Texas
- Department of Cell Systems and Anatomy; UTHSCSA; San Antonio Texas
| | - Zhao Zhang
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| | - Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies; San Antonio Texas
- Department of Cell Systems and Anatomy; UTHSCSA; San Antonio Texas
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| | - Alfred L. Fisher
- Center for Healthy Aging; UTHSCSA; San Antonio Texas
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine; UTHSCSA; San Antonio Texas
- GRECC, South Texas VA Healthcare System; San Antonio Texas
| | - Zhijie Liu
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies; San Antonio Texas
- Department of Cell Systems and Anatomy; UTHSCSA; San Antonio Texas
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| |
Collapse
|
126
|
Finger F, Ottens F, Springhorn A, Drexel T, Proksch L, Metz S, Cochella L, Hoppe T. Olfaction regulates organismal proteostasis and longevity via microRNA-dependent signaling. Nat Metab 2019; 1:350-359. [PMID: 31535080 PMCID: PMC6751085 DOI: 10.1038/s42255-019-0033-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maintenance of proteostasis is crucial for any organism to survive and reproduce in an ever-changing environment, but its efficiency declines with age1. Posttranscriptional regulators such as microRNAs control protein translation of target mRNAs with major consequences for development, physiology, and longevity2,3. Here we show that food odor stimulates organismal proteostasis and promotes longevity in Caenorhabditis elegans through mir-71-mediated inhibition of tir-1 mRNA stability in olfactory AWC neurons. Screening a collection of microRNAs that control aging3 we find that miRNA mir-71 regulates lifespan and promotes ubiquitin-dependent protein turnover, particularly in the intestine. We show that mir-71 directly inhibits the toll receptor domain protein TIR-1 in AWC olfactory neurons and that disruption of mir-71/tir-1 or loss of AWC olfactory neurons eliminates the influence of food source on proteostasis. mir-71-mediated regulation of TIR-1 controls chemotactic behavior and is regulated by odor. Thus, odor perception influences cell-type specific miRNA-target interaction to regulate organismal proteostasis and longevity. We anticipate that the proposed mechanism of food perception will stimulate further research on neuroendocrine brain-to-gut communication and may open the possibility for therapeutic interventions to improve proteostasis and organismal health via the sense of smell, with potential implication for obesity, diabetes and aging.
Collapse
Affiliation(s)
- Fabian Finger
- Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany
| | - Franziska Ottens
- Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany
| | - Alexander Springhorn
- Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany
| | - Tanja Drexel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Lucie Proksch
- Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany
| | - Sophia Metz
- Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Thorsten Hoppe
- Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany.
| |
Collapse
|
127
|
Singh J, Aballay A. Microbial Colonization Activates an Immune Fight-and-Flight Response via Neuroendocrine Signaling. Dev Cell 2019; 49:89-99.e4. [PMID: 30827896 DOI: 10.1016/j.devcel.2019.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/26/2018] [Accepted: 01/31/2019] [Indexed: 01/01/2023]
Abstract
The ability to distinguish harmful and beneficial microbes is critical for the survival of an organism. Here, we show that bloating of the intestinal lumen of Caenorhabditis elegans caused by microbial colonization elicits a microbial aversion behavior. Bloating of the intestinal lumen also activates a broad innate immune response, even in the absence of bacterial pathogens or live bacteria. Neuroendocrine pathway genes are upregulated by intestinal bloating and are required for microbial aversion behavior. We propose that microbial colonization and bloating of the intestine may be perceived as a danger signal that activates an immune fight-and-flight response. These results reveal how inputs from the intestine can aid in the recognition of a broad range of microbes and modulate host behavior via neuroendocrine signaling.
Collapse
Affiliation(s)
- Jogender Singh
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
128
|
Haas R, Ganem NS, Keshet A, Orlov A, Fishman A, Lamm AT. A-to-I RNA Editing Affects lncRNAs Expression after Heat Shock. Genes (Basel) 2018; 9:genes9120627. [PMID: 30551666 PMCID: PMC6315331 DOI: 10.3390/genes9120627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Adenosine to inosine (A-to-I) RNA editing is a highly conserved regulatory process carried out by adenosine-deaminases (ADARs) on double-stranded RNA (dsRNAs). Although a considerable fraction of the transcriptome is edited, the function of most editing sites is unknown. Previous studies indicate changes in A-to-I RNA editing frequencies following exposure to several stress types. However, the overall effect of stress on the expression of ADAR targets is not fully understood. Here, we performed high-throughput RNA sequencing of wild-type and ADAR mutant Caenorhabditis elegans worms after heat-shock to analyze the effect of heat-shock stress on the expression pattern of genes. We found that ADAR regulation following heat-shock does not directly involve heat-shock related genes. Our analysis also revealed that long non-coding RNAs (lncRNAs) and pseudogenes, which have a tendency for secondary RNA structures, are enriched among upregulated genes following heat-shock in ADAR mutant worms. The same group of genes is downregulated in ADAR mutant worms under permissive conditions, which is likely, considering that A-to-I editing protects endogenous dsRNA from RNA-interference (RNAi). Therefore, temperature increases may destabilize dsRNA structures and protect them from RNAi degradation, despite the lack of ADAR function. These findings shed new light on the dynamics of gene expression under heat-shock in relation to ADAR function.
Collapse
Affiliation(s)
- Roni Haas
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Nabeel S Ganem
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ayya Keshet
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Angela Orlov
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Alla Fishman
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ayelet T Lamm
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
129
|
Solis GM, Kardakaris R, Valentine ER, Bar-Peled L, Chen AL, Blewett MM, McCormick MA, Williamson JR, Kennedy B, Cravatt BF, Petrascheck M. Translation attenuation by minocycline enhances longevity and proteostasis in old post-stress-responsive organisms. eLife 2018; 7:40314. [PMID: 30479271 PMCID: PMC6257811 DOI: 10.7554/elife.40314] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
Aging impairs the activation of stress signaling pathways (SSPs), preventing the induction of longevity mechanisms late in life. Here, we show that the antibiotic minocycline increases lifespan and reduces protein aggregation even in old, SSP-deficient Caenorhabditis elegans by targeting cytoplasmic ribosomes, preferentially attenuating translation of highly translated mRNAs. In contrast to most other longevity paradigms, minocycline inhibits rather than activates all major SSPs and extends lifespan in mutants deficient in the activation of SSPs, lysosomal or autophagic pathways. We propose that minocycline lowers the concentration of newly synthesized aggregation-prone proteins, resulting in a relative increase in protein-folding capacity without the necessity to induce protein-folding pathways. Our study suggests that in old individuals with incapacitated SSPs or autophagic pathways, pharmacological attenuation of cytoplasmic translation is a promising strategy to reduce protein aggregation. Altogether, it provides a geroprotecive mechanism for the many beneficial effects of tetracyclines in models of neurodegenerative disease. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Gregory M Solis
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Rozina Kardakaris
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Elizabeth R Valentine
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Liron Bar-Peled
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Alice L Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Megan M Blewett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | | | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Brian Kennedy
- The Buck Institute for Research on Aging, Novato, United States
| | - Benjamin F Cravatt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
130
|
Madhivanan K, Greiner ER, Alves-Ferreira M, Soriano-Castell D, Rouzbeh N, Aguirre CA, Paulsson JF, Chapman J, Jiang X, Ooi FK, Lemos C, Dillin A, Prahlad V, Kelly JW, Encalada SE. Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:E7710-E7719. [PMID: 30061394 PMCID: PMC6099907 DOI: 10.1073/pnas.1801117115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell-autonomous and cell-nonautonomous mechanisms of neurodegeneration appear to occur in the proteinopathies, including Alzheimer's and Parkinson's diseases. However, how neuronal toxicity is generated from misfolding-prone proteins secreted by nonneuronal tissues and whether modulating protein aggregate levels at distal locales affects the degeneration of postmitotic neurons remains unknown. We generated and characterized animal models of the transthyretin (TTR) amyloidoses that faithfully recapitulate cell-nonautonomous neuronal proteotoxicity by expressing human TTR in the Caenorhabditis elegans muscle. We identified sensory neurons with affected morphological and behavioral nociception-sensing impairments. Nonnative TTR oligomer load and neurotoxicity increased following inhibition of TTR degradation in distal macrophage-like nonaffected cells. Moreover, reducing TTR levels by RNAi or by kinetically stabilizing natively folded TTR pharmacologically decreased TTR aggregate load and attenuated neuronal dysfunction. These findings reveal a critical role for in trans modulation of aggregation-prone degradation that directly affects postmitotic tissue degeneration observed in the proteinopathies.
Collapse
Affiliation(s)
- Kayalvizhi Madhivanan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Erin R Greiner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Miguel Alves-Ferreira
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-171 Porto, Portugal
| | - David Soriano-Castell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nirvan Rouzbeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Carlos A Aguirre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Johan F Paulsson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Xin Jiang
- Misfolding Diagnostics, San Diego, CA 92121
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242
| | - Carolina Lemos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-171 Porto, Portugal
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242
| | - Jeffery W Kelly
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Sandra E Encalada
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
131
|
Wentz JM, Mendenhall AR, Bortz DM. Pattern Formation in the Longevity-Related Expression of Heat Shock Protein-16.2 in Caenorhabditis elegans. Bull Math Biol 2018; 80:2669-2697. [PMID: 30097920 DOI: 10.1007/s11538-018-0482-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/27/2018] [Indexed: 11/26/2022]
Abstract
Aging in Caenorhabditis elegans is controlled, in part, by the insulin-like signaling and heat shock response pathways. Following thermal stress, expression levels of small heat shock protein-16.2 show a spatial patterning across the 20 intestinal cells that reside along the length of the worm. Here, we present a hypothesized mechanism that could lead to this patterned response and develop a mathematical model of this system to test our hypothesis. We propose that the patterned expression of heat shock protein is caused by a diffusion-driven instability within the pseudocoelom, or fluid-filled cavity, that borders the intestinal cells in C. elegans. This instability is due to the interactions between two classes of insulin-like peptides that serve antagonistic roles. We examine output from the developed model and compare it to experimental data on heat shock protein expression. Given biologically bounded parameters, the model presented is capable of producing patterns similar to what is observed experimentally and provides a first step in mathematically modeling aging-related mechanisms in C. elegans.
Collapse
Affiliation(s)
- J M Wentz
- Interdisciplinary Quantitative Biology Graduate Program and Department of Applied Mathematics, University of Colorado, Boulder, CO, 80309-0526, USA
| | - A R Mendenhall
- Department of Pathology, University of Washington, Seattle, WA, 98109-1024, USA
| | - D M Bortz
- Department of Applied Mathematics, University of Colorado, Boulder, CO, 80309-0526, USA.
| |
Collapse
|
132
|
Sphingosine Kinase Regulates Neuropeptide Secretion During the Oxidative Stress-Response Through Intertissue Signaling. J Neurosci 2018; 38:8160-8176. [PMID: 30082417 DOI: 10.1523/jneurosci.0536-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
The Nrf2 antioxidant transcription factor promotes redox homeostasis in part through reciprocal signaling between neurons and neighboring cells, but the signals involved in intertissue signaling in response to Nrf2 activation are not well defined. In Caenorhabditis elegans, activation of SKN-1/Nrf2 in the intestine negatively regulates neuropeptide secretion from motor neurons. Here, we show that sphingosine kinase (SPHK-1) functions downstream of SKN-1/Nrf2 in the intestine to regulate neuropeptide secretion from motor neurons during the oxidative stress response in C. elegans hermaphrodites. SPHK-1 localizes to mitochondria in the intestine and SPHK-1 mitochondrial localization and kinase activity are essential for its function in regulating motor neuron function. SPHK-1 is recruited to mitochondria from cytosolic pools and its mitochondrial abundance is negatively regulated by acute or chronic SKN-1 activation. Finally, the regulation of motor function by SKN-1 requires the activation of the p38 MAPK cascade in the intestine and occurs through controlling the biogenesis or maturation of dense core vesicles in motor neurons. These findings show that the inhibition of SPHK-1 in the intestine by SKN-1 negatively regulates neuropeptide secretion from motor neurons, revealing a new mechanism by which SPHK-1 signaling mediates its effects on neuronal function in response to oxidative stress.SIGNIFICANCE STATEMENT Neurons are highly susceptible to damage by oxidative stress, yet have limited capacity to activate the SKN-1/Nrf2 oxidative stress response, relying instead on astrocytes to provide redox homeostasis. In Caenorhabditis elegans, intertissue signaling from the intestine plays a key role in regulating neuronal function during the oxidative stress response. Here, through a combination of genetic, behavioral, and fluorescent imaging approaches, we found that sphingosine kinase functions in the SKN-1/Nrf2 pathway in the intestine to regulate neuropeptide biogenesis and secretion in motor neurons. These results implicate sphingolipid signaling as a new component of the oxidative stress response and suggest that C. elegans may be a genetically tractable model to study non-cell-autonomous oxidative stress signaling to neurons.
Collapse
|
133
|
Roitenberg N, Bejerano-Sagie M, Boocholez H, Moll L, Marques FC, Golodetzki L, Nevo Y, Elami T, Cohen E. Modulation of caveolae by insulin/IGF-1 signaling regulates aging of Caenorhabditis elegans. EMBO Rep 2018; 19:embr.201745673. [PMID: 29945933 DOI: 10.15252/embr.201745673] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 11/09/2022] Open
Abstract
Reducing insulin/IGF-1 signaling (IIS) extends lifespan, promotes protein homeostasis (proteostasis), and elevates stress resistance of worms, flies, and mammals. How these functions are orchestrated across the organism is only partially understood. Here, we report that in the nematode Caenorhabditis elegans, the IIS positively regulates the expression of caveolin-1 (cav-1), a gene which is primarily expressed in neurons of the adult worm and underlies the formation of caveolae, a subtype of lipid microdomains that serve as platforms for signaling complexes. Accordingly, IIS reduction lowers cav-1 expression and lessens the quantity of neuronal caveolae. Reduced cav-1 expression extends lifespan and mitigates toxic protein aggregation by modulating the expression of aging-regulating and signaling-promoting genes. Our findings define caveolae as aging-governing signaling centers and underscore the potential for cav-1 as a novel therapeutic target for the promotion of healthy aging.
Collapse
Affiliation(s)
- Noa Roitenberg
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Lorna Moll
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Filipa Carvalhal Marques
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Ludmila Golodetzki
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Yuval Nevo
- Computation Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tayir Elami
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
134
|
Huang XB, Wu GS, Ke LY, Zhou XG, Wang YH, Luo HR. Aspirin Derivative 5-(Bis(3-methylbut-2-enyl)amino)-2-hydroxybenzoic Acid Improves Thermotolerance via Stress Response Proteins in Caenorhabditis elegans. Molecules 2018; 23:molecules23061359. [PMID: 29874836 PMCID: PMC6099645 DOI: 10.3390/molecules23061359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 01/13/2023] Open
Abstract
Aging is a major risk factor for many prevalent diseases. Pharmacological intervention to improve the health span and extend the lifespan could be a preventive elixir for aging and age-related diseases. The non-steroid anti-inflammation medicine aspirin was reported to delay aging in Caenorhabditis elegans (C. elegans) and mice. We are wondering if the analogues of aspirin could also present antiaging activity. Here, we synthesized several aspirin derivatives and investigated their thermotolerance and antiaging effect in C. elegans. One of the compounds, 5-(bis(3-methylbut-2-en-1-yl)amino)-2-hydroxybenzoic acid, moderately increased the survival of C. elegans under heat stress, but could not extend the lifespan under optimum conditions. This compound could increase the mRNA level of stress response gene gst-4, and the mRNA and protein expression level of heat shock protein hsp-16.2 under heat stress. The failure of activating the transcription factor DAF-16 might explain why this compound could not act as aspirin to extend the lifespan of C. elegans. Our results would help further the investigation of the pharmacological activity of aspirin analogues and the relationship between structures and activity.
Collapse
Affiliation(s)
- Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, Luzhou 646000, China.
| | - Gui-Sheng Wu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, Luzhou 646000, China.
| | - Lei-Yu Ke
- Key Laboratory of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
| | - Xiao-Gang Zhou
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, Luzhou 646000, China.
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
135
|
Abstract
Proteotoxic stress, that is, stress caused by protein misfolding and aggregation, triggers the rapid and global reprogramming of transcription at genes and enhancers. Genome-wide assays that track transcriptionally engaged RNA polymerase II (Pol II) at nucleotide resolution have provided key insights into the underlying molecular mechanisms that regulate transcriptional responses to stress. In addition, recent kinetic analyses of transcriptional control under heat stress have shown how cells 'prewire' and rapidly execute genome-wide changes in transcription while concurrently becoming poised for recovery. The regulation of Pol II at genes and enhancers in response to heat stress is coupled to chromatin modification and compartmentalization, as well as to co-transcriptional RNA processing. These mechanistic features seem to apply broadly to other coordinated genome-regulatory responses.
Collapse
Affiliation(s)
- Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
136
|
Vieira N, Bessa C, Rodrigues AJ, Marques P, Chan FY, de Carvalho AX, Correia-Neves M, Sousa N. Sorting nexin 3 mutation impairs development and neuronal function in Caenorhabditis elegans. Cell Mol Life Sci 2018; 75:2027-2044. [PMID: 29196797 PMCID: PMC11105199 DOI: 10.1007/s00018-017-2719-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/27/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
The sorting nexins family of proteins (SNXs) plays pleiotropic functions in protein trafficking and intracellular signaling and has been associated with several disorders, namely Alzheimer's disease and Down's syndrome. Despite the growing association of SNXs with neurodegeneration, not much is known about their function in the nervous system. The aim of this work was to use the nematode Caenorhabditis elegans that encodes in its genome eight SNXs orthologs, to dissect the role of distinct SNXs, particularly in the nervous system. By screening the C. elegans SNXs deletion mutants for morphological, developmental and behavioral alterations, we show here that snx-3 gene mutation leads to an array of developmental defects, such as delayed hatching, decreased brood size and life span and reduced body length. Additionally, ∆snx-3 worms present increased susceptibility to osmotic, thermo and oxidative stress and distinct behavioral deficits, namely, a chemotaxis defect which is independent of the described snx-3 role in Wnt secretion. ∆snx-3 animals also display abnormal GABAergic neuronal architecture and wiring and altered AIY interneuron structure. Pan-neuronal expression of C. elegans snx-3 cDNA in the ∆snx-3 mutant is able to rescue its locomotion defects, as well as its chemotaxis toward isoamyl alcohol. Altogether, the present work provides the first in vivo evidence of the SNX-3 role in the nervous system.
Collapse
Affiliation(s)
- Neide Vieira
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carlos Bessa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana J Rodrigues
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paulo Marques
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fung-Yi Chan
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular-IBMC, Porto, Portugal
| | - Ana Xavier de Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular-IBMC, Porto, Portugal
| | - Margarida Correia-Neves
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
137
|
Li F, Ma X, Cui X, Li J, Wang Z. Recombinant buckwheat glutaredoxin intake increases lifespan and stress resistance via hsf-1 upregulation in Caenorhabditis elegans. Exp Gerontol 2018; 104:86-97. [PMID: 29414672 DOI: 10.1016/j.exger.2018.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/12/2018] [Accepted: 01/31/2018] [Indexed: 11/17/2022]
Abstract
Glutaredoxin (Grx) is a polypeptide with low molecular weight, which has been extracted from buckwheat and has been suggested to have multiple functions revolving around oxidative stress responses and cell signaling. Here, we report the antioxidant activity of recombinant buckwheat Grx (rbGrx) to reduce aging effects in Caenorhabditis elegans (C. elegans) as well as the mechanism involved. Our results showed that rbGrx beneficially affected the health span of C. elegans, including pharyngeal-pumping rate, locomotion, and lipofuscin accumulation. Furthermore, stress assay showed that rbGrx could extend the lifespan under both oxidative and heat stress. Further studies indicated that the longevity-extending effects of rbGrx could be attributed to its in vitro and in vivo antioxidant activities. After treatment with rbGrx, SOD activity, CAT activity, GSH content, and GSH/GSSG ratio were increased, while MDA content was decreased, which led to low intracellular levels of reactive oxygen species in C. elegans. Moreover, rbGrx up-regulated hsf-1 mRNA level and could not expand the lifespan of the hsf-1 mutant C. elegans (sy441); however, this had no effect on the transcription of daf-16 and skn-1 and could expand the lifespan of both daf-16 and skn-1 mutants. These results suggested dependency of the rbGrx effect on the heat shock transcription factor (HSF-1) and independency on both DAF-16 and SKN-1. In summary, our results demonstrated the anti-aging activity of rbGrx, which increased resistance to cellular stress and improved the health span of C. elegans. These results are very important for the use of rbGrx in anti-aging research.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, PR China; Department of oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan 030032, PR China
| | - Xiaoli Ma
- College of Life Science, Shanxi University, Taiyuan 030006, PR China
| | - Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, PR China
| | - Jiao Li
- College of Life Science, Shanxi University, Taiyuan 030006, PR China
| | - Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, PR China; College of Life Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
138
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
139
|
Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. Int J Mol Sci 2018; 19:E325. [PMID: 29361800 PMCID: PMC5796267 DOI: 10.3390/ijms19010325] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| |
Collapse
|
140
|
Castro JP, Wardelmann K, Grune T, Kleinridders A. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism? Front Endocrinol (Lausanne) 2018; 9:196. [PMID: 29755410 PMCID: PMC5932182 DOI: 10.3389/fendo.2018.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.
Collapse
Affiliation(s)
- José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| | - Kristina Wardelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| |
Collapse
|
141
|
Goenka A, Parihar R, Ganesh S. Heat Shock-Induced Transcriptional and Translational Arrest in Mammalian Cells. HEAT SHOCK PROTEINS AND STRESS 2018. [DOI: 10.1007/978-3-319-90725-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
142
|
Brunquell J, Morris S, Snyder A, Westerheide SD. Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans. Cell Stress Chaperones 2018; 23:65-75. [PMID: 28674941 PMCID: PMC5741582 DOI: 10.1007/s12192-017-0824-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/05/2023] Open
Abstract
As the population ages, there is a critical need to uncover strategies to combat diseases of aging. Studies in the soil-dwelling nematode Caenorhabditis elegans have demonstrated the protective effects of coffee extract and caffeine in promoting the induction of conserved longevity pathways including the insulin-like signaling pathway and the oxidative stress response. We were interested in determining the effects of coffee and caffeine treatment on the regulation of the heat shock response. The heat shock response is a highly conserved cellular response that functions as a cytoprotective mechanism during stress, mediated by the heat shock transcription factor HSF-1. In the worm, HSF-1 not only promotes protection against stress but is also essential for development and longevity. Induction of the heat shock response has been suggested to be beneficial for diseases of protein conformation by preventing protein misfolding and aggregation, and as such has been proposed as a therapeutic target for age-associated neurodegenerative disorders. In this study, we demonstrate that coffee is a potent, dose-dependent, inducer of the heat shock response. Treatment with a moderate dose of pure caffeine was also able to induce the heat shock response, indicating caffeine as an important component within coffee for producing this response. The effects that we observe with both coffee and pure caffeine on the heat shock response are both dependent on HSF-1. In a C. elegans Huntington's disease model, worms treated with caffeine were protected from polyglutamine aggregates and toxicity, an effect that was also HSF-1-dependent. In conclusion, these results demonstrate caffeinated coffee, and pure caffeine, as protective substances that promote proteostasis through induction of the heat shock response.
Collapse
Affiliation(s)
- Jessica Brunquell
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Stephanie Morris
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Alana Snyder
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA.
| |
Collapse
|
143
|
The extraordinary AFD thermosensor of C. elegans. Pflugers Arch 2017; 470:839-849. [PMID: 29218454 DOI: 10.1007/s00424-017-2089-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
The nematode C. elegans exhibits complex thermal experience-dependent navigation behaviors in response to environmental temperature changes of as little as 0.01°C over a > 10°C temperature range. The remarkable thermosensory abilities of this animal are mediated primarily via the single pair of AFD sensory neurons in its head. In this review, we describe the contributions of AFD to thermosensory behaviors and temperature-dependent regulation of organismal physiology. We also discuss the mechanisms that enable this neuron type to adapt to recent temperature experience and to exhibit extraordinary thermosensitivity over a wide dynamic range.
Collapse
|
144
|
Ooi FK, Prahlad V. Olfactory experience primes the heat shock transcription factor HSF-1 to enhance the expression of molecular chaperones in C. elegans. Sci Signal 2017; 10:10/501/eaan4893. [PMID: 29042483 DOI: 10.1126/scisignal.aan4893] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Learning, a process by which animals modify their behavior as a result of experience, enables organisms to synthesize information from their surroundings to acquire resources and avoid danger. We showed that a previous encounter with only the odor of pathogenic bacteria prepared Caenorhabditis elegans to survive exposure to the pathogen by increasing the heat shock factor 1 (HSF-1)-dependent expression of genes encoding molecular chaperones. Experience-mediated enhancement of chaperone gene expression required serotonin, which primed HSF-1 to enhance the expression of molecular chaperone genes by promoting its localization to RNA polymerase II-enriched nuclear loci, even before transcription occurred. However, HSF-1-dependent chaperone gene expression was stimulated only if and when animals encountered the pathogen. Thus, learning equips C. elegans to better survive environmental dangers by preemptively and specifically initiating transcriptional mechanisms throughout the whole organism that prepare the animal to respond rapidly to proteotoxic agents. These studies provide one plausible basis for the protective role of environmental enrichment in disease.
Collapse
Affiliation(s)
- Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
145
|
Das R, Melo JA, Thondamal M, Morton EA, Cornwell AB, Crick B, Kim JH, Swartz EW, Lamitina T, Douglas PM, Samuelson AV. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans. PLoS Genet 2017; 13:e1007038. [PMID: 29036198 PMCID: PMC5658188 DOI: 10.1371/journal.pgen.1007038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022] Open
Abstract
An extensive proteostatic network comprised of molecular chaperones and protein clearance mechanisms functions collectively to preserve the integrity and resiliency of the proteome. The efficacy of this network deteriorates during aging, coinciding with many clinical manifestations, including protein aggregation diseases of the nervous system. A decline in proteostasis can be delayed through the activation of cytoprotective transcriptional responses, which are sensitive to environmental stress and internal metabolic and physiological cues. The homeodomain-interacting protein kinase (hipk) family members are conserved transcriptional co-factors that have been implicated in both genotoxic and metabolic stress responses from yeast to mammals. We demonstrate that constitutive expression of the sole Caenorhabditis elegans Hipk homolog, hpk-1, is sufficient to delay aging, preserve proteostasis, and promote stress resistance, while loss of hpk-1 is deleterious to these phenotypes. We show that HPK-1 preserves proteostasis and extends longevity through distinct but complementary genetic pathways defined by the heat shock transcription factor (HSF-1), and the target of rapamycin complex 1 (TORC1). We demonstrate that HPK-1 antagonizes sumoylation of HSF-1, a post-translational modification associated with reduced transcriptional activity in mammals. We show that inhibition of sumoylation by RNAi enhances HSF-1-dependent transcriptional induction of chaperones in response to heat shock. We find that hpk-1 is required for HSF-1 to induce molecular chaperones after thermal stress and enhances hormetic extension of longevity. We also show that HPK-1 is required in conjunction with HSF-1 for maintenance of proteostasis in the absence of thermal stress, protecting against the formation of polyglutamine (Q35::YFP) protein aggregates and associated locomotory toxicity. These functions of HPK-1/HSF-1 undergo rapid down-regulation once animals reach reproductive maturity. We show that HPK-1 fortifies proteostasis and extends longevity by an additional independent mechanism: induction of autophagy. HPK-1 is necessary for induction of autophagosome formation and autophagy gene expression in response to dietary restriction (DR) or inactivation of TORC1. The autophagy-stimulating transcription factors pha-4/FoxA and mxl-2/Mlx, but not hlh-30/TFEB or the nuclear hormone receptor nhr-62, are necessary for extended longevity resulting from HPK-1 overexpression. HPK-1 expression is itself induced by transcriptional mechanisms after nutritional stress, and post-transcriptional mechanisms in response to thermal stress. Collectively our results position HPK-1 at a central regulatory node upstream of the greater proteostatic network, acting at the transcriptional level by promoting protein folding via chaperone expression, and protein turnover via expression of autophagy genes. HPK-1 therefore provides a promising intervention point for pharmacological agents targeting the protein homeostasis system as a means of preserving robust longevity. Aging is the gradual and progressive decline of vitality. A hallmark of aging is the decay of protective mechanisms that normally preserve the robustness and resiliency of cells and tissues. Proteostasis is the term that applies specifically to those mechanisms that promote stability of the proteome, the collection of polypeptides that cells produce, by a combination of chaperone-assisted folding and degradation of misfolded or extraneous proteins. We have identified hpk-1 (encoding a homeodomain-interacting protein kinase) in the nematode C. elegans as an important transcriptional regulatory component of the proteostasis machinery. HPK-1 promotes proteostasis by linking two distinct mechanisms: first by stimulating chaperone gene expression via the heat shock transcription factor (HSF-1), and second by stimulating autophagy gene expression in opposition to the target of rapamycin (TOR) kinase signaling pathway. HPK-1 therefore provides an attractive target for interventions to preserve physiological resiliency during aging by preserving the overall health of the proteome.
Collapse
Affiliation(s)
- Ritika Das
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Justine A. Melo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elizabeth A. Morton
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Adam B. Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Beresford Crick
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Joung Heon Kim
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elliot W. Swartz
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Todd Lamitina
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peter M. Douglas
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
146
|
Mendenhall A, Crane MM, Tedesco PM, Johnson TE, Brent R. Caenorhabditis elegans Genes Affecting Interindividual Variation in Life-span Biomarker Gene Expression. J Gerontol A Biol Sci Med Sci 2017; 72:1305-1310. [PMID: 28158434 DOI: 10.1093/gerona/glw349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/30/2016] [Indexed: 01/12/2023] Open
Abstract
Genetically identical organisms grown in homogenous environments differ in quantitative phenotypes. Differences in one such trait, expression of a single biomarker gene, can identify isogenic cells or organisms that later manifest different fates. For example, in isogenic populations of young adult Caenorhabditis elegans, differences in Green Fluorescent Protein (GFP) expressed from the hsp-16.2 promoter predict differences in life span. Thus, it is of interest to determine how interindividual differences in biomarker gene expression arise. Prior reports showed that the thermosensory neurons and insulin signaling systems controlled the magnitude of the heat shock response, including absolute expression of hsp-16.2. Here, we tested whether these regulatory signals might also influence variation in hsp-16.2 reporter expression. Genetic experiments showed that the action of AFD thermosensory neurons increases interindividual variation in biomarker expression. Further genetic experimentation showed the insulin signaling system acts to decrease interindividual variation in life-span biomarker expression; in other words, insulin signaling canalizes expression of the hsp-16.2-driven life-span biomarker. Our results show that specific signaling systems regulate not only expression level, but also the amount of interindividual expression variation for a life-span biomarker gene. They raise the possibility that manipulation of these systems might offer means to reduce heterogeneity in the aging process.
Collapse
Affiliation(s)
| | | | | | - Thomas E Johnson
- Institute for Behavioral Genetics.,Department of Integrative Physiology.,Biofrontiers Institute, University of Colorado, Boulder
| | - Roger Brent
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
147
|
Lin CT, He CW, Huang TT, Pan CL. Longevity control by the nervous system: Sensory perception, stress response and beyond. TRANSLATIONAL MEDICINE OF AGING 2017. [DOI: 10.1016/j.tma.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
148
|
Ethanol Stimulates Locomotion via a G αs-Signaling Pathway in IL2 Neurons in Caenorhabditis elegans. Genetics 2017; 207:1023-1039. [PMID: 28951527 PMCID: PMC5676223 DOI: 10.1534/genetics.117.300119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 01/21/2023] Open
Abstract
Alcohol abuse is among the top causes of preventable death, generating considerable financial, health, and societal burdens. Paradoxically, alcohol... Alcohol is a potent pharmacological agent when consumed acutely at sufficient quantities and repeated overuse can lead to addiction and deleterious effects on health. Alcohol is thought to modulate neuronal function through low-affinity interactions with proteins, in particular with membrane channels and receptors. Paradoxically, alcohol acts as both a stimulant and a sedative. The exact molecular mechanisms for the acute effects of ethanol on neurons, as either a stimulant or a sedative, however remain unclear. We investigated the role that the heat shock transcription factor HSF-1 played in determining a stimulatory phenotype of Caenorhabditis elegans in response to physiologically relevant concentrations of ethanol (17 mM; 0.1% v/v). Using genetic techniques, we demonstrate that either RNA interference of hsf-1 or use of an hsf-1(sy441) mutant lacked the enhancement of locomotion in response to acute ethanol exposure evident in wild-type animals. We identify that the requirement for HSF-1 in this phenotype was IL2 neuron-specific and required the downstream expression of the α-crystallin ortholog HSP-16.48. Using a combination of pharmacology, optogenetics, and phenotypic analyses we determine that ethanol activates a Gαs-cAMP-protein kinase A signaling pathway in IL2 neurons to stimulate nematode locomotion. We further implicate the phosphorylation of a specific serine residue (Ser322) on the synaptic protein UNC-18 as an end point for the Gαs-dependent signaling pathway. These findings establish and characterize a distinct neurosensory cell signaling pathway that determines the stimulatory action of ethanol and identifies HSP-16.48 and HSF-1 as novel regulators of this pathway.
Collapse
|
149
|
Li J, Labbadia J, Morimoto RI. Rethinking HSF1 in Stress, Development, and Organismal Health. Trends Cell Biol 2017; 27:895-905. [PMID: 28890254 DOI: 10.1016/j.tcb.2017.08.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022]
Abstract
The heat shock response (HSR) was originally discovered as a transcriptional response to elevated temperature shock and led to the identification of heat shock proteins and heat shock factor 1 (HSF1). Since then HSF1 has been shown to be important for combating other forms of environmental perturbations as well as genetic variations that cause proteotoxic stress. The HSR has long been thought to be an absolute response to conditions of cell stress and the primary mechanism by which HSF1 promotes organismal health by preventing protein aggregation and subsequent proteome imbalance. Accumulating evidence now shows that HSF1, the central player in the HSR, is regulated according to specific cellular requirements through cell-autonomous and non-autonomous signals, and directs transcriptional programs distinct from the HSR during development and in carcinogenesis. We discuss here these 'non-canonical' roles of HSF1, its regulation in diverse conditions of development, reproduction, metabolism, and aging, and posit that HSF1 serves to integrate diverse biological and pathological responses.
Collapse
Affiliation(s)
- Jian Li
- Department of Molecular Biosciences, Rice Institute for Biomedical Research Northwestern University, Evanston, IL 60208, USA; Present address: Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Johnathan Labbadia
- Department of Molecular Biosciences, Rice Institute for Biomedical Research Northwestern University, Evanston, IL 60208, USA; Present address: Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
150
|
A Model of Exposure to Extreme Environmental Heat Uncovers the Human Transcriptome to Heat Stress. Sci Rep 2017; 7:9429. [PMID: 28842615 PMCID: PMC5573409 DOI: 10.1038/s41598-017-09819-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/31/2017] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms by which individuals subjected to environmental heat stress either recover or develop heat-related complications are not well understood. We analysed the changes in blood mononuclear gene expression patterns in human volunteers exposed to extreme heat in a sauna (temperature of 75.7 ± 0.86 °C). Our analysis reveals that expression changes occur rapidly with no significant increase in core temperature and continue to amplify one hour after the end of heat stress. The reprogramed transcriptome was predominantly inhibitory, as more than two-thirds of the expressed genes were suppressed. The differentially expressed genes encoded proteins that function in stress-associated pathways; including proteostasis, energy metabolism, cell growth and proliferation, and cell death, and survival. The transcriptome also included mitochondrial dysfunction, altered protein synthesis, and reduced expression of genes -related to immune function. The findings reveal the human transcriptomic response to heat and highlight changes that might underlie the health outcomes observed during heat waves.
Collapse
|