101
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
102
|
Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res 2020; 155:104726. [PMID: 32109579 DOI: 10.1016/j.phrs.2020.104726] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The telomerase holoenzyme, which has a highly conserved role in maintaining telomere length, has long been regarded as a high-profile target in cancer therapy due to the high dependency of the majority of cancer cells on constitutive and elevated telomerase activity for sustained proliferation and immortality. In this review, we present the salient findings in the telomerase field with special focus on the association of telomerase with inflammation and cancer. The elucidation of extra-telomeric roles of telomerase in inflammation, reactive oxygen species (ROS) generation, and cancer development further complicated the design of anti-telomerase therapy. Of note, the discovery of the unique mechanism that underlies reactivation of the dormant telomerase reverse transcriptase TERT promoter in somatic cells not only enhanced our understanding of the critical role of TERT in carcinogenesis but also opens up new intervention ideas that enable the differential targeting of cancer cells only. Despite significant effort invested in developing telomerase-targeted therapeutics, devising efficacious cancer-specific telomerase/TERT inhibitors remains an uphill task. The latest discoveries of the telomere-independent functionalities of telomerase in inflammation and cancer can help illuminate the path of developing specific anti-telomerase/TERT therapeutics against cancer cells.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Kerem Fidan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
103
|
Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci 2020; 77:61-79. [PMID: 31728577 PMCID: PMC6986361 DOI: 10.1007/s00018-019-03369-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023]
Abstract
Telomeres are protein-DNA complexes that protect chromosome ends from illicit ligation and resection. Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA to counter telomere shortening. Human telomeres are composed of complexes between telomeric DNA and a six-protein complex known as shelterin. The shelterin proteins TRF1 and TRF2 provide the binding affinity and specificity for double-stranded telomeric DNA, while the POT1-TPP1 shelterin subcomplex coats the single-stranded telomeric G-rich overhang that is characteristic of all our chromosome ends. By capping chromosome ends, shelterin protects telomeric DNA from unwanted degradation and end-to-end fusion events. Structures of the human shelterin proteins reveal a network of constitutive and context-specific interactions. The shelterin protein-DNA structures reveal the basis for both the high affinity and DNA sequence specificity of these interactions, and explain how shelterin efficiently protects chromosome ends from genome instability. Several protein-protein interactions, many provided by the shelterin component TIN2, are critical for upholding the end-protection function of shelterin. A survey of these protein-protein interfaces within shelterin reveals a series of "domain-peptide" interactions that allow for efficient binding and adaptability towards new functions. While the modular nature of shelterin has facilitated its part-by-part structural characterization, the interdependence of subunits within telomerase has made its structural solution more challenging. However, the exploitation of several homologs in combination with recent advancements in cryo-EM capabilities has led to an exponential increase in our knowledge of the structural biology underlying telomerase function. Telomerase homologs from a wide range of eukaryotes show a typical retroviral reverse transcriptase-like protein core reinforced with elements that deliver telomerase-specific functions including recruitment to telomeres and high telomere-repeat addition processivity. In addition to providing the template for reverse transcription, the RNA component of telomerase provides a scaffold for the catalytic and accessory protein subunits, defines the limits of the telomeric repeat sequence, and plays a critical role in RNP assembly, stability, and trafficking. While a high-resolution definition of the human telomerase structure is only beginning to emerge, the quick pace of technical progress forecasts imminent breakthroughs in this area. Here, we review the structural biology surrounding telomeres and telomerase to provide a molecular description of mammalian chromosome end protection and end replication.
Collapse
Affiliation(s)
- Eric M Smith
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
104
|
Xu C, Xie N, Su Y, Sun Z, Liang Y, Zhang N, Liu D, Jia S, Xing X, Han L, Li G, Tong T, Chen J. HnRNP F/H associate with hTERC and telomerase holoenzyme to modulate telomerase function and promote cell proliferation. Cell Death Differ 2019; 27:1998-2013. [PMID: 31863069 PMCID: PMC7244589 DOI: 10.1038/s41418-019-0483-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Human telomerase RNA component hTERC comprises multiple motifs that contribute to hTERC biogenesis, holoenzyme activity, and enzyme recruitment to telomeres. hTERC contains several guanine tracts (G-tracts) at its 5′-end, but its associated proteins and potential roles in telomerase function are still poorly understood. The heterogeneous nuclear ribonucleoproteins F, H1, and H2 (hnRNP F/H) are splicing factors that preferentially bind to poly(G)-rich sequences RNA. Here, we demonstrate that hnRNP F/H associate with both hTERC and telomerase holoenzyme to regulate telomerase activity. We reveal hnRNP F/H bind to the 5′-end region of hTERC in vitro and in vivo, and identify the first three G-tracts of hTERC and qRRM1 domain of hnRNP F/H are required for their interaction. Furthermore, hnRNP F/H also directly interact with telomerase holoenzyme. Functionally, we show that hnRNP F/H plays important roles in modulating telomerase activity and telomere length. Moreover, hnRNP F/H deletion greatly impair cancer and stem cell proliferation, and induce stem cell senescence, while hnRNP F/H overexpression delay stem cell senescence. Collectively, our findings unveil a novel role of hnRNP F/H as the binding partners of hTERC and telomerase holoenzyme to regulate telomerase function.
Collapse
Affiliation(s)
- Chenzhong Xu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Yuanyuan Su
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Zhaomeng Sun
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Yao Liang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Na Zhang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Doudou Liu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Shuqin Jia
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaofang Xing
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Limin Han
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Guodong Li
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| |
Collapse
|
105
|
Combining conservation and species-specific differences to determine how human telomerase binds telomeres. Proc Natl Acad Sci U S A 2019; 116:26505-26515. [PMID: 31822618 DOI: 10.1073/pnas.1911912116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase catalyzes telomeric DNA synthesis at chromosome ends to allow for continued cell division. The telomeric protein TPP1 is essential for enhancing the processivity of telomerase and recruiting the enzyme to telomeres. The telomerase interaction surface on human TPP1 has been mapped to 2 regions of the N-terminal oligosaccharide/oligonucleotide-binding (OB) domain, namely the TPP1 glutamate (E) and leucine (L)-rich (TEL) patch and the N terminus of TPP1-oligosaccharide/oligonucleotide-binding (NOB) region. To map the telomerase side of the interface, we exploited the predicted structural similarities for human and Tetrahymena thermophila telomerase as well as the species specificity of human and mouse telomerase for their cognate TPP1 partners. We show that swapping in the telomerase essential N-terminal (TEN) and insertions in fingers domain (IFD)-TRAP regions of the human telomerase catalytic protein subunit TERT into the mouse TERT backbone is sufficient to bias the species specificity toward human TPP1. Employing a structural homology-based mutagenesis screen focused on surface residues of the TEN and IFD regions, we identified TERT residues that are critical for contacting TPP1 but dispensable for other aspects of telomerase structure or function. We present a functionally validated structural model for how human telomerase engages TPP1 at telomeres, setting the stage for a high-resolution structure of this interface.
Collapse
|
106
|
MacNeil DE, Lambert-Lanteigne P, Autexier C. N-terminal residues of human dyskerin are required for interactions with telomerase RNA that prevent RNA degradation. Nucleic Acids Res 2019; 47:5368-5380. [PMID: 30931479 PMCID: PMC6547437 DOI: 10.1093/nar/gkz233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
The telomerase holoenzyme responsible for maintaining telomeres in vertebrates requires many components in vivo, including dyskerin. Dyskerin binds and regulates the accumulation of the human telomerase RNA, hTR, as well as other non-coding RNAs that share the conserved H/ACA box motif. The precise mechanism by which dyskerin controls hTR levels is unknown, but is evidenced by defective hTR accumulation caused by substitutions in dyskerin, that are observed in the X-linked telomere biology disorder dyskeratosis congenita (X-DC). To understand the role of dyskerin in hTR accumulation, we analyzed X-DC substitutions K39E and K43E in the poorly characterized dyskerin N-terminus, and A353V within the canonical RNA binding domain (the PUA). These variants exhibited impaired binding to hTR and polyadenylated hTR species, while interactions with other H/ACA RNAs appear largely unperturbed by the N-terminal substitutions. hTR accumulation and telomerase activity defects of dyskerin-deficient cells were rescued by wildtype dyskerin but not the variants. hTR 3′ extended or polyadenylated species did not accumulate, suggesting hTR precursor degradation occurs upstream of mature complex assembly in the absence of dyskerin binding. Our findings demonstrate that the dyskerin-hTR interaction mediated by PUA and N-terminal residues of dyskerin is crucial to prevent unchecked hTR degradation.
Collapse
Affiliation(s)
- Deanna E MacNeil
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Patrick Lambert-Lanteigne
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada
| | - Chantal Autexier
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
107
|
Premi S, Han L, Mehta S, Knight J, Zhao D, Palmatier MA, Kornacker K, Brash DE. Genomic sites hypersensitive to ultraviolet radiation. Proc Natl Acad Sci U S A 2019; 116:24196-24205. [PMID: 31723047 PMCID: PMC6883822 DOI: 10.1073/pnas.1907860116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV exposure revealed hyperhotspots acquiring CPDs up to 170-fold more frequently than the genomic average; these sites were more prevalent in melanocytes. Hyperhotspots were disproportionately located near genes, particularly for RNA-binding proteins, with the most-recurrent hyperhotspots at a fixed position within 2 motifs. One motif occurs at ETS family transcription factor binding sites, known to be UV targets and now shown to be among the most sensitive in the genome, and at sites of mTOR/5' terminal oligopyrimidine-tract translation regulation. The second occurs at A2-15TTCTY, which developed "dark CPDs" long after UV exposure, repaired CPDs slowly, and had accumulated CPDs prior to the experiment. Motif locations active as hyperhotspots differed between cell types. Melanocyte CPD hyperhotspots aligned precisely with recurrent UV signature mutations in individual gene promoters of melanomas and with known cancer drivers. At sunburn levels of UV exposure, every cell would have a hyperhotspot CPD in each of the ∼20 targeted cell pathways, letting hyperhotspots act as epigenetic marks that create phenome instability; high prevalence favors cooccurring mutations, which would allow tumor evolution to use weak drivers.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Lynn Han
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Sameet Mehta
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - James Knight
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Meg A Palmatier
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Karl Kornacker
- Karl Kornacker & Associates, LLC, Worthington, OH 43085;
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040;
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
108
|
Bizarro J, Bhardwaj A, Smith S, Meier UT. Nopp140-mediated concentration of telomerase in Cajal bodies regulates telomere length. Mol Biol Cell 2019; 30:3136-3150. [PMID: 31664887 PMCID: PMC6938241 DOI: 10.1091/mbc.e19-08-0429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cajal bodies (CBs) are nuclear organelles concentrating two kinds of RNA–protein complexes (RNPs), spliceosomal small nuclear (sn), and small CB-specific (sca)RNPs. Whereas the CB marker protein coilin is responsible for retaining snRNPs, the tether for scaRNPs is not known. Here we show that Nopp140, an intrinsically disordered CB phosphoprotein, is required to recruit and retain all scaRNPs in CBs. Knockdown (KD) of Nopp140 releases all scaRNPs leading to an unprecedented reduction in size of CB granules, hallmarks of CB ultrastructure. The CB-localizing protein WDR79 (aka TCAB1), which is mutated in the inherited bone marrow failure syndrome dyskeratosis congenita, is a specific component of all scaRNPs, including telomerase. Whereas mislocalization of telomerase by mutation of WDR79 leads to critically shortened telomeres, mislocalization of telomerase by Nopp140 KD leads to gradual extension of telomeres. Our studies suggest that the dynamic distribution of telomerase between CBs and nucleoplasm uniquely impacts telomere length maintenance and identify Nopp140 as a novel player in telomere biology.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Amit Bhardwaj
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Susan Smith
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
109
|
Wang X, Mo X, Zhang H, Zhang Y, Shen Y. Identification of Phosphorylation Associated SNPs for Blood Pressure, Coronary Artery Disease and Stroke from Genome-wide Association Studies. Curr Mol Med 2019; 19:731-738. [PMID: 31456518 DOI: 10.2174/1566524019666190828151540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Phosphorylation-related SNP (phosSNP) is a non-synonymous SNP that might influence protein phosphorylation status. The aim of this study was to assess the effect of phosSNPs on blood pressure (BP), coronary artery disease (CAD) and ischemic stroke (IS). METHODS We examined the association of phosSNPs with BP, CAD and IS in shared data from genome-wide association studies (GWAS) and tested if the disease loci were enriched with phosSNPs. Furthermore, we performed quantitative trait locus analysis to find out if the identified phosSNPs have impacts on gene expression, protein and metabolite levels. RESULTS We found numerous phosSNPs for systolic BP (count=148), diastolic BP (count=206), CAD (count=20) and IS (count=4). The most significant phosSNPs for SBP, DBP, CAD and IS were rs1801131 in MTHFR, rs3184504 in SH2B3, rs35212307 in WDR12 and rs3184504 in SH2B3, respectively. Our analyses revealed that the associated SNPs identified by the original GWAS were significantly enriched with phosSNPs and many well-known genes predisposing to cardiovascular diseases contain significant phosSNPs. We found that BP, CAD and IS shared for phosSNPs in loci that contain functional genes involve in cardiovascular diseases, e.g., rs11556924 (ZC3HC1), rs1971819 (ICA1L), rs3184504 (SH2B3), rs3739998 (JCAD), rs903160 (SMG6). Four phosSNPs in ADAMTS7 were significantly associated with CAD, including the known functional SNP rs3825807. Moreover, the identified phosSNPs seemed to have the potential to affect transcription regulation and serum levels of numerous cardiovascular diseases-related proteins and metabolites. CONCLUSION The findings suggested that phosSNPs may play important roles in BP regulation and the pathological mechanisms of CAD and IS.
Collapse
Affiliation(s)
- Xingchen Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Yueping Shen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
110
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
111
|
The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition. Nat Commun 2019; 10:3979. [PMID: 31484926 PMCID: PMC6726650 DOI: 10.1038/s41467-019-11910-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
One largely unknown question in cell biology is the discrimination between inconsequential and functional transcriptional events with relevant regulatory functions. Here, we find that the oncofetal HMGA2 gene is aberrantly reexpressed in many tumor types together with its antisense transcribed pseudogene RPSAP52. RPSAP52 is abundantly present in the cytoplasm, where it interacts with the RNA binding protein IGF2BP2/IMP2, facilitating its binding to mRNA targets, promoting their translation by mediating their recruitment on polysomes and enhancing proliferative and self-renewal pathways. Notably, downregulation of RPSAP52 impairs the balance between the oncogene LIN28B and the tumor suppressor let-7 family of miRNAs, inhibits cellular proliferation and migration in vitro and slows down tumor growth in vivo. In addition, high levels of RPSAP52 in patient samples associate with a worse prognosis in sarcomas. Overall, we reveal the roles of a transcribed pseudogene that may display properties of an oncofetal master regulator in human cancers.
Collapse
|
112
|
Kolev NG, Rajan KS, Tycowski KT, Toh JY, Shi H, Lei Y, Michaeli S, Tschudi C. The vault RNA of Trypanosoma brucei plays a role in the production of trans-spliced mRNA. J Biol Chem 2019; 294:15559-15574. [PMID: 31439669 DOI: 10.1074/jbc.ra119.008580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/07/2019] [Indexed: 11/06/2022] Open
Abstract
The vault ribonucleoprotein (RNP), comprising vault RNA (vtRNA) and telomerase-associated protein 1 (TEP1), is found in many eukaryotes. However, previous studies of vtRNAs, for example in mammalian cells, have failed to reach a definitive conclusion about their function. vtRNAs are related to Y RNAs, which are complexed with Ro protein and influence Ro's function in noncoding RNA (ncRNA) quality control and processing. In Trypanosoma brucei, the small noncoding TBsRNA-10 was first described in a survey of the ncRNA repertoire in this organism. Here, we report that TBsRNA-10 in T. brucei is a vtRNA, based on its association with TEP1 and sequence similarity to those of other known and predicted vtRNAs. We observed that like vtRNAs in other species, TBsRNA-10 is transcribed by RNA polymerase III, which in trypanosomes also generates the spliceosomal U-rich small nuclear RNAs. In T. brucei, spliced leader (SL)-mediated trans-splicing of pre-mRNAs is an obligatory step in gene expression, and we found here that T. brucei's vtRNA is highly enriched in a non-nucleolar locus in the cell nucleus implicated in SL RNP biogenesis. Using a newly developed permeabilized cell system for the bloodstream form of T. brucei, we show that down-regulated vtRNA levels impair trans-spliced mRNA production, consistent with a role of vtRNA in trypanosome mRNA metabolism. Our results suggest a common theme for the functions of vtRNAs and Y RNAs. We conclude that by complexing with their protein-binding partners TEP1 and Ro, respectively, these two RNA species modulate the metabolism of various RNA classes.
Collapse
Affiliation(s)
- Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Yuling Lei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| |
Collapse
|
113
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
114
|
Engineering a humanized telomerase reverse transcriptase gene in mouse embryonic stem cells. Sci Rep 2019; 9:9683. [PMID: 31273310 PMCID: PMC6609615 DOI: 10.1038/s41598-019-46160-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
Telomerase is expressed in adult mouse, but not in most human, tissues and mouse telomeres are much longer than those in humans. This interspecies difference of telomere homeostasis poses a challenge in modeling human diseases using laboratory mice. Using chromatinized bacterial artificial chromosome reporters, we discovered that the 5′ intergenic region, introns 2 and 6 of human telomerase gene (hTERT) were critical for regulating its promoter in somatic cells. Accordingly, we engineered a humanized gene, hmTert, by knocking-in a 47-kilobase hybrid fragment containing these human non-coding sequences into the mTert locus in mouse embryonic stem cells (mESCs). The hmTert gene, encoding the wildtype mTert protein, was fully functional, as a mESC line with homozygous hmTert alleles proliferated for over 400 population doublings without exhibiting chromosomal abnormalities. Like human ESCs, the engineered mESCs contained high telomerase activity, which was repressed upon their differentiation into fibroblast-like cells in a histone deacetylase-dependent manner. Fibroblast-like cells differentiated from these mESCs contained little telomerase activity. Thus, telomerase in mESCs with the hmTert alleles was subjected to human-like regulation. Our study revealed a novel approach to engineer a humanized telomerase gene in mice, achieving a milestone in creating a mouse model with humanized telomere homeostasis.
Collapse
|
115
|
Bergstrand S, O'Brien EM, Farnebo M. The Cajal Body Protein WRAP53β Prepares the Scene for Repair of DNA Double-Strand Breaks by Regulating Local Ubiquitination. Front Mol Biosci 2019; 6:51. [PMID: 31334247 PMCID: PMC6624377 DOI: 10.3389/fmolb.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Proper repair of DNA double-strand breaks is critical for maintaining genome integrity and avoiding disease. Modification of damaged chromatin has profound consequences for the initial signaling and regulation of repair. One such modification involves ubiquitination by E3 ligases RNF8 and RNF168 within minutes after DNA double-strand break formation, altering chromatin structure and recruiting factors such as 53BP1 and BRCA1 for repair via non-homologous end-joining (NHEJ) and homologous recombination (HR), respectively. The WD40 protein WRAP53β plays an essential role in localizing RNF8 to DNA breaks by scaffolding its interaction with the upstream factor MDC1. Loss of WRAP53β impairs ubiquitination at DNA lesions and reduces downstream repair by both NHEJ and HR. Intriguingly, WRAP53β depletion attenuates repair of DNA double-strand breaks more than depletion of RNF8, indicating functions other than RNF8-mediated ubiquitination. WRAP53β plays key roles with respect to the nuclear organelles Cajal bodies, including organizing the genome to promote associated transcription and collecting factors involved in maturation of the spliceosome and telomere elongation within these organelles. It is possible that similar functions may aid also in DNA repair. Here we describe the involvement of WRAP53β in Cajal bodies and DNA double-strand break repair in detail and explore whether and how these processes may be linked. We also discuss the possibility that the overexpression of WRAP53β detected in several cancer types may reflect its normal participation in the DNA damage response rather than oncogenic properties.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
116
|
Quantitative Biology of Human Shelterin and Telomerase: Searching for the Weakest Point. Int J Mol Sci 2019; 20:ijms20133186. [PMID: 31261825 PMCID: PMC6651453 DOI: 10.3390/ijms20133186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
The repetitive telomeric DNA at chromosome ends is protected from unwanted repair by telomere-associated proteins, which form the shelterin complex in mammals. Recent works have provided new insights into the mechanisms of how human shelterin assembles and recruits telomerase to telomeres. Inhibition of telomerase activity and telomerase recruitment to chromosome ends is a promising target for anticancer therapy. Here, we summarize results of quantitative assessments and newly emerged structural information along with the status of the most promising approaches to telomerase inhibition in cancer cells. We focus on the mechanism of shelterin assembly and the mechanisms of how shelterin affects telomerase recruitment to telomeres, addressing the conceptual dilemma of how shelterin allows telomerase action and regulates other essential processes. We evaluate how the identified critical interactions of telomerase and shelterin might be elucidated in future research of new anticancer strategies.
Collapse
|
117
|
Sayed ME, Cheng A, Yadav GP, Ludlow AT, Shay JW, Wright WE, Jiang QX. Catalysis-dependent inactivation of human telomerase and its reactivation by intracellular telomerase-activating factors (iTAFs). J Biol Chem 2019; 294:11579-11596. [PMID: 31186347 DOI: 10.1074/jbc.ra118.007234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Human telomerase maintains genome stability by adding telomeric repeats to the ends of linear chromosomes. Although previous studies have revealed profound insights into telomerase functions, the low cellular abundance of functional telomerase and the difficulties in quantifying its activity leave its thermodynamic and kinetic properties only partially characterized. Employing a stable cell line overexpressing both the human telomerase RNA component and the N-terminally biotinylated human telomerase reverse transcriptase and using a newly developed method to count individual extension products, we demonstrate here that human telomerase holoenzymes contain fast- and slow-acting catalytic sites. Surprisingly, both active sites became inactive after two consecutive rounds of catalysis, named single-run catalysis. The fast active sites turned off ∼40-fold quicker than the slow ones and exhibited higher affinities to DNA substrates. In a dimeric enzyme, the two active sites work in tandem, with the faster site functioning before the slower one, and in the monomeric enzyme, the active sites also perform single-run catalysis. Interestingly, inactive enzymes could be reactivated by intracellular telomerase-activating factors (iTAFs) from multiple cell types. We conclude that the single-run catalysis and the iTAF-triggered reactivation serve as an unprecedented control circuit for dynamic regulation of telomerase. They endow native telomerase holoenzymes with the ability to match their total number of active sites to the number of telomeres they extend. We propose that the exquisite kinetic control of telomerase activity may play important roles in both cell division and cell aging.
Collapse
Affiliation(s)
- Mohammed E Sayed
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,School of Kinesiology Integrative Molecular Genetics Lab, University of Michigan, Ann Arbor, Michigan 48109
| | - Ao Cheng
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gaya P Yadav
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Andrew T Ludlow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,School of Kinesiology Integrative Molecular Genetics Lab, University of Michigan, Ann Arbor, Michigan 48109
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Qiu-Xing Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 .,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
118
|
Peng J, Zhan Y, Feng J, Fan S, Zang H. Expression of WDR79 is associated with TP53 mutation and poor prognosis in surgically resected non-small cell lung cancer. J Cancer 2019; 10:3046-3053. [PMID: 31281482 PMCID: PMC6590041 DOI: 10.7150/jca.30587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents a major health burden globally. WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family. WDR79 is a highly conserved and natural antisense transcript to TP53 gene and involved in carcinogenesis of various types of cancer. Whether the alterations of WDR79 protein expression are associated with TP53 mutation and clinicopathological and prognostic implications in the patients with surgically resected NSCLC have not been reported. The purposes of the present study are to investigate the association between the expression of WDR79 and mutant p53 (mtp53) and clinicopathological features in NSCLC by immunohistochemistry. The results showed that positive expression of WDR79 (58.8%, 170/289) and mtp53 (48.1%, 139/289) in NSCLC was significantly higher than that in non-cancerous control lung tissues (5.7%, 3/53 and 1.9%, 1/53, respectively). There was a significantly higher positive percentage of WDR79 expression in NSCLC with lymph node metastasis. The statistically positive correlation between WDR79 and mtp53 expression (r = 0.212, P=0.014) was identified by Spearman's rank correlation analysis. Kaplan-Meier survival curve analysis indicated that positive expression of WDR79 and common positive expression of WDR79 and mtp53 were correlated with poor overall survival rates in NSCLC patients (P = 0.029 and P = 0.041, respectively). Multivariate Cox regression analysis further identified that WDR79 positive expression was an independent unfavorable prognostic factor of NSCLC (P = 0.034). Taken together, positive expression of WDR79 proteins may be related with TP53 mutations and act as valuable independent biomarker to predict poor prognosis of patients with surgically resected NSCLC.
Collapse
Affiliation(s)
- Jinwu Peng
- Department of Pathology, Xiangya Basic Medical School, Central South University, Changsha 410013, Hunan, China.,Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China.,Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Juan Feng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
119
|
Canudas S, Hernández-Alonso P, Galié S, Muralidharan J, Morell-Azanza L, Zalba G, García-Gavilán J, Martí A, Salas-Salvadó J, Bulló M. Pistachio consumption modulates DNA oxidation and genes related to telomere maintenance: a crossover randomized clinical trial. Am J Clin Nutr 2019; 109:1738-1745. [PMID: 31051499 PMCID: PMC6895461 DOI: 10.1093/ajcn/nqz048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Telomere attrition may play an important role in the pathogenesis and severity of type 2 diabetes (T2D), increasing the probability of β cell senescence and leading to reduced cell mass and decreased insulin secretion. Nutrition and lifestyle are known factors modulating the aging process and insulin resistance/secretion, determining the risk of T2D. OBJECTIVES The aim of this study was to evaluate the effects of pistachio intake on telomere length and other cellular aging-related parameters of glucose and insulin metabolism. METHODS Forty-nine prediabetic subjects were included in a randomized crossover clinical trial. Subjects consumed a pistachio-supplemented diet (PD, 50 E% [energy percentage] carbohydrates and 33 E% fat, including 57 g pistachios/d) and an isocaloric control diet (CD, 55 E% carbohydrates and 30 E% fat) for 4 mo each, separated by a 2-wk washout period. DNA oxidation was evaluated by DNA damage (via 8-hydroxydeoxyguanosine). Leucocyte telomere length and gene expression related to either oxidation, telomere maintenance or glucose, and insulin metabolism were analyzed by multiplexed quantitative reverse transcriptase-polymerase chain reaction after the dietary intervention. RESULTS Compared with the CD, the PD reduced oxidative damage to DNA (mean: -3.5%; 95% CI: -8.07%, 1.05%; P = 0.009). Gene expression of 2 telomere-related genes (TERT and WRAP53) was significantly upregulated (164% and 53%) after the PD compared with the CD (P = 0.043 and P = 0.001, respectively). Interestingly, changes in TERT expression were negatively correlated to changes in fasting plasma glucose concentrations and in the homeostatic model assessment of insulin resistance. CONCLUSIONS Chronic pistachio consumption reduces oxidative damage to DNA and increases the gene expression of some telomere-associated genes. Lessening oxidative damage to DNA and telomerase expression through diet may represent an intriguing way to promote healthspan in humans, reversing certain deleterious metabolic consequences of prediabetes. This study was registered at clinicaltrials.gov as NCT01441921.
Collapse
Affiliation(s)
- Silvia Canudas
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Hernández-Alonso
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Serena Galié
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
| | - Jananee Muralidharan
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
| | - Lydia Morell-Azanza
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Food Sciences and Physiology
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Guillermo Zalba
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jesús García-Gavilán
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Amelia Martí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Food Sciences and Physiology
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mònica Bulló
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
120
|
Qiu W, Xu Z, Zhang M, Zhang D, Fan H, Li T, Wang Q, Liu P, Zhu Z, Du D, Tan M, Wen B, Liu Y. Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system. Nucleic Acids Res 2019; 47:e52. [PMID: 30805613 PMCID: PMC6511869 DOI: 10.1093/nar/gkz134] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/15/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023] Open
Abstract
The architecture and function of chromatin are largely regulated by local interacting molecules, such as transcription factors and noncoding RNAs. However, our understanding of these regulatory molecules at a given locus is limited because of technical difficulties. Here, we describe the use of Clustered Regularly Interspaced Short Palindromic Repeats and an engineered ascorbate peroxidase 2 (APEX2) system to investigate local chromatin interactions (CAPLOCUS). We showed that with specific small-guide RNA targets, CAPLOCUS could efficiently identify both repetitive genomic regions and single-copy genomic locus with high resolution. Genome-wide sequencing revealed known and potential long-range chromatin interactions for a specific single-copy locus. CAPLOCUS also identified telomere-associated RNAs. CAPLOCUS, followed by mass spectrometry, identified both known and novel telomere-associated proteins in their native states. Thus, CAPLOCUS may be a useful approach for studying local interacting molecules at any given chromosomal location.
Collapse
Affiliation(s)
- Wenqing Qiu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Zhijiao Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Min Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 201203
| | - Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Hui Fan
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China, 200032
| | - Taotao Li
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Qianfeng Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China, 200032
| | - Peiru Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Zaihua Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Duo Du
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 201203
| | - Bo Wen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China, 200032
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| |
Collapse
|
121
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
122
|
Laudadio I, Carissimi C, Fulci V. How RNAi machinery enters the world of telomerase. Cell Cycle 2019; 18:1056-1067. [PMID: 31014212 PMCID: PMC6592256 DOI: 10.1080/15384101.2019.1609834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 12/27/2022] Open
Abstract
Human telomerase holoenzyme consists of the catalytic component TERT and the template RNA TERC. However, a network of accessory proteins plays key roles in its assembly, localization and stability. Defects in genes involved in telomerase biology affect the renewal of critical stem cell populations and cause disorders such as telomeropathies. Moreover, activation of telomerase in somatic cells allows neoplastic cells to proliferate indefinitely, thus contributing to tumorigenesis. For these reasons, identification of new players involved in telomerase regulation is crucial for the determination of novel therapeutic targets and biomarkers. In the very last years, increasing evidence describes components of the RNAi machinery as a new layer of complexity in human telomerase activity. In this review, we will discuss how AGO2 and other proteins which collaborate with AGO2 in RNAi pathway play a pivotal role in TERC stability and function.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Claudia Carissimi
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
123
|
Disruption of Telomerase RNA Maturation Kinetics Precipitates Disease. Mol Cell 2019; 74:688-700.e3. [PMID: 30930056 DOI: 10.1016/j.molcel.2019.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023]
Abstract
Mutations in RNA-processing enzymes are increasingly linked to human disease. Telomerase RNA and related noncoding RNAs require 3' end-processing steps, including oligoadenylation. Germline mutations in poly(A)ribonuclease (PARN) cause accumulation of extended human telomerase RNA (hTR) species and precipitate dyskeratosis congenita and pulmonary fibrosis. Here, we develop nascent RNAend-seq to measure processing rates of RNA precursors. We find that mature hTR derives from extended precursors but that in PARN-mutant cells hTR maturation kinetically stalls and unprocessed precursors are degraded. Loss of poly(A)polymerase PAPD5 in PARN-mutant cells accelerates hTR maturation and restores hTR processing, indicating that oligoadenylation and deadenylation set rates of hTR maturation. The H/ACA domain mediates hTR maturation by precisely defining the 3' end, recruiting poly(A)polymerase activity, and conferring sensitivity to PARN regulation. These data reveal a feedforward circuit in which post-transcriptional oligoadenylation controls RNA maturation kinetics. Similar alterations in RNA processing rates may contribute to mechanisms of RNA-based human disease.
Collapse
|
124
|
Burke MF, McLaurin DM, Logan MK, Hebert MD. Alteration of 28S rRNA 2'- O-methylation by etoposide correlates with decreased SMN phosphorylation and reduced Drosha levels. Biol Open 2019; 8:bio041848. [PMID: 30858166 PMCID: PMC6451326 DOI: 10.1242/bio.041848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
The most common types of modification in human rRNA are pseudouridylation and 2'-O ribose methylation. These modifications are performed by small nucleolar ribonucleoproteins (snoRNPs) which contain a guide RNA (snoRNA) that base pairs at specific sites within the rRNA to direct the modification. rRNA modifications can vary, generating ribosome heterogeneity. One possible method that can be used to regulate rRNA modifications is by controlling snoRNP activity. RNA fragments derived from some small Cajal body-specific RNAs (scaRNA 2, 9 and 17) may influence snoRNP activity. Most scaRNAs accumulate in the Cajal body - a subnuclear domain - where they participate in the biogenesis of small nuclear RNPs, but scaRNA 2, 9 and 17 generate nucleolus-enriched fragments of unclear function, and we hypothesize that these fragments form regulatory RNPs that impact snoRNP activity and modulate rRNA modifications. Our previous work has shown that SMN, Drosha and various stresses, including etoposide treatment, may alter regulatory RNP formation. Here we demonstrate that etoposide treatment decreases the phosphorylation of SMN, reduces Drosha levels and increases the 2'-O-methylation of two sites within 28S rRNA. These findings further support a role for SMN and Drosha in regulating rRNA modification, possibly by affecting snoRNP or regulatory RNP activity.
Collapse
Affiliation(s)
- Marilyn F Burke
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
125
|
Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells 2019; 8:cells8010058. [PMID: 30654521 PMCID: PMC6356271 DOI: 10.3390/cells8010058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the “telomere clock” in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
Collapse
|
126
|
Ivanyi-Nagy R, Ahmed SM, Peter S, Ramani PD, Ong PF, Dreesen O, Dröge P. The RNA interactome of human telomerase RNA reveals a coding-independent role for a histone mRNA in telomere homeostasis. eLife 2018; 7:40037. [PMID: 30355447 PMCID: PMC6249008 DOI: 10.7554/elife.40037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Telomerase RNA (TR) provides the template for DNA repeat synthesis at telomeres and is essential for genome stability in continuously dividing cells. We mapped the RNA interactome of human TR (hTR) and identified a set of non-coding and coding hTR-interacting RNAs, including the histone 1C mRNA (HIST1H1C). Disruption of the hTR-HIST1H1C RNA association resulted in markedly increased telomere elongation without affecting telomerase enzymatic activity. Conversely, over-expression of HIST1H1C led to telomere attrition. By using a combination of mutations to disentangle the effects of histone 1 RNA synthesis, protein expression, and hTR interaction, we show that HIST1H1C RNA negatively regulates telomere length independently of its protein coding potential. Taken together, our data provide important insights into a surprisingly complex hTR-RNA interaction network and define an unexpected non-coding RNA role for HIST1H1C in regulating telomere length homeostasis, thus offering a glimpse into the mostly uncharted, vast space of non-canonical messenger RNA functions.
Collapse
Affiliation(s)
- Roland Ivanyi-Nagy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Syed Moiz Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Peh Fern Ong
- Cell Ageing, Skin Research Institute Singapore, Singapore, Singapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute Singapore, Singapore, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
127
|
Assani G, Xiong Y, Zhou F, Zhou Y. Effect of therapies-mediated modulation of telomere and/or telomerase on cancer cells radiosensitivity. Oncotarget 2018; 9:35008-35025. [PMID: 30405890 PMCID: PMC6201854 DOI: 10.18632/oncotarget.26150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the leading causes of death in the world. Many strategies of cancer treatment such as radiotherapy which plays a key role in cancer treatment are developed and used nowadays. However, the side effects post-cancer radiotherapy and cancer radioresistance are two major causes of the limitation of cancer radiotherapy effectiveness in the cancer patients. Moreover, reduction of the limitation of cancer radiotherapy effectiveness by reducing the side effects post-cancer radiotherapy and cancer radioresistance is the aim of several radiotherapy-oncologic teams. Otherwise, Telomere and telomerase are two cells components which play an important role in cancer initiation, cancer progression and cancer therapy resistance such as radiotherapy resistance. For resolving the problems of the limitation of cancer radiotherapy effectiveness especially the cancer radio-resistance problems, the radio-gene-therapy strategy which is the use of gene-therapy via modulation of gene expression combined with radiotherapy was developed and used as a new strategy to treat the patients with cancer. In this review, we summarized the information concerning the implication of telomere and telomerase modulation in cancer radiosensitivity.
Collapse
Affiliation(s)
- Ganiou Assani
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yudi Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
128
|
Logan MK, Burke MF, Hebert MD. Altered dynamics of scaRNA2 and scaRNA9 in response to stress correlates with disrupted nuclear organization. Biol Open 2018; 7:bio.037101. [PMID: 30177550 PMCID: PMC6176948 DOI: 10.1242/bio.037101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small Cajal body-specific RNAs (scaRNAs) are part of small Cajal body-specific ribonucleoproteins (scaRNPs) that modify small nuclear RNA (snRNA) in Cajal bodies (CBs). Several scaRNAs (scaRNA 2, 9 and 17) have been found to generate smaller, nucleolus-enriched fragments. We hypothesize that the fragments derived from scaRNA 2, 9 and 17 form regulatory RNPs that influence the level of modifications within rRNA by altering small nucleolar RNP (snoRNP) activity. Here we show that external factors such as DNA damaging agents can alter the scaRNA9 full length to processed fragment ratio. We also show that full-length scaRNA2 levels are likewise impacted by DNA damage, which correlates with the disruption of SMN, coilin and WRAP53 co-localization in CBs. The dynamics of scaRNA9 were also shown to be affected by Drosha levels, which suggests that this protein may participate in the biogenesis and processing of this non-coding RNA. Identification of factors that contribute to scaRNA 2, 9 and 17 processing may facilitate an assessment of how external stress can lead to changes in rRNA modifications.
Collapse
Affiliation(s)
- Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Marilyn F Burke
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
129
|
Chow TT, Shi X, Wei JH, Guan J, Stadler G, Huang B, Blackburn EH. Local enrichment of HP1alpha at telomeres alters their structure and regulation of telomere protection. Nat Commun 2018; 9:3583. [PMID: 30181605 PMCID: PMC6123478 DOI: 10.1038/s41467-018-05840-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Enhanced telomere maintenance is evident in malignant cancers. While telomeres are thought to be inherently heterochromatic, detailed mechanisms of how epigenetic modifications impact telomere protection and structures are largely unknown in human cancers. Here we develop a molecular tethering approach to experimentally enrich heterochromatin protein HP1α specifically at telomeres. This results in increased deposition of H3K9me3 at cancer cell telomeres. Telomere extension by telomerase is attenuated, and damage-induced foci at telomeres are reduced, indicating augmentation of telomere stability. Super-resolution STORM imaging shows an unexpected increase in irregularity of telomeric structure. Telomere-tethered chromo shadow domain (CSD) mutant I165A of HP1α abrogates both the inhibition of telomere extension and the irregularity of telomeric structure, suggesting the involvement of at least one HP1α-ligand in mediating these effects. This work presents an approach to specifically manipulate the epigenetic status locally at telomeres to uncover insights into molecular mechanisms underlying telomere structural dynamics.
Collapse
Affiliation(s)
- Tracy T Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jen-Hsuan Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Juan Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | | | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
130
|
Zhu Y, Ding L, Chen BF, Song JG, Yao YS. Oncogenic Activity of Wrap53 in Human Colorectal Cancer In Vitro and in Nude Mouse Xenografts. Med Sci Monit 2018; 24:6129-6136. [PMID: 30175821 PMCID: PMC6131976 DOI: 10.12659/msm.910214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background WD40-encoding RNA antisense to p53 (Wrap53) has been implicated in cancer development. However, the role of Wrap53 remains unknown in colorectal cancer. The aim of this study was to elucidate the function of Wrap53 in colorectal cancer tumorigenesis and development. Material/Methods This study analyzed Wrap53 expression in colorectal cancer tissue specimens using The Cancer Genome Atlas data and tumor cell lines and assessed the effects of Wrap53 knockdown on regulation of cancer cell malignant phenotypes in vitro and in nude mouse xenografts. Results Wrap53 expression was upregulated in colorectal cancer tissue specimens and cell lines. Knockdown of Wrap53 expression induced colorectal cancer cell line apoptosis and cell cycle arrest in the G1 phase, but reduced tumor cell line proliferation and invasion in vitro. Knockdown of Wrap53 in a nude mouse xenograft assay inhibited tumor cell line xenograft formation and growth. Conclusions Wrap53 is likely a potential oncogene or possesses oncogenic activity in colorectal cancer, promoting colorectal tumorigenesis. Targeting Wrap53 expression may represent a novel strategy for the control of colorectal cancer.
Collapse
Affiliation(s)
- Yu Zhu
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Lei Ding
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Bai-Feng Chen
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Jian-Gen Song
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Ying-Shui Yao
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|
131
|
Melicher D, Illés A, Pállinger É, Kovács ÁF, Littvay L, Tárnoki ÁD, Tárnoki DL, Bikov A, Molnár MJ, Buzás EI, Falus A. Tight co-twin similarity of monozygotic twins for hTERT protein level of T cell subsets, for telomere length and mitochondrial DNA copy number, but not for telomerase activity. Cell Mol Life Sci 2018; 75:2447-2456. [PMID: 29290038 PMCID: PMC11105316 DOI: 10.1007/s00018-017-2738-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 01/02/2023]
Abstract
Our study analyzed lymphocyte subpopulations of 32 monozygotic twins and compared the level of the catalytic reverse transcriptase protein subunit (hTERT) in T lymphocytes (Tly), helper- (Th), cytotoxic- (Tc) and regulatory T cell (Treg) subgroups. Four variables related to telomere and mitochondrial biology were simultaneously assessed, applying multi-parametric flow cytometry, TRAP-ELISA assay and qPCR standard curve method on peripheral blood mononuclear cell (PBMC) samples of genetically matched individuals. Twin data of telomerase activity (TA), hTERT protein level, telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were analyzed for co-twin similarity. The present study has provided novel information by demonstrating very high intraclass correlation (ICC) of hTERT protein level in T lymphocytes (0.891) and in both Th (0.896), Treg (0.885) and Tc (0.798) cell subgroups. When comparing results measured from PBMCs, intraclass correlation was also high for telomere length (0.815) and considerable for mtDNA copy number (0.524), and again exceptionally high for the rate-limiting telomerase subunit, hTERT protein level (0.946). In contrast, telomerase activity showed no co-twin similarity (ICC 0). By comparing relative amounts of hTERT protein levels in different lymphocyte subgroups of twin subjects, in Treg cells significantly higher level could be detected compared to Tly, Th or Tc cell subgroups. This is the first study that simultaneously analyzed co-twin similarity in MZ twins for the above four variables and alongside assessed their relationship, whereby positive association was found between TL and mtDNAcn.
Collapse
Affiliation(s)
- Dóra Melicher
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Hungarian Twin Registry, Budapest, Hungary
- MTA-SE Immunproteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - Anett Illés
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Árpád Ferenc Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Levente Littvay
- Hungarian Twin Registry, Budapest, Hungary
- Central European University, Budapest, Hungary
| | - Ádám Domonkos Tárnoki
- Hungarian Twin Registry, Budapest, Hungary
- Department of Radiology, Semmelweis University, Budapest, Hungary
| | - Dávid László Tárnoki
- Hungarian Twin Registry, Budapest, Hungary
- Department of Radiology, Semmelweis University, Budapest, Hungary
| | - András Bikov
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immunproteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - András Falus
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
132
|
Armstrong CA, Tomita K. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells. Open Biol 2018; 7:rsob.160338. [PMID: 28330934 PMCID: PMC5376709 DOI: 10.1098/rsob.160338] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of telomerase occurs in 85–90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments.
Collapse
Affiliation(s)
- Christine A Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
133
|
An Activity Switch in Human Telomerase Based on RNA Conformation and Shaped by TCAB1. Cell 2018; 174:218-230.e13. [PMID: 29804836 DOI: 10.1016/j.cell.2018.04.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/22/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
Abstract
Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.
Collapse
|
134
|
Conklin QA, King BG, Zanesco AP, Lin J, Hamidi AB, Pokorny JJ, Álvarez-López MJ, Cosín-Tomás M, Huang C, Kaliman P, Epel ES, Saron CD. Insight meditation and telomere biology: The effects of intensive retreat and the moderating role of personality. Brain Behav Immun 2018. [PMID: 29518528 DOI: 10.1016/j.bbi.2018.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A growing body of evidence suggests that meditation training may have a range of salubrious effects, including improved telomere regulation. Telomeres and the enzyme telomerase interact with a variety of molecular components to regulate cell-cycle signaling cascades, and are implicated in pathways linking psychological stress to disease. We investigated the effects of intensive meditation practice on these biomarkers by measuring changes in telomere length (TL), telomerase activity (TA), and telomere-related gene (TRG) expression during a 1-month residential Insight meditation retreat. Multilevel analyses revealed an apparent TL increase in the retreat group, compared to a group of experienced meditators, similarly comprised in age and gender, who were not on retreat. Moreover, personality traits predicted changes in TL, such that retreat participants highest in neuroticism and lowest in agreeableness demonstrated the greatest increases in TL. Changes observed in TRGs further suggest retreat-related improvements in telomere maintenance, including increases in Gar1 and HnRNPA1, which encode proteins that bind telomerase RNA and telomeric DNA. Although no group-level changes were observed in TA, retreat participants' TA levels at post-assessment were inversely related to several indices of retreat engagement and prior meditation experience. Neuroticism also predicted variation in TA across retreat. These findings suggest that meditation training in a retreat setting may have positive effects on telomere regulation, which are moderated by individual differences in personality and meditation experience. (ClinicalTrials.gov #NCT03056105).
Collapse
Affiliation(s)
- Quinn A Conklin
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Department of Psychology, University of California, Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Brandon G King
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Department of Psychology, University of California, Davis, 135 Young Hall, Davis, CA 95616, United States
| | - Anthony P Zanesco
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Department of Psychology, University of California, Davis, 135 Young Hall, Davis, CA 95616, United States
| | - Jue Lin
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St, San Francisco, CA 94158, United States
| | - Anahita B Hamidi
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States
| | - Jennifer J Pokorny
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States
| | | | - Marta Cosín-Tomás
- Unit of Pharmacology, Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Colin Huang
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St, San Francisco, CA 94158, United States
| | - Perla Kaliman
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Unit of Pharmacology, Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Elissa S Epel
- Department of Psychiatry, University of California, San Francisco, 401 Parnassus Ave, San Francisco, CA 94131, United States
| | - Clifford D Saron
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; MIND Institute, University of California, Davis Medical Center, 2825 50th St, Sacramento, CA 95817, United States
| |
Collapse
|
135
|
Abstract
Studies of rare and common illnesses have led to remarkable progress in the understanding of the role of telomeres (nucleoprotein complexes at chromosome ends essential for chromosomal integrity) in human disease. Telomere biology disorders encompass a growing spectrum of conditions caused by rare pathogenic germline variants in genes encoding essential aspects of telomere function. Dyskeratosis congenita, a disorder at the severe end of this spectrum, typically presents in childhood with the classic triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia, accompanied by a very high risk of bone marrow failure, cancer, pulmonary fibrosis, and other medical problems. In contrast, the less severe end of the telomere biology disorder spectrum consists of middle-age or older adults with just one feature typically seen in dyskeratosis congenita, such as pulmonary fibrosis or bone marrow failure. In the common disease realm, large-scale molecular epidemiology studies have discovered novel associations between illnesses, such as cancer, heart disease, and mental health, and both telomere length and common genetic variants in telomere biology genes. This review highlights recent findings of telomere biology in human disease from both the rare and common disease perspectives. Multi-disciplinary collaborations between clinicians, basic scientists, and epidemiologist are essential as we seek to incorporate new telomere biology discoveries to improve health outcomes.
Collapse
Affiliation(s)
- Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
136
|
Nguyen THD, Tam J, Wu RA, Greber BJ, Toso D, Nogales E, Collins K. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 2018; 557:190-195. [PMID: 29695869 PMCID: PMC6223129 DOI: 10.1038/s41586-018-0062-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Telomerase adds telomeric repeats to chromosome ends to balance incomplete replication. Telomerase regulation is implicated in cancer, aging and other human diseases, but progress towards telomerase clinical manipulation is hampered by the lack of structural data. Here we present the cryo-electron microscopy structure of substrate-bound human telomerase holoenzyme at subnanometer resolution, describing two flexibly RNA-tethered lobes: the catalytic core with telomerase reverse transcriptase (TERT) and conserved motifs of telomerase RNA (hTR), and an H/ACA ribonucleoprotein (RNP). In the catalytic core, RNA encircles TERT, adopting a well-ordered tertiary structure with surprisingly limited protein-RNA interactions. The H/ACA RNP lobe comprises two sets of heterotetrameric H/ACA proteins and one Cajal body protein, TCAB1, representing a pioneering structure of a large eukaryotic family of ribosome and spliceosome biogenesis factors. Our findings provide a structural framework for understanding human telomerase disease mutations and represent an important step towards telomerase-related clinical therapeutics.
Collapse
Affiliation(s)
- Thi Hoang Duong Nguyen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biology, University of California, Berkeley, CA, USA.,Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA
| | - Jane Tam
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Robert A Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Harvard Medical School, Boston, MA, USA
| | - Basil J Greber
- California Institute for Quantitative Biology, University of California, Berkeley, CA, USA.,Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Toso
- California Institute for Quantitative Biology, University of California, Berkeley, CA, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,California Institute for Quantitative Biology, University of California, Berkeley, CA, USA. .,Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,California Institute for Quantitative Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
137
|
|
138
|
Brazvan B, Ebrahimi-Kalan A, Velaei K, Mehdipour A, Aliyari Serej Z, Ebrahimi A, Ghorbani M, Cheraghi O, Nozad Charoudeh H. Telomerase activity and telomere on stem progeny senescence. Biomed Pharmacother 2018; 102:9-17. [PMID: 29547744 DOI: 10.1016/j.biopha.2018.02.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/03/2018] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
The end of linear chromosomes is formed of a special nucleoprotein heterochromatin structure with repetitive TTAGGG sequences called telomere. Telomere length is regulated by a special enzyme called telomerase, a specific DNA polymerase that adds new telomeric sequences to the chromosome ends. Telomerase consists of two parts; the central protein part and the accessory part which is a RNA component transported by the central part. Regulation of telomere length by this enzyme is a multi-stage process. Telomere length elongation is strongly influenced by the level of telomerase and has a strong correlation with the activity of telomerase enzyme. Human Telomerase Reverse Transcriptase (hTERT) gene expression plays an important role in maintaining telomere length and high proliferative property of cells. Except a low activity of telomerase enzyme in hematopoietic and few types of stem cells, most of somatic cells didn't showed telomerase activity. Moreover, cytokines are secretory proteins that control many aspects of hematopoiesis, especially immune responses and inflammation. Also, the induction of hTERT gene expression by cytokines is organized through the PI3K/AKT and NF/kB signaling pathways. In this review we have tried to talk about effects of immune cell cytokines on telomerase expression/telomere length and the induction of telomerase expression by cytokines.
Collapse
Affiliation(s)
- Balal Brazvan
- Department of Basic Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Aliyari Serej
- Applied Cell Sciences Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetic, Faculty of Arts and Sciences, Halic Uuniversity, Istanbul, Turkey
| | - Mohammad Ghorbani
- Department of Basic Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Omid Cheraghi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
139
|
Shao Y, Feng S, Huang J, Huo J, You Y, Zheng Y. A unique homozygous WRAP53 Arg298Trp mutation underlies dyskeratosis congenita in a Chinese Han family. BMC MEDICAL GENETICS 2018. [PMID: 29514627 PMCID: PMC5842585 DOI: 10.1186/s12881-018-0549-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dyskeratosis congenita (DC) is an inherited telomeropathy characterized by mucocutaneous dysplasia, bone marrow failure, cancer predisposition, and other somatic abnormalities. Cells from patients with DC exhibit short telomere. The genetic basis of the majority of DC cases remains unknown. METHODS A 2 generational Chinese Han family with DC was studied using targeted capture and next-generation sequencing to identify the underlying DC-related mutations. RESULTS In this study, we identified a unique homozygous WD repeat containing antisense to TP53 (WRAP53) Arg298Trp mutation in the proband with DC and heterozygous WRAP53 Arg298Trp mutations in his asymptomatic, consanguineous parents and his sister, indicating an autosomal recessive inheritance mode. The proband with the homozygous WRAP53 Arg298Trp mutation had short telomere, classic clinical symptoms, and no response to danazol, glucocorticoid or cyclosporin A. CONCLUSIONS Thus, we reported for the first time that a unique homozygous WRAP53 mutation site underlies the development of DC.
Collapse
Affiliation(s)
- Yingqi Shao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Jinbo Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jiali Huo
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Yahong You
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| |
Collapse
|
140
|
Chen J, Sheng X, Ma H, Tang Z, Yang C, Cao L, Sun Y, Deng T, Feng P, Hu B, Wei D, Liu J, Xiong W, Ye M. WDR79 mediates the proliferation of non-small cell lung cancer cells by regulating the stability of UHRF1. J Cell Mol Med 2018. [PMID: 29516630 PMCID: PMC5908104 DOI: 10.1111/jcmm.13580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family characterized by the presence of a series of WD-repeat domains and is a scaffold protein that participates in telomerase assembly, Cajal body formation and DNA double strand break repair. Although previous studies have revealed that WDR79 is frequently overexpressed in non-small cell lung cancer (NSCLC) and promotes the proliferation of NSCLC cells, the underlying mechanism responsible for WDR79-mediated NSCLC proliferation is not fully understood. In this study, we report a novel molecular function of WDR79 that mediates NSCLC cell proliferation by controlling the stability of UHRF1. In the nucleus, WDR79 colocalized and interacted with UHRF1. As a result, overexpression of WDR79 stabilized UHRF1, whereas ablation of WDR79 decreased the level of UHRF1. Meanwhile, we showed that WDR79 can protect UHRF1 from poly-ubiquitination-mediated proteolysis, which facilitated the stabilization of UHRF1. We further demonstrated that WDR79 exerts a proliferation effect on NSCLC cells by stabilizing UHRF1. These findings reveal that WDR79 is a novel UHRF1 regulator by maintaining UHRF1 stability, and they also provide a clue as to how to explore WDR79 for potential therapeutic application in NSCLC.
Collapse
Affiliation(s)
- Jieying Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Xunan Sheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Hongchang Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Zhengshan Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Chao Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China.,College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Bin Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Dong Wei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Ophthalmology and Eye Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| |
Collapse
|
141
|
Collopy LC, Ware TL, Goncalves T, Í Kongsstovu S, Yang Q, Amelina H, Pinder C, Alenazi A, Moiseeva V, Pearson SR, Armstrong CA, Tomita K. LARP7 family proteins have conserved function in telomerase assembly. Nat Commun 2018; 9:557. [PMID: 29422501 PMCID: PMC5805788 DOI: 10.1038/s41467-017-02296-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/20/2017] [Indexed: 11/15/2022] Open
Abstract
Understanding the intricacies of telomerase regulation is crucial due to the potential health benefits of modifying its activity. Telomerase is composed of an RNA component and reverse transcriptase. However, additional factors required during biogenesis vary between species. Here we have identified fission yeast Lar7 as a member of the conserved LARP7 family, which includes the Tetrahymena telomerase-binding protein p65 and human LARP7. We show that Lar7 has conserved RNA-recognition motifs, which bind telomerase RNA to protect it from exosomal degradation. In addition, Lar7 is required to stabilise the association of telomerase RNA with the protective complex LSm2–8, and telomerase reverse transcriptase. Lar7 remains a component of the mature telomerase complex and is required for telomerase localisation to the telomere. Collectively, we demonstrate that Lar7 is a crucial player in fission yeast telomerase biogenesis, similarly to p65 in Tetrahymena, and highlight the LARP7 family as a conserved factor in telomere maintenance. The telomerase holoenzyme is minimally composed of the reverse transcriptase and the RNA template. Here the authors identify Lar7 as a member of the full complex that helps to stabilise it and protect telomerase RNA from degradation.
Collapse
Affiliation(s)
- Laura C Collopy
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Tracy L Ware
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,Department of Biology, Salem State University, Salem, MA, 01970, USA
| | - Tomas Goncalves
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,Division of Biosciences, Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Sunnvør Í Kongsstovu
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,MSc Human Molecular Genetics, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Qian Yang
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Hanna Amelina
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Corinne Pinder
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,Division of Biosciences, Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Ala Alenazi
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,MSc Human Molecular Genetics, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Vera Moiseeva
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Siân R Pearson
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Christine A Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
142
|
LARP7-like protein Pof8 regulates telomerase assembly and poly(A)+TERRA expression in fission yeast. Nat Commun 2018; 9:586. [PMID: 29422503 PMCID: PMC5805695 DOI: 10.1038/s41467-018-02874-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Telomerase is a reverse transcriptase complex that ensures stable maintenance of linear eukaryotic chromosome ends by overcoming the end replication problem, posed by the inability of replicative DNA polymerases to fully replicate linear DNA. The catalytic subunit TERT must be assembled properly with its telomerase RNA for telomerase to function, and studies in Tetrahymena have established that p65, a La-related protein 7 (LARP7) family protein, utilizes its C-terminal xRRM domain to promote assembly of the telomerase ribonucleoprotein (RNP) complex. However, LARP7-dependent telomerase complex assembly has been considered as unique to ciliates that utilize RNA polymerase III to transcribe telomerase RNA. Here we show evidence that fission yeast Schizosaccharomyces pombe utilizes the p65-related protein Pof8 and its xRRM domain to promote assembly of RNA polymerase II-encoded telomerase RNA with TERT. Furthermore, we show that Pof8 contributes to repression of the transcription of noncoding RNAs at telomeres. A functional telomerase complex requires that the catalytic TERT subunit be assembled with the template RNA TER1. Here the authors show that Pof8, a possible LARP7 family protein, is required for assembly of the telomerase complex, and repression of lncRNA transcripts at telomeres in S. pombe.
Collapse
|
143
|
Abstract
Human telomerase is a ribonucleoprotein (RNP) that synthesizes DNA repeats at the ends of chromosomes and maintains telomere length and genome stability. The enzyme is comprised of telomerase RNA (hTR) (which provides the template for telomere addition) and several protein subunits including telomerase reverse transcriptase (hTERT) (the catalytic component). Intracellular trafficking of the enzyme has emerged as an important factor in the regulation of telomerase activity. Telomerase trafficking between nuclear Cajal bodies (proposed sites of telomerase biogenesis and regulation) and telomeres (sites of action) is regulated by the cell cycle in concordance with telomere synthesis during S phase. Here, we describe fluorescence microscopy approaches to visualize the subcellular localization of the essential RNA component of telomerase (hTR) relative to Cajal bodies and telomeres in cultured human cells. These methods include fluorescence in situ hybridization (to detect hTR and telomeric DNA) and immunofluorescence (to detect Cajal bodies and telomere binding proteins). Because telomerase localization to telomeres is normally restricted to S phase, we also describe methods to synchronize and analyze cells within this phase of the cell cycle.
Collapse
|
144
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
145
|
Telomeres: Implications for Cancer Development. Int J Mol Sci 2018; 19:ijms19010294. [PMID: 29351238 PMCID: PMC5796239 DOI: 10.3390/ijms19010294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR). This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT)-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|
146
|
Fiorini E, Santoni A, Colla S. Dysfunctional telomeres and hematological disorders. Differentiation 2018; 100:1-11. [PMID: 29331736 DOI: 10.1016/j.diff.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/25/2022]
Abstract
Telomere biology disorders, which are characterized by telomerase activity haploinsufficiency and accelerated telomere shortening, most commonly manifest as degenerative diseases. Tissues with high rates of cell turnover, such as those in the hematopoietic system, are particularly vulnerable to defects in telomere maintenance genes that eventually culminate in bone marrow (BM) failure syndromes, in which the BM cannot produce sufficient new blood cells. Here, we review how telomere defects induce degenerative phenotypes across multiple organs, with particular focus on how they impact the hematopoietic stem and progenitor compartment and affect hematopoietic stem cell (HSC) self-renewal and differentiation. We also discuss how both the increased risk of myelodysplastic syndromes and other hematological malignancies that is associated with telomere disorders and the discovery of cancer-associated somatic mutations in the shelterin components challenge the conventional interpretation that telomere defects are cancer-protective rather than cancer-promoting.
Collapse
Affiliation(s)
- Elena Fiorini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea Santoni
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
147
|
Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. Int J Mol Sci 2017; 18:ijms18122761. [PMID: 29257115 PMCID: PMC5751360 DOI: 10.3390/ijms18122761] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs.
Collapse
|
148
|
Regulation of human and mouse telomerase genes by genomic contexts and transcription factors during embryonic stem cell differentiation. Sci Rep 2017; 7:16444. [PMID: 29180668 PMCID: PMC5703907 DOI: 10.1038/s41598-017-16764-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Differential regulation of telomerase reverse transcriptase (TERT) genes contribute to distinct aging and tumorigenic processes in humans and mice. To study TERT regulation, we generated mouse embryonic stem cell (ESC) lines containing single-copy bacterial artificial chromosome (BAC) reporters, covering hTERT and mTERT genes and their neighboring loci, via recombinase-mediated BAC targeting. ESC lines with chimeric BACs, in which two TERT promoters were swapped, were also generated. Using these chromatinized BACs, we showed that hTERT silencing during differentiation to embryoid bodies (EBs) and to fibroblast-like cells was driven by the human-specific genomic context and accompanied by increases of repressive epigenetic marks, H3K9me3 and H3K27me3, near its promoter. Conversely, the mouse genomic context did not repress TERT transcription until late during differentiation. The hTERT promoter was more active than its mouse counterpart when compared in the same genomic contexts. Mutations of E-box and E2F consensus sites at the promoter had little effect on hTERT transcription in ESCs. However, the mutant promoters were rapidly silenced upon EB differentiation, indicating that transcription factors (TFs) bound to these sites were critical in maintaining hTERT transcription during differentiation. Together, our study revealed a dynamic hTERT regulation by chromatin environment and promoter-bound TFs during ESC differentiation.
Collapse
|
149
|
Telomerase RNA Imaging in Budding Yeast and Human Cells by Fluorescent In Situ Hybridization. Methods Mol Biol 2017. [PMID: 29043638 DOI: 10.1007/978-1-4939-7306-4_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Telomerase, the enzyme that elongates telomeres in most eukaryotes, is a ribonucleoprotein complex composed of a reverse transcriptase catalytic subunit (TERT in human, Est2 in the budding yeast S. cerevisiae), regulatory factors and a noncoding RNA called hTERC (in human) or TLC1 (in budding yeast). Telomerase trafficking is a major process in the biogenesis and regulation of telomerase action at telomeres. Due to its higher signal-to-noise ratio, imaging of the telomerase RNA moiety is frequently used to determine telomerase intracellular localization. Here we describe how to image telomerase RNA in human and yeast cells using fluorescence in situ hybridization.
Collapse
|
150
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|