101
|
Shah V, Shah J. Recent trends in targeting miRNAs for cancer therapy. J Pharm Pharmacol 2020; 72:1732-1749. [PMID: 32783235 DOI: 10.1111/jphp.13351] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are a type of small noncoding RNA employed by the cells for gene regulation. A single miRNA, typically 22 nucleotides in length, can regulate the expression of numerous genes. Over the past decade, the study of miRNA biology in the context of cancer has led to the development of new diagnostic and therapeutic opportunities. KEY FINDINGS MicroRNA dysregulation is commonly associated with cancer, in part because miRNAs are actively involved in the mechanisms like genomic instabilities, aberrant transcriptional control, altered epigenetic regulation and biogenesis machinery defects. MicroRNAs can regulate oncogenes or tumour suppressor genes and thus when altered can lead to tumorigenesis. Expression profiling of miRNAs has boosted the possibilities of application of miRNAs as potential cancer biomarkers and therapeutic targets, although the feasibility of these approaches will require further validation. SUMMARY In this review, we will focus on how miRNAs regulate tumour development and the potential applications of targeting miRNAs for cancer therapy.
Collapse
Affiliation(s)
- Vandit Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
102
|
The Role of EZH2 Inhibitor, GSK-126, in Seizure Susceptibility. J Mol Neurosci 2020; 71:556-564. [DOI: 10.1007/s12031-020-01677-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
|
103
|
Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers. Cells 2020; 9:cells9081837. [PMID: 32764320 PMCID: PMC7463953 DOI: 10.3390/cells9081837] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder with a complex array of signs and symptoms that causes very significant disability in young people. While schizophrenia has a strong genetic component, with heritability around 80%, there is also a very significant range of environmental exposures and stressors that have been implicated in disease development and neuropathology, such as maternal immune infection, obstetric complications, childhood trauma and cannabis exposure. It is postulated that epigenetic factors, as well as regulatory non-coding RNAs, mediate the effects of these environmental stressors. In this review, we explore the most well-known epigenetic marks, including DNA methylation and histone modification, along with emerging RNA mediators of epigenomic state, including miRNAs and lncRNAs, and discuss their collective potential for involvement in the pathophysiology of schizophrenia implicated through the postmortem analysis of brain tissue. Given that peripheral tissues, such as blood, saliva, and olfactory epithelium have the same genetic composition and are exposed to many of the same environmental exposures, we also examine some studies supporting the application of peripheral tissues for epigenomic biomarker discovery in schizophrenia. Finally, we provide some perspective on how these biomarkers may be utilized to capture a signature of past events that informs future treatment.
Collapse
|
104
|
Demosthenous C, Gupta SK, Sun J, Wang Y, Troska TP, Gupta M. Deregulation of Polycomb Repressive Complex-2 in Mantle Cell Lymphoma Confers Growth Advantage by Epigenetic Suppression of cdkn2b. Front Oncol 2020; 10:1226. [PMID: 32850364 PMCID: PMC7396700 DOI: 10.3389/fonc.2020.01226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
The polycomb repressive complex 2 (PRC2) maintains the transcriptional repression of target genes through its catalytic component enhancer of zeste homolog 2 (EZH2). Through modulating critical gene expression, EZH2 also plays a role in cancer development and progression by promoting cancer cell survival and invasion. Mutations in EZH2 are prevalent in certain B-cell lymphoma subtypes such as diffuse large cell lymphoma and follicular lymphoma; while no EZH2 mutation has been reported in the mantle cell lymphoma (MCL). Here we demonstrate that the PRC2 components EZH2, EED and SUZ12 are upregulated in the MCL cells as compared to normal B-cells. Moreover, stably transfected cells with wild-type EZH2 or-EED showed increased cell growth and H3K27-trimehtylation. However, unlike wild-type EZH2, ectopic expression of a deletion construct of EZH2 (EZH2Δ550−738 lacking SET domain) had no growth advantage over control cells. Pharmacological inhibition of EZH2 suppressed H3K27me3 and had significant inhibitory effect on cell growth and colony forming capacity (p < 0.05) of MCL cells, and this effect was more or less comparable to the anti-proliferative effects of EZH2 inhibition in cells harboring EZH2-mutation. Mechanistically, EZH2 appears to downregulate expression of cdkn2b gene via enhanced H3K27me3, a well-known suppressive epigenetic mark, at the cdkn2b promoter region. Overall, these results highlight that deregulation of PRC2/EZH2 is associated with epigenetic suppression of cdkn2b in MCL, and in part responsible for increased cell growth, thus the EZH2 inhibitors may have therapeutic potential in the patients with MCL.
Collapse
Affiliation(s)
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, GW Cancer Center, Washington, DC, United States
| | - Yongsen Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, GW Cancer Center, Washington, DC, United States
| | | | - Mamta Gupta
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, GW Cancer Center, Washington, DC, United States
| |
Collapse
|
105
|
Zhang N, Song Y, Xu Y, Liu J, Shen Y, Zhou L, Yu J, Yang M. MED13L integrates Mediator-regulated epigenetic control into lung cancer radiosensitivity. Am J Cancer Res 2020; 10:9378-9394. [PMID: 32802198 PMCID: PMC7415817 DOI: 10.7150/thno.48247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
To date, efforts to improve non-small-cell lung cancer (NSCLC) outcomes with increased radiation dose have not been successful. Identification of novel druggable targets that are capable to modulate NSCLC radiosensitivity may provide a way forward. Mediator complex is implicated in gene expression control, but it remains unclear how Mediator dysfunction is involved in cancer radiotherapy. Methods: The biologic functions of miR-4497, MED13L and PRKCA in NSCLC radiosensitivity were examined through biochemical assays including gene expression profilling, cell proliferation assay, colony formation assay, wound healing assay, transwell assay, dual luciferase reporter assay, xenograft models, immunoprecipitation, and chromatin immunoprecipitation sequencing. Clinical implications of miR-4497, MED13L and PRKCA in radiosensitivity were evaluated in NSCLC patients treated with concurrent chemoradiotherapy or radiotherapy alone. Results: We found that radiation can trigger disassemble of Mediator complex via silencing of MED13L by miR-4497 in NSCLC. Although not interrupting structure integrity of the core Mediator or the CDK8 kinase module, suppression of MED13L attenuated their physical interactions and reduced recruitment of acetyltransferase P300 to chromatin via Mediator. Silencing of MED13L therefore diminishes global H3K27ac signals written by P300, activities of enhancer and/or promoters and expression of multiple oncogenes, especially PRKCA. Inhibition of PRKCA expression potentiates the killing effect of radiotherapy in vitro and in vivo. Remarkably, high PRKCA expression in NSCLC tissues is correlated with poor prognosis of patients received radiotherapy. Conclusions: Our study linking PRKCA to radiosensitivity through a novel mechanism may enable the rational targeting of PRKCA to unlock therapeutic potentials of NSCLC.
Collapse
|
106
|
Gong X, Yu Q, Duan K, Tong Y, Zhang X, Mei Q, Lu L, Yu X, Li S. Histone acetyltransferase Gcn5 regulates gene expression by promoting the transcription of histone methyltransferase SET1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194603. [PMID: 32663628 DOI: 10.1016/j.bbagrm.2020.194603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/20/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023]
Abstract
Many chromatin modifying factors regulate gene expression in an as-yet-unknown indirect manner. Revealing the molecular basis for this indirect gene regulation will help understand their precise roles in gene regulation and associated biological processes. Here, we studied histone modifying enzymes that indirectly regulate gene expression by modulating the expression of histone methyltransferase, Set1. Through unbiased screening of the histone H3/H4 mutant library, we identified 13 histone substitution mutations with reduced levels of Set1 and H3K4 trimethylation (H3K4me3) and 2 mutations with increased levels of Set1 and H3K4me3, which concentrate at 3 structure clusters. Among these substitutions, the H3K14A mutant substantially reduces SET1 transcription and H3K4me3. H3K14 is acetylated by histone acetyltransferase Gcn5 at SET1 promoter, which then promotes SET1 transcription to maintain normal H3K4me3 levels. In contrast, the histone deacetylase Rpd3 deacetylates H3K14 to repress SET1 transcription and hence reduce H3K4me3 levels, establishing a dynamic crosstalk between H3K14ac and H3K4me3. By promoting the transcription of SET1 and maintaining H3K4me3 levels, Gcn5 regulates the transcription of a subset gene in an indirect manner. Collectively, we propose a model wherein Gcn5 promotes the expression of chromatin modifiers to regulate histone crosstalk and gene transcription.
Collapse
Affiliation(s)
- Xuanyunjing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kai Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yue Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xinyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qianyun Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Li Lu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
107
|
Tiwari R, Manzar N, Ateeq B. Dynamics of Cellular Plasticity in Prostate Cancer Progression. Front Mol Biosci 2020; 7:130. [PMID: 32754615 PMCID: PMC7365877 DOI: 10.3389/fmolb.2020.00130] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the current advances in the treatment for prostate cancer, the patients often develop resistance to the conventional therapeutic interventions. Therapy-induced drug resistance and tumor progression have been associated with cellular plasticity acquired due to reprogramming at the molecular and phenotypic levels. The plasticity of the tumor cells is mainly governed by two factors: cell-intrinsic and cell-extrinsic. The cell-intrinsic factors involve alteration in the genetic or epigenetic regulators, while cell-extrinsic factors include microenvironmental cues and drug-induced selective pressure. Epithelial-mesenchymal transition (EMT) and stemness are two important hallmarks that dictate cellular plasticity in multiple cancer types including prostate. Emerging evidence has also pinpointed the role of tumor cell plasticity in driving anti-androgen induced neuroendocrine prostate cancer (NEPC), a lethal and therapy-resistant subtype. In this review, we discuss the role of cellular plasticity manifested due to genetic, epigenetic alterations and cues from the tumor microenvironment, and their role in driving therapy resistant prostate cancer.
Collapse
Affiliation(s)
| | | | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
108
|
Zhao JY, Wang XL, Yang YC, Zhang B, Wu YB. Upregulated miR-101 inhibits acute kidney injury-chronic kidney disease transition by regulating epithelial-mesenchymal transition. Hum Exp Toxicol 2020; 39:1628-1638. [PMID: 32633566 DOI: 10.1177/0960327120937334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is an independent risk factor for chronic kidney disease (CKD). However, the role and mechanism of microRNA (miRNA, miR) in AKI-CKD transition are elusive. In this study, a murine model of renal ischemia/reperfusion was established to investigate the repairing effect and mechanism of miR-101a-3p on renal injury. The pathological damage of renal tissue was observed by hematoxylin and eosin and Masson staining. The levels of miR-101, profibrotic cytokines, and epithelial-mesenchymal transition (EMT) markers were analyzed using Western blotting, real-time polymerase chain reaction, and/or immunofluorescence. MiR-101 overexpression caused the downregulation of α-smooth muscle actin, collagen-1, and vimentin, as well as upregulation of E-cadherin, thereby alleviating the degree of renal tissue damage. MiR-101 overexpression mitigated hypoxic HK-2 cell damage. Collagen, type X, alpha 1 and transforming growth factor β receptor 1 levels were downregulated in hypoxic cells transfected with miR-101 mimic. Our study indicates that miR-101 is an anti-EMT miRNA, which provides a novel therapeutic strategy for AKI-CKD transition.
Collapse
Affiliation(s)
- J-Y Zhao
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - X-L Wang
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Y-C Yang
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - B Zhang
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Y-B Wu
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
109
|
Park N, Kang H. BMP-Induced MicroRNA-101 Expression Regulates Vascular Smooth Muscle Cell Migration. Int J Mol Sci 2020; 21:ijms21134764. [PMID: 32635504 PMCID: PMC7369869 DOI: 10.3390/ijms21134764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022] Open
Abstract
Proliferation and migration of vascular smooth muscle cells (VSMCs) are implicated in blood vessel development, maintenance of vascular homeostasis, and pathogenesis of vascular disorders. MicroRNAs (miRNAs) mediate the regulation of VSMC functions in response to microenvironmental signals. Because a previous study reported that miR-101, a tumor-suppressive miRNA, is a critical regulator of cell proliferation in vascular disease, we hypothesized that miR-101 controls important cellular processes in VSMCs. The present study aimed to elucidate the effects of miR-101 on VSMC function and its molecular mechanisms. We revealed that miR-101 regulates VSMC proliferation and migration. We showed that miR-101 expression is induced by bone morphogenetic protein (BMP) signaling, and we identified dedicator of cytokinesis 4 (DOCK4) as a novel target of miR-101. Our results suggest that the BMP–miR-101–DOCK4 axis mediates the regulation of VSMC function. Our findings help further the understanding of vascular physiology and pathology.
Collapse
Affiliation(s)
- Nanju Park
- Department of Life Sciences, Incheon National University, Incheon 22012, Korea;
| | - Hara Kang
- Department of Life Sciences, Incheon National University, Incheon 22012, Korea;
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Korea
- Correspondence: ; Tel.: +82-32-835-8238; Fax: +82-32-835-0763
| |
Collapse
|
110
|
Chien YC, Chen JN, Chen YH, Chou RH, Lee HC, Yu YL. Epigenetic Silencing of miR-9 Promotes Migration and Invasion by EZH2 in Glioblastoma Cells. Cancers (Basel) 2020; 12:cancers12071781. [PMID: 32635336 PMCID: PMC7408254 DOI: 10.3390/cancers12071781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults. Tumor invasion is the major reason for treatment failure and poor prognosis in GBM. Inhibiting migration and invasion has become an important therapeutic strategy for GBM treatment. Enhancer of zeste homolog 2 (EZH2) and C-X-C motif chemokine receptor 4 (CXCR4) have been determined to have important roles in the occurrence and development of tumors, but the specific relationship between EZH2 and CXCR4 expression in GBM is less well characterized. In this study, we report that EZH2 and CXCR4 were overexpressed in glioma patients. Furthermore, elevated EZH2 and CXCR4 were correlated with shorter disease-free survival. In three human GBM cell lines, EZH2 modulated the expression of miR-9, which directly targeted the oncogenic signaling of CXCR4 in GBM. The ectopic expression of miR-9 dramatically inhibited the migratory capacity of GBM cells in vitro. Taken together, our results indicate that miR-9, functioning as a tumor-suppressive miRNA in GBM, is suppressed through epigenetic silencing by EZH2. Thus, miR-9 may be an attractive target for therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Jia-Ni Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Han-Chung Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: (H.-C.L.); (Y.-L.Y.); Tel.: +886-4-22052121 (ext. 7911) (Y.-L.Y.)
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Correspondence: (H.-C.L.); (Y.-L.Y.); Tel.: +886-4-22052121 (ext. 7911) (Y.-L.Y.)
| |
Collapse
|
111
|
Cochetti G, Rossi de Vermandois JA, Maulà V, Giulietti M, Cecati M, Del Zingaro M, Cagnani R, Suvieri C, Paladini A, Mearini E. Role of miRNAs in prostate cancer: Do we really know everything? Urol Oncol 2020; 38:623-635. [PMID: 32284256 DOI: 10.1016/j.urolonc.2020.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Many different genetic alterations, as well as complex epigenetic interactions, are the basis of the genesis and progression of prostate cancer (CaP). This is the reason why until now the molecular pathways related to development of this cancer were only partly known, and even less those that determine aggressive or indolent tumour behaviour. MicroRNAs (miRNAs) represent a class of about 22 nucleotides long, small non-coding RNAs, which are involved in gene expression regulation at the post-transcriptional level. MiRNAs play a crucial role in regulating several biological functions and preserving homeostasis, as they carry out a wide modulatory activity on various molecular signalling pathways. MiRNA genes are placed in cancer-related genomic regions or in fragile sites, and they have been proven to be involved in the main steps of carcinogenesis as oncogenes or oncosuppressors in many types of cancer, including CaP. We performed a narrative review to describe the relationship between miRNAs and the crucial steps of development and progression of CaP. The aims of this study were to improve the knowledge regarding the mechanisms underlying miRNA expression and their target genes, and to contribute to understanding the relationship between miRNA expression profiles and CaP.
Collapse
Affiliation(s)
- Giovanni Cochetti
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Vincenza Maulà
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michele Del Zingaro
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Rosy Cagnani
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Chiara Suvieri
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Alessio Paladini
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.
| | - Ettore Mearini
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
112
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
113
|
Non-Coding RNA: Role in Gestational Diabetes Pathophysiology and Complications. Int J Mol Sci 2020; 21:ijms21114020. [PMID: 32512799 PMCID: PMC7312670 DOI: 10.3390/ijms21114020] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is defined as glucose intolerance that develops in the second or third trimester of pregnancy. GDM can lead to short-term and long-term complications both in the mother and in the offspring. Diagnosing and treating this condition is therefore of great importance to avoid poor pregnancy outcomes. There is increasing interest in finding new markers with potential diagnostic, prognostic and therapeutic utility in GDM. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs, are critically involved in metabolic processes and their dysregulated expression has been reported in several pathological contexts. The aberrant expression of several circulating or placenta-related ncRNAs has been linked to insulin resistance and β-cell dysfunction, the key pathophysiological features of GDM. Furthermore, significant associations between altered ncRNA profiles and GDM-related complications, such as macrosomia or trophoblast dysfunction, have been observed. Remarkably, the deregulation of ncRNAs, which might be linked to a detrimental intrauterine environment, can lead to changes in the expression of target genes in the offspring, possibly contributing to the development of long-term GDM-related complications, such as metabolic and cardiovascular diseases. In this review, all the recent findings on ncRNAs and GDM are summarized, particularly focusing on the molecular aspects and the pathophysiological implications of this complex relationship.
Collapse
|
114
|
Yuan C, Ning Y, Pan Y. Emerging roles of HOTAIR in human cancer. J Cell Biochem 2020; 121:3235-3247. [PMID: 31943306 DOI: 10.1002/jcb.29591] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNA HOX antisense intergenic RNA (HOTAIR) is overexpressed in many types of cancers, and substantial evidence has suggested a link between cancers and HOTAIR. In the present study, we reviewed the structure and the corresponding biologic function of HOTAIR to clarify its molecular mechanism in cancer progression. HOTAIR promotes proliferation, invasion, and migration, and inhibits apoptosis in cancer cells. HOTAIR also participates in the pathogenesis and progression of cancer by regulating inflammation and immune signaling. These findings suggested that HOTAIR is a novel biomarker in human cancers.
Collapse
Affiliation(s)
- Chunjue Yuan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yong Ning
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
115
|
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 2020; 8:394. [PMID: 32528959 PMCID: PMC7266953 DOI: 10.3389/fcell.2020.00394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration is a key process in health and disease. In the last decade an increasing attention is given to chromatin organization in migrating cells. In various types of cells induction of migration leads to a global increase in heterochromatin levels. Heterochromatin is required for optimal cell migration capabilities, since various interventions with heterochromatin formation impeded the migration rate of numerous cell types. Heterochromatin supports the migration process by affecting both the mechanical properties of the nucleus as well as the genetic processes taking place within it. Increased heterochromatin levels elevate nuclear rigidity in a manner that allows faster cell migration in 3D environments. Condensed chromatin and a more rigid nucleus may increase nuclear durability to shear stress and prevent DNA damage during the migration process. In addition, heterochromatin reorganization in migrating cells is important for induction of migration-specific transcriptional plan together with inhibition of many other unnecessary transcriptional changes. Thus, chromatin organization appears to have a key role in the cellular migration process.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Department of Molecular Biology and Ariel Center for Applied Cancer Research, Faculty of Life Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
116
|
Yang H, Su H, Hu N, Wang C, Wang L, Giffen C, Goldstein AM, Lee MP, Taylor PR. Integrated analysis of genome-wide miRNAs and targeted gene expression in esophageal squamous cell carcinoma (ESCC) and relation to prognosis. BMC Cancer 2020; 20:388. [PMID: 32375686 PMCID: PMC7201714 DOI: 10.1186/s12885-020-06901-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer death worldwide and in China. We know miRNAs influence gene expression in tumorigenesis, but it is unclear how miRNAs affect gene expression or influence survival at the genome-wide level in ESCC. Methods We performed miRNA and mRNA expression arrays in 113 ESCC cases with tumor/normal matched tissues to identify dysregulated miRNAs, to correlate miRNA and mRNA expressions, and to relate miRNA and mRNA expression changes to survival and clinical characteristics. Results Thirty-nine miRNAs were identified whose tumor/normal tissue expression ratios showed dysregulation (28 down- and 11 up-regulated by at least two-fold with P < 1.92E-04), including several not previously reported in ESCC (miR-885-5p, miR-140-3p, miR-708, miR-639, miR-596). Expressions of 16 miRNAs were highly correlated with expressions of 195 genes (P < 8.42E-09; absolute rho values 0.51–0.64). Increased expressions of miRNA in tumor tissue for both miR-30e* and miR-124 were associated with increased survival (P < 0.05). Similarly, nine probes in eight of 818 dysregulated genes had RNA expression levels that were nominally associated with survival, including NF1, ASXL1, HSPA4, TGOLN2, BAIAP2, EZH2, CHAF1A, SUPT7L. Conclusions Our characterization and integrated analysis of genome-wide miRNA and gene expression in ESCC provides insights into the expression of miRNAs and their relation to regulation of RNA targets in ESCC tumorigenesis, and suggest opportunities for the future development of miRs and mRNAs as biomarkers for early detection, diagnosis, and prognosis in ESCC.
Collapse
Affiliation(s)
- Howard Yang
- Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Hua Su
- Leidos Biomedical Research, Inc., Frederick, MD, 21702-1201, USA.,Division of Cancer Epidemiology and Genetics, NCI, Bethesda, MD, 20892, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, MD, 20892, USA
| | - Chaoyu Wang
- Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Lemin Wang
- Leidos Biomedical Research, Inc., Frederick, MD, 21702-1201, USA.,Division of Cancer Epidemiology and Genetics, NCI, Bethesda, MD, 20892, USA
| | - Carol Giffen
- Information Management Services, Inc, Calverton, MD, 20705, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, MD, 20892, USA
| | - Maxwell P Lee
- Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Philip R Taylor
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, MD, 20892, USA.
| |
Collapse
|
117
|
Chen Y, Lu Y, Ren Y, Yuan J, Zhang N, Kimball H, Zhou L, Yang M. Starvation-induced suppression of DAZAP1 by miR-10b integrates splicing control into TSC2-regulated oncogenic autophagy in esophageal squamous cell carcinoma. Theranostics 2020; 10:4983-4996. [PMID: 32308763 PMCID: PMC7163442 DOI: 10.7150/thno.43046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/21/2020] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of all incident esophageal cancers, with a 5-year survival rate of < 20%. Autophagy is of particular importance in cancers; however, the detailed regulatory mechanisms of oncogenic autophagy in ESCC have not been fully elucidated. In the present study, we address how splicing control of TSC2 is involved in mTOR-regulated oncogenic autophagy. Methods: Alternative splicing events controlled by DAZAP1 in ESCC cells were identified via RNAseq. Differential phosphorylation of short or long TSC2 splicing variants by AKT and their impacts on mTOR signaling were also examined. Results: We found that starvation-induced miR-10b could enhance autophagy via silencing DAZAP1, a key regulator of pre-mRNA alternative splicing. Intriguingly, we observed a large number of significantly changed alternative splicing events, especially exon skipping, upon RNAi of DAZAP1. TSC2 was verified as one of the crucial target genes of DAZAP1. Silencing of DAZAP1 led to the exclusion of TSC2 exon 26 (from Leu947 to Arg988), producing a short TSC2 isoform. The short TSC2 isoform cannot be phosphorylated at Ser981 by AKT, which resulted in continuous activation of TSC2 in ESCC. The active TSC2 inhibited mTOR via RHEB, leading to continually stimulated oncogenic autophagy of ESCC cells. Conclusions: Our data revealed an important physiological function of tumor suppressor DAZAP1 in autophagy regulation and highlighted the potential of controlling mRNA alternative splicing as an effective therapeutic application for cancers.
Collapse
|
118
|
MELK mediates the stability of EZH2 through site-specific phosphorylation in extranodal natural killer/T-cell lymphoma. Blood 2020; 134:2046-2058. [PMID: 31434700 DOI: 10.1182/blood.2019000381] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Oncogenic EZH2 is overexpressed and extensively involved in the pathophysiology of different cancers including extranodal natural killer/T-cell lymphoma (NKTL). However, the mechanisms regarding EZH2 upregulation is poorly understood, and it still remains untargetable in NKTL. In this study, we examine EZH2 protein turnover in NKTL and identify MELK kinase as a regulator of EZH2 ubiquitination and turnover. Using quantitative mass spectrometry analysis, we observed a MELK-mediated increase of EZH2 S220 phosphorylation along with a concomitant loss of EZH2 K222 ubiquitination, suggesting a phosphorylation-dependent regulation of EZH2 ubiquitination. MELK inhibition through both chemical and genetic means led to ubiquitination and destabilization of EZH2 protein. Importantly, we determine that MELK is upregulated in NKTL, and its expression correlates with EZH2 protein expression as determined by tissue microarray derived from NKTL patients. FOXM1, which connected MELK to EZH2 signaling in glioma, was not involved in mediating EZH2 ubiquitination. Furthermore, we identify USP36 as the deubiquitinating enzyme that deubiquitinates EZH2 at K222. These findings uncover an important role of MELK and USP36 in mediating EZH2 stability in NKTL. Moreover, MELK overexpression led to decreased sensitivity to bortezomib treatment in NKTL based on deprivation of EZH2 ubiquitination. Therefore, modulation of EZH2 ubiquitination status by targeting MELK may be a new therapeutic strategy for NKTL patients with poor bortezomib response.
Collapse
|
119
|
Comprehensive analysis of miRNA-gene regulatory network with clinical significance in human cancers. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1201-1212. [PMID: 32170623 DOI: 10.1007/s11427-019-9667-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs), particularly the exosomal miRNAs have been widely used as biomarkers and promising therapeutic targets in cancer. However, a comprehensive analysis of miRNA-gene regulatory network with clinical significance remains scarce. The emergence of high-throughput multi-omics data over large, well-characterized patient cohorts provides an unprecedented opportunity to address this problem. Herein, we performed a clinic-centered analysis to identify cancer-associated miRNAs, miRNA-target axis. We first calculated the correlation among miRNA, mRNA and 75 unique clinico-pathological characteristics (CPCs) in 26 cancer types, and established an online resource (4CR). Interestingly, we found that the high expression of several DNA methylation-related enzymes was associated with adverse outcomes of cancer patients, and these genes were regulated by a cluster of miRNAs. Furthermore, by integrating exosomal miRNA and mRNA databases, we identified exosomal miRNA biomarkers for non-invasive cancer surveillance and therapy monitoring. Finally, we explored the role of CPC-related miRNAs for therapeutic effect prediction of drugs based on their shared targets. Our analysis pipeline illustrated the significance of clinic-centered analysis in miRNA-gene pair identification and provided helpful clues for future cancer studies.
Collapse
|
120
|
Shankar E, Franco D, Iqbal O, El-Hayek V, Gupta S. Novel approach to therapeutic targeting of castration-resistant prostate cancer. Med Hypotheses 2020; 140:109639. [PMID: 32097843 DOI: 10.1016/j.mehy.2020.109639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022]
Abstract
Development of resistance to anti-androgen therapy limits the usefulness of second-generation androgen receptor (AR) antagonists including enzalutamide and abiraterone in castration resistant prostate cancer (CRPC) patients. Recent genomic studies reveal that AR-regulated genes contribute to CRPC emergence. Several reasons for the development of resistance towards anti-androgens have been hypothesized, including intracellular testosterone production, androgen overexpression, somatic mutations of AR resulting in a gain of function, constitutive activation of AR splice variants, imbalance in AR regulators, and bypass of AR in CRPC progression. Recent findings suggest that epigenetic alterations are involved in the deregulation of AR signaling. Overexpression of enhancer of zeste homolog 2 (EZH2), the enzymatic member of the polycomb repressor complex PRC2, has emerged as a key activator of AR in CRPC. Studies indicate that overabundance of EZH2 in localized prostate tumors increases the risk of biochemical recurrence after surgery, as it activates AR by enhancing methylation, resulting in the suppression of tumor suppressor genes and activation of oncogenes. This apparent association between EZH2 and AR in activating target genes by cooperative recruitment might play a critical role in the emergence of CRPC. Our hypothesis is that combination treatment targeting EZH2 and AR may be a novel efficacious therapeutic regime for the treatment of castrate resistant prostate cancer, and we propose to investigate this possibility.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel Franco
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Omair Iqbal
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Victoria El-Hayek
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA.
| |
Collapse
|
121
|
Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann Oncol 2020; 31:470-479. [PMID: 32139297 DOI: 10.1016/j.annonc.2020.02.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is the most common cancer and second leading cause of cancer-related death in American men. Antiandrogen therapies are part of the standard of therapeutic regimen for advanced or metastatic prostate cancers; however, patients who receive these treatments are more likely to develop castration-resistant prostate cancer (CRPC) or neuroendocrine prostate cancer (NEPC). In the development of CRPC or NEPC, numerous genetic signaling pathways have been under preclinical investigations and in clinical trials. Accumulated evidence shows that DNA methylation, chromatin integrity, and accessibility for transcriptional regulation still play key roles in prostate cancer initiation and progression. Better understanding of how epigenetic change regulates the progression of prostate cancer and the interaction between epigenetic and genetic modulators driving NEPC may help develop a better risk stratification and more effective treatment regimens for prostate cancer patients.
Collapse
|
122
|
Magenta A, Lorde R, Syed SB, Capogrossi MC, Puca A, Madeddu P. Molecular therapies delaying cardiovascular aging: disease- or health-oriented approaches. VASCULAR BIOLOGY 2020; 2:R45-R58. [PMID: 32923974 PMCID: PMC7439942 DOI: 10.1530/vb-19-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Regenerative medicine is a new therapeutic modality that aims to mend tissue damage by encouraging the reconstitution of physiological integrity. It represents an advancement over conventional therapies that allow reducing the damage but result in disease chronicization. Age-related decline in spontaneous capacity of repair, especially in organs like the heart that have very limited proliferative capacity, contributes in reducing the benefit of conventional therapy. ncRNAs are emerging as key epigenetic regulators of cardiovascular regeneration. Inhibition or replacement of miRNAs may offer reparative solutions to cardiovascular disease. The first part of this review article is devoted to illustrating novel therapies emerging from research on miRNAs. In the second part, we develop new therapeutic concepts emerging from genetics of longevity. Prolonged survival, as in supercentenarians, denotes an exceptional capacity to repair and cope with risk factors and diseases. These characteristics are shared with offspring, suggesting that the regenerative phenotype is heritable. New evidence indicates that genetic traits responsible for prolongation of health span in humans can be passed to and benefit the outcomes of animal models of cardiovascular disease. Genetic studies have also focused on determinants of accelerated senescence and related druggable targets. Evolutionary genetics assessing the genetic basis of adaptation and comparing successful and unsuccessful genetic changes in response to selection within populations represent a powerful basis to develop novel therapies aiming to prolong cardiovascular and whole organism health.
Collapse
Affiliation(s)
| | - Reggio Lorde
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Sunayana Begum Syed
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | - Annibale Puca
- Ageing Unit, IRCCS MultiMedica, Milan, Italy.,Department of Medicine, Surgery and Dentistry, 'Scuola Medica Salernitana' University of Salerno, Baronissi, Italy
| | - Paolo Madeddu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, UK
| |
Collapse
|
123
|
Huang T, Yang J, Zhang J, Ke W, Zou F, Wan C, Wang L, Zhang X, Liang F, Mei S, Zhang Q, Rong Z, Yang B, Zheng H. MicroRNA-101-3p Downregulates TLR2 Expression, Leading to Reduction in Cytokine Production by Treponema pallidum-Stimulated Macrophages. J Invest Dermatol 2020; 140:1566-1575.e1. [PMID: 31930972 DOI: 10.1016/j.jid.2019.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
Treponema pallidum (Tp) infection-induced immune responses can cause tissue damage. However, the underlying mechanism by which Tp infection induces immune response is unclear. Recent studies suggest a regulatory role of microRNAs in host immunity. We assessed whether microRNAs also have a regulatory role in immune response to Tp infection in vitro. Our results showed that microRNA-101-3p (miR-101-3p) levels were significantly higher in peripheral blood mononuclear cells of patients with primary syphilis and those in the serofast state, whereas toll-like receptor (TLR) 2 levels were higher in patients with syphilis than in healthy controls. In vitro, stimulation of THP-1 cells with Tp increased miR-101-3p expression. Moreover, miR-101-3p reduced expression levels of TLR2 mRNA and protein in THP-1 cells via binding to the 3' untranslated region of TLR2. Likewise, miR-101-3p inhibited production of inflammatory cytokines, including IL-1β, IL-6, tumor necrosis factor-α, and IL-12, in Tp-stimulated macrophages. IL-1β and IL-6 mRNA expression levels were reduced by transfection of macrophages with a TLR2-specific small interfering RNA. Conversely, overexpression of TLR2 upregulated cytokine expression. Patients with secondary syphilis exhibited the highest levels of plasma IL-6, which were negatively correlated with miR-101-3p. In conclusion, Tp infection upregulates miR-101-3p expression, which in turn inhibits the TLR2 signaling pathway, leading to reduced cytokine production.
Collapse
Affiliation(s)
- Tao Huang
- Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jieyi Yang
- Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jun Zhang
- Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wujian Ke
- Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Southern Medical University, Guangzhou, China
| | - Chengsong Wan
- Department of Microbiology, Southern Medical University, Guangzhou, China
| | - Liuyuan Wang
- Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohui Zhang
- Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Fangwen Liang
- Department of Dermatology, Yingde Center for Chronic Disease Control, Yingde, China
| | - Shuqing Mei
- Department of Dermatology, Zhuhai Center Chronic Disease Control, Zhuhai, China
| | - Qiwei Zhang
- Department of Microbiology, Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| | - Heping Zheng
- Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
124
|
Huang Z, Wu X, Li J. miR-101 suppresses colon cancer cell migration through regulation of EZH2. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 113:255-260. [DOI: 10.17235/reed.2020.6800/2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
125
|
Sarno F, Nebbioso A, Altucci L. DOT1L: a key target in normal chromatin remodelling and in mixed-lineage leukaemia treatment. Epigenetics 2019; 15:439-453. [PMID: 31790636 PMCID: PMC7188393 DOI: 10.1080/15592294.2019.1699991] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methylation of histone 3 at lysine 79 (H3K79) is one of the principal mechanisms involved in gene expression. The histone methyltransferase DOT1L, which mono-, di- and trimethylates H3K79 using S-adenosyl-L-methionine as a co-factor, is involved in cell development, cell cycle progression, and DNA damage repair. However, changes in normal expression levels of this enzyme are found in prostate, breast, and ovarian cancer. High levels of H3K79me are also detected in acute myeloid leukaemia patients bearing MLL rearrangements (MLL-r). MLL translocations are found in approximately 80% of paediatric patients, leading to poor prognosis. DOT1L is recruited on DNA and induces hyperexpression of HOXA9 and MEIS1. Based on these findings, selective drugs have been developed to induce apoptosis in MLL-r leukaemia cells by specifically inhibiting DOT1L. The most potent DOT1L inhibitor pinometostat has been investigated in Phase I clinical trials for treatment of paediatric and adult patients with MLL-driven leukaemia, showing promising results.
Collapse
Affiliation(s)
- Federica Sarno
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| |
Collapse
|
126
|
Gagarina V, Bojagora A, Lacdao IK, Luthra N, Pfoh R, Mohseni S, Chaharlangi D, Tan N, Saridakis V. Structural Basis of the Interaction Between Ubiquitin Specific Protease 7 and Enhancer of Zeste Homolog 2. J Mol Biol 2019; 432:897-912. [PMID: 31866294 DOI: 10.1016/j.jmb.2019.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 11/25/2022]
Abstract
USP7 is a deubiquitinase that regulates many diverse cellular processes, including tumor suppression, epigenetics, and genome stability. Several substrates, including GMPS, UHRF1, and ICP0, were shown to bear a specific KxxxK motif that interacts within the C-terminal region of USP7. We identified a similar motif in Enhancer of Zeste 2 (EZH2), the histone methyltransferase found within Polycomb Repressive Complex 2 (PRC2). PRC2 is responsible for the methylation of Histone 3 Lys27 (H3K27) leading to gene silencing. GST pull-down and coimmunoprecipitation experiments showed that USP7 interacts with EZH2. We determined the structural basis of interaction between USP7 and EZH2 and identified residues mediating the interaction. Mutations in these critical residues disrupted the interaction between USP7 and EZH2. Furthermore, USP7 silencing and knockout experiments showed decreased EZH2 levels in HCT116 carcinoma cells. Finally, we demonstrated decreased H3K27Me3 levels in HCT116 USP7 knockout cells. These results indicate that USP7 interacts with EZH2 and regulates both its stability and function.
Collapse
Affiliation(s)
- Varvara Gagarina
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada
| | - Anna Bojagora
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada
| | - Ira Kay Lacdao
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada
| | - Niharika Luthra
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada
| | - Roland Pfoh
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada
| | - Sadaf Mohseni
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada
| | - Danica Chaharlangi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada
| | - Nadine Tan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada
| | - Vivian Saridakis
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada.
| |
Collapse
|
127
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
128
|
Jia Y, Gao Y, Dou J. Effects of miR-129-3p on biological functions of prostate cancer cells through targeted regulation of Smad3. Oncol Lett 2019; 19:1195-1202. [PMID: 31966049 PMCID: PMC6956156 DOI: 10.3892/ol.2019.11216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Effects of miR-129-3p on the biological functions of prostate cancer cells through the targeted regulation of Smad3 were investigated. RT-PCR was used to detect the expression levels of miR-129-3p in prostate cancer tissues and cells and its target gene Smad3 mRNA determined by bioinformatics prediction. Correlation between miR-129-3p and Smad3 was analyzed. MTT assay, cell invasion detection, and apoptosis detection were conducted to detect the effects of miR-129-3p and Smad3 on the proliferation, invasion, and apoptosis of prostate cancer cells. The results of RT-qPCR showed that the expression level of miR-129-3p decreased but that of Smad3 increased in the prostate cancer tissue, and the expression levels of the two were significantly and negatively correlated. Additionally, the expression levels were closely related to the degree of tumor differentiation, TNM staging, and lymph node metastasis (P<0.05). Bioinformatics prediction and subsequent experiments proved that Smad3 was the direct target gene of miR-129-3p. Cell detection confirmed that the overexpression of miR-129-3p or the inhibition of Smad3 expression inhibited the proliferation and invasion of prostate cancer cells, promoting apoptosis, and increased the expression level of pro-apoptotic protein Bax, as well as decreased the expression level of anti-apoptotic protein Bcl-2. Inhibition of miR-129-3p expression had the opposite effect to overexpression. miR-129-3p, which may be a new and potential target for the treatment of prostate cancer, can inhibit the proliferation and invasion of prostate cancer cells and promote their apoptosis by directly targeting Smad3.
Collapse
Affiliation(s)
- Yunpeng Jia
- Department of Urology Surgery, Gansu Provincial Hospital of TCM, Lanzhou, Gansu 730050, P.R. China
| | - Yu Gao
- Department of Urology Surgery, The Dazu District People's Hospital, Chongqing 402360, P.R. China
| | - Jianguo Dou
- Department of Urology Surgery, The Dazu District People's Hospital, Chongqing 402360, P.R. China
| |
Collapse
|
129
|
Samec M, Liskova A, Koklesova L, Mestanova V, Franekova M, Kassayova M, Bojkova B, Uramova S, Zubor P, Janikova K, Danko J, Samuel SM, Büsselberg D, Kubatka P. Fluctuations of Histone Chemical Modifications in Breast, Prostate, and Colorectal Cancer: An Implication of Phytochemicals as Defenders of Chromatin Equilibrium. Biomolecules 2019; 9:E829. [PMID: 31817446 PMCID: PMC6995638 DOI: 10.3390/biom9120829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Natural substances of plant origin exert health beneficiary efficacy due to the content of various phytochemicals. Significant anticancer abilities of natural compounds are mediated via various processes such as regulation of a cell's epigenome. The potential antineoplastic activity of plant natural substances mediated by their action on posttranslational histone modifications (PHMs) is currently a highly evaluated area of cancer research. PHMs play an important role in maintaining chromatin structure and regulating gene expression. Aberrations in PHMs are directly linked to the process of carcinogenesis in cancer such as breast (BC), prostate (PC), and colorectal (CRC) cancer, common malignant diseases in terms of incidence and mortality among both men and women. This review summarizes the effects of plant phytochemicals (isolated or mixtures) on cancer-associated PHMs (mainly modulation of acetylation and methylation) resulting in alterations of chromatin structure that are related to the regulation of transcription activity of specific oncogenes, which are crucial in the development of BC, PC, and CRC. Significant effectiveness of natural compounds in the modulation of aberrant PHMs were confirmed by a number of in vitro or in vivo studies in preclinical cancer research. However, evidence concerning PHMs-modulating abilities of plant-based natural substances in clinical trials is insufficient.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Veronika Mestanova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Maria Franekova
- Department of Medical Biology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Monika Kassayova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, 04001 Kosice, Slovakia; (M.K.); (B.B.)
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, 04001 Kosice, Slovakia; (M.K.); (B.B.)
| | - Sona Uramova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Pavol Zubor
- OBGY Health & Care, Ltd., 01026 Zilina, Slovakia;
| | - Katarina Janikova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Danko
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
130
|
Fan X, Bjerke GA, Riemondy K, Wang L, Yi R. A basal-enriched microRNA is required for prostate tumorigenesis in a Pten knockout mouse model. Mol Carcinog 2019; 58:2241-2253. [PMID: 31512783 PMCID: PMC7791532 DOI: 10.1002/mc.23112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) play important roles in prostate cancer development. However, it remains unclear how individual miRNAs contribute to the initiation and progression of prostate cancer. Here we show that a basal layer-enriched miRNA is required for prostate tumorigenesis. We identify miR-205 as the most highly expressed miRNA and enriched in the basal cells of the prostate. Although miR-205 is not required for normal prostate development and homeostasis, genetic deletion of miR-205 in a Pten null tumor model significantly compromises tumor progression and does not promote metastasis. In Pten null basal cells, loss of miR-205 attenuates pAkt levels and promotes cellular senescence. Furthermore, although overexpression of miR-205 in prostate cancer cells with luminal phenotypes inhibits cell growth in both human and mouse, miR-205 has a minimal effect on the growth of a normal human prostate cell line. Taken together, we have provided genetic evidence for a requirement of miR-205 in the progression of Pten null-induced prostate cancer.
Collapse
Affiliation(s)
- Xiying Fan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Glen A Bjerke
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Kent Riemondy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Li Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| |
Collapse
|
131
|
Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 2019; 76:4813-4828. [PMID: 31352535 PMCID: PMC11105790 DOI: 10.1007/s00018-019-03245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.
Collapse
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Zhou
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhangli Ni
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lin Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yang Sun
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
132
|
Xue L, Yan H, Chen Y, Zhang Q, Xie X, Ding X, Wang X, Qian Z, Xiao F, Song Z, Wu Y, Peng Y, Xu H. EZH2 upregulation by ERα induces proliferation and migration of papillary thyroid carcinoma. BMC Cancer 2019; 19:1094. [PMID: 31718595 PMCID: PMC6852908 DOI: 10.1186/s12885-019-6306-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of papillary thyroid carcinoma (PTC) has been increasing worldwide in recent years. Therefore, novel potential therapeutic targets for PTC are urgently needed. Enhancer of zeste homolog 2 (EZH2), a methyltransferase belonging to PRC2, plays important roles in epigenetic silencing and cell cycle regulation. EZH2 overexpression has been found in several malignant tumor tissues, while its expression and function in PTC are largely unknown. METHODS Sixty-five cases of PTC tissue confirmed by pathology and 30 cases of normal thyroid tissue adjacent to PTC tissue were collected from patients undergoing surgical treatment, between February 2003 and February 2006. We investigated the clinic pathologic significance of EZH2 expression using Realtime-PCR and IHC in 65 human PTC tissues and 30 normal thyroid tissue samples. The EZH2 expression in human PTC cell lines (K1 and W3) and the normal thyroid follicular epithelial cell line Nthy-ori 3-1 was analyzed by Western blotting and Realtime PCR. The expressions of ERα and ERβ in cell lines were analyzed by Realtime PCR.The tumor cell biological behavior was evaluated by CCK8 assay, colony formation assay, transwell migration assay and xenograft tumors model. RESULTS Higher rate of EZH2 expression was found in PTC tissues than in normal thyroid tissues, EZH2 expression is associated with lymph node metastasis and recurrent. Inhibition of EZH2 in PTC cell lines downregulates cellular proliferation and migration. PTC is a disease with high incidence of female and E2-ERα upregulates EZH2 expression. CONCLUSIONS These results suggest a potential role of EZH2 for the PTC growth and metastasis. As a novel therapy, a pharmacological therapy targeting EZH2 has full potential in treatment of PTC.
Collapse
Affiliation(s)
- Liqiong Xue
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongzhu Yan
- Department of Pathology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qifa Zhang
- Department of Urology, Department of Endocrinology and Metabolism, Shanghai Traditional Chinese Medicine-Integrated hospital, Shanghai university of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xie
- Department of Urology, Department of Endocrinology and Metabolism, Shanghai Traditional Chinese Medicine-Integrated hospital, Shanghai university of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu Medical College, Bengbu, China
| | - Feng Xiao
- Department of Pathology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyi Song
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijie Wu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
133
|
mir-101-3p Downregulation Promotes Fibrogenesis by Facilitating Hepatic Stellate Cell Transdifferentiation During Insulin Resistance. Nutrients 2019; 11:nu11112597. [PMID: 31671785 PMCID: PMC6893471 DOI: 10.3390/nu11112597] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance (IR) and microRNAs (miRNAs), which regulate cell-to-cell communication between hepatocytes and hepatic stellate cells (HSCs), may intertwine in nonalcoholic fatty liver disease (NAFLD) pathogenesis. The aim of this study was to evaluate whether epigenetics and environmental factors interact to promote progressive NAFLD during IR. We examined the miRNA signature in insulin receptor haploinsufficient (InsR+/−) and wild-type (wt) HSCs by RNAseq (n = 4 per group). Then, we evaluated their impact in an IR-NASH (nonalcoholic steatohepatitis) model (InsR+/− mice fed standard or methionine choline deficient (MCD) diet, n = 10 per group) and in vitro. InsR+/− HSCs displayed 36 differentially expressed miRNAs (p < 0.05 vs. wt), whose expression was then analyzed in the liver of InsR+/− mice fed an MCD diet. We found that miR-101-3p negatively associated with both InsR+/− genotype and MCD (p < 0.05) and the histological spectrum of liver damage (p < 0.01). miR-101-3p was reduced in InsR+/− hepatocytes and HSCs and even more in InsR+/− cells exposed to insulin (0.33 µM) and fatty acids (0.25 mM), resembling the IR-NASH model. Conversely, insulin induced miR-101-3p expression in wt cells but not in InsR+/− ones (p < 0.05). In conclusion, IR combined with diet-induced liver injury favors miR-101-3p downregulation, which may promote progressive NAFLD through HSC and hepatocyte transdifferentiation and proliferation.
Collapse
|
134
|
Hernández-Romero IA, Guerra-Calderas L, Salgado-Albarrán M, Maldonado-Huerta T, Soto-Reyes E. The Regulatory Roles of Non-coding RNAs in Angiogenesis and Neovascularization From an Epigenetic Perspective. Front Oncol 2019; 9:1091. [PMID: 31709179 PMCID: PMC6821677 DOI: 10.3389/fonc.2019.01091] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is a crucial process for organ morphogenesis and growth during development, and it is especially relevant during the repair of wounded tissue in adults. It is coordinated by an equilibrium of pro- and anti-angiogenic factors; nevertheless, when affected, it promotes several diseases. Lately, a growing body of evidence is indicating that non-coding RNAs (ncRNAs), such as miRNAs, circRNAs, and lncRNAs, play critical roles in angiogenesis. These ncRNAs can act in cis or trans and alter gene transcription by several mechanisms including epigenetic processes. In the following pages, we will discuss the functions of ncRNAs in the regulation of angiogenesis and neovascularization, both in normal and disease contexts, from an epigenetic perspective. Additionally, we will describe the contribution of Next-Generation Sequencing (NGS) techniques to the discovery and understanding of the role of ncRNAs in angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ernesto Soto-Reyes
- Natural Sciences Department, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico
| |
Collapse
|
135
|
Zhang B, Yan M, Zhang W, Ke ZY, Ma LG. Glycyrrhiza glabra suppresses nasopharyngeal carcinoma cell proliferation through inhibiting the expression of lncRNA, AK027294. Biosci Biotechnol Biochem 2019; 84:314-320. [PMID: 31589096 DOI: 10.1080/09168451.2019.1673695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycyrrhiza glabra is considered as potential drug for nasopharyngeal carcinoma (NPC). However, whether the long noncoding RNAs' (lncRNAs) contributes to the anti-cancer function of this herb is unknown. In present study, we analyzed the differential expression of lncRNA between G. glabra-treated and untreated C666-1 cells. Out of those tumor-related lncRNAs, AK027294 had a strongest down-regulation upon G. glabra treatment. Knockdown of AK027294 suppresses the proliferation of C666-1 cells by inducing the apoptosis. Moreover, either G. glabra treatment or knockdown of AK027294 significantly increases the production of EZH1 (Enhancer of zeste 1 polycomb repressive complex 2 subunit). Collectively, we have identified a potential mechanism that the down-regulation of AK027294 contributes to the anti-cancer function of G. glabra and also provide the potential inter-relationship between AK027294 and EZH1.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Min Yan
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wei Zhang
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhao-Yang Ke
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Ling-Guo Ma
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
136
|
Kim D, Kim Y, Kim Y. Effects of β-carotene on Expression of Selected MicroRNAs, Histone Acetylation, and DNA Methylation in Colon Cancer Stem Cells. J Cancer Prev 2019; 24:224-232. [PMID: 31950022 PMCID: PMC6951318 DOI: 10.15430/jcp.2019.24.4.224] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background Beta-carotene (BC) is a carotenoid which exerts anti-cancer effects in several types of cancer, including colorectal cancer. Epigenetic modifications of genes, such as histone deacetylation and DNA hypermethylation, have also been detected in various types of cancer. To understand the molecular mechanism underlying cancer preventive and therapeutic effects of BC, microRNAs (miRNAs), histone acetylation, and global DNA methylation in colon cancer stem cells (CSCs) were investigated. Methods HCT116 colon cancer cells positive for expression of CD44 and CD133 were sorted by flow cytometry and used in subsequent experiments. Cell proliferation was examined by the MTT assay and self-renewal capacity was analyzed by the sphere formation assay. The miRNA sequencing array was used to detect miRNAs regulated by BC. Histone acetylation levels were measured by the Western blot analysis. mRNA expression of DNA methyltransferases (DNMTs) was examined by qPCR and global DNA methylation levels were determined by enzyme-linked immunosorbent assay. Results Treatment of CD44+CD133+ colon CSCs with BC caused a reduction in both cell proliferation and sphere formation. Analysis of the miRNA sequencing array showed that BC regulated expression of miRNAs associated with histone acetylation. Histone H3 and H4 acetylation levels were elevated by BC treatment. In addition, BC treatment down-regulated DNMT3A mRNA expression and global DNA methylation in colon CSCs. Conclusions These results suggest that BC regulates epigenetic modifications for its anti-cancer effects in colon CSCs.
Collapse
Affiliation(s)
- Daeun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| |
Collapse
|
137
|
Rossi T, Tedaldi G, Petracci E, Abou Khouzam R, Ranzani GN, Morgagni P, Saragoni L, Monti M, Calistri D, Ulivi P, Molinari C. E-cadherin Downregulation and microRNAs in Sporadic Intestinal-Type Gastric Cancer. Int J Mol Sci 2019; 20:ijms20184452. [PMID: 31509966 PMCID: PMC6769612 DOI: 10.3390/ijms20184452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
CDH1 gene, encoding E-cadherin, is a tumor suppressor gene frequently altered in gastric cancers (GCs) of both diffuse (DGC) and intestinal (IGC) histotypes, albeit through different mechanisms. The study aimed to characterize CDH1 expression in sporadic IGC and to investigate whether microRNAs (miRs) are involved in its transcriptional control. We evaluated CDH1 expression by quantitative real-time PCR (RT-qPCR) in 33 IGC patients and found a significant downregulation in tumor tissues compared to normal counterparts (p-value = 0.025). Moreover, 14 miRs, predicted to be involved in CDH1 regulation in both a direct and indirect manner, were selected and analyzed by RT-qPCR in an independent case series of 17 IGCs and matched normal tissues. miR-101, miR-26b, and miR-200c emerged as significantly downregulated and were confirmed in the case series of 33 patients (p-value < 0.001). Finally, we evaluated EZH2 expression, a target of both miR-101 and miR-26b, which showed significant upregulation in IGCs (p-value = 0.005). A significant inverse correlation was observed between EZH2 overexpression and CDH1, miR-101, and miR-26b levels (p-value < 0.001). Our results reinforce the link between CDH1 and IGC, highlighting the role of miRs in its transcriptional control and improving our understanding of GC subtypes and biomarkers.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Gianluca Tedaldi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Raefa Abou Khouzam
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | | | - Paolo Morgagni
- General and Oncologic Surgery, Department of Surgery, G.B. Morgagni L.Pierantoni General Hospital, AUSL Romagna, 47121 Forlì, Italy.
| | - Luca Saragoni
- Department of Pathology, AUSL Romagna, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy.
| | - Manlio Monti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| |
Collapse
|
138
|
Zhang L, Chen X, Yin J. Prediction of Potential miRNA-Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder. Cells 2019; 8:cells8091040. [PMID: 31489920 PMCID: PMC6770222 DOI: 10.3390/cells8091040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
The important role of microRNAs (miRNAs) in the formation, development, diagnosis, and treatment of diseases has attracted much attention among researchers recently. In this study, we present an unsupervised deep learning model of the variational autoencoder for MiRNA–disease association prediction (VAEMDA). Through combining the integrated miRNA similarity and the integrated disease similarity with known miRNA–disease associations, respectively, we constructed two spliced matrices. These matrices were applied to train the variational autoencoder (VAE), respectively. The final predicted association scores between miRNAs and diseases were obtained by integrating the scores from the two trained VAE models. Unlike previous models, VAEMDA can avoid noise introduced by the random selection of negative samples and reveal associations between miRNAs and diseases from the perspective of data distribution. Compared with previous methods, VAEMDA obtained higher area under the receiver operating characteristics curves (AUCs) of 0.9118, 0.8652, and 0.9091 ± 0.0065 in global leave-one-out cross validation (LOOCV), local LOOCV, and five-fold cross validation, respectively. Further, the AUCs of VAEMDA were 0.8250 and 0.8237 in global leave-one-disease-out cross validation (LODOCV), and local LODOCV, respectively. In three different types of case studies on three important diseases, the results showed that most of the top 50 potentially associated miRNAs were verified by databases and the literature.
Collapse
Affiliation(s)
- Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Jun Yin
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
139
|
Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, Saini SK, Kaushik M, Arora A, Kumari U, Bamezai RNK, Dhar PK. miR-145 supports cancer cell survival and shows association with DDR genes, methylation pattern, and epithelial to mesenchymal transition. Cancer Cell Int 2019; 19:230. [PMID: 31516387 PMCID: PMC6731614 DOI: 10.1186/s12935-019-0933-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background Despite several reports describing the dual role of miR-145 as an oncogene and a tumor suppressor in cancer, not much has been resolved and understood. Method In this study, the potential targets of miR-145 were identified bio-informatically using different target prediction tools. The identified target genes were validated in vitro by dual luciferase assay. Wound healing and soft agar colony assay assessed cell proliferation and migration. miR-145 expression level was measured quantitatively by RT-PCR at different stages of breast tumor. Western blot was used to verify the role of miR-145 in EMT transition using key marker proteins. Result Wound healing and soft agar colony assays, using miR-145 over-expressing stably transfected MCF7 cells, unraveled its role as a pro-proliferation candidate in cancerous cells. The association between miR-145 over-expression and differential methylation patterns in representative target genes (DR5, BCL2, TP53, RNF8, TIP60, CHK2, and DCR2) supported the inference drawn. These in vitro observations were validated in a representative set of nodal positive tumors of stage 3 and 4 depicting higher miR-145 expression as compared to early stages. Further, the role of miR-145 in epithelial-mesenchymal (EMT) transition found support through the observation of two key markers, Vimentin and ALDL, where a positive correlation with Vimentin protein and a negative correlation with ALDL mRNA expression were observed. Conclusion Our results demonstrate miR-145 as a pro-cancerous candidate, evident from the phenotypes of aggressive cellular proliferation, epithelial to mesenchymal transition, hypermethylation of CpG sites in DDR and apoptotic genes and upregulation of miR-145 in later stages of tumor tissues.
Collapse
Affiliation(s)
- Siddharth Manvati
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kailash Chandra Mangalhara
- 2National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Rupali Chopra
- 2National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Agarwal
- 3Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar
- 4School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir India
| | - Sunil Kumar Saini
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Monika Kaushik
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Arora
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Usha Kumari
- 5Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Rameshwar Nath Koul Bamezai
- 2National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pawan Kumar Dhar
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
140
|
Yu W, Sun Z, Yang L, Han Y, Yue L, Deng L, Yao R. lncRNA PTAR promotes NSCLC cell proliferation, migration and invasion by sponging microRNA‑101. Mol Med Rep 2019; 20:4168-4174. [PMID: 31485653 PMCID: PMC6797984 DOI: 10.3892/mmr.2019.10646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)‑101 copy loss is an early event in the development of human lung cancer, and it occurs in 29% of all lung cancer incidences. In addition, miR‑101 expression in non‑small cell lung cancer (NSCLC) is known to be downregulated. The aim of the present study was to explore the roles and mechanisms of the long non‑coding (lnc)‑RNA pro‑transition associated RNA (PTAR) on NSCLC cell proliferation, migration and invasion in association with miR‑101. Reverse transcription‑quantitative PCR analysis was performed to detect the expression of lncRNA PTAR in 30 paired human NSCLC tissues and the corresponding para‑tumor tissues. PTAR was amplified and cloned into the expression vector pCDNA3.1. Then, PTAR‑overexpression plasmids or small interfering (si)‑RNA‑PTAR was transfected into A549 cells for 48 h, after which cell proliferation and the cell cycle distribution were evaluated. In addition, Transwell chamber and cell scratch‑wound assays were conducted to analyze A549 cell migration and invasion. A luciferase activity assay was evaluated to determine the interaction between PTAR and miR‑101. Furthermore, our results demonstrated that in human NSCLC tissues and cell lines, lncRNA PTAR expression was upregulated compared with normal lung tissues and cell lines, respectively. Additionally, PTAR transfection was observed to promote A549 cell proliferation, migration and invasion; opposing effects were observed with siRNA‑PTAR transfection. The luciferase activity assay revealed that PTAR could act as a sponge to bind miR‑101. Thus, miR‑101 plays a role in NSCLC tumorigenesis and progression. In conclusion, lncRNA PTAR was proposed to promote NSCLC cell growth through sponging and inactivating miR‑101, which may be a possible mechanism underlying miR‑101 copy loss in human NSCLC.
Collapse
Affiliation(s)
- Wenjun Yu
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhenni Sun
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Ling Yang
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yafei Han
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lu Yue
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Lihua Deng
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Ruyong Yao
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
141
|
Abstract
The proteasome degrades most cellular proteins in a controlled and tightly regulated manner and thereby controls many processes, including cell cycle, transcription, signalling, trafficking and protein quality control. Proteasomal degradation is vital in all cells and organisms, and dysfunction or failure of proteasomal degradation is associated with diverse human diseases, including cancer and neurodegeneration. Target selection is an important and well-established way to control protein degradation. In addition, mounting evidence indicates that cells adjust proteasome-mediated degradation to their needs by regulating proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones. Central to the regulation of proteasome assembly is TOR complex 1 (TORC1), which is the master regulator of cell growth and stress. This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasome and autophagy pathways. Understanding these mechanisms has potential implications for disease therapy, as the misregulation of proteasome function contributes to human diseases such as cancer and neurodegeneration.
Collapse
|
142
|
El-Araby RE, Khalifa MA, Zoheiry MM, Zahran MY, Rady MI, Ibrahim RA, El-Talkawy MD, Essawy FM. The interaction between microRNA-152 and DNA methyltransferase-1 as an epigenetic prognostic biomarker in HCV-induced liver cirrhosis and HCC patients. Cancer Gene Ther 2019; 27:486-497. [PMID: 31316135 DOI: 10.1038/s41417-019-0123-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/22/2019] [Accepted: 06/29/2019] [Indexed: 12/19/2022]
Abstract
The necessity for early detection and hence improving the outcome of treatment of hepatocellular carcinoma (HCC) is critical especially in Hepatitis C virus (HCV)-Genotype 4 induced cases. In our current work, we examined the miRNA-152 and DNMT-1 expression in chronic liver disease (CLD) due to HCV genotype 4 infection with/without cirrhosis and HCC patients as an attempt to evaluate the potential benefits of these new circulating, noninvasive, prognostic, epigenetic markers for liver cirrhosis and carcinogenesis of Egyptian patients. Eighty subjects were included in this study, divided into two groups; group I (40 patients) were classified into subgroup Ia (CLD without cirrhosis, n = 18) and subgroup Ib (CLD with cirrhosis, n = 22), group II (CLD patients with HCC, n = 20), and control (Healthy volunteer, n = 20). The expression of miRNA-152 and DNMT-1 genes were analyzed using Real-Time PCR. MiRNA-152 showed a persistent and significant downregulation in all diseased groups, which was in consistence with the progression of the disease toward the HCC stage. DNMT-1 showed upregulation in all diseased groups when compared to control and subgroup Ia. The miRNA-152 was shown to correlate inversely with DNMT-1 in subgroup Ia, Ib and group II (r = -0.557, p < 0.01), (r = -0.850, p < 0.001) and (r = -0.544, p < 0.02) respectively. In addition, miRNA-152 and DNMT-1 showed a diagnostic ability to discriminate between cases of cirrhosis and HCC against CLD without cirrhosis (p < 0.01), while DNMT-1 did not, except between HCC and cirrhotic cases. Furthermore, both genes can be considered as predictor and prognostic parameters for cirrhosis (OR = 1.041, p = 0.043) and (OR = 1.039, p = 0.04) respectively, while miRNA-152 alone is proved as a prognostic marker for HCC (OR = 1.003, p = 0.044). Finally, the persistent reverse correlation between miRNA-152 with DNMT-1 prompts their use as noninvasive prognostic biomarkers for HCV induced liver cirrhosis and HCC in HCV Genotype 4 patients.
Collapse
Affiliation(s)
- Rady E El-Araby
- Assistant Researcher of Molecular Biology, Central Lab, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt.
| | - Mahmoud A Khalifa
- Assistant Prof. of Molecular Biology, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mona M Zoheiry
- Prof. of Clinical pathology (Immunology), Immunology Research Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| | - Manal Y Zahran
- Prof. of Hematology, Clinical Laboratory, Research Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| | - Mohamed I Rady
- Prof. of Cytochemistry and Histochemistry, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Raafat A Ibrahim
- Prof. of Hepatoastroenterology, Hepatoastroenterology Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| | - Mohamed D El-Talkawy
- Prof. of Hepatoastroenterology, Hepatoastroenterology Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| | - Faiza M Essawy
- Prof. of Hematology, Clinical Laboratory, Research Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| |
Collapse
|
143
|
Liu Z, Yang L, Zhong C, Zhou L. EZH2 regulates H2B phosphorylation and elevates colon cancer cell autophagy. J Cell Physiol 2019; 235:1494-1503. [PMID: 31283006 DOI: 10.1002/jcp.29069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/14/2019] [Indexed: 12/23/2022]
Abstract
Epigenetic alterations, especially histone modification, play vital roles in the pathogenesis of colon cancer. Upregulation of the enhancer of zeste homolog 2 (EZH2) has been reported to contribute to the initiation and progression of colon cancer. This study analyzed the association between EZH2 and phosphorylation of H2B at tyrosine 37 (H2BY37ph ) in colon cancer tissues and cells, along with the influences of the EZH2-H2BY37ph axis on colon cancer cell autophagy. Immunohistochemistry was utilized to assess EZH2 and H2BY37ph expressions in clinical samples of colon cancer. Cell transfection was carried out to alter EZH2 and H2BY37ph expressions in colon cancer cells. Co-immunoprecipitation analysis and glutathione-S-transferase (GST) pull down assay were conducted to analyze the association between EZH2 and H2BY37ph . Western blotting was utilized to measure proteins expressions related to cell autophagy. We found that there was a positive association between EZH2 and H2BY37ph in colon cancer tissues and cells. EZH2 directly interacted with H2B and promoted H2BY37ph in colon cancer cells using ATP as a phosphate donor. Moreover, EZH2 levated colon cancer cell autophagy in starvation condition. H2BY37ph was required for EZH2-elevated colon cancer cell autophagy under starvation condition. The EZH2-H2BY37ph axis elevated colon cancer cell autophagy possibly via activating transcriptional regulation of ATG genes. In conclusion, EZH2-elevated colon cancer initiation and progression at least in part via inducing colon cancer cell autophagy. EZH2 could phosphorylate H2BY37 and then induce transcription activation of ATG genes in colon cancer cells under starvation condition.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, Jining, China.,Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Le Yang
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, Jining, China
| | - Chongbai Zhong
- Department of General Surgery, Zoucheng Hospital of Traditional Chinese Medicine, Zoucheng, China
| | - Ling Zhou
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, Jining, China
| |
Collapse
|
144
|
Jia Y, Reddy MA, Das S, Oh HJ, Abdollahi M, Yuan H, Zhang E, Lanting L, Wang M, Natarajan R. Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1-induced gene expression in mesangial cells and diabetic kidney. J Biol Chem 2019; 294:12695-12707. [PMID: 31266808 DOI: 10.1074/jbc.ra119.007575] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β)-induced fibrotic and inflammatory genes in renal mesangial cells (MCs) play important roles in glomerular dysfunction associated with diabetic nephropathy (DN). TGF-β regulates gene expression in MCs by altering key chromatin histone modifications at target gene promoters. However, the role of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification is unclear. Here we show that TGF-β reduces H3K27me3 at the Ctgf, Serpine1, and Ccl2 gene promoters in rat MCs (RMCs) and reciprocally up-regulates the expression of these pro-fibrotic and inflammatory genes. In parallel, TGF-β down-regulates Enhancer of Zeste homolog 2 (Ezh2), an H3K27me3 methyltransferase, and decreases its recruitment at Ctgf and Ccl2 but not Serpine1 promoters. Ezh2 knockdown with siRNAs enhances TGF-β-induced expression of these genes, supporting its repressive function. Mechanistically, Ezh2 down-regulation is mediated by TGF-β-induced microRNA, miR-101b, which targets Ezh2 3'-UTR. TGF-β also up-regulates Jmjd3 and Utx in RMCs, suggesting a key role for these H3K27me3 demethylases in H3K27me3 inhibition. In RMCs, Utx knockdown inhibits hypertrophy, a key event in glomerular dysfunction. The H3K27me3 regulators are similarly altered in human and mouse MCs. High glucose inhibits Ezh2 and increases miR-101b in a TGF-β-dependent manner. Furthermore, in kidneys from rodent models of DN, fibrotic genes, miR-101b, and H3K27me3 demethylases are up-regulated, whereas Ezh2 protein levels as well as enrichment of Ezh2 and H3K27me3 at target genes are decreased, demonstrating in vivo relevance. These results suggest that H3K27me3 inhibition by TGF-β via dysregulation of related histone-modifying enzymes and miRNAs augments pathological genes mediating glomerular mesangial dysfunction and DN.
Collapse
Affiliation(s)
- Ye Jia
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010.,Division of Nephrology, First Hospital of Jilin University, Changchun 130021, China
| | - Marpadga A Reddy
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Sadhan Das
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Hyung Jung Oh
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010.,Ewha Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, South Korea
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Hang Yuan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010.,Division of Nephrology, First Hospital of Jilin University, Changchun 130021, China
| | - Erli Zhang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010.,Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| |
Collapse
|
145
|
Sinha N, Biswas A, Nave O, Seger C, Sen A. Gestational Diabetes Epigenetically Reprograms the Cart Promoter in Fetal Ovary, Causing Subfertility in Adult Life. Endocrinology 2019; 160:1684-1700. [PMID: 31150057 DOI: 10.1210/en.2019-00319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Intrauterine exposure to various adverse conditions during fetal development can lead to epigenetic changes in fetal tissues, predisposing those tissues to disease conditions later in life. An example is gestational diabetes (GD), where the offspring has a higher risk of developing obesity, metabolic disorders, or cardiovascular disease in adult life. In this study, using two well-established GD (streptozotocin- and high-fat and high-sugar-induced) mouse models, we report that female offspring from GD dams are predisposed toward fertility problems later in life. This predisposition to fertility problems is due to altered ovarian expression of a peptide called cocaine- and amphetamine-regulated transcript (CART), which is known to negatively affect folliculogenesis and is induced by elevated leptin levels. Results show that the underlying cause of this altered expression is due to fetal epigenetic modifications involving glucose- and insulin-induced miRNA, miR-101, and the phosphatidylinositol 3-kinase/Akt pathway. These signaling events regulate Ezh2, a histone methyltransferase that promotes H3K27me3, a gene-repressive mark, and CBP/p300, a histone acetyltransferase that promotes H3K27ac, a transcription activation mark, in the fetal ovary. Moreover, the CART promoter has depleted 5-methylcytosine (5mC) and enriched 5-hydroxymethylcytosine (5hmC) levels. The depletion of H3K27me3 and 5mC repressive marks and subsequent increase in H3K27ac and 5hmC gene-activating marks convert the Cartpt promoter to a "superpromoter." This makes the Cartpt promoter more sensitive to leptin levels that predispose the GD offspring to fertility problems. Therefore, this study provides a mechanistic insight about fetal epigenome reprogramming that manifests to ovarian dysfunction and subfertility later in adult life.
Collapse
Affiliation(s)
- Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Anindita Biswas
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Olivia Nave
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Christina Seger
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| |
Collapse
|
146
|
Humphries B, Wang Z, Yang C. MicroRNA Regulation of Epigenetic Modifiers in Breast Cancer. Cancers (Basel) 2019; 11:E897. [PMID: 31252590 PMCID: PMC6678197 DOI: 10.3390/cancers11070897] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Epigenetics refers to the heritable changes in gene expression without a change in the DNA sequence itself. Two of these major changes include aberrant DNA methylation as well as changes to histone modification patterns. Alterations to the epigenome can drive expression of oncogenes and suppression of tumor suppressors, resulting in tumorigenesis and cancer progression. In addition to modifications of the epigenome, microRNA (miRNA) dysregulation is also a hallmark for cancer initiation and metastasis. Advances in our understanding of cancer biology demonstrate that alterations in the epigenome are not only a major cause of miRNA dysregulation in cancer, but that miRNAs themselves also indirectly drive these DNA and histone modifications. More explicitly, recent work has shown that miRNAs can regulate chromatin structure and gene expression by directly targeting key enzymes involved in these processes. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as epigenetic biomarkers and as therapeutics, and presents a comprehensive summary of currently validated epigenetic targets in breast cancer.
Collapse
Affiliation(s)
- Brock Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI 48109; USA.
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
- Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY 40536; USA.
| |
Collapse
|
147
|
Lu J, Xu J, Li J, Pan T, Bai J, Wang L, Jin X, Lin X, Zhang Y, Li Y, Sahni N, Li X. FACER: comprehensive molecular and functional characterization of epigenetic chromatin regulators. Nucleic Acids Res 2019; 46:10019-10033. [PMID: 30102398 PMCID: PMC6212842 DOI: 10.1093/nar/gky679] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023] Open
Abstract
Epigenetic alterations, a well-recognized cancer hallmark, are driven by chromatin regulators (CRs). However, little is known about the extent of CR deregulation in cancer, and less is known about their common and specialized roles across various cancers. Here, we performed genome-wide analyses and constructed molecular signatures and network profiles of functional CRs in over 10 000 tumors across 33 cancer types. By integration of DNA mutation, genome-wide methylation, transcriptional/post-transcriptional regulation, and protein interaction networks with clinical outcomes, we identified CRs associated with cancer subtypes and clinical prognosis as potential oncogenic drivers. Comparative network analysis revealed principles of CR regulatory specificity and functionality. In addition, we identified common and specific CRs by assessing their prevalence across cancer types. Common CRs tend to be histone modifiers and chromatin remodelers with fundamental roles, whereas specialized CRs are involved in context-dependent functions. Finally, we have made a user-friendly web interface-FACER (Functional Atlas of Chromatin Epigenetic Regulators) available for exploring clinically relevant CRs for the development of CR biomarkers and therapeutic targets. Our integrative analysis reveals specific determinants of CRs across cancer types and presents a resource for investigating disease-associated CRs.
Collapse
Affiliation(s)
- Jianping Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China
| | - Junyi Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tao Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Liqiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiyun Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaoyu Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China
| |
Collapse
|
148
|
Li Y, Li Z, Zhu WG. Molecular Mechanisms of Epigenetic Regulators as Activatable Targets in Cancer Theranostics. Curr Med Chem 2019; 26:1328-1350. [PMID: 28933282 DOI: 10.2174/0929867324666170921101947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Epigenetics is defined as somatically inheritable changes that are not accompanied by alterations in DNA sequence. Epigenetics encompasses DNA methylation, covalent histone modifications, non-coding RNA as well as nucleosome remodeling. Notably, abnormal epigenetic changes play a critical role in cancer development including malignant transformation, metastasis, prognosis, drug resistance and tumor recurrence, which can provide effective targets for cancer prognosis, diagnosis and therapy. Understanding these changes provide effective means for cancer diagnosis and druggable targets for better clinical applications. Histone modifications and related enzymes have been found to correlate well with cancer incidence and prognosis in recent years. Dysregulated expression or mutation of histone modification enzymes and histone modification status abnormalities have been considered to play essential roles in tumorigenesis and clinical outcomes of cancer treatment. Some of the histone modification inhibitors have been extensively employed in clinical practice and many others are still under laboratory research or pre-clinical assessment. Here we summarize the important roles of epigenetics, especially histone modifications in cancer diagnostics and therapeutics, and also discuss the developmental implications of activatable epigenetic targets in cancer theranostics.
Collapse
Affiliation(s)
- Yinglu Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
149
|
Wei W, Cao W, Zhan Z, Yan L, Xie Y, Xiao Q. MiR-1284 suppresses gastric cancer progression by targeting EIF4A1. Onco Targets Ther 2019; 12:3965-3976. [PMID: 31190893 PMCID: PMC6535428 DOI: 10.2147/ott.s191015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background: MicroRNAs (miRNAs) play a key role in the development of gastric cancer (GC). MiRNA arrays showed that lymph node metastasis in GC is correlated with the expression of miR-1284. Although its function and mechanisms in GC have not been fully described, the regulation of EIF4A1 by miR-1284 and its role in drug-resistant GC has been reported in our previous studies. Methods: qRT-PCR was used to study the level of miR-1284 expression in GC cell lines and tissues. Subsequently, the CCK-8 assay was used to detect cell proliferation, while transwell assay was used to detect invasion and migration of the GC cells. Flow cytometry was used to detect the effect of miR-1284 on GC cells in vivo by building subcutaneous GC nude mice transplantation tumor model. In addition, the influence of miR-1284 gene expression profile in SGC-7901 cells was detected by total gene expression chip, and the target gene of miR-1284 was detected by luciferase reporter assay, qRT-PCR, and western blotting. Results: The miR-1284 level was down-regulated in GC tssues and cell lines. MiR-1284 was significantly associated with tumor size, degree of differentiation and patients’ distant metastasis. MiR-1284 inhibited invasion, migration, and proliferation of GC cells. During the G1/S phase, miR-1284 arrested the cycle of GC cells in vitro. MiR-1284 also suppressed tumor from growing and metastasizing in xenograft models as well as influenced the gene expression profile in SGC-7901 cells. Also, EIF4A1 was the direct target gene for miR-1284. Further, an inverse correlation between the miR-1284 expression and EIF4A1 was found in GC tissues. Over-expressed miR-1284 decreased c-Myc, MMP12, JUN expression, while increased CDH1 expression. Conclusion: These data suggested that miR-1284 acts as a tumor suppressor, and directly blocked EIF4A1 in GC.
Collapse
Affiliation(s)
- Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Linhai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
150
|
Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 2019; 69:73-92. [PMID: 31028771 DOI: 10.1016/j.mam.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal carcinogenesis is a multistep process involving the accumulation of genetic alterations over time that ultimately leads to disease progression and metastasis. Binding of transcription factors to gene promoter regions alone cannot explain the complex regulation pattern of gene expression during this process. It is the chromatin structure that allows for a high grade of regulatory flexibility for gene expression. Posttranslational modifications on histone proteins such as acetylation, methylation, or phosphorylation determine the accessibility of transcription factors to DNA. DNA methylation, a chemical modification of DNA that modulates chromatin structure and gene transcription acts in concert with these chromatin conformation alterations. Another epigenetic mechanism regulating gene expression is represented by small non-coding RNAs. Only very recently epigenetic alterations have been included in molecular subtype classification of colorectal cancer (CRC). In this chapter, we will provide examples of the different epigenetic players, focus on their role for epithelial-mesenchymal transition and metastatic processes and discuss their prognostic value in CRC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, (IGTP-PMPPC), Campus Can Ruti, 08916, Badalona, Barcelona, Spain
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 22, 91054, Erlangen, Germany.
| |
Collapse
|