101
|
Xiao Y, Thoresen DT, Miao L, Williams JS, Wang C, Atit RP, Wong SY, Brownell I. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development. PLoS Genet 2016; 12:e1006150. [PMID: 27414798 PMCID: PMC4944988 DOI: 10.1371/journal.pgen.1006150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/08/2016] [Indexed: 01/20/2023] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance. Sonic hedgehog (Shh) is one of a limited set of signaling molecules that cells use to drive organ formation during development and tissue regeneration after birth. How Shh signaling achieves different biological effects in the same tissue is incompletely understood. Touch domes are unique sensory structures in the skin that contain innervated Merkel cells. Using mouse genetics, we show that touch domes develop in tandem with, but distinct from, primary hair follicles. Moreover, touch dome specification requires a cascade of cell-cell signaling that ends with Shh signaling from an adjacent primary hair follicle. It was previously shown that Shh signaling from sensory nerves regulates the maintenance of touch dome stem cells after birth. Thus, the critical role for Shh signaling in embryonic touch dome specification is dependent on locally produced Shh, whereas the renewal of touch dome stem cells requires Shh transported to the skin by sensory neurons. These observations suggest that the distinct functions of Shh in touch dome development and maintenance correspond to changes in the source of the Shh signal required for the varied effects.
Collapse
Affiliation(s)
- Ying Xiao
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel T. Thoresen
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lingling Miao
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan S. Williams
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Isaac Brownell
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
102
|
Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development. PLoS Genet 2016; 12:e1006151. [PMID: 27414999 PMCID: PMC4944976 DOI: 10.1371/journal.pgen.1006151] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. Merkel cells are innervated touch-receptor cells that are responsible for light touch sensations. They originate from embryonic epidermal stem cells and, in hairy regions of skin, are organized in touch domes. Touch domes are highly patterned structures that form exclusively around primary hair follicles. Strikingly, the mechanisms controlling Merkel cell formation are largely unknown. Here, we show that the hair follicle functions as a niche required for Merkel cell formation. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh in the developing hair follicles, is required for Merkel cell specification, whereas Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to all hair types, suggesting that there are restrictive mechanisms that allow Merkel cell specification to occur exclusively around primary hairs. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis leads to the formation of ectopic Merkel cells around all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through derepression of key Merkel-differentiation genes; however, inductive Shh signaling is still required for the formation of mature Merkel cells. Our study illustrates how the interplay between epigenetic and morphogen cues functions to establish the complex patterning and formation of the mammalian skin.
Collapse
|
103
|
Peterson SC, Brownell I, Wong SY. Cutaneous Surgical Denervation: A Method for Testing the Requirement for Nerves in Mouse Models of Skin Disease. J Vis Exp 2016. [PMID: 27404892 DOI: 10.3791/54050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cutaneous somatosensory nerves function to detect diverse stimuli that act upon the skin. In addition to their established sensory roles, recent studies have suggested that nerves may also modulate skin disorders including atopic dermatitis, psoriasis and cancer. Here, we describe protocols for testing the requirement for nerves in maintaining a cutaneous mechanosensory organ, the touch dome (TD). Specifically, we discuss methods for genetically labeling, harvesting and visualizing TDs by whole-mount staining, and for performing unilateral surgical denervation on mouse dorsal back skin. Together, these approaches can be used to directly compare TD morphology and gene expression in denervated as well as sham-operated skin from the same animal. These methods can also be readily adapted to examine the requirement for nerves in mouse models of skin pathology. Finally, the ability to repeatedly sample the skin provides an opportunity to monitor disease progression at different stages and times after initiation.
Collapse
Affiliation(s)
| | - Isaac Brownell
- Dermatology Branch, National Cancer Institute, National Institutes of Health;
| | - Sunny Y Wong
- Dermatology, Cell and Developmental Biology, University of Michigan;
| |
Collapse
|
104
|
Hänzi S, Banchi R, Straka H, Chagnaud BP. Locomotor corollary activation of trigeminal motoneurons: coupling of discrete motor behaviors. ACTA ACUST UNITED AC 2016; 218:1748-58. [PMID: 26041033 DOI: 10.1242/jeb.120824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During motor behavior, corollary discharges of the underlying motor commands inform sensory-motor systems about impending or ongoing movements. These signals generally limit the impact of self-generated sensory stimuli but also induce motor reactions that stabilize sensory perception. Here, we demonstrate in isolated preparations of Xenopus laevis tadpoles that locomotor corollary discharge provokes a retraction of the mechanoreceptive tentacles during fictive swimming. In the absence of sensory feedback, these signals activate a cluster of trigeminal motoneurons that cause a contraction of the tentacle muscle. This corollary discharge encodes duration and strength of locomotor activity, thereby ensuring a reliable coupling between locomotion and tentacle motion. The strict phase coupling between the trigeminal and spinal motor activity, present in many cases, suggests that the respective corollary discharge is causally related to the ongoing locomotor output and derives at least in part from the spinal central pattern generator; however, additional contributions from midbrain and/or hindbrain locomotor centers are likely. The swimming-related retraction might protect the touch-receptive Merkel cells on the tentacle from sensory over-stimulation and damage and/or reduce the hydrodynamic drag. The intrinsic nature of the coupling of tentacle retraction to locomotion is an excellent example of a context-dependent, direct link between otherwise discrete motor behaviors.
Collapse
Affiliation(s)
- Sara Hänzi
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Roberto Banchi
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Boris P Chagnaud
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| |
Collapse
|
105
|
Olson W, Dong P, Fleming M, Luo W. The specification and wiring of mammalian cutaneous low-threshold mechanoreceptors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:389-404. [PMID: 26992078 DOI: 10.1002/wdev.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Abstract
The mammalian cutaneous low-threshold mechanoreceptors (LTMRs) are a diverse set of primary somatosensory neurons that function to sense external mechanical force. Generally, LTMRs are composed of Aβ-LTMRs, Aδ-LTMRs, and C-LTMRs, which have distinct molecular, physiological, anatomical, and functional features. The specification and wiring of each type of mammalian cutaneous LTMRs is established during development by the interplay of transcription factors with trophic factor signalling. In this review, we summarize the cohort of extrinsic and intrinsic factors generating the complex mammalian cutaneous LTMR circuits that mediate our tactile sensations and behaviors. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- William Olson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Dong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Fleming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
106
|
Brummer GC, Bowen AR, Bowen GM. Merkel Cell Carcinoma: Current Issues Regarding Diagnosis, Management, and Emerging Treatment Strategies. Am J Clin Dermatol 2016; 17:49-62. [PMID: 26596990 DOI: 10.1007/s40257-015-0163-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive cutaneous tumor with a predilection for the head and neck of elderly Caucasian patients. Although much less common than melanoma, MCC has higher rates of sentinel lymph node involvement, local and regional recurrences, and mortality. The majority of MCC cases have been linked to the relatively newly discovered Merkel cell polyomavirus, which is a ubiquitous constituent of the skin flora. Recent discoveries regarding viral integration and carcinogenesis and the immunologic features of MCC have expanded the understanding of MCC. These discoveries have led to the development and application of emerging therapies such as somatostatin analogs, immune checkpoint inhibition, adoptive cell therapy, and other exciting possibilities for targeted therapy.
Collapse
|
107
|
Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, Bichakjian CK, Ward NL, Dlugosz AA, Wong SY. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 2016; 16:400-12. [PMID: 25842978 DOI: 10.1016/j.stem.2015.02.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/13/2015] [Accepted: 02/10/2015] [Indexed: 11/19/2022]
Abstract
Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis.
Collapse
Affiliation(s)
- Shelby C Peterson
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Markus Eberl
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alicia N Vagnozzi
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdelmadjid Belkadi
- Departments of Dermatology and Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Natalia A Veniaminova
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monique E Verhaegen
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher K Bichakjian
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole L Ward
- Departments of Dermatology and Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrzej A Dlugosz
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunny Y Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
108
|
Shuda M, Guastafierro A, Geng X, Shuda Y, Ostrowski SM, Lukianov S, Jenkins FJ, Honda K, Maricich SM, Moore PS, Chang Y. Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model. PLoS One 2015; 10:e0142329. [PMID: 26544690 PMCID: PMC4636375 DOI: 10.1371/journal.pone.0142329] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/19/2015] [Indexed: 01/30/2023] Open
Abstract
Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.
Collapse
MESH Headings
- Anaplasia
- Animals
- Antigens, Viral, Tumor/genetics
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/virology
- Cell Count
- Cell Differentiation
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Viral
- Disease Models, Animal
- Embryo, Mammalian/pathology
- Female
- Humans
- Liver/pathology
- Male
- Merkel Cells/pathology
- Merkel cell polyomavirus/immunology
- Merkel cell polyomavirus/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Pregnancy
- Skin Neoplasms/pathology
- Skin Neoplasms/virology
- Spleen/pathology
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anna Guastafierro
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xuehui Geng
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yoko Shuda
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stephen M. Ostrowski
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Stefan Lukianov
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Frank J. Jenkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kord Honda
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Stephen M. Maricich
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SMM); (PSM); (YC)
| | - Patrick S. Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SMM); (PSM); (YC)
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SMM); (PSM); (YC)
| |
Collapse
|
109
|
Baumbauer KM, DeBerry JJ, Adelman PC, Miller RH, Hachisuka J, Lee KH, Ross SE, Koerber HR, Davis BM, Albers KM. Keratinocytes can modulate and directly initiate nociceptive responses. eLife 2015; 4. [PMID: 26329459 PMCID: PMC4576133 DOI: 10.7554/elife.09674] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/28/2015] [Indexed: 01/24/2023] Open
Abstract
How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can directly elicit AP firing in nociceptive as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing. DOI:http://dx.doi.org/10.7554/eLife.09674.001 When a person touches a hot saucepan, nerve cells in the skin send a message to the brain that causes the person to pull away quickly. Similar messages alert the brain when the skin comes in contact with an object that is cold or causes pain. These nerve cells also help to transmit information about other sensations like holding a ball. Scientists believe that skin cells may release messages that influence how the nerves in the skin respond to sensations. But it is difficult to distinguish the respective roles of skin cells and nerve cells in experiments because these cells often appear to react at the same time. Researchers have discovered that a technique called optogenetics, which originally developed to study the brain, can help. Optogenetics uses genetic engineering to create skin cells that respond to light instead of touch. Baumbauer, DeBerry, Adelman et al. genetically engineered mice to express a light-sensitive protein in their skin cells. When these skin cells were exposed to light, the mice pulled away just like they would if they were responding to painful contact. This behavior coincided with electrical signals in the nerve cells even though the nerve cells themselves were not light sensitive. In further experiments, mice were genetically engineered to express another protein in their skin cells that prevents the neurons from being able to generate electrical signals. When these skin cells were exposed to light, the surrounding nerve cells produced fewer electrical signals. Together, the experiments show that skin cells are able to directly trigger electrical signals in nerve cells. Baumbauer, DeBerry, Adelman et al.'s findings may help researchers to understand why some patients with particular inflammatory conditions are in pain due to overactive nerve cells. DOI:http://dx.doi.org/10.7554/eLife.09674.002
Collapse
Affiliation(s)
- Kyle M Baumbauer
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Jennifer J DeBerry
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Peter C Adelman
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Richard H Miller
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Junichi Hachisuka
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Kuan Hsien Lee
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Sarah E Ross
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - H Richard Koerber
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Brian M Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Kathryn M Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
110
|
Costa A, Sanchez-Guardado L, Juniat S, Gale JE, Daudet N, Henrique D. Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development 2015; 142:1948-59. [PMID: 26015538 DOI: 10.1242/dev.119149] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development but also to improve cell replacement therapies for hearing disorders. Here, we show that combined expression of the transcription factors Gfi1, Pou4f3 and Atoh1 can induce direct programming towards HC fate, both during in vitro mouse embryonic stem cell differentiation and following ectopic expression in chick embryonic otic epithelium. Induced HCs (iHCs) express numerous HC-specific markers and exhibit polarized membrane protrusions reminiscent of stereociliary bundles. Transcriptome profiling confirms the progressive establishment of a HC-specific gene signature during in vitro iHC programming. Overall, this work provides a novel approach to achieve robust and highly efficient HC production in vitro, which could be used as a model to study HC development and to drive inner ear HC regeneration.
Collapse
Affiliation(s)
- Aida Costa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Luis Sanchez-Guardado
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia, Lisboa 1400-038, Portugal
| | - Stephanie Juniat
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Jonathan E Gale
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Nicolas Daudet
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Domingos Henrique
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia, Lisboa 1400-038, Portugal
| |
Collapse
|
111
|
Jahan I, Pan N, Elliott KL, Fritzsch B. The quest for restoring hearing: Understanding ear development more completely. Bioessays 2015. [PMID: 26208302 DOI: 10.1002/bies.201500044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurosensory hearing loss is a growing problem of super-aged societies. Cochlear implants can restore some hearing, but rebuilding a lost hearing organ would be superior. Research has discovered many cellular and molecular steps to develop a hearing organ but translating those insights into hearing organ restoration remains unclear. For example, we cannot make various hair cell types and arrange them into their specific patterns surrounded by the right type of supporting cells in the right numbers. Our overview of the topologically highly organized and functionally diversified cellular mosaic of the mammalian hearing organ highlights what is known and unknown about its development. Following this analysis, we suggest critical steps to guide future attempts toward restoration of a functional organ of Corti. We argue that generating mutant mouse lines that mimic human pathology to fine-tune attempts toward long-term functional restoration are needed to go beyond the hope generated by restoring single hair cells in postnatal sensory epithelia.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Ning Pan
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
112
|
Ostrowski SM, Wright MC, Bolock AM, Geng X, Maricich SM. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis. Development 2015; 142:2533-44. [PMID: 26138479 DOI: 10.1242/dev.123141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022]
Abstract
Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression.
Collapse
Affiliation(s)
- Stephen M Ostrowski
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Margaret C Wright
- Center for Neurosciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexa M Bolock
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xuehui Geng
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Stephen M Maricich
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
113
|
Neural Hedgehog signaling maintains stem cell renewal in the sensory touch dome epithelium. Proc Natl Acad Sci U S A 2015; 112:7195-200. [PMID: 26015562 DOI: 10.1073/pnas.1504177112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The touch dome is a highly patterned mechanosensory structure in the epidermis composed of specialized keratinocytes in juxtaposition with innervated Merkel cells. The touch dome epithelium is maintained by tissue-specific stem cells, but the signals that regulate the touch dome are not known. We identify touch dome stem cells that are unique among epidermal cells in their activated Hedgehog signaling and ability to maintain the touch dome as a distinct lineage compartment. Skin denervation reveals that renewal of touch dome stem cells requires a perineural microenvironment, and deleting Sonic hedgehog (Shh) in neurons or Smoothened in the epidermis demonstrates that Shh is an essential niche factor that maintains touch dome stem cells. Up-regulation of Hedgehog signaling results in neoplastic expansion of touch dome keratinocytes but no Merkel cell neoplasia. These findings demonstrate that nerve-derived Shh is a critical regulator of lineage-specific stem cells that maintain specialized sensory compartments in the epidermis.
Collapse
|
114
|
Sharif-Naeini R. Contribution of mechanosensitive ion channels to somatosensation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:53-71. [PMID: 25744670 DOI: 10.1016/bs.pmbts.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into an electrical signal, is a central mechanism to several physiological functions in mammals. It relies on the function of mechanosensitive ion channels (MSCs). Although the first single-channel recording from MSCs dates back to 30 years ago, the identity of the genes encoding MSCs has remained largely elusive. Because these channels have an important role in the development of mechanical hypersensitivity, a better understanding of their function may lead to the identification of selective inhibitors and generate novel therapeutic pathways in the treatment of chronic pain. Here, I will describe our current understanding of the role MSCs may play in somatosensation and the potential candidate genes proposed to encode them.
Collapse
Affiliation(s)
- Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
115
|
Perdigoto CN, Bardot ES, Valdes VJ, Santoriello FJ, Ezhkova E. Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network. Development 2015; 141:4690-6. [PMID: 25468937 DOI: 10.1242/dev.112169] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Merkel cell-neurite complexes are located in touch-sensitive areas of the mammalian skin and are involved in recognition of the texture and shape of objects. Merkel cells are essential for these tactile discriminations, as they generate action potentials in response to touch stimuli and induce the firing of innervating afferent nerves. It has been shown that Merkel cells originate from epidermal stem cells, but the cellular and molecular mechanisms of their development are largely unknown. In this study, we analyzed Merkel cell differentiation during development and found that it is a temporally regulated maturation process characterized by a sequential activation of Merkel cell-specific genes. We uncovered key transcription factors controlling this process and showed that the transcription factor Atoh1 is required for initial Merkel cell specification. The subsequent maturation steps of Merkel cell differentiation are controlled by cooperative function of the transcription factors Sox2 and Isl1, which physically interact and work to sustain Atoh1 expression. These findings reveal the presence of a robust transcriptional network required to produce functional Merkel cells that are required for tactile discrimination.
Collapse
Affiliation(s)
- Carolina N Perdigoto
- Black Family Stem Cell Institute, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Evan S Bardot
- Black Family Stem Cell Institute, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victor J Valdes
- Black Family Stem Cell Institute, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francis J Santoriello
- Black Family Stem Cell Institute, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
116
|
Affiliation(s)
- Maren Roman
- Department of Sustainable Biomaterials and Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA
| |
Collapse
|
117
|
Wright MC, Reed-Geaghan EG, Bolock AM, Fujiyama T, Hoshino M, Maricich SM. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. ACTA ACUST UNITED AC 2015; 208:367-79. [PMID: 25624394 PMCID: PMC4315254 DOI: 10.1083/jcb.201407101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1(+) skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood.
Collapse
Affiliation(s)
- Margaret C Wright
- Center for Neurosciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Erin G Reed-Geaghan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106
| | - Alexa M Bolock
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh and Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Tomoyuki Fujiyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Stephen M Maricich
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh and Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| |
Collapse
|
118
|
Spurgeon ME, Cheng J, Bronson RT, Lambert PF, DeCaprio JA. Tumorigenic activity of merkel cell polyomavirus T antigens expressed in the stratified epithelium of mice. Cancer Res 2015; 75:1068-79. [PMID: 25596282 DOI: 10.1158/0008-5472.can-14-2425] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Merkel cell polyomavirus (MCPyV) is frequently associated with Merkel cell carcinoma (MCC), a highly aggressive neuroendocrine skin cancer. Most MCC tumors contain integrated copies of the viral genome with persistent expression of the MCPyV large T (LT) and small T (ST) antigen. MCPyV isolated from MCC typically contains wild-type ST but truncated forms of LT that retain the N-terminus but delete the C-terminus and render LT incapable of supporting virus replication. To determine the oncogenic activity of MCC tumor-derived T antigens in vivo, a conditional, tissue-specific mouse model was developed. Keratin 14-mediated Cre recombinase expression induced expression of MCPyV T antigens in stratified squamous epithelial cells and Merkel cells of the skin epidermis. Mice expressing MCPyV T antigens developed hyperplasia, hyperkeratosis, and acanthosis of the skin with additional abnormalities in whisker pads, footpads, and eyes. Nearly half of the mice also developed cutaneous papillomas. Evidence for neoplastic progression within stratified epithelia included increased cellular proliferation, unscheduled DNA synthesis, increased E2F-responsive genes levels, disrupted differentiation, and presence of a DNA damage response. These results indicate that MCPyV T antigens are tumorigenic in vivo, consistent with their suspected etiologic role in human cancer.
Collapse
Affiliation(s)
- Megan E Spurgeon
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Paul F Lambert
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
119
|
Mulvaney JF, Amemiya Y, Freeman SD, Ladher RK, Dabdoub A. Molecular cloning and functional characterisation of chicken Atonal homologue 1: a comparison with human Atoh1. Biol Cell 2015; 107:41-60. [PMID: 25412697 DOI: 10.1111/boc.201400078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND INFORMATION The vertebrate basic helix-loop-helix transcription factor Atoh1 is essential for maturation and survival of mechanosensory hair cells of the inner ear, neurogenesis, differentiation of the intestine, homeostasis of the colon and is implicated in cancer progression. Given that mutations in Atoh1 are detected in malignant tumours, study of functionally different Atoh1 alleles and homologues might yield useful avenues for investigation. The predicted sequence of chicken Atoh1 (cAtoh1) has large regions of dissimilarity to that of mammalian Atoh1 homologues. We hypothesise that cAtoh1 might have intrinsic functional differences to mammalian Atoh1. RESULTS In this study, we cloned and sequenced the full open reading frame of cAtoh1. In overexpression experiments, we show that this sequence is sufficient to generate a cAtoh1 protein capable of inducing hair cell markers when expressed in nonsensory regions of the developing inner ear, and that morpholino-mediated knock-down using a section of the sequence 5' to the start codon inhibits differentiation of hair cells in the chicken basilar papilla. Furthermore, we compare the behaviour of cAtoh1 and human Atoh1 (hAtoh1) in embryonic mouse cochlear explants, showing that cAtoh1 is a potent inducer of hair cell differentiation and that it can overcome Sox2-mediated repression of hair cell differentiation more effectively than hAtoh1. CONCLUSIONS cAtoh1 is both necessary and sufficient for avian mechanosensory hair cell differentiation. The non-conserved regions of the cAtoh1 coding region have functional consequences on its behaviour.
Collapse
Affiliation(s)
- Joanna F Mulvaney
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
120
|
Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Bégay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood JN, Lewin GR, Patapoutian A. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2015; 516:121-5. [PMID: 25471886 DOI: 10.1038/nature13980] [Citation(s) in RCA: 613] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/17/2014] [Indexed: 01/05/2023]
Abstract
The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell-neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.
Collapse
Affiliation(s)
- Sanjeev S Ranade
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Seung-Hyun Woo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Adrienne E Dubin
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Rabih A Moshourab
- 1] Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany [2] Klinik für Anästhesiologie mit Schwerpunkt Operative Intensivmedizin, Campus Charité Mitte and Virchow-Klinikum Charité, Universitätsmedizin Berlin, Augustburgerplatz 1, 13353 Berlin, Germany
| | - Christiane Wetzel
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany
| | - Matt Petrus
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Jayanti Mathur
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Valérie Bégay
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany
| | - Bertrand Coste
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - James Mainquist
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - A J Wilson
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Allain G Francisco
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Kritika Reddy
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Zhaozhu Qiu
- 1] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Gary R Lewin
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
121
|
Abstract
The skin is our largest sensory organ, transmitting pain, temperature, itch, and touch information to the central nervous system. Touch sensations are conveyed by distinct combinations of mechanosensory end organs and the low-threshold mechanoreceptors (LTMRs) that innervate them. Here we explore the various structures underlying the diverse functions of cutaneous LTMR end organs. Beyond anchoring of LTMRs to the surrounding dermis and epidermis, recent evidence suggests that the non-neuronal components of end organs play an active role in signaling to LTMRs and may physically gate force-sensitive channels in these receptors. Combined with LTMR intrinsic properties, the balance of these factors comprises the response properties of mechanosensory neurons and, thus, the neural encoding of touch.
Collapse
Affiliation(s)
- Amanda Zimmerman
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
122
|
Assessment of cancer cell line representativeness using microarrays for Merkel cell carcinoma. J Invest Dermatol 2014; 135:1138-1146. [PMID: 25521454 PMCID: PMC4366303 DOI: 10.1038/jid.2014.518] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
When using cell lines to study cancer, phenotypic similarity to the original tumor is paramount. Yet, little has been done to characterize how closely Merkel cell carcinoma (MCC) cell lines model native tumors. To determine their similarity to MCC tumor samples, we characterized MCC cell lines via gene expression microarrays. Using whole transcriptome gene expression signatures and a computational bioinformatic approach, we identified significant differences between variant cell lines (UISO, MCC13, and MCC26) and fresh frozen MCC tumors. Conversely, the classic WaGa and Mkl-1 cell lines more closely represented the global transcriptome of MCC tumors. When compared to publicly available cancer lines, WaGa and Mkl-1 cells were similar to other neuroendocrine tumors, but the variant cell lines were not. WaGa and Mkl-1 cells grown as xenografts in mice had histological and immunophenotypical features consistent with MCC, while UISO xenograft tumors were atypical for MCC. Spectral karyotyping and short tandem repeat analysis of the UISO cells matched the original cell line’s description, ruling out contamination. Our results validate the use of transcriptome analysis to assess the cancer cell line representativeness and indicate that UISO, MCC13, and MCC26 cell lines are not representative of MCC tumors, whereas WaGa and Mkl-1 more closely model MCC.
Collapse
|
123
|
Woo SH, Lumpkin EA, Patapoutian A. Merkel cells and neurons keep in touch. Trends Cell Biol 2014; 25:74-81. [PMID: 25480024 DOI: 10.1016/j.tcb.2014.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 11/18/2022]
Abstract
The Merkel cell-neurite complex is a unique vertebrate touch receptor comprising two distinct cell types in the skin. Its presence in touch-sensitive skin areas was recognized more than a century ago, but the functions of each cell type in sensory transduction have been unclear. Three recent studies demonstrate that Merkel cells are mechanosensitive cells that function in touch transduction via Piezo2. One study concludes that Merkel cells, rather than sensory neurons, are principal sites of mechanotransduction, whereas two other studies report that both Merkel cells and neurons encode mechanical inputs. Together, these studies settle a long-standing debate on whether or not Merkel cells are mechanosensory cells, and enable future investigations of how these skin cells communicate with neurons.
Collapse
Affiliation(s)
- Seung-Hyun Woo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ellen A Lumpkin
- Departments of Dermatology & Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
124
|
Hao J, Bonnet C, Amsalem M, Ruel J, Delmas P. Transduction and encoding sensory information by skin mechanoreceptors. Pflugers Arch 2014; 467:109-19. [PMID: 25416542 DOI: 10.1007/s00424-014-1651-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/25/2022]
Abstract
Physical contact with the external world occurs through specialized neural structures called mechanoreceptors. Cutaneous mechanoreceptors provide information to the central nervous system (CNS) about touch, pressure, vibration, and skin stretch. The physiological function of these mechanoreceptors is to convert physical forces into neuronal signals. Key questions concern the molecular identity of the mechanoelectric transducer channels and the mechanisms by which the physical parameters of the mechanical stimulus are encoded into patterns of action potentials (APs). Compelling data indicate that the biophysical traits of mechanosensitive channels combined with the collection of voltage-gated channels are essential to describe the nature of the stimulus. Recent research also points to a critical role of the auxiliary cell-nerve ending communication in encoding stimulus properties. This review describes the characteristics of ion channels responsible for translating mechanical stimuli into the neural codes that underlie touch perception and pain.
Collapse
Affiliation(s)
- Jizhe Hao
- Aix-Marseille-Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 7286, CS80011, Bd Pierre Dramard, 13344, Marseille Cedex 15, France,
| | | | | | | | | |
Collapse
|
125
|
de Carvalho Barbosa M, Kosturakis AK, Eng C, Wendelschafer-Crabb G, Kennedy WR, Simone DA, Wang XS, Cleeland CS, Dougherty PM. A quantitative sensory analysis of peripheral neuropathy in colorectal cancer and its exacerbation by oxaliplatin chemotherapy. Cancer Res 2014; 74:5955-62. [PMID: 25183707 PMCID: PMC4216766 DOI: 10.1158/0008-5472.can-14-2060] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Peripheral neuropathy caused by cytotoxic chemotherapy, especially platins and taxanes, is a widespread problem among cancer survivors that is likely to continue to expand in the future. However, little work to date has focused on understanding this challenge. The goal in this study was to determine the impact of colorectal cancer and cumulative chemotherapeutic dose on sensory function to gain mechanistic insight into the subtypes of primary afferent fibers damaged by chemotherapy. Patients with colorectal cancer underwent quantitative sensory testing before and then prior to each cycle of oxaliplatin. These data were compared with those from 47 age- and sex-matched healthy volunteers. Patients showed significant subclinical deficits in sensory function before any therapy compared with healthy volunteers, and they became more pronounced in patients who received chemotherapy. Sensory modalities that involved large Aβ myelinated fibers and unmyelinated C fibers were most affected by chemotherapy, whereas sensory modalities conveyed by thinly myelinated Aδ fibers were less sensitive to chemotherapy. Patients with baseline sensory deficits went on to develop more symptom complaints during chemotherapy than those who had no baseline deficit. Patients who were tested again 6 to 12 months after chemotherapy presented with the most numbness and pain and also the most pronounced sensory deficits. Our results illuminate a mechanistic connection between the pattern of effects on sensory function and the nerve fiber types that appear to be most vulnerable to chemotherapy-induced toxicity, with implications for how to focus future work to ameloirate risks of peripheral neuropathy.
Collapse
Affiliation(s)
- Mariana de Carvalho Barbosa
- Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, MG and CAPES/CNPq Coordination for the Improvement of Higher Education-Science without Borders, DF CNPJ, Brazil
| | - Alyssa K Kosturakis
- Department of Anesthesia and Pain Medicine Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cathy Eng
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - William R Kennedy
- Department of Neurology, the University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, the University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Xin S Wang
- Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Charles S Cleeland
- Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Patrick M Dougherty
- Department of Anesthesia and Pain Medicine Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
126
|
Cai T, Groves AK. The Role of Atonal Factors in Mechanosensory Cell Specification and Function. Mol Neurobiol 2014; 52:1315-1329. [PMID: 25339580 DOI: 10.1007/s12035-014-8925-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.
Collapse
Affiliation(s)
- Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
127
|
Bouvier V, Crest M. [Merkel complexes: from old histology to molecular mechanisms of touch]. Med Sci (Paris) 2014; 30:828-30. [PMID: 25311011 DOI: 10.1051/medsci/20143010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Valentine Bouvier
- Aix-Marseille université, CNRS, UMR 7286, Centre de recherche en neurobiologie-neurophysiologie de Marseille, Faculté de médecine, campus Nord 51, boulevard Pierre Dramard, 13344, Marseille Cedex 15, France
| | - Marcel Crest
- Aix-Marseille université, CNRS, UMR 7286, Centre de recherche en neurobiologie-neurophysiologie de Marseille, Faculté de médecine, campus Nord 51, boulevard Pierre Dramard, 13344, Marseille Cedex 15, France
| |
Collapse
|
128
|
Verhaegen ME, Mangelberger D, Harms PW, Vozheiko TD, Weick JW, Wilbert DM, Saunders TL, Ermilov AN, Bichakjian CK, Johnson TM, Imperiale MJ, Dlugosz AA. Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. J Invest Dermatol 2014; 135:1415-1424. [PMID: 25313532 PMCID: PMC4397111 DOI: 10.1038/jid.2014.446] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/15/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and deadly neuroendocrine skin tumor
frequently associated with clonal integration of a polyomavirus, MCPyV, and MCC tumor
cells express putative polyomavirus oncoproteins small T antigen (sTAg) and truncated
large T antigen (tLTAg). Here, we show robust transforming activity of sTAg in
vivo in a panel of transgenic mouse models. Epithelia of pre-term
sTAg-expressing embryos exhibited hyperplasia, impaired differentiation, increased
proliferation and apoptosis, and activation of a DNA damage response. Epithelial
transformation did not require sTAg interaction with the PP2A protein complex, a tumor
suppressor in some other polyomavirus transformation models, but was strictly dependent on
a recently-described sTAg domain that binds Fbxw7, the substrate-binding component of the
SCF ubiquitin ligase complex. Postnatal induction of sTAg using a Cre-inducible transgene
also led to epithelial transformation with development of lesions resembling squamous cell
carcinoma in situ and elevated expression of Fbxw7 target proteins. Our
data establish that expression of MCPyV sTAg alone is sufficient for rapid neoplastic
transformation in vivo, implicating sTAg as an oncogenic driver in MCC
and perhaps other human malignancies. Moreover, the loss of transforming activity
following mutation of the sTAg Fbxw7 binding domain identifies this domain as crucial for in
vivo transformation.
Collapse
Affiliation(s)
| | | | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Tracy D Vozheiko
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109
| | - Jack W Weick
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109
| | - Dawn M Wilbert
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109
| | - Thomas L Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Timothy M Johnson
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109.,Otolaryngology, University of Michigan, Ann Arbor, MI 48109.,Surgery, University of Michigan, Ann Arbor, MI 48109
| | | | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109.,Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
129
|
Cabo R, Alonso P, Viña E, Vázquez G, Gago A, Feito J, Pérez-Moltó FJ, García-Suárez O, Vega JA. ASIC2 is present in human mechanosensory neurons of the dorsal root ganglia and in mechanoreceptors of the glabrous skin. Histochem Cell Biol 2014; 143:267-76. [DOI: 10.1007/s00418-014-1278-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2014] [Indexed: 01/23/2023]
|
130
|
Schepeler T, Page ME, Jensen KB. Heterogeneity and plasticity of epidermal stem cells. Development 2014; 141:2559-67. [PMID: 24961797 PMCID: PMC4067958 DOI: 10.1242/dev.104588] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The epidermis is an integral part of our largest organ, the skin, and protects us against the hostile environment. It is a highly dynamic tissue that, during normal steady-state conditions, undergoes constant turnover. Multiple stem cell populations residing in autonomously maintained compartments facilitate this task. In this Review, we discuss stem cell behaviour during normal tissue homeostasis, regeneration and disease within the pilosebaceous unit, an integral structure of the epidermis that is responsible for hair growth and lubrication of the epithelium. We provide an up-to-date view of the pilosebaceous unit, encompassing the heterogeneity and plasticity of multiple discrete stem cell populations that are strongly influenced by external cues to maintain their identity and function.
Collapse
Affiliation(s)
- Troels Schepeler
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Mahalia E Page
- Wellcome Trust & Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark Wellcome Trust & Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
131
|
Nakatani M, Maksimovic S, Baba Y, Lumpkin EA. Mechanotransduction in epidermal Merkel cells. Pflugers Arch 2014; 467:101-8. [PMID: 25053537 DOI: 10.1007/s00424-014-1569-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/27/2014] [Indexed: 12/24/2022]
Abstract
The cellular and molecular basis of vertebrate touch reception remains least understood among the traditional five senses. Somatosensory afferents that innervate the skin encode distinct tactile qualities, such as flutter, slip, and pressure. Gentle touch is thought to be transduced by somatosensory afferents whose tactile end organs selectively filter mechanical stimuli. These tactile end organs comprise afferent terminals in association with non-neuronal cell types such as Merkel cells, keratinocytes, and Schwann cells. An open question is whether these non-neuronal cells serve primarily as passive mechanical filters or whether they actively participate in mechanosensory transduction. This question has been most extensively studied in Merkel cells, which are epidermal cells that complex with sensory afferents in regions of high tactile acuity such as fingertips, whisker follicles, and touch domes. Merkel cell-neurite complexes mediate slowly adapting type I (SAI) responses, which encode sustained pressure and represent object features with high fidelity. How Merkel cells contribute to unique SAI firing patterns has been debated for decades; however, three recent studies in rodent models provide some direct answers. First, whole-cell recordings demonstrate that Merkel cells are touch-sensitive cells with fast, mechanically activated currents that require Piezo2. Second, optogenetics and intact recordings show that Merkel cells mediate sustained SAI firing. Finally, loss-of-function studies in transgenic mouse models reveal that SAI afferents are also touch sensitive. Together, these studies identify molecular mechanisms of mechanotransduction in Merkel cells, reveal unexpected functions for these cells in touch, and support a revised, two-receptor site model of mechanosensory transduction.
Collapse
Affiliation(s)
- Masashi Nakatani
- Department of Dermatology, Columbia University, 1150 St. Nicholas Avenue, room 302B, New York, NY, 10032, USA
| | | | | | | |
Collapse
|
132
|
Xiao Y, Williams JS, Brownell I. Merkel cells and touch domes: more than mechanosensory functions? Exp Dermatol 2014; 23:692-5. [PMID: 24862916 DOI: 10.1111/exd.12456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2014] [Indexed: 12/19/2022]
Abstract
The touch dome (TD) is an innervated structure in the epidermis of mammalian skin. Composed of specialized keratinocytes and neuroendocrine Merkel cells, the TD has distinct molecular characteristics compared to the surrounding epidermal keratinocytes. Much of the research on Merkel cell function has focused on their role in mechanosensation, specifically light touch. Recently, more has been discovered about Merkel cell molecular characteristics and their cells of origin. Here we review Merkel cell and TD biology, and discuss potential functions beyond mechanosensation.
Collapse
Affiliation(s)
- Ying Xiao
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
133
|
Wheeler MA, Heffner DL, Kim S, Espy SM, Spano AJ, Cleland CL, Deppmann CD. TNF-α/TNFR1 signaling is required for the development and function of primary nociceptors. Neuron 2014; 82:587-602. [PMID: 24811380 DOI: 10.1016/j.neuron.2014.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
Abstract
Primary nociceptors relay painful touch information from the periphery to the spinal cord. Although it is established that signals generated by receptor tyrosine kinases TrkA and Ret coordinate the development of distinct nociceptive circuits, mechanisms modulating TrkA or Ret pathways in developing nociceptors are unknown. We have identified tumor necrosis factor (TNF) receptor 1 (TNFR1) as a critical modifier of TrkA and Ret signaling in peptidergic and nonpeptidergic nociceptors. Specifically, TrkA+ peptidergic nociceptors require TNF-α-TNFR1 forward signaling to suppress nerve growth factor (NGF)-mediated neurite growth, survival, excitability, and differentiation. Conversely, TNFR1-TNF-α reverse signaling augments the neurite growth and excitability of Ret+ nonpeptidergic nociceptors. The developmental and functional nociceptive defects associated with loss of TNFR1 signaling manifest behaviorally as lower pain thresholds caused by increased sensitivity to NGF. Thus, TNFR1 exerts a dual role in nociceptor information processing by suppressing TrkA and enhancing Ret signaling in peptidergic and nonpeptidergic nociceptors, respectively.
Collapse
Affiliation(s)
- Michael A Wheeler
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Danielle L Heffner
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Suemin Kim
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sarah M Espy
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Anthony J Spano
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Corey L Cleland
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Christopher D Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
134
|
Owens DM, Lumpkin EA. Diversification and specialization of touch receptors in skin. Cold Spring Harb Perspect Med 2014; 4:4/6/a013656. [PMID: 24890830 DOI: 10.1101/cshperspect.a013656] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our skin is the furthest outpost of the nervous system and a primary sensor for harmful and innocuous external stimuli. As a multifunctional sensory organ, the skin manifests a diverse and highly specialized array of mechanosensitive neurons with complex terminals, or end organs, which are able to discriminate different sensory stimuli and encode this information for appropriate central processing. Historically, the basis for this diversity of sensory specializations has been poorly understood. In addition, the relationship between cutaneous mechanosensory afferents and resident skin cells, including keratinocytes, Merkel cells, and Schwann cells, during the development and function of tactile receptors has been poorly defined. In this article, we will discuss conserved tactile end organs in the epidermis and hair follicles, with a focus on recent advances in our understanding that have emerged from studies of mouse hairy skin.
Collapse
Affiliation(s)
- David M Owens
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
135
|
Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA, Firozi P, Woo SH, Ranade S, Patapoutian A, Lumpkin EA. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 2014; 509:617-21. [PMID: 24717432 PMCID: PMC4097312 DOI: 10.1038/nature13250] [Citation(s) in RCA: 385] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/13/2014] [Indexed: 11/18/2022]
Abstract
Touch submodalities, such as flutter and pressure, are mediated by somatosensory afferents whose terminal specializations extract tactile features and encode them as action potential trains with unique activity patterns. Whether non-neuronal cells tune touch receptors through active or passive mechanisms is debated. Terminal specializations are thought to function as passive mechanical filters analogous to the cochlea's basilar membrane, which deconstructs complex sounds into tones that are transduced by mechanosensory hair cells. The model that cutaneous specializations are merely passive has been recently challenged because epidermal cells express sensory ion channels and neurotransmitters; however, direct evidence that epidermal cells excite tactile afferents is lacking. Epidermal Merkel cells display features of sensory receptor cells and make 'synapse-like' contacts with slowly adapting type I (SAI) afferents. These complexes, which encode spatial features such as edges and texture, localize to skin regions with high tactile acuity, including whisker follicles, fingertips and touch domes. Here we show that Merkel cells actively participate in touch reception in mice. Merkel cells display fast, touch-evoked mechanotransduction currents. Optogenetic approaches in intact skin show that Merkel cells are both necessary and sufficient for sustained action-potential firing in tactile afferents. Recordings from touch-dome afferents lacking Merkel cells demonstrate that Merkel cells confer high-frequency responses to dynamic stimuli and enable sustained firing. These data are the first, to our knowledge, to directly demonstrate a functional, excitatory connection between epidermal cells and sensory neurons. Together, these findings indicate that Merkel cells actively tune mechanosensory responses to facilitate high spatio-temporal acuity. Moreover, our results indicate a division of labour in the Merkel cell-neurite complex: Merkel cells signal static stimuli, such as pressure, whereas sensory afferents transduce dynamic stimuli, such as moving gratings. Thus, the Merkel cell-neurite complex is an unique sensory structure composed of two different receptor cell types specialized for distinct elements of discriminative touch.
Collapse
Affiliation(s)
| | - Masashi Nakatani
- Department of Dermatology, Columbia University, New York, NY 10032
- Graduate School of System Design and Management, Keio University, Yokohama, JP
| | - Yoshichika Baba
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Aislyn M. Nelson
- Department of Dermatology, Columbia University, New York, NY 10032
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77006
| | - Kara L. Marshall
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Scott A. Wellnitz
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77006
| | - Pervez Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77006
| | - Seung-Hyun Woo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla CA 92037 USA
| | - Sanjeev Ranade
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla CA 92037 USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla CA 92037 USA
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121 USA
| | - Ellen A. Lumpkin
- Department of Dermatology, Columbia University, New York, NY 10032
- Program in Neurobiology & Behavior, Columbia University, New York, NY 10032
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10032 USA
| |
Collapse
|
136
|
Dayawansa S, Wang EW, Liu W, Markman JD, Gelbard HA, Huang JH. Allotransplanted DRG neurons or Schwann cells affect functional recovery in a rodent model of sciatic nerve injury. Neurol Res 2014; 36:1020-1027. [PMID: 24836462 DOI: 10.1179/1743132814y.0000000386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE In this study, the functional recoveries of Sprague-Dawley rats following repair of a complete sciatic nerve transection using allotransplanted dorsal root ganglion (DRG) neurons or Schwann cells were examined using a number of outcome measures. METHODS Four groups were compared: (1) repair with a nerve guide conduit seeded with allotransplanted Schwann cells harvested from Wistar rats, (2) repair with a nerve guide conduit seeded with DRG neurons, (3) repair with solely a nerve guide conduit, and (4) sham-surgery animals where the sciatic nerve was left intact. The results corroborated our previous reported histology findings and measures of immunogenicity. RESULTS The Wistar-DRG-treated group achieved the best recovery, significantly outperforming both the Wistar-Schwann group and the nerve guide conduit group in the Von Frey assay of touch response (P < 0.05). Additionally, Wistar-DRG and Wistar-Schwann seeded repairs showed lower frequency and severity in an autotomy measure of the self-mutilation of the injured leg because of neuralgia. CONCLUSION These results suggest that in complete peripheral nerve transections, surgical repair using nerve guide conduits with allotransplanted DRG and Schwann cells may improve recovery, especially DRG neurons, which elicit less of an immune response.
Collapse
Affiliation(s)
- Samantha Dayawansa
- Department of Neurosurgery, University of Rochester, NY, USA.,Department of Pathology, University of Buffalo, NY, USA
| | - Ernest W Wang
- Department of Neurosurgery, University of Rochester, NY, USA.,Center for Neural Development and Disease, University of Rochester, NY, USA
| | - Weimin Liu
- Department of Neurosurgery, University of Rochester, NY, USA.,Center for Neural Development and Disease, University of Rochester, NY, USA
| | - John D Markman
- Department of Neurosurgery, University of Rochester, NY, USA.,Center for Neural Development and Disease, University of Rochester, NY, USA.,Department of Neurology, University of Rochester, NY, USA
| | - Harris A Gelbard
- Center for Neural Development and Disease, University of Rochester, NY, USA.,Department of Neurology, University of Rochester, NY, USA
| | - Jason H Huang
- Department of Neurosurgery, University of Rochester, NY, USA.,Center for Neural Development and Disease, University of Rochester, NY, USA.,Department of Neurosurgery, Scott & White Health System, Temple, TX, USA
| |
Collapse
|
137
|
Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 2014; 157:664-75. [PMID: 24746027 DOI: 10.1016/j.cell.2014.02.026] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/13/2014] [Accepted: 02/11/2014] [Indexed: 11/22/2022]
Abstract
Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end organs in mammals. Merkel discs are tactile end organs consisting of Merkel cells and Aβ-afferent nerve endings and are localized in fingertips, whisker hair follicles, and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca(2+)-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca(2+)-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions.
Collapse
|
138
|
Piezo2 is required for Merkel-cell mechanotransduction. Nature 2014; 509:622-6. [PMID: 24717433 PMCID: PMC4039622 DOI: 10.1038/nature13251] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/14/2014] [Indexed: 01/29/2023]
Abstract
How we sense touch remains fundamentally unknown1,2. The Merkel cell-neurite complex is a gentle touch receptor in the skin that mediates slowly-adapting (SA) responses of Aβ sensory fibers to encode fine details of objects3-6. This mechanoreceptor complex was recognized to play an essential role in sensing gentle touch nearly 50 years ago3,4. However, whether Merkel cells or afferent fibers themselves sense mechanical force is still debated, and the molecular mechanism of mechanotransduction is unknown1,2,7-12. Interestingly, synapse-like junctions are observed between Merkel cells and associated afferents6,13-15, and yet it is unclear if Merkel cells are inherently mechanosensitive or whether they can rapidly transmit such information to the neighboring nerve1,2,16,17. Here we show for the first time that Merkel cells produce touch-sensitive currents in vitro. Piezo2, a mechanically-activated (MA) cation channel, is expressed in Merkel cells. We engineered mice deficient in Piezo2 in the skin, but not in sensory neurons, and show that Merkel cell mechanosensitivity completely depends on Piezo2. In these mice, Merkel cell-neurite complex-mediated SA responses in vivo show reduced static firing rates, and moreover, they display moderately decreased behavioral responses to gentle touch. Our results indicate that Piezo2 is the Merkel cell mechanotransduction channel and provide the first line of evidence that Piezos play a physiological role in mechanosensation in mammals. Furthermore, our data present evidence for a two-receptor site model, where both Merkel cells and innervating afferents act in concert as mechanosensors. The two-receptor system could provide this mechanoreceptor complex with a tuning mechanism to achieve highly sophisticated responses to a given mechanical stimulus15,18,19.
Collapse
|
139
|
|
140
|
Li L, Ginty DD. The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles. eLife 2014; 3:e01901. [PMID: 24569481 PMCID: PMC3930909 DOI: 10.7554/elife.01901] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In mouse hairy skin, lanceolate complexes associated with three types of hair follicles, guard, awl/auchene and zigzag, serve as mechanosensory end organs. These structures are formed by unique combinations of low-threshold mechanoreceptors (LTMRs), Aβ RA-LTMRs, Aδ-LTMRs, and C-LTMRs, and their associated terminal Schwann cells (TSCs). In this study, we investigated the organization, ultrastructure, and maintenance of longitudinal lanceolate complexes at each hair follicle subtype. We found that TSC processes at hair follicles are tiled and that individual TSCs host axonal endings of more than one LTMR subtype. Electron microscopic analyses revealed unique ultrastructural features of lanceolate complexes that are proposed to underlie mechanotransduction. Moreover, Schwann cell ablation leads to loss of LTMR terminals at hair follicles while, in contrast, TSCs remain associated with hair follicles following skin denervation in adult mice and, remarkably, become re-associated with newly formed axons, indicating a TSC-dependence of lanceolate complex maintenance and regeneration in adults. DOI:http://dx.doi.org/10.7554/eLife.01901.001 Many mammals, such as cats, mice, and sea lions, have long whiskers that are particularly sensitive to touch. However, the hairs that cover the skin of most mammals are also important touch detectors. These hairs grow from follicles that are connected to the ends of the nerve cells that detect and convey touch information to the central nervous system. In mice, three main types of hair follicle—guard hairs, awl hairs, and zigzag hairs—are associated with combinations of three types of nerve endings. Much remains to be understood about how hair follicles and nerve cell endings—which are wrapped by cells called terminal Schwann cells—interact via structures called lanceolate complexes. Now, using a combination of genetics, microscopy and surgical procedures, Li and Ginty have studied these structures in unprecedented detail, and revealed some intriguing structural differences among the three types of hair follicles. Zigzag follicles—which make up the fur undercoat—are associated with fewer terminal Schwann cells than are awl follicles, whilst guard hair follicles have the most. High-resolution analyses revealed that distinct combinations of sensory nerve endings were associated with different types of hair follicle cells—which may underlie the unique responses of the different hair follicle types when the hairs are deflected. Furthermore, an individual terminal Schwann cell can be associated with more than one type of nerve ending, adding another layer of intricacy to the detection of hair movements. Killing the terminal Schwann cells in mice caused a complete loss of sensory nerve endings at hair follicles, which suggests that these cells are essential for maintaining the connection between the hair follicles and nerve cell endings. Interestingly, surgically removing nerve endings from the skin did not lead to a loss of terminal Schwann cells, and the nerve endings eventually grew back and reconnected with the hair follicles. In addition to shedding new light on the structures of lanceolate complexes in different types of hair follicles, the findings of Li and Ginty suggest that terminal Schwann cells maintain the nerve endings at hair follicles and guide their regeneration after damage. Uncovering the molecular mechanisms that control these processes represents an important next step in this research. DOI:http://dx.doi.org/10.7554/eLife.01901.002
Collapse
Affiliation(s)
- Lishi Li
- The Solomon H Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | | |
Collapse
|
141
|
Perdigoto CN, Valdes VJ, Bardot ES, Ezhkova E. Epigenetic regulation of epidermal differentiation. Cold Spring Harb Perspect Med 2014; 4:4/2/a015263. [PMID: 24492849 DOI: 10.1101/cshperspect.a015263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In a cell, the chromatin state is controlled by the highly regulated interplay of epigenetic mechanisms ranging from DNA methylation and incorporation of different histone variants to posttranslational modification of histones and ATP-dependent chromatin remodeling. These changes alter the structure of the chromatin to either facilitate or restrict the access of transcription machinery to DNA. These epigenetic modifications function to exquisitely orchestrate the expression of different genes, and together constitute the epigenome of a cell. In the skin, different epigenetic regulators form a regulatory network that operates to guarantee skin stem cell maintenance while controlling differentiation to multiple skin structures. In this review, we will discuss recent findings on epigenetic mechanisms of skin control and their relationship to skin pathologies.
Collapse
Affiliation(s)
- Carolina N Perdigoto
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | | | | | |
Collapse
|
142
|
Lesniak DR, Marshall KL, Wellnitz SA, Jenkins BA, Baba Y, Rasband MN, Gerling GJ, Lumpkin EA. Computation identifies structural features that govern neuronal firing properties in slowly adapting touch receptors. eLife 2014; 3:e01488. [PMID: 24448409 PMCID: PMC3896213 DOI: 10.7554/elife.01488] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Touch is encoded by cutaneous sensory neurons with diverse morphologies and physiological outputs. How neuronal architecture influences response properties is unknown. To elucidate the origin of firing patterns in branched mechanoreceptors, we combined neuroanatomy, electrophysiology and computation to analyze mouse slowly adapting type I (SAI) afferents. These vertebrate touch receptors, which innervate Merkel cells, encode shape and texture. SAI afferents displayed a high degree of variability in touch-evoked firing and peripheral anatomy. The functional consequence of differences in anatomical architecture was tested by constructing network models representing sequential steps of mechanosensory encoding: skin displacement at touch receptors, mechanotransduction and action-potential initiation. A systematic survey of arbor configurations predicted that the arrangement of mechanotransduction sites at heminodes is a key structural feature that accounts in part for an afferent’s firing properties. These findings identify an anatomical correlate and plausible mechanism to explain the driver effect first described by Adrian and Zotterman. DOI:http://dx.doi.org/10.7554/eLife.01488.001 Sensory receptors in the skin supply us with information about objects in the world around us, including their shape and texture. These receptors also detect pressure, temperature, and pain, enabling us to respond appropriately to stimuli that could be potentially harmful. The activation of a touch receptor—for example, due to the movement of a hair—causes ions to flow into the cell, changing the electric charge inside it. When the charge exceeds a threshold value, the cell fires action potentials, which travel along its axon to the central nervous system. The patterns of these action potentials from a population of touch receptors carry all the information about a touch stimulus to the brain. Different types of sensory receptors have unique anatomical structures and distinct signaling patterns; however, little is known about how the structures of sensory receptors influence action potential firing. Now Lesniak and Marshall et al. have revealed that structure determines function in a type of mammalian touch receptor called the slowly adapting type I receptor, which is concentrated in fingertips and other areas of high tactile acuity. With the aid of high-resolution microscopy, the complex branching structure of the receptor and its network of nerve endings were mapped in three dimensions. Experiments revealed highly variable structures and firing patterns between individual touch receptors, and computational modeling showed that changing either the number or the arrangement of receptor endings influenced the neuron’s firing properties. This is the first computational model that captures touch encoding by combining skin properties, sensory transduction, and spike initiation. As well as providing new information on how structure permits function, this work opens up new possibilities for exploring how the skin maintains its sensory capabilities during routine maintenance and after injury. DOI:http://dx.doi.org/10.7554/eLife.01488.002
Collapse
Affiliation(s)
- Daine R Lesniak
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, United States
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Halata Z, Grim M, Baumann KI. Current understanding of Merkel cells, touch reception and the skin. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
144
|
Tactile spatial acuity in childhood: effects of age and fingertip size. PLoS One 2013; 8:e84650. [PMID: 24454612 PMCID: PMC3891499 DOI: 10.1371/journal.pone.0084650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/17/2013] [Indexed: 11/19/2022] Open
Abstract
Tactile acuity is known to decline with age in adults, possibly as the result of receptor loss, but less is understood about how tactile acuity changes during childhood. Previous research from our laboratory has shown that fingertip size influences tactile spatial acuity in young adults: those with larger fingers tend to have poorer acuity, possibly because mechanoreceptors are more sparsely distributed in larger fingers. We hypothesized that a similar relationship would hold among children. If so, children’s tactile spatial acuity might be expected to worsen as their fingertips grow. However, concomitant CNS maturation might result in more efficient perceptual processing, counteracting the effect of fingertip growth on tactile acuity. To investigate, we conducted a cross-sectional study, testing 116 participants ranging in age from 6 to 16 years on a precision-controlled tactile grating orientation task. We measured each participant's grating orientation threshold on the dominant index finger, along with physical properties of the fingertip: surface area, volume, sweat pore spacing, and temperature. We found that, as in adults, children with larger fingertips (at a given age) had significantly poorer acuity, yet paradoxically acuity did not worsen significantly with age. We propose that finger growth during development results in a gradual decline in innervation density as receptive fields reposition to cover an expanding skin surface. At the same time, central maturation presumably enhances perceptual processing.
Collapse
|
145
|
Tilling T, Wladykowski E, Failla AV, Houdek P, Brandner JM, Moll I. Immunohistochemical analyses point to epidermal origin of human Merkel cells. Histochem Cell Biol 2013; 141:407-21. [PMID: 24292845 DOI: 10.1007/s00418-013-1168-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 12/31/2022]
Abstract
Merkel cells, the neurosecretory cells of skin, are essential for light-touch responses and may probably fulfill additional functions. Whether these cells derive from an epidermal or a neural lineage has been a matter of dispute for a long time. In mice, recent studies have clearly demonstrated an epidermal origin of Merkel cells. Given the differences in Merkel cell distribution between human and murine skin, it is, however, unclear whether the same holds true for human Merkel cells. We therefore attempted to gain insight into the human Merkel cell lineage by co-immunodetection of the Merkel cell marker protein cytokeratin 20 (CK20) with various proteins known to be expressed either in epidermal or in neural stem cells of the skin. Neither Sox10 nor Pax3, both established markers of the neural crest lineage, exhibited any cell co-labeling with CK20. By contrast, β1 integrin, known to be enriched in epidermal stem cells, was found in nearly 70 % of interfollicular epidermal and 25 % of follicular Merkel cells. Moreover, LRIG1, also enriched in epidermal stem cells, displayed significant co-immunolabeling with CK20 as well (approximately 20 % in the interfollicular epidermis and 7 % in the hair follicle, respectively). Further epidermal markers were detected in sporadic Merkel cells. Cells co-expressing CK20 with epidermal markers may represent a transitory state between stem cells and differentiated cells. β1 integrin is probably also synthesized by a large subset of mature Merkel cells. Summarizing, our data suggest that human Merkel cells may originate from epidermal rather than neural progenitors.
Collapse
Affiliation(s)
- Thomas Tilling
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany,
| | | | | | | | | | | |
Collapse
|
146
|
Nogaret A. Negative differential conductance materials for flexible electronics. J Appl Polym Sci 2013. [DOI: 10.1002/app.40169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alain Nogaret
- Department of Physics; University of Bath; Claverton Down Bath BA2 7AY United Kingdom
| |
Collapse
|
147
|
Abstract
The somatosensory system decodes a wide range of tactile stimuli and thus endows us with a remarkable capacity for object recognition, texture discrimination, sensory-motor feedback and social exchange. The first step leading to perception of innocuous touch is activation of cutaneous sensory neurons called low-threshold mechanoreceptors (LTMRs). Here, we review the properties and functions of LTMRs, emphasizing the unique tuning properties of LTMR subtypes and the organizational logic of their peripheral and central axonal projections. We discuss the spinal cord neurophysiological representation of complex mechanical forces acting upon the skin and current views of how tactile information is processed and conveyed from the spinal cord to the brain. An integrative model in which ensembles of impulses arising from physiologically distinct LTMRs are integrated and processed in somatotopically aligned mechanosensory columns of the spinal cord dorsal horn underlies the nervous system's enormous capacity for perceiving the richness of the tactile world.
Collapse
Affiliation(s)
- Victoria E Abraira
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
148
|
The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 2013; 14:978-85. [DOI: 10.1038/ni.2680] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/02/2013] [Indexed: 12/13/2022]
|
149
|
Lesko MH, Driskell RR, Kretzschmar K, Goldie SJ, Watt FM. Sox2 modulates the function of two distinct cell lineages in mouse skin. Dev Biol 2013; 382:15-26. [PMID: 23948231 PMCID: PMC3807655 DOI: 10.1016/j.ydbio.2013.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 02/06/2023]
Abstract
In postnatal skin the transcription factor Sox2 is expressed in the dermal papilla (DP) of guard/awl/auchene hair follicles and by mechanosensory Merkel cells in the touch domes of guard hairs. To investigate the consequences of Sox2 ablation in skin we deleted Sox2 in DP cells via Blimp1Cre and in Merkel cells via K14Cre. Loss of Sox2 from the DP did not inhibit hair follicle morphogenesis or establishment of the dermis and hypodermis. However, Sox2 expression in the DP was necessary for postnatal maintenance of awl/auchene hair follicles. Deletion of Sox2 via K14Cre resulted in a decreased number of Merkel cells but had no effect on other epithelial compartments or on the dermis. The reduced number of Merkel cells did not affect the number or patterning of guard hairs, nerve density or the interaction of nerve cells with the touch domes. We conclude that Sox2 is a marker of two distinct lineages in the skin and regulates the number of differentiated cells in the case of the Merkel cell lineage and hair follicle type in the case of the DP. Sox2 is a marker of two distinct lineages in the skin. Sox2 is required for postnatal maintenance of awl/auchene hair follicles. Loss of Sox2 results in a reduction in Merkel cells.
Collapse
Affiliation(s)
- Marta H Lesko
- Wellcome Trust - Medical Research Council Centre for Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Guy's Tower, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
150
|
UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A 2013; 110:E3225-34. [PMID: 23929777 DOI: 10.1073/pnas.1312933110] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.
Collapse
|