101
|
Soto‐Heredero G, Gómez de las Heras MM, Gabandé‐Rodríguez E, Oller J, Mittelbrunn M. Glycolysis - a key player in the inflammatory response. FEBS J 2020; 287:3350-3369. [PMID: 32255251 PMCID: PMC7496292 DOI: 10.1111/febs.15327] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The inflammatory response involves the activation of several cell types to fight insults caused by a plethora of agents, and to maintain the tissue homoeostasis. On the one hand, cells involved in the pro-inflammatory response, such as inflammatory M1 macrophages, Th1 and Th17 lymphocytes or activated microglia, must rapidly provide energy to fuel inflammation, which is essentially accomplished by glycolysis and high lactate production. On the other hand, regulatory T cells or M2 macrophages, which are involved in immune regulation and resolution of inflammation, preferentially use fatty acid oxidation through the TCA cycle as a main source for energy production. Here, we discuss the impact of glycolytic metabolism at the different steps of the inflammatory response. Finally, we review a wide variety of molecular mechanisms which could explain the relationship between glycolytic metabolites and the pro-inflammatory phenotype, including signalling events, epigenetic remodelling, post-transcriptional regulation and post-translational modifications. Inflammatory processes are a common feature of many age-associated diseases, such as cardiovascular and neurodegenerative disorders. The finding that immunometabolism could be a master regulator of inflammation broadens the avenue for treating inflammation-related pathologies through the manipulation of the vascular and immune cell metabolism.
Collapse
Affiliation(s)
- Gonzalo Soto‐Heredero
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - Manuel M. Gómez de las Heras
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
| | - Enrique Gabandé‐Rodríguez
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - Jorge Oller
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - María Mittelbrunn
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| |
Collapse
|
102
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
103
|
Huang J, Li JJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:175-202. [PMID: 32588328 DOI: 10.1007/978-3-030-44518-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
104
|
Cecil RF, Chen PR, Benne JA, Hord TK, Spate LD, Samuel MS, Prather RS. Chemical simulation of hypoxia in donor cells improves development of somatic cell nuclear transfer-derived embryos and increases abundance of transcripts related to glycolysis. Mol Reprod Dev 2020; 87:763-772. [PMID: 32558023 PMCID: PMC7496615 DOI: 10.1002/mrd.23392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022]
Abstract
To improve efficiency of somatic cell nuclear transfer (SCNT), it is necessary to modify differentiated donor cells to become more amendable for reprogramming by the oocyte cytoplasm. A key feature that distinguishes somatic/differentiated cells from embryonic/undifferentiated cells is cellular metabolism, with somatic cells using oxidative phosphorylation (OXPHOS) while embryonic cells utilize glycolysis. Inducing metabolic reprogramming in donor cells could improve SCNT efficiency by priming cells to become more embryonic in nature before SCNT hypoxia inducible factor 1-α (HIF1-α), a transcription factor that allows for cell survival in low oxygen, promotes a metabolic switch from OXPHOS to glycolysis. We hypothesized that chemically stabilizing HIF1-α in donor cells by use of the hypoxia mimetic, cobalt chloride (CoCl2 ), would promote this metabolic switch in donor cells and subsequently improve the development of SCNT embryos. Donor cell treatment with 100 µM CoCl2 for 24 hr preceding SCNT upregulated messenfer RNA abundance of glycolytic enzymes, improved SCNT development to the blastocyst stage and quality, and affected gene expression in the blastocysts. After transferring blastocysts created from CoCl2 -treated donor cells to surrogates, healthy cloned piglets were produced. Therefore, shifting metabolism toward glycolysis in donor cells by CoCl2 treatment is a simple, economical way of improving the in vitro efficiency of SCNT and is capable of producing live animals.
Collapse
Affiliation(s)
- Raissa F. Cecil
- Department of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Paula R. Chen
- Department of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Joshua A. Benne
- Department of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Taylor K. Hord
- Department of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Lee D. Spate
- Department of Animal SciencesUniversity of MissouriColumbiaMissouri
| | | | | |
Collapse
|
105
|
Mikawa T, Shibata E, Shimada M, Ito K, Ito T, Kanda H, Takubo K, Lleonart ME, Inagaki N, Yokode M, Kondoh H. Phosphoglycerate Mutase Cooperates with Chk1 Kinase to Regulate Glycolysis. iScience 2020; 23:101306. [PMID: 32634742 PMCID: PMC7338839 DOI: 10.1016/j.isci.2020.101306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Dysregulated glycolysis, including the cancerous Warburg effect, is closely involved in pathological mechanisms of diseased states. Among glycolytic enzymes, phosphoglycerate mutase (PGAM) has been known to exert certain physiological impact in vitro, whereas its regulatory role on glycolysis remains unclear. Here, we identified that PGAM plays a key role in regulating glycolysis in cancer cells but not in standard cells. Cancer-prone phenotype by PGAM overexpression in vivo was associated with upregulated glycolytic features. PGAM interacts and cooperates with Chk1 to regulate the enhanced glycolysis in cancer cells, especially under oncogenic Ras expressing conditions. Genetic or chemical interference of the PGAM-Chk1 interaction, with intact PGAM activity, abrogated the maintenance of cancerous enhanced glycolysis. Thus, the nonenzymatic function of PGAM is essential for the Warburg effect that accompanies cancerous proliferation.
Collapse
Affiliation(s)
- Takumi Mikawa
- Geriatric Unit, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Eri Shibata
- Geriatric Unit, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Midori Shimada
- Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Ken Ito
- Geriatric Unit, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tomiko Ito
- Geriatric Unit, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroaki Kanda
- Department of Pathology, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Matilde E Lleonart
- Department of Pathology, Hospital Vall de'Hebron, Barcelona 08035, Spain
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masayuki Yokode
- Geriatric Unit, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Clinical Innovative Medicine, Translational Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
106
|
Xu WH, Xu Y, Tian X, Anwaier A, Liu WR, Wang J, Zhu WK, Cao DL, Wang HK, Shi GH, Qu YY, Zhang HL, Ye DW. Large-scale transcriptome profiles reveal robust 20-signatures metabolic prediction models and novel role of G6PC in clear cell renal cell carcinoma. J Cell Mol Med 2020; 24:9012-9027. [PMID: 32567187 PMCID: PMC7417710 DOI: 10.1111/jcmm.15536] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and highly malignant pathological type of kidney cancer. We sought to establish a metabolic signature to improve post‐operative risk stratification and identify novel targets in the prediction models for ccRCC patients. A total of 58 metabolic differential expressed genes (MDEGs) were identified with significant prognostic value. LASSO regression analysis constructed 20‐mRNA signatures models, metabolic prediction models (MPMs), in ccRCC patients from two cohorts. Risk score of MPMs significantly predicts prognosis for ccRCC patients in TCGA (P < 0.001, HR = 3.131, AUC = 0.768) and CPTAC cohorts (P = 0.046, HR = 2.893, AUC = 0.777). In addition, G6PC, a hub gene in PPI network of MPMs, shows significantly prognostic value in 718 ccRCC patients from multiply cohorts. Next, G6Pase was detected high expressed in normal kidney tissues than ccRCC tissues. It suggested that low G6Pase expression significantly correlated with poor prognosis (P < 0.0001, HR = 0.316) and aggressive progression (P < 0.0001, HR = 0.414) in 322 ccRCC patients from FUSCC cohort. Meanwhile, promoter methylation level of G6PC was significantly higher in ccRCC samples with aggressive progression status. G6PC significantly participates in abnormal immune infiltration of ccRCC microenvironment, showing significantly negative association with check‐point immune signatures, dendritic cells, Th1 cells, etc. In conclusion, this study first provided the opportunity to comprehensively elucidate the prognostic MDEGs landscape, established novel prognostic model MPMs using large‐scale ccRCC transcriptome data and identified G6PC as potential prognostic target in 1,040 ccRCC patients from multiply cohorts. These finding could assist in managing risk assessment and shed valuable insights into treatment strategies of ccRCC.
Collapse
Affiliation(s)
- Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Xu
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, China.,Medical College, Soochow University, Suzhou, China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wang-Rui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, China
| | - Jun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Kai Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Kai Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
107
|
Lane AN, Higashi RM, Fan TWM. Metabolic reprogramming in tumors: Contributions of the tumor microenvironment. Genes Dis 2020; 7:185-198. [PMID: 32215288 PMCID: PMC7083762 DOI: 10.1016/j.gendis.2019.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
The genetic alterations associated with cell transformation are in large measure expressed in the metabolic phenotype as cancer cells proliferate and change their local environment, and prepare for metastasis. Qualitatively, the fundamental biochemistry of cancer cells is generally the same as in the untransformed cells, but the cancer cells produce a local environment, the TME, that is hostile to the stromal cells, and compete for nutrients. In order to proliferate, cells need sufficient nutrients, either those that cannot be made by the cells themselves, or must be made from simpler precursors. However, in solid tumors, the nutrient supply is often limiting given the potential for rapid proliferation, and the poor quality of the vasculature. Thus, cancer cells may employ a variety of strategies to obtain nutrients for survival, growth and metastasis. Although much has been learned using established cell lines in standard culture conditions, it is becoming clear from in vivo metabolic studies that this can also be misleading, and which nutrients are used for energy production versus building blocks for synthesis of macromolecules can vary greatly from tumor to tumor, and even within the same tumor. Here we review the operation of metabolic networks, and how recent understanding of nutrient supply in the TME and utilization are being revealed using stable isotope tracers in vivo as well as in vitro.
Collapse
Key Words
- 2OG, 2-oxoglutarate
- ACO1,2, aconitase 1,2
- CP-MAS, Cross polarization Magic Angle Spinning
- Cancer metabolism
- DMEM, Dulbeccos Modified Eagles Medium
- ECAR, extracellular acidification rate
- ECM, extracellular matrix
- EMP, Embden-Meyerhof Pathway
- IDH1,2, isocitrate dehydrogenase 1,2 (NADP+dependent)
- IF, interstitial fluid
- ME, malic enzyme
- Metabolic flux
- Nutrient supply
- RPMI, Roswell Park Memorial Institute
- SIRM, Stable Isotope Resolved Metabolomics
- Stable isotope resolved metabolomics
- TIL, tumor infiltrating lymphocyte
- TIM/TPI, triose phosphate isomerase
- TME, Tumor Micro Environment
- Tumor microenvironment
Collapse
Affiliation(s)
- Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, USA
| | | | | |
Collapse
|
108
|
Early Detection of Pancreatic Intraepithelial Neoplasias (PanINs) in Transgenic Mouse Model by Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy. Int J Mol Sci 2020; 21:ijms21103722. [PMID: 32466260 PMCID: PMC7279395 DOI: 10.3390/ijms21103722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
While pancreatic cancer (PC) survival rates have recently shown modest improvement, the disease remains largely incurable. Early detection of pancreatic cancer may result in improved outcomes and therefore, methods for early detection of cancer, even premalignant lesions, may provide more favorable outcomes. Pancreatic intraepithelial neoplasias (PanINs) have been identified as premalignant precursor lesions to pancreatic cancer. However, conventional imaging methods used for screening high-risk populations do not have the sensitivity to detect PanINs. Here, we have employed hyperpolarized metabolic imaging in vivo and nuclear magnetic resonance (1H-NMR) metabolomics ex vivo to identify and understand metabolic changes, towards enabling detection of early PanINs and progression to advanced PanINs lesions that precede pancreatic cancer formation. Progression of disease from tissue containing predominantly low-grade PanINs to tissue with high-grade PanINs showed a decreasing alanine/lactate ratio from high-resolution NMR metabolomics ex vivo. Hyperpolarized magnetic resonance spectroscopy (HP-MRS) allows over 10,000-fold sensitivity enhancement relative to conventional magnetic resonance. Real-time HP-MRS was employed to measure non-invasively changes of alanine and lactate metabolites with disease progression and in control mice in vivo, following injection of hyperpolarized [1-13C] pyruvate. The alanine-to-lactate signal intensity ratio was found to decrease as the disease progressed from low-grade PanINs to high-grade PanINs. The biochemical changes of alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme activity were assessed. These results demonstrate that there are significant alterations of ALT and LDH activities during the transformation from early to advanced PanINs lesions. Furthermore, we demonstrate that real-time conversion kinetic rate constants (kPA and kPL) can be used as metabolic imaging biomarkers of pancreatic premalignant lesions. Findings from this emerging HP-MRS technique can be translated to the clinic for detection of pancreatic premalignant lesion in high-risk populations.
Collapse
|
109
|
Parri M, Ippolito L, Cirri P, Ramazzotti M, Chiarugi P. Metabolic cell communication within tumour microenvironment: models, methods and perspectives. Curr Opin Biotechnol 2020; 63:210-219. [PMID: 32416546 DOI: 10.1016/j.copbio.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Environmental cues are essential in defining tumour malignancy, by promoting tumour initiation, progression and metastatic spreading. Stromal cells may metabolically cooperate or compete with cancer cells, playing a mandatory role in defining cancer metabolic plasticity, potentially dictating the final tumour outcome. Assessing shared nutrients between different tumoural or stromal compartments is essential to understand the impact of environmental nutrients on the metabolic plasticity of tumours. Here, we review analytical and computational approaches for studying the tumour metabolic microenvironment, the destiny of nutrients shared among tumour and stromal populations, as well as the molecular modules of these metabolic relationships.
Collapse
Affiliation(s)
- M Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - L Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - P Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - M Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - P Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
110
|
Rajala RVS. Aerobic Glycolysis in the Retina: Functional Roles of Pyruvate Kinase Isoforms. Front Cell Dev Biol 2020; 8:266. [PMID: 32426353 PMCID: PMC7203425 DOI: 10.3389/fcell.2020.00266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022] Open
Abstract
One hundred years ago, Otto Heinrich Warburg observed that postmitotic retinal cells are the highest oxygen-consuming cells in the body. He compared these cells to actively growing mitotic tumor cells since both cells reprogram glucose for anabolic processes, which include lipid, protein, and RNA/DNA synthesis, and for antioxidant metabolism. To achieve this metabolic reprogramming, cancer cells preferentially express a less active dimeric form, the M2 isoform of pyruvate kinase (PKM2), which shuttles glucose toward the accumulation of glycolytic intermediates that redirect cell activities into anabolic processes. Similar to cancer cells, retinal photoreceptors predominantly express the M2 isoform of PKM2. This isoform performs both metabolic and non-metabolic functions in photoreceptor cells. This review focuses on the metabolic and non-metabolic roles of pyruvate kinases in photoreceptor cell functions.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
111
|
Ohba S, Johannessen TCA, Chatla K, Yang X, Pieper RO, Mukherjee J. Phosphoglycerate Mutase 1 Activates DNA Damage Repair via Regulation of WIP1 Activity. Cell Rep 2020; 31:107518. [PMID: 32294440 DOI: 10.1016/j.celrep.2020.03.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic enzyme phosphoglycerate mutase 1 (PGAM1) is overexpressed in several types of cancer, suggesting an additional function beyond its established role in the glycolytic pathway. We here report that PGAM1 is overexpressed in gliomas where it increases the efficiency of the DNA damage response (DDR) pathway by cytoplasmic binding of WIP1 phosphatase, thereby preventing WIP1 nuclear translocation and subsequent dephosphorylation of the ATM signaling pathway. Silencing of PGAM1 expression in glioma cells consequently decreases formation of γ-H2AX foci, increases apoptosis, and decreases clonogenicity following irradiation (IR) and temozolomide (TMZ) treatment. Furthermore, mice intracranially implanted with PGAM1-knockdown cells have significantly improved survival after treatment with IR and TMZ. These effects are counteracted by exogenous expression of two kinase-dead PGAM1 mutants, H186R and Y92F, indicating an important non-enzymatic function of PGAM1. Our findings identify PGAM1 as a potential therapeutic target in gliomas.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Tor-Christian Aase Johannessen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Kamalakar Chatla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaodong Yang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
112
|
van Senten JR, Fan TS, Siderius M, Smit MJ. Viral G protein-coupled receptors as modulators of cancer hallmarks. Pharmacol Res 2020; 156:104804. [PMID: 32278040 DOI: 10.1016/j.phrs.2020.104804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Herpesviruses encode transmembrane G protein-coupled receptors (GPCRs), which share structural homology to human chemokine receptors. These viral GPCRs include KSHV-encoded ORF74, EBV-encoded BILF1, and HCMV-encoded US28, UL33, UL78 and US27. Viral GPCRs hijack various signaling pathways and cellular networks, including pathways involved in the so-called cancer hallmarks as defined by Hanahan and Weinberg. These hallmarks describe cellular characteristics crucial for transformation and tumor progression. The cancer hallmarks involve growth factor-independent proliferation, angiogenesis, avoidance of apoptosis, invasion and metastasis, metabolic reprogramming, genetic instability and immune evasion amongst others. The role of beta herpesviruses modulating these cancer hallmarks is clearly highlighted by the proliferative and pro-angiogenic phenotype associated with KSHV infection which is largely ascribed to the ORF74-mediated modulation of signaling networks in host cells. For HCMV and Epstein-Bar encoded GPCRs, oncomodulatory effects have been described which contribute to the cancer hallmarks, thereby enhancing oncogenic development. In this review, we describe the main signaling pathways controlling the hallmarks of cancer which are affected by the betaherpesvirus encoded GPCRs. Most prominent among these involve the JAK-STAT, PI(3)K-AKT, NFkB and MAPK signaling nodes. These insights are important to effectively target these viral GPCRs and their signaling networks in betaherpesvirus-associated malignancies.
Collapse
Affiliation(s)
- Jeffrey R van Senten
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Tian Shu Fan
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
113
|
Tian W, Wang C, Li D, Hou H. Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med Chem 2020; 12:627-644. [PMID: 32175770 DOI: 10.4155/fmc-2019-0322] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anthraquinones exhibit a unique anticancer activity. Since their discovery, medicinal chemists have made several structural modifications, resulting in the design and synthesis of a large number of novel anthraquinone compounds with different biological activities. In general, anthraquinone compounds have been considered to have anticancer activity mainly through DNA damage, cycle arrest and apoptosis. However, recent studies have shown that novel anthraquinone compounds may also inhibit cancer through paraptosis, autophagy, radiosensitising, overcoming chemoresistance and other methods. This Review article provides an overview of novel anthraquinone compounds that have been developed as anticancer agents in recent years and focuses on their anticancer mechanism.
Collapse
Affiliation(s)
- Wei Tian
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chunmiao Wang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Danrong Li
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Huaxin Hou
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
114
|
Kim H, Kim SH, Hwang D, An J, Chung HS, Yang EG, Kim SY. Extracellular pyruvate kinase M2 facilitates cell migration by upregulating claudin-1 expression in colon cancer cells. Biochem Cell Biol 2020; 98:219-226. [PMID: 31545907 DOI: 10.1139/bcb-2019-0139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extensive studies have been reported the non-canonical functions of pyruvate kinase M2 (PKM2) as a kinase, transcriptional regulator, and even cell-to-cell communicator, emphasizing its importance in various signaling pathways. However, the role of secreted PKM2 in cancer progression and its signaling pathway is yet to be elucidated. In this study, we found that extracellular PKM2 enhanced the migration of low-metastatic, benign colon cancer cells by upregulating claudin-1 expression and internalizing it to the cytoplasm and nucleus. Knock-down of claudin-1 significantly reduced extracellular PKM2-induced cell migration. Inhibition of either protein kinase C (PKC) or epidermal growth factor receptor (EGFR) resulted in a reduction of extracellular PKM2-mediated claudin-1 expression, suggesting EGFR-PKC-claudin-1 as a signaling pathway in the extracellular PKM2-mediated tumorigenesis of colon cancer cells.
Collapse
Affiliation(s)
- Hyunju Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seong Ho Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Dohyeon Hwang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jinsu An
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
115
|
Seyfried TN, Mukherjee P, Iyikesici MS, Slocum A, Kalamian M, Spinosa JP, Chinopoulos C. Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Front Nutr 2020; 7:21. [PMID: 32219096 PMCID: PMC7078107 DOI: 10.3389/fnut.2020.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a significant cause of morbidity and mortality in women. Ultrastructural and biochemical evidence from breast biopsy tissue and cancer cells shows mitochondrial abnormalities that are incompatible with energy production through oxidative phosphorylation (OxPhos). Consequently, breast cancer, like most cancers, will become more reliant on substrate level phosphorylation (fermentation) than on oxidative phosphorylation (OxPhos) for growth consistent with the mitochondrial metabolic theory of cancer. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive breast cancer growth through substrate level phosphorylation (SLP) in both the cytoplasm (Warburg effect) and the mitochondria (Q-effect), respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability to tumor cells while simultaneously elevating ketone bodies, a non-fermentable metabolic fuel. It is suggested that KMT would be most effective when used together with glutamine targeting. Information is reviewed for suggesting how KMT could reduce systemic inflammation and target tumor cells without causing damage to normal cells. Implementation of KMT in the clinic could improve progression free and overall survival for patients with breast cancer.
Collapse
Affiliation(s)
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Mehmet S. Iyikesici
- Medical Oncology, Kemerburgaz University Bahcelievler Medical Park Hospital, Istanbul, Turkey
| | - Abdul Slocum
- Medical Oncology, Chemo Thermia Oncology Center, Istanbul, Turkey
| | | | | | | |
Collapse
|
116
|
Cell repopulation, rewiring metabolism, and immune regulation in cancer radiotherapy. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
117
|
Li N, Liu X. Phosphoglycerate Mutase 1: Its Glycolytic and Non-Glycolytic Roles in Tumor Malignant Behaviors and Potential Therapeutic Significance. Onco Targets Ther 2020; 13:1787-1795. [PMID: 32161473 PMCID: PMC7051807 DOI: 10.2147/ott.s238920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is an important enzyme that catalyzes the reversible conversion of 3-phosphoglycerate and 2-phosphoglycerate during the process of glycolysis. Increasing evidence suggests that PGAM1 is widely overexpressed in various cancer tissues and plays a significant role in promoting cancer progression and metastasis. Although PGAM1 is a potential target in cancer therapy, the specific mechanisms of action remain unknown. This review introduces the basic structure and functions of PGAM1 and its family members and summarizes recent advances in the role of PGAM1 and various inhibitors of cancer cell proliferation and metastasis from a glycolytic and non-glycolytic perspective. Recent studies have highlighted a correlation between PGAM1 and clinical features and prognosis of cancer as well as the development of target drugs for PGAM1. The integrated information in this review will help better understand the specific roles of PGAM1 in cancer progression. Furthermore, the information highlights the non-glycolytic functions of PGAM1 in tumor metastasis, providing an innovative basis and direction for clinical drug research.
Collapse
Affiliation(s)
- Na Li
- 1st Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| | - Xinlu Liu
- 1st Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| |
Collapse
|
118
|
Taddei ML, Pietrovito L, Leo A, Chiarugi P. Lactate in Sarcoma Microenvironment: Much More than just a Waste Product. Cells 2020; 9:E510. [PMID: 32102348 PMCID: PMC7072766 DOI: 10.3390/cells9020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare and heterogeneous malignant tumors relatively resistant to radio- and chemotherapy. Sarcoma progression is deeply dependent on environmental conditions that sustain both cancer growth and invasive abilities. Sarcoma microenvironment is composed of different stromal cell types and extracellular proteins. In this context, cancer cells may cooperate or compete with stromal cells for metabolic nutrients to sustain their survival and to adapt to environmental changes. The strict interplay between stromal and sarcoma cells deeply affects the extracellular metabolic milieu, thus altering the behavior of both cancer cells and other non-tumor cells, including immune cells. Cancer cells are typically dependent on glucose fermentation for growth and lactate is one of the most heavily increased metabolites in the tumor bulk. Currently, lactate is no longer considered a waste product of the Warburg metabolism, but novel signaling molecules able to regulate the behavior of tumor cells, tumor-stroma interactions and the immune response. In this review, we illustrate the role of lactate in the strong acidity microenvironment of sarcoma. Really, in the biological context of sarcoma, where novel targeted therapies are needed to improve patient outcomes in combination with current therapies or as an alternative treatment, lactate targeting could be a promising approach to future clinical trials.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Laura Pietrovito
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Angela Leo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
- Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, 50134 Florence, Italy
| |
Collapse
|
119
|
Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun 2020; 11:941. [PMID: 32071304 PMCID: PMC7029000 DOI: 10.1038/s41467-020-14788-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a major pathogenic mechanism in Parkinson's disease (PD). As an important cellular antioxidant, glutathione (GSH) balances the production and incorporation of free radicals to protect neurons from oxidative damage. GSH level is decreased in the brains of PD patients. Hence, clarifying the molecular mechanism of GSH deficiency may help deepen our knowledge of PD pathogenesis. Here we report that the astrocytic dopamine D2 receptor (DRD2) regulates GSH synthesis via PKM2-mediated Nrf2 transactivation. In addition we find that pyridoxine can dimerize PKM2 to promote GSH biosynthesis. Further experiments show that pyridoxine supplementation increases the resistance of nigral dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in wild-type mice as well as in astrocytic Drd2 conditional knockout mice. We conclude that dimerizing PKM2 may be a potential target for PD treatment.
Collapse
|
120
|
Duda P, Janczara J, McCubrey JA, Gizak A, Rakus D. The Reverse Warburg Effect is Associated with Fbp2-Dependent Hif1α Regulation in Cancer Cells Stimulated by Fibroblasts. Cells 2020; 9:cells9010205. [PMID: 31947613 PMCID: PMC7016812 DOI: 10.3390/cells9010205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Fibroblasts are important contributors to cancer development. They create a tumor microenvironment and modulate our metabolism and treatment resistance. In the present paper, we demonstrate that healthy fibroblasts induce metabolic coupling with non-small cell lung cancer cells by down-regulating the expression of glycolytic enzymes in cancer cells and increasing the fibroblasts’ ability to release lactate and thus support cancer cells with energy-rich glucose-derived metabolites, such as lactate and pyruvate—a process known as the reverse Warburg effect. We demonstrate that these changes result from a fibroblasts-stimulated increase in the expression of fructose bisphosphatase (Fbp) in cancer cells and the consequent modulation of Hif1α function. We show that, in contrast to current beliefs, in lung cancer cells, the predominant and strong interaction with the Hif1α form of Fbp is not the liver (Fbp1) but in the muscle (Fbp2) isoform. Since Fbp2 oligomerization state and thus, its role is regulated by AMP and NAD+—crucial indicators of cellular metabolic conditions—we hypothesize that the Hif1α-dependent regulation of the metabolism in cancer is modulated through Fbp2, a sensor of the energy and redox state of a cell.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21 Street, 50-335 Wrocław, Poland; (P.D.); (J.J.); (A.G.)
| | - Jakub Janczara
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21 Street, 50-335 Wrocław, Poland; (P.D.); (J.J.); (A.G.)
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Norwida 31 Street, 50-375 Wrocław, Poland
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, 600 Moye Boulevard, Greenville, NC 27858, USA;
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21 Street, 50-335 Wrocław, Poland; (P.D.); (J.J.); (A.G.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21 Street, 50-335 Wrocław, Poland; (P.D.); (J.J.); (A.G.)
- Correspondence:
| |
Collapse
|
121
|
Clubbs Coldron AKM, Byrne DP, Eyers PA. Analysis of 1- and 3-Phosphohistidine (pHis) Protein Modification Using Model Enzymes Expressed in Bacteria. Methods Mol Biol 2020; 2077:63-81. [PMID: 31707652 DOI: 10.1007/978-1-4939-9884-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite the discovery of protein histidine (His) phosphorylation nearly six decades ago, difficulties in measuring and quantifying this unstable post-translational modification (PTM) have limited its mechanistic analysis in prokaryotic and eukaryotic signaling. Here, we describe reliable procedures for affinity purification, cofactor-binding analysis and antibody-based detection of phosphohistidine (pHis), on the putative human His kinases NME1 (NDPK-A) and NME2 (NDPK-B) and the glycolytic phosphoglycerate mutase PGAM1. By exploiting isomer-specific monoclonal N1-pHis and N3-pHis antibodies, we describe robust protocols for immunological detection and isomer discrimination of site-specific pHis, including N3-pHis on His 11 of PGAM1.
Collapse
Affiliation(s)
- Alice K M Clubbs Coldron
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
122
|
Singh JP, Qian K, Lee JS, Zhou J, Han X, Zhang B, Ong Q, Ni W, Jiang M, Ruan HB, Li MD, Zhang K, Ding Z, Lee P, Singh K, Wu J, Herzog RI, Kaech S, Wendel HG, Yates JR, Han W, Sherwin RS, Nie Y, Yang X. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene 2020; 39:560-573. [PMID: 31501520 PMCID: PMC7107572 DOI: 10.1038/s41388-019-0975-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 05/12/2019] [Accepted: 06/18/2019] [Indexed: 01/24/2023]
Abstract
Cancer cells are known to adopt aerobic glycolysis in order to fuel tumor growth, but the molecular basis of this metabolic shift remains largely undefined. O-GlcNAcase (OGA) is an enzyme harboring O-linked β-N-acetylglucosamine (O-GlcNAc) hydrolase and cryptic lysine acetyltransferase activities. Here, we report that OGA is upregulated in a wide range of human cancers and drives aerobic glycolysis and tumor growth by inhibiting pyruvate kinase M2 (PKM2). PKM2 is dynamically O-GlcNAcylated in response to changes in glucose availability. Under high glucose conditions, PKM2 is a target of OGA-associated acetyltransferase activity, which facilitates O-GlcNAcylation of PKM2 by O-GlcNAc transferase (OGT). O-GlcNAcylation inhibits PKM2 catalytic activity and thereby promotes aerobic glycolysis and tumor growth. These studies define a causative role for OGA in tumor progression and reveal PKM2 O-GlcNAcylation as a metabolic rheostat that mediates exquisite control of aerobic glycolysis.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Kevin Qian
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Jeong-Sang Lee
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Jinfeng Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Bichen Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Qunxiang Ong
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Weiming Ni
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Min-Dian Li
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Kaisi Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Zhaobing Ding
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Philip Lee
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Raimund I Herzog
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Susan Kaech
- Department of Immunobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Weiping Han
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Robert S Sherwin
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA.
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA.
| |
Collapse
|
123
|
Sinkala M, Mulder N, Patrick Martin D. Metabolic gene alterations impact the clinical aggressiveness and drug responses of 32 human cancers. Commun Biol 2019; 2:414. [PMID: 31754644 PMCID: PMC6856368 DOI: 10.1038/s42003-019-0666-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Malignant cells reconfigure their metabolism to support oncogenic processes such as accelerated growth and proliferation. The mechanisms by which this occurs likely involve alterations to genes that encode metabolic enzymes. Here, using genomics data for 10,528 tumours of 32 different cancer types, we characterise the alterations of genes involved in various metabolic pathways. We find that mutations and copy number variations of metabolic genes are pervasive across all human cancers. Based on the frequencies of metabolic gene alterations, we further find that there are two distinct cancer supertypes that tend to be associated with different clinical outcomes. By utilising the known dose-response profiles of 825 cancer cell lines, we infer that cancers belonging to these supertypes are likely to respond differently to various anticancer drugs. Collectively our analyses define the foundational metabolic features of different cancer supertypes and subtypes upon which discriminatory strategies for treating particular tumours could be constructed.
Collapse
Affiliation(s)
- Musalula Sinkala
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town School of Health Sciences, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town School of Health Sciences, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| | - Darren Patrick Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town School of Health Sciences, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
124
|
Sun X, Yao L, Liang H, Wang D, He Y, Wei Y, Ye L, Wang K, Li L, Chen J, Zhang CY, Xu G, Wang F, Zen K. Intestinal epithelial PKM2 serves as a safeguard against experimental colitis via activating β-catenin signaling. Mucosal Immunol 2019; 12:1280-1290. [PMID: 31462699 DOI: 10.1038/s41385-019-0197-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 02/04/2023]
Abstract
The pyruvate kinase M2 (PKM2)-mediated aerobic glycolysis has been shown to play a critical role in promoting cell survival and proliferation. However, little is known about the function of intestinal epithelial PKM2 in intestine homeostasis. Here we investigate whether and how intestinal epithelial PKM2 modulates the morphology and function of the adult intestine in experimental colitis. Analyzing colonoscopic biopsies from Crohn's disease and ulcerative colitis patients, we found significantly decreased level of intestinal epithelial PKM2 in patients compared to that in non-inflamed tissues. Similar reduction of intestinal epithelial PKM2 was observed in mice with dextran sulfate sodium-induced colitis. Moreover, intestinal epithelial-specific PKM2-knockout (Pkm2-/-) mice displayed more severe intestinal inflammation, as evidenced by a shortened colon, disruption of epithelial tight junctions, an increase in inflammatory cytokine levels, and immune cell infiltration, when compared to wild-type mice. Gene profiling, western blot, and function analyses indicated that cell survival signals, particularly the Wnt/β-catenin pathways, were associated with PKM2 activity. Increasing mouse intestinal epithelial PKM2 expression via delivery of a PKM2-expressing plasmid attenuated experimental colitis. In conclusion, our studies demonstrate that intestinal epithelial PKM2 increases cell survival and wound healing under the colitic condition via activating the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xinlei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Li Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Dong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yueqin He
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Yao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Lei Ye
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210093, China
| | - Kai Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, No. 305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Guifang Xu
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210093, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
125
|
Ferino A, Rapozzi V, Xodo LE. The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111672. [PMID: 31778952 DOI: 10.1016/j.jphotobiol.2019.111672] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
In highly proliferating cancer cells oncogenic mutations reprogram the metabolism and increase the production of reactive oxygen species (ROS). Cancer cells prevent ROS accumulation by upregulating antioxidant systems. Here we show that an increase of oxidative stress (ROS and singlet oxygen), generated by photoactivated TMPyP4, results in the upregulation of KRAS and Nrf2, the major regulator of the redox homeostasis. In agreement with a previous observation, the ectopic expression of KRAS G12D or G12 V is found to stimulate Nrf2. This suggests that ROS, KRAS and Nrf2 establish a molecular axis controlling the redox homeostasis in cancer cells. We found that this axis also modulates the function of the NF-kB/Snail/RKIP circuitry, regulating the survival and apoptosis pathways. Our data show that low ROS levels, obtained when Nrf2 is activated by KRAS, results in the upregulation of prosurvival Snail and simultaneous downregulation of proapoptotic RKIP: an expression pattern favouring cell proliferation. By contrast, high ROS levels, obtained when Nrf2 is inhibited by a small molecule (luteolin), favour apoptosis by upregulating proapoptotic RKIP and downregulating prosurvival Snail. The results of this study are useful to design efficient photodynamic therapy (PDT) against cancer. We hypothesize that cancer cells can be sensitized to PDT when the photosensitizer is used in the presence of an inhibitor of Nrf2 (adjuvant). To test this hypothesis, we used luteolin (3',4',5,7-tetrahydroflavone) as Nrf2 inhibitor, since it reduces the expression of Nrf2 and increases intracellular ROS. By means of colony formation and viability assays we found that when Nrf2 is inhibited, PDT shows an increase of efficiency up to 45%.
Collapse
Affiliation(s)
- Annalisa Ferino
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Valentina Rapozzi
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Luigi E Xodo
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
126
|
Gao D, Fish EN. Chemokines in breast cancer: Regulating metabolism. Cytokine 2019; 109:57-64. [PMID: 29903574 DOI: 10.1016/j.cyto.2018.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
Accumulating evidence indicates that chemokine-chemokine receptor interactions invoke biological responses beyond their originally described function of orchestrating leukocyte trafficking. In this review we will extend the findings that chemokines participate actively in the neoplastic process, and consider the contribution of CCL5 activation of CCR5 on breast cancer cells to upregulation of anabolic metabolic events that would support the energy demands of cell replication and proliferation.
Collapse
Affiliation(s)
- Darrin Gao
- Dept. Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Bldg., Toronto, Ontario M5S 1A8, Canada; Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, Ontario M5G 2M1, Canada.
| | - Eleanor N Fish
- Dept. Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Bldg., Toronto, Ontario M5S 1A8, Canada; Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, Ontario M5G 2M1, Canada.
| |
Collapse
|
127
|
Chinopoulos C, Seyfried TN. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 2019; 10:1759091418818261. [PMID: 30909720 PMCID: PMC6311572 DOI: 10.1177/1759091418818261] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of the primary adult brain cancers. Ultrastructural and biochemical evidence shows that GBM cells exhibit mitochondrial abnormalities incompatible with energy production through oxidative phosphorylation (OxPhos). Under such conditions, the mitochondrial F0-F1 ATP synthase operates in reverse at the expense of ATP hydrolysis to maintain a moderate membrane potential. Moreover, expression of the dimeric M2 isoform of pyruvate kinase in GBM results in diminished ATP output, precluding a significant ATP production from glycolysis. If ATP synthesis through both glycolysis and OxPhos was impeded, then where would GBM cells obtain high-energy phosphates for growth and invasion? Literature is reviewed suggesting that the succinate-CoA ligase reaction in the tricarboxylic acid cycle can substantiate sufficient ATP through mitochondrial substrate-level phosphorylation (mSLP) to maintain GBM growth when OxPhos is impaired. Production of high-energy phosphates would be supported by glutaminolysis—a hallmark of GBM metabolism—through the sequential conversion of glutamine → glutamate → alpha-ketoglutarate → succinyl CoA → succinate. Equally important, provision of ATP through mSLP would maintain the adenine nucleotide translocase in forward mode, thus preventing the reverse-operating F0-F1 ATP synthase from depleting cytosolic ATP reserves. Because glucose and glutamine are the primary fuels driving the rapid growth of GBM and most tumors for that matter, simultaneous restriction of these two substrates or inhibition of mSLP should diminish cancer viability, growth, and invasion.
Collapse
|
128
|
Lu H, Lu Y, Xie Y, Qiu S, Li X, Fan Z. Rational combination with PDK1 inhibition overcomes cetuximab resistance in head and neck squamous cell carcinoma. JCI Insight 2019; 4:131106. [PMID: 31578313 DOI: 10.1172/jci.insight.131106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/31/2019] [Indexed: 12/28/2022] Open
Abstract
Cetuximab, an EGFR-blocking antibody, is currently approved for treatment of metastatic head and neck squamous cell carcinoma (HNSCC), but its response rate is limited. In addition to blocking EGFR-stimulated cell signaling, cetuximab can induce endocytosis of ASCT2, a glutamine transporter associated with EGFR in a complex, leading to glutathione biosynthesis inhibition and cellular sensitization to ROS. Pyruvate dehydrogenase kinase-1 (PDK1), a key mitochondrial enzyme overexpressed in cancer cells, redirects glucose metabolism from oxidative phosphorylation toward aerobic glycolysis. In this study, we tested the hypothesis that targeting PDK1 is a rational approach to synergize with cetuximab through ROS overproduction. We found that combination of PDK1 knockdown or inhibition by dichloroacetic acid (DCA) with ASCT2 knockdown or with cetuximab treatment induced ROS overproduction and apoptosis in HNSCC cells, and this effect was independent of effective inhibition of EGFR downstream pathways but could be lessened by N-acetyl cysteine, an anti-oxidative agent. In several cetuximab-resistant HNSCC xenograft models, DCA plus cetuximab induced marked tumor regression, whereas either agent alone failed to induce tumor regression. Our findings call for potentially novel clinical trials of combining cetuximab and DCA in patients with cetuximab-sensitive EGFR-overexpressing tumors and patients with cetuximab-resistant EGFR-overexpressing tumors.
Collapse
Affiliation(s)
- Haiquan Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yangyiran Xie
- Program in Neuroscience, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Songbo Qiu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xinqun Li
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
129
|
Choi HW, Wang L, Powell AF, Strickler SR, Wang D, Dempsey DA, Schroeder FC, Klessig DF. A genome-wide screen for human salicylic acid (SA)-binding proteins reveals targets through which SA may influence development of various diseases. Sci Rep 2019; 9:13084. [PMID: 31511554 PMCID: PMC6739329 DOI: 10.1038/s41598-019-49234-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
Salicylic acid (SA) is the major metabolite and active ingredient of aspirin; both compounds reduce pain, fever, and inflammation. Despite over a century of research, aspirin/SA's mechanism(s) of action is still only partially understood. Here we report the results of a genome-wide, high-throughput screen to identify potential SA-binding proteins (SABPs) in human HEK293 cells. Following photo-affinity crosslinking to 4-azidoSA and immuno-selection with an anti-SA antibody, approximately 2,000 proteins were identified. Among these, 95 were enriched more than 10-fold. Pathway enrichment analysis with these 95 candidate SABPs (cSABPs) revealed possible involvement of SA in multiple biological pathways, including (i) glycolysis, (ii) cytoskeletal assembly and/or signaling, and (iii) NF-κB-mediated immune signaling. The two most enriched cSABPs, which corresponded to the glycolytic enzymes alpha-enolase (ENO1) and pyruvate kinase isozyme M2 (PKM2), were assessed for their ability to bind SA and SA's more potent derivative amorfrutin B1 (amoB1). SA and amoB1 bound recombinant ENO1 and PKM2 at low millimolar and micromolar concentrations, respectively, and inhibited their enzymatic activities in vitro. Consistent with these results, low millimolar concentrations of SA suppressed glycolytic activity in HEK293 cells. To provide insights into how SA might affect various human diseases, a cSABP-human disorder/disease network map was also generated.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Department of Plant Medicals, Andong National University, Andong, 36729, Korea
| | - Lei Wang
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | | | | | - Dekai Wang
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- College of life sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | | | | | | |
Collapse
|
130
|
Comparative metabolomics of MCF-7 breast cancer cells using different extraction solvents assessed by mass spectroscopy. Sci Rep 2019; 9:13126. [PMID: 31511569 PMCID: PMC6739366 DOI: 10.1038/s41598-019-49509-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic profiling of cancer cells can play a vital role in revealing the molecular bases of cancer development and progression. In this study, gas chromatography coupled with mass spectrometry (GC-MS) was employed for the determination of signatures found in ER+/PR+ breast cancer cells derived from MCF-7 using different extraction solvents including: A, formic acid in water; B, ammonium hydroxide in water; C, ethyl acetate; D, methanol: water (1:1, v/v); and E, acetonitrile: water (1:1, v/v). The greatest extraction rate and diversity of metabolites occurs with extraction solvents A and E. Extraction solvent D showed moderate extraction efficiency, whereas extraction solvent B and C showed inferior metabolite diversity. Metabolite set enrichment analysis (MSEA) results showed energy production pathways to be key in MCF-7 cell lines. This study showed that mass spectrometry could identify key metabolites associated with cancers. The highest enriched pathways were related to energy production as well as Warburg effect pathways, which may shed light on how energy metabolism has been hijacked to encourage tumour progression and eventually metastasis in breast cancer.
Collapse
|
131
|
de Alteriis E, Cartenì F, Parascandola P, Serpa J, Mazzoleni S. Revisiting the Crabtree/Warburg effect in a dynamic perspective: a fitness advantage against sugar-induced cell death. Cell Cycle 2019; 17:688-701. [PMID: 29509056 PMCID: PMC5969562 DOI: 10.1080/15384101.2018.1442622] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mechanisms behind the Warburg effect in mammalian cells, as well as for the similar Crabtree effect in the yeast Saccharomyces cerevisiae, are still a matter of debate: why do cells shift from the energy-efficient respiration to the energy-inefficient fermentation at high sugar concentration? This review reports on the strong similarities of these phenomena in both cell types, discusses the current ideas, and provides a novel interpretation of their common functional mechanism in a dynamic perspective. This is achieved by analysing another phenomenon, the sugar-induced-cell-death (SICD) occurring in yeast at high sugar concentration, to highlight the link between ATP depletion and cell death. The integration between SICD and the dynamic functioning of the glycolytic process, suggests that the Crabtree/Warburg effect may be interpreted as the avoidance of ATP depletion in those conditions where glucose uptake is higher than the downstream processing capability of the second phase of glycolysis. It follows that the down-regulation of respiration is strategic for cell survival allowing the allocation of more resources to the fermentation pathway, thus maintaining the cell energetic homeostasis.
Collapse
Affiliation(s)
| | - Fabrizio Cartenì
- b Lab Applied Ecology and System Dynamics, Dip. Agraria , Università di Napoli "Federico II" , Portici ( NA ), Italy
| | - Palma Parascandola
- c Dip. Ingegneria Industriale , Università di Salerno , Fisciano ( SA ), Italy
| | - Jacinta Serpa
- d Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas , Universidade Nova de Lisboa , Campo Mártires da Pátria 130 , Lisbon , Portugal.,e Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG) , Rua Prof Lima Basto 1099-023 , Lisbon , Portugal
| | - Stefano Mazzoleni
- b Lab Applied Ecology and System Dynamics, Dip. Agraria , Università di Napoli "Federico II" , Portici ( NA ), Italy
| |
Collapse
|
132
|
Chen L, Bai Y, Everaert N, Li X, Tian G, Hou C, Zhang D. Effects of protein phosphorylation on glycolysis through the regulation of enzyme activity in ovine muscle. Food Chem 2019; 293:537-544. [DOI: 10.1016/j.foodchem.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023]
|
133
|
Dal Co A, Ackermann M, van Vliet S. Metabolic activity affects the response of single cells to a nutrient switch in structured populations. J R Soc Interface 2019; 16:20190182. [PMID: 31288652 PMCID: PMC6685030 DOI: 10.1098/rsif.2019.0182] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Microbes live in ever-changing environments where they need to adapt their metabolism to different nutrient conditions. Many studies have characterized the response of genetically identical cells to nutrient switches in homogeneous cultures; however, in nature, microbes often live in spatially structured groups such as biofilms where cells can create metabolic gradients by consuming and releasing nutrients. Consequently, cells experience different local microenvironments and vary in their phenotype. How does this phenotypic variation affect the ability of cells to cope with nutrient switches? Here, we address this question by growing dense populations of Escherichia coli in microfluidic chambers and studying a switch from glucose to acetate at the single-cell level. Before the switch, cells vary in their metabolic activity: some grow on glucose, while others cross-feed on acetate. After the switch, only few cells can resume growth after a period of lag. The probability to resume growth depends on a cells' phenotype prior to the switch: it is highest for cells cross-feeding on acetate, while it depends in a non-monotonic way on the growth rate for cells growing on glucose. Our results suggest that the strong phenotypic variation in spatially structured populations might enhance their ability to cope with fluctuating environments.
Collapse
Affiliation(s)
- Alma Dal Co
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Simon van Vliet
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, CanadaV6T 1Z4
| |
Collapse
|
134
|
Shen Y, Chen G, Zhuang L, Xu L, Lin J, Liu L. ARHGAP4 mediates the Warburg effect in pancreatic cancer through the mTOR and HIF-1α signaling pathways. Onco Targets Ther 2019; 12:5003-5012. [PMID: 31303760 PMCID: PMC6611502 DOI: 10.2147/ott.s207560] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 01/28/2023] Open
Abstract
Objective The phenomenon that cancer cells avidly exhibit glycolysis with lactate secretion and decrease in mitochondrial activity under aerobic conditions is known historically as the Warburg effect. Rho GTPase-activating protein 4 (ARHGAP4) is an important negative regulator of the Rho signaling pathway that was associated with the tumorigenesis. Our study aims to determine the function of ARHGAP4 in controlling the glycolytic process of pancreatic cancer in vitro and possible molecular mechanism involved. Methods ARHGAP4 and PKM2 expressions in pancreatic cancer tissues were measured by immunohistochemistry. Human pancreatic cancer cells transfected with ARHGAP4 expressing lentivirus or siRNA were treated with either mTOR inhibitor (Rapamycin) or HIF-1α inhibitor (YC-1), and the effects were analyzed on cell viability, glucose uptake, lactate release, and the levels of ARHGAP4, p-mTOR, mTOR, PKM2, and HIF-1α expression. Results Our findings showed that ARHGAP4 and PKM2 expressions were, respectively, down-regulated and up-regulated in pancreatic cancer tissues. Overexpression of ARHGAP4 significantly inhibited cell viability, glucose uptake, lactate release, PKM2 expression, and activation of mTOR and HIF-1α signaling pathways in pancreatic cancer cells while ARHGAP4 silencing and treatment of Rapamycin or YC-1 showed inverse effects. Additionally, ARHGAP4 downregulation induced cell morphology of pancreatic cancer was inhibited by Rapamycin or YC-1 treatment. Conclusion These findings suggest that mTOR and HIF-1α signaling pathways can regulate the ARHGAP4-mediated glycolytic process of pancreatic cancer.
Collapse
Affiliation(s)
- Yehua Shen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Gang Chen
- Department of Pediatric Cardiothoracic Surgery, Children's Hospital of Fudan University, Shanghai 201102, People's Republic of China
| | - Liping Zhuang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Junhua Lin
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
135
|
Role of coenzymes in cancer metabolism. Semin Cell Dev Biol 2019; 98:44-53. [PMID: 31176736 DOI: 10.1016/j.semcdb.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Cancer is a heterogeneous set of diseases characterized by the rewiring of cellular signaling and the reprogramming of metabolic pathways to sustain growth and proliferation. In past decades, studies were focused primarily on the genetic complexity of cancer. Recently, increasing number of studies have discovered several mutations among metabolic enzymes in different tumor cells. Most of the enzymes are regulated by coenzymes, organic cofactors, that function as intermediate carrier of electrons or functional groups that are transferred during the reaction. However, the precise role of cofactors is not well elucidated. In this review, we discuss several metabolic enzymes associated to cancer metabolism rewiring, whose inhibition may represent a therapeutic target. Such enzymes, upon expression or inhibition, may impact also the coenzymes levels, but only in few cases, it was possible to direct correlate coenzymes changes with a specific enzyme. In addition, we also summarize an up-to-date information on biological role of some coenzymes, preclinical and clinical studies, that have been carried out in various cancers and their outputs.
Collapse
|
136
|
Dutta P, Perez MR, Lee J, Kang Y, Pratt M, Salzillo TC, Weygand J, Zacharias NM, Gammon ST, Koay EJ, Kim M, McAllister F, Sen S, Maitra A, Piwnica-Worms D, Fleming JB, Bhattacharya PK. Combining Hyperpolarized Real-Time Metabolic Imaging and NMR Spectroscopy To Identify Metabolic Biomarkers in Pancreatic Cancer. J Proteome Res 2019; 18:2826-2834. [PMID: 31120258 DOI: 10.1021/acs.jproteome.9b00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that progresses without any symptom, and oftentimes, it is detected at an advanced stage. The lack of prior symptoms and effective treatments have created a knowledge gap in the management of this lethal disease. This issue can be addressed by developing novel noninvasive imaging-based biomarkers in PDAC. We explored in vivo hyperpolarized (HP) 13C MRS of pyruvate to lactate conversion and ex vivo 1H NMR spectroscopy in a panel of well-annotated patient-derived PDAC xenograft (PDXs) model and investigated the correlation between aberrant glycolytic metabolism and aggressiveness of the tumor. Real-time metabolic imaging data demonstrate the immediate intracellular conversion of HP 13C pyruvate to lactate after intravenous injection interrogating upregulated lactate dehydrogenase (LDH) activity in aggressive PDXs. Total ex vivo lactate measurement by 1H NMR spectroscopy showed a direct correlation with in vivo dynamic pyruvate-to-lactate conversion and demonstrated the potential of dynamic metabolic flux as a biomarker of total lactate concentration and aggressiveness of the tumor. Furthermore, the metabolite concentrations were very distinct among all four tumor types analyzed in this study. Overexpression of LDH-A and hypoxia-inducible factor (HIF-1α) plays a significant role in the conversion kinetics of HP pyruvate-to-lactate in tumors. Collectively, these data identified aberrant metabolic characteristics of pancreatic cancer PDXs and could potentially delineate metabolic targets for therapeutic intervention. Metabolic imaging with HP pyruvate and NMR metabolomics may enable identification and classification of aggressive subtypes of patient-derived xenografts. Translation of this real-time metabolic technique to the clinic may have the potential to improve the management of patients at high risk of developing pancreatic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jason B Fleming
- Department of Gastrointestinal Oncology , H. Lee Moffitt Cancer Center , Tampa , Florida 33612 , United States
| | | |
Collapse
|
137
|
Ferro M, Buonerba C, Di Lorenzo G, de Cobelli O, Terracciano D. Dysregulated metabolism: a relevant player in prostate cancer progression and clinical management. Transl Androl Urol 2019; 8:S109-S111. [PMID: 31143683 DOI: 10.21037/tau.2018.12.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Carlo Buonerba
- Medical Oncology Division, Department of Clinical Medicine and Surgery, Portici, Italy.,Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Giuseppe Di Lorenzo
- Medical Oncology Division, Department of Clinical Medicine and Surgery, Portici, Italy.,Department of Medicine and Health Sciences 'Vincenzo Tiberio' University of Molise, Campobasso, Italy
| | | | - Daniela Terracciano
- Department of Translational Medical Sciences, University "Federico II", Naples, Italy
| |
Collapse
|
138
|
Chapman NM, Shrestha S, Chi H. Metabolism in Immune Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:1-85. [PMID: 28875486 DOI: 10.1007/978-94-024-1170-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is a central determinant of organismal health. Functional immune responses require quiescent immune cells to rapidly grow, proliferate, and acquire effector functions when they sense infectious agents or other insults. Specialized metabolic programs are critical regulators of immune responses, and alterations in immune metabolism can cause immunological disorders. There has thus been growing interest in understanding how metabolic processes control immune cell functions under normal and pathophysiological conditions. In this chapter, we summarize how metabolic programs are tuned and what the physiological consequences of metabolic reprogramming are as they relate to immune cell homeostasis, differentiation, and function.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
139
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System. ACS Synth Biol 2019; 8:787-795. [PMID: 30856339 DOI: 10.1021/acssynbio.8b00479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Energy metabolism plays an important role in the growth and central metabolic pathways of cells. Manipulating energy metabolism is an efficient strategy to improve the formation of target products and to understand the effects of altering intracellular energy levels on global metabolic networks. Candida glabrata, as a dominant yeast strain for producing pyruvate, principally converts glucose to pyruvate through the glycolytic pathway. However, this process can be severely inhibited by a high intracellular ATP content. Here, in combination with the physiological characteristics of C. glabrata, efforts have been made to construct an ATP futile cycle system (ATP-FCS) in C. glabrata to decrease the intracellular ATP level without destroying F0F1-ATPase function. ATP-FCS was capable of decreasing the intracellular ATP level by 51.0% in C. glabrata. The decrease in the ATP level directly led to an increased pyruvate production and glycolysis efficiency. Moreover, we further optimized different aspects of the ATP-FCS to maximize pyruvate accumulation. Combining ATP-FCS with further genetic optimization strategies, we achieved a final pyruvate titer of 40.2 g/L, with 4.35 g pyruvate/g dry cell weight and a 0.44 g/g substrate conversion rate in 500 mL flasks, which represented increases of 98.5%, 322.3%, and 160%, respectively, compared with the original strain. Thus, these strategies hold great potential for increasing the synthesis of other organic acids in microbes.
Collapse
|
140
|
Curcumin and its Potential for Systemic Targeting of Inflamm-Aging and Metabolic Reprogramming in Cancer. Int J Mol Sci 2019; 20:ijms20051180. [PMID: 30857125 PMCID: PMC6429141 DOI: 10.3390/ijms20051180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Pleiotropic effects of curcumin have been the subject of intensive research. The interest in this molecule for preventive medicine may further increase because of its potential to modulate inflamm-aging. Although direct data related to its effect on inflamm-aging does not exist, there is a strong possibility that its well-known anti-inflammatory properties may be relevant to this phenomenon. Curcumin's binding to various proteins, which was shown to be dependent on cellular oxidative status, is yet another feature for exploration in depth. Finally, the binding of curcumin to various metabolic enzymes is crucial to curcumin's interference with powerful metabolic machinery, and can also be crucial for metabolic reprogramming of cancer cells. This review offers a synthesis and functional links that may better explain older data, some observational, in light of the most recent findings on curcumin. Our focus is on its modes of action that have the potential to alleviate specific morbidities of the 21st century.
Collapse
|
141
|
Zhang J, Gelman IH, Katsuta E, Liang Y, Wang X, Li J, Qu J, Yan L, Takabe K, Hochwald SN. Glucose Drives Growth Factor-Independent Esophageal Cancer Proliferation via Phosphohistidine-Focal Adhesion Kinase Signaling. Cell Mol Gastroenterol Hepatol 2019; 8:37-60. [PMID: 30836148 PMCID: PMC6518323 DOI: 10.1016/j.jcmgh.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Most targeted therapies against cancer are designed to block growth factor-stimulated oncogenic growth. However, response rates are low, and resistance to therapy is high. One mechanism might relate to the ability of tumor cells to induce growth factor-independent proliferation (GFIP). This project aims to understand how (1) cancer cells preferentially derive a major growth advantage by using critical metabolic products of glucose, such as phosphoenolpyruvate (PEP), to drive proliferation and (2) esophageal squamous cell carcinoma (ESCC) cells, but not esophageal adenocarcinoma cells, can induce GFIP by using glycolysis to activate phosphohistidine (poHis)-mediated signaling through focal adhesion kinase (FAK). METHODS The hypothesis to be tested is that ESCC GFIP induced by glucose is facilitated by PEP-mediated histidine phosphorylation (poHis) of FAK, leading to the possibility that ESCC progression can be targeted by blocking poHis signaling. Biochemical, molecular biological, and in vivo experiments including bromodeoxyuridine/5-ethynyl-2'-deoxyuridine labeling, radioisotope tracing, CRISPR gene editing, and analysis of signaling gene sets in human cancer tissues and xenograft models were performed to define the mechanisms underlying ESCC GFIP. RESULTS Glucose promotes growth factor-independent DNA replication and accumulation of PEP in ESCC cells. PEP is the direct phospho-donor to poHis58-FAK within a known "HG" motif for histidine phosphorylation. Glucose-induced poHis58 promotes growth factor-independent FAK-mediated proliferation. Furthermore, glucose activates phosphatidylinositol-3'-kinase/AKT via poHis58-FAK signaling. Non-phosphorylatable His58A-FAK reduces xenograft growth. CONCLUSIONS Glucose induces ESCC, but not esophageal adenocarcinoma GFIP via PEP-His58-FAK-AKT signaling. ESCC progression is controlled by actionable growth factor-independent, glucose-induced pathways that regulate proliferation through novel histidine phosphorylation of FAK.
Collapse
Affiliation(s)
- Jianliang Zhang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H. Gelman
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yuanzi Liang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Xue Wang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jun Li
- University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Jun Qu
- University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Li Yan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Steven N. Hochwald
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York,Correspondence Address correspondence to: Steven N. Hochwald, MD, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York 14263. fax: (716) 845-1060.
| |
Collapse
|
142
|
Ghanbari Movahed Z, Rastegari-Pouyani M, Mohammadi MH, Mansouri K. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomed Pharmacother 2019; 112:108690. [PMID: 30798124 DOI: 10.1016/j.biopha.2019.108690] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells can adapt to low energy sources in the face of ATP depletion as well as to their high levels of ROS by altering their metabolism and energy production networks which might also have a role in determining cell fate and developing drug resistance. Cancer cells are generally characterized by increased glycolysis. This is while; cancer stem cells (CSCs) exhibit an enhanced pentose phosphate pathway (PPP) metabolism. Based on the current literature, we suggest that cancer cells when encountering ROS, first increase the glycolysis rate and then following the continuation of oxidative stress, the metabolic balance is skewed from glycolysis to PPP. Therefore, we hypothesize in this review that in cancer cells this metabolic deviation during persistent oxidative stress might be a sign of cancer cells' shift towards CSCs, an issue that might be pivotal in more effective targeting of cancer cells and CSCs.
Collapse
Affiliation(s)
- Zahra Ghanbari Movahed
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- HSCT research center, Laboratory Hematology and blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran; Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
143
|
Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell 2019; 48:475-490.e7. [PMID: 30713072 DOI: 10.1016/j.devcel.2019.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
The morphogenetic process of mammalian cardiac development is complex and highly regulated spatiotemporally by multipotent cardiac stem/progenitor cells (CPCs). Mouse studies have been informative for understanding mammalian cardiogenesis; however, similar insights have been poorly established in humans. Here, we report comprehensive gene expression profiles of human cardiac derivatives from multipotent CPCs to intermediates and mature cardiac cells by population and single-cell RNA-seq using human embryonic stem cell-derived and embryonic/fetal heart-derived cardiac cells micro-dissected from specific heart compartments. Importantly, we discover a uniquely human subset of cono-ventricular region-specific CPCs, marked by LGR5. At 4 to 5 weeks of fetal age, the LGR5+ population appears to emerge specifically in the proximal outflow tract of human embryonic hearts and thereafter promotes cardiac development and alignment through expansion of the ISL1+TNNT2+ intermediates. The current study contributes to a deeper understanding of human cardiogenesis, which may uncover the putative origins of certain human congenital cardiac malformations.
Collapse
|
144
|
Strmiska V, Michalek P, Eckschlager T, Stiborova M, Adam V, Krizkova S, Heger Z. Prostate cancer-specific hallmarks of amino acids metabolism: Towards a paradigm of precision medicine. Biochim Biophys Acta Rev Cancer 2019; 1871:248-258. [PMID: 30708041 DOI: 10.1016/j.bbcan.2019.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023]
Abstract
So far multiple differences in prostate cancer-specific amino acids metabolism have been discovered. Moreover, attempts to utilize these alterations for prostate cancer diagnosis and treatment have been made. The prostate cancer metabolism and biosynthesis of amino acids are particularly focused on anaplerosis more than on energy production. Other crucial requirements on amino acids pool come from the serine, one‑carbon cycle, glycine synthesis pathway and folate metabolism forming major sources of interproducts for synthesis of nucleobases necessary for rapidly proliferating cells. Considering the lack of some amino acids biosynthetic pathways and/or their extraordinary importance for prostate cancer cells, there is a widespread potential for targeted therapeutic applications with no effect on non-malignant cells. This review summarizes the up-to-date knowledge of the importance of amino acids for prostate cancer pathogenesis with a special emphasis on potential applications of metabolic variabilities in the new oncologic paradigm of precision medicine.
Collapse
Affiliation(s)
- Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2(nd) Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague, 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
145
|
A critical review of the role of M 2PYK in the Warburg effect. Biochim Biophys Acta Rev Cancer 2019; 1871:225-239. [PMID: 30708038 PMCID: PMC6525063 DOI: 10.1016/j.bbcan.2019.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
It is becoming generally accepted in recent literature that the Warburg effect in cancer depends on inhibition of M2PYK, the pyruvate kinase isozyme most commonly expressed in tumors. We remain skeptical. There continues to be a general lack of solid experimental evidence for the underlying idea that a bottle neck in aerobic glycolysis at the level of M2PYK results in an expanded pool of glycolytic intermediates (which are thought to serve as building blocks necessary for proliferation and growth of cancer cells). If a bottle neck at M2PYK exists, then the remarkable increase in lactate production by cancer cells is a paradox, particularly since a high percentage of the carbons of lactate originate from glucose. The finding that pyruvate kinase activity is invariantly increased rather than decreased in cancer undermines the logic of the M2PYK bottle neck, but is consistent with high lactate production. The "inactive" state of M2PYK in cancer is often described as a dimer (with reduced substrate affinity) that has dissociated from an active tetramer of M2PYK. Although M2PYK clearly dissociates easier than other isozymes of pyruvate kinase, it is not clear that dissociation of the tetramer occurs in vivo when ligands are present that promote tetramer formation. Furthermore, it is also not clear whether the dissociated dimer retains any activity at all. A number of non-canonical functions for M2PYK have been proposed, all of which can be challenged by the finding that not all cancer cell types are dependent on M2PYK expression. Additional in-depth studies of the Warburg effect and specifically of the possible regulatory role of M2PYK in the Warburg effect are needed.
Collapse
|
146
|
Choi S, Snider AJ. Diet, lipids and colon cancer. CELLULAR NUTRIENT UTILIZATION AND CANCER 2019; 347:105-144. [DOI: 10.1016/bs.ircmb.2019.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
147
|
18F-FDG and 11C-choline uptake in proliferating tumor cells is dependent on the cell cycle in vitro. Ann Nucl Med 2018; 33:237-243. [PMID: 30588580 PMCID: PMC6450840 DOI: 10.1007/s12149-018-01325-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/19/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Among different PET tracers, 18F-fludeoxyglucose (FDG) and 11C-choline are known to have a high tumor uptake correlated with a high mitotic index of tumor cells. Thus, the uptake of 18F-FDG and 11C-choline may be dependent on the cell cycle. In the present study, we examined the uptake of 18F-FDG and 11C-choline in cancer cell lines by cell cycle synchronization to clarify the biological properties of cancer cells with respect to each tracer. METHODS HeLa S3 Cells were synchronized by the double thymidine (TdR) block methods. 18F-FDG and 11C-choline were administered to synchronized cells, and the radioactivity per cell was measured to compare the cellular uptake of the tracers during S, G2/M, and G1 phases. Flow cytometry (FCM) was performed to measure the proportion of cells in G1, S, and G2/M phases. Furthermore, the levels of glucose transporter 1 (GLUT1) and choline transporter-like protein 1 (CTL1) in the cell were evaluated by FCM. RESULTS The uptake of 18F-FDG was the highest in S to G2/M phases, and markedly decreased in G1 phase. The uptake of 11C-choline reached its peak in G2/M, and decreased in G1 phase. The level of GLUT1 expression was similar to that of 18F-FDG uptake during the cell cycle, and the level of CTL1 expression was similar to that of 11C-choline uptake throughout the cell cycle. CONCLUSIONS In this in vitro study, we demonstrated that 18F-FDG and 11C-choline had the highest uptake in S to G2/M phases and in G2/M phase, respectively, with a rapid decrease in G1 phase. These findings suggest that 18F-FDG and 11C-choline have a high accumulation in tumor cells with a high mitotic index. Furthermore, our study suggests that the expression of GLUT1 and CTL1 has cell cycle dependence, and the changes of 18F-FDG and 11C-choline accumulation seem to be caused by the above properties of these transporters.
Collapse
|
148
|
Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun 2018; 9:5442. [PMID: 30575741 PMCID: PMC6303315 DOI: 10.1038/s41467-018-07868-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) catalyzes the committed step in de novo serine biosynthesis. Paradoxically, PHGDH and serine synthesis are required in the presence of abundant environmental serine even when serine uptake exceeds the requirements for nucleotide synthesis. Here, we establish a mechanism for how PHGDH maintains nucleotide metabolism. We show that inhibition of PHGDH induces alterations in nucleotide metabolism independent of serine utilization. These changes are not attributable to defects in serine-derived nucleotide synthesis and redox maintenance, another key aspect of serine metabolism, but result from disruption of mass balance within central carbon metabolism. Mechanistically, this leads to simultaneous alterations in both the pentose phosphate pathway and the tri-carboxylic acid cycle, as we demonstrate based on a quantitative model. These findings define a mechanism whereby disruption of one metabolic pathway induces toxicity by simultaneously affecting the activity of multiple related pathways. Serine synthesis from glucose is required even when serine is available from the environment. Here, the authors explain this paradox by showing that the enzyme PHGDH enables nucleotide synthesis by coordinating anabolic fluxes related to central carbon metabolism, independent of its role in serine production.
Collapse
|
149
|
Xie B, Wang S, Jiang N, Li JJ. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance. Cancer Lett 2018; 443:56-66. [PMID: 30481564 DOI: 10.1016/j.canlet.2018.11.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/27/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
A mammalian cell houses two genomes located separately in the nucleus and mitochondria. During evolution, communications and adaptations between these two genomes occur extensively to achieve and sustain homeostasis for cellular functions and regeneration. Mitochondria provide the major cellular energy and contribute to gene regulation in the nucleus, whereas more than 98% of mitochondrial proteins are encoded by the nuclear genome. Such two-way signaling traffic presents an orchestrated dynamic between energy metabolism and consumption in cells. Recent reports have elucidated the way how mitochondrial bioenergetics synchronizes with the energy consumption for cell cycle progression mediated by cyclin B1/CDK1 as the communicator. This review is to recapitulate cyclin B1/CDK1 mediated mitochondrial activities in cell cycle progression and stress response as well as its potential link to reprogram energy metabolism in tumor adaptive resistance. Cyclin B1/CDK1-mediated mitochondrial bioenergetics is applied as an example to show how mitochondria could timely sense the cellular fuel demand and then coordinate ATP output. Such nucleus-mitochondria oscillation may play key roles in the flexible bioenergetics required for tumor cell survival and compromising the efficacy of anti-cancer therapy. Further deciphering the cyclin B1/CDK1-controlled mitochondrial metabolism may invent effect targets to treat resistant cancers.
Collapse
Affiliation(s)
- Bowen Xie
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Shuangyan Wang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Nian Jiang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA.
| |
Collapse
|
150
|
Lv WW, Liu D, Liu XC, Feng TN, Li L, Qian BY, Li WX. Effects of PKM2 on global metabolic changes and prognosis in hepatocellular carcinoma: from gene expression to drug discovery. BMC Cancer 2018; 18:1150. [PMID: 30463528 PMCID: PMC6249977 DOI: 10.1186/s12885-018-5023-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumor that threatens global human health. High PKM2 expression is widely reported in multiple cancers, especially in HCC. This study aimed to explore the effects of PKM2 on global gene expression, metabolic damages, patient prognosis, and multiple transcriptional regulation relationships, as well as to identify several key metabolic genes and screen some small-molecule drugs. METHODS Transcriptome and clinical HCC data were downloaded from the NIH-GDC repository. Information regarding the metabolic genes and subsystems was collected from the Recon 2 human metabolic model. Drug-protein interaction data were obtained from the DrugBank and UniProt databases. We defined patients with PKM2 expression levels ≥11.25 as the high-PKM2 group, and those with low PKM2 expression (< 11.25) were defined as the low-PKM2 group. RESULTS The results showed that the global metabolic gene expression levels were obviously divided into the high- or low-PKM2 groups. In addition, a greater number of affected metabolic subsystems were observed in the high-PKM2 group. Furthermore, we identified 98 PKM2-correlated deregulated metabolic genes that were associated with poor overall patient survival. Together, these findings suggest more comprehensive influences of PKM2 on HCC. In addition, we screened several small-molecule drugs that target these metabolic enzymes, some of which have been used in antitumor clinical studies. CONCLUSIONS HCC patients with high PKM2 expression showed more severe metabolic damage, transcriptional regulation imbalance and poor prognosis than low-PKM2 individuals. We believe that our study provides valuable information for pathology research and drug development for HCC.
Collapse
Affiliation(s)
- Wen-Wen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Dahai Liu
- School of Stomatology and Medicine, Foshan University, Foshan, 528000 Guangdong China
| | - Xing-Cun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032 Anhui China
| | - Tie-Nan Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Lei Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Bi-Yun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Wen-Xing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204 Yunnan China
| |
Collapse
|