101
|
Neuronal mechanisms regulating the critical period of sensory experience-dependent song learning. Neurosci Res 2019; 140:53-58. [DOI: 10.1016/j.neures.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
|
102
|
Kulbatskii DS, Bychkov ML, Lyukmanova EN. Human Nicotinic Acetylcholine Receptors: Part I—Structure, Function, and Role in Neuromuscular Transmission and CNS Functioning. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
103
|
Grieco SF, Holmes TC, Xu X. Neuregulin directed molecular mechanisms of visual cortical plasticity. J Comp Neurol 2019; 527:668-678. [PMID: 29464684 PMCID: PMC6103898 DOI: 10.1002/cne.24414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Experience-dependent critical period (CP) plasticity has been extensively studied in the visual cortex. Monocular deprivation during the CP affects ocular dominance, limits visual performance, and contributes to the pathological etiology of amblyopia. Neuregulin-1 (NRG1) signaling through its tyrosine kinase receptor ErbB4 is essential for the normal development of the nervous system and has been linked to neuropsychiatric disorders such as schizophrenia. We discovered recently that NRG1/ErbB4 signaling in PV neurons is critical for the initiation of CP visual cortical plasticity by controlling excitatory synaptic inputs onto PV neurons and thus PV-cell mediated cortical inhibition that occurs following visual deprivation. Building on this discovery, we review the existing literature of neuregulin signaling in developing and adult cortex and address the implication of NRG/ErbB4 signaling in visual cortical plasticity at the cellular and circuit levels. NRG-directed research may lead to therapeutic approaches to reactivate plasticity in the adult cortex.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Todd C Holmes
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| |
Collapse
|
104
|
Sheynin Y, Chamoun M, Baldwin AS, Rosa-Neto P, Hess RF, Vaucher E. Cholinergic Potentiation Alters Perceptual Eye Dominance Plasticity Induced by a Few Hours of Monocular Patching in Adults. Front Neurosci 2019; 13:22. [PMID: 30766471 PMCID: PMC6365463 DOI: 10.3389/fnins.2019.00022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
A few hours of monocular deprivation with a diffuser eye patch temporarily strengthens the contribution of the deprived eye to binocular vision. This shift in favor of the deprived eye is characterized as a form of adult visual plasticity. Studies in animal and human models suggest that neuromodulators can enhance adult brain plasticity in general. Specifically, acetylcholine has been shown to improve certain aspects of visual function and plasticity in adulthood. We investigated whether a single administration of donepezil (a cholinesterase inhibitor) could further augment the temporary shift in perceptual eye dominance that occurs after 2 h of monocular patching. Twelve healthy adults completed two experimental sessions while taking either donepezil (5 mg, oral) or a placebo (lactose) pill. We measured perceptual eye dominance using a binocular phase combination task before and after 2 h of monocular deprivation with a diffuser eye patch. Participants in both groups demonstrated a significant shift in favor of the patched eye after monocular deprivation, however our results indicate that donepezil significantly reduces the magnitude and duration of the shift. We also investigated the possibility that donepezil reduces the amount of time needed to observe a shift in perceptual eye dominance relative to placebo control. For this experiment, seven subjects completed two sessions where we reduced the duration of deprivation to 1 h. Donepezil reduces the magnitude and duration of the patching-induced shift in perceptual eye dominance in this experiment as well. To verify whether the effects we observed using the binocular phase combination task were also observable in a different measure of sensory eye dominance, six subjects completed an identical experiment using a binocular rivalry task. These results also indicate that cholinergic enhancement impedes the shift that results from short-term deprivation. In summary, our study demonstrates that enhanced cholinergic potentiation interferes with the consolidation of the perceptual eye dominance plasticity induced by several hours of monocular deprivation.
Collapse
Affiliation(s)
- Yasha Sheynin
- McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montréal, QC, Canada
| | - Mira Chamoun
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Alex S. Baldwin
- McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Robert F. Hess
- McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
105
|
Sakai A, Sugiyama S. Experience-dependent transcriptional regulation in juvenile brain development. Dev Growth Differ 2019; 60:473-482. [PMID: 30368782 DOI: 10.1111/dgd.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Abstract
During brain development, once primary neural networks are formed, they are largely sculpted by environmental stimuli. The juvenile brain has a unique time window termed the critical period, in which neuronal circuits are remodeled by experience. Accumulating evidence indicates that abnormal rewiring of circuits in early life contributes to various neurodevelopmental disorders at later stages of life. Recent studies implicate two important aspects for activation of the critical period, both of which are experience-dependent: (a) proper excitatory/inhibitory (E/I) balance of neural circuit achieved during developmental trajectory of inhibitory interneurons, and (b) epigenetic regulation allowing flexible gene expression for neuronal plasticity. In this review, we discuss the molecular mechanisms of juvenile brain plasticity from the viewpoints of transcriptional and chromatin regulation, with a focus on Otx2 homeoprotein. Depending on experience, Otx2 is transported into cortical parvalbumin-positive interneurons (PV cells), where it induces PV cell maturation to activate the critical period. Understanding the unique behavior and function of Otx2 as a "messenger" of experience should therefore provide insights into mechanisms of juvenile brain development. Recently identified downstream targets of Otx2 suggest novel roles of Otx2 in homeostasis of PV cells, and, moreover, in regulation of chromatin state, which is important for neuronal plasticity. We further discuss epigenetic changes during postnatal brain development spanning the critical period. Different aspects of chromatin regulation may underlie experience-dependent neuronal development and plasticity.
Collapse
Affiliation(s)
- Akiko Sakai
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sayaka Sugiyama
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
106
|
An opposing function of paralogs in balancing developmental synapse maturation. PLoS Biol 2018; 16:e2006838. [PMID: 30586380 PMCID: PMC6324823 DOI: 10.1371/journal.pbio.2006838] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
The disc-large (DLG)-membrane-associated guanylate kinase (MAGUK) family of proteins forms a central signaling hub of the glutamate receptor complex. Among this family, some proteins regulate developmental maturation of glutamatergic synapses, a process vulnerable to aberrations, which may lead to neurodevelopmental disorders. As is typical for paralogs, the DLG-MAGUK proteins postsynaptic density (PSD)-95 and PSD-93 share similar functional domains and were previously thought to regulate glutamatergic synapses similarly. Here, we show that they play opposing roles in glutamatergic synapse maturation. Specifically, PSD-95 promoted, whereas PSD-93 inhibited maturation of immature α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor (AMPAR)-silent synapses in mouse cortex during development. Furthermore, through experience-dependent regulation of its protein levels, PSD-93 directly inhibited PSD-95's promoting effect on silent synapse maturation in the visual cortex. The concerted function of these two paralogs governed the critical period of juvenile ocular dominance plasticity (jODP), and fine-tuned visual perception during development. In contrast to the silent synapse-based mechanism of adjusting visual perception, visual acuity improved by different mechanisms. Thus, by controlling the pace of silent synapse maturation, the opposing but properly balanced actions of PSD-93 and PSD-95 are essential for fine-tuning cortical networks for receptive field integration during developmental critical periods, and imply aberrations in either direction of this process as potential causes for neurodevelopmental disorders.
Collapse
|
107
|
Cortical dendritic spine development and plasticity: insights from in vivo imaging. Curr Opin Neurobiol 2018; 53:76-82. [DOI: 10.1016/j.conb.2018.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/14/2023]
|
108
|
Lombaert N, Hennes M, Gilissen S, Schevenels G, Aerts L, Vanlaer R, Geenen L, Van Eeckhaut A, Smolders I, Nys J, Arckens L. 5-HTR 2A and 5-HTR 3A but not 5-HTR 1A antagonism impairs the cross-modal reactivation of deprived visual cortex in adulthood. Mol Brain 2018; 11:65. [PMID: 30400993 PMCID: PMC6218970 DOI: 10.1186/s13041-018-0404-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
Visual cortical areas show enhanced tactile responses in blind individuals, resulting in improved behavioral performance. Induction of unilateral vision loss in adult mice, by monocular enucleation (ME), is a validated model for such cross-modal brain plasticity. A delayed whisker-driven take-over of the medial monocular zone of the visual cortex is preceded by so-called unimodal plasticity, involving the potentiation of the spared-eye inputs in the binocular cortical territory. Full reactivation of the sensory-deprived contralateral visual cortex is accomplished by 7 weeks post-injury. Serotonin (5-HT) is known to modulate sensory information processing and integration, but its impact on cortical reorganization after sensory loss, remains largely unexplored. To address this issue, we assessed the involvement of 5-HT in ME-induced cross-modal plasticity and the 5-HT receptor (5-HTR) subtype used. We first focused on establishing the impact of ME on the total 5-HT concentration measured in the visual cortex and in the somatosensory barrel field. Next, the changes in expression as a function of post-ME recovery time of the monoamine transporter 2 (vMAT2), which loads 5-HT into presynaptic vesicles, and of the 5-HTR1A and 5-HTR3A were assessed, in order to link these temporal expression profiles to the different types of cortical plasticity induced by ME. In order to accurately pinpoint which 5-HTR exactly mediates ME-induced cross-modal plasticity, we pharmacologically antagonized the 5-HTR1A, 5-HTR2A and 5-HTR3A subtypes. This study reveals brain region-specific alterations in total 5-HT concentration, time-dependent modulations in vMAT2, 5-HTR1A and 5-HTR3A protein expression and 5-HTR antagonist-specific effects on the post-ME plasticity phenomena. Together, our results confirm a role for 5-HTR1A in the early phase of binocular visual cortex plasticity and suggest an involvement of 5-HTR2A and 5-HTR3A but not 5-HTR1A during the late cross-modal recruitment of the medial monocular visual cortex. These insights contribute to the general understanding of 5-HT function in cortical plasticity and may encourage the search for improved rehabilitation strategies to compensate for sensory loss.
Collapse
Affiliation(s)
- Nathalie Lombaert
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Maroussia Hennes
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Sara Gilissen
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Giel Schevenels
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Laetitia Aerts
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Ria Vanlaer
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Lieve Geenen
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium.,Present Address: Laboratory of Synapse Biology, VIB-KU Leuven Center for Brain and Disease Research, O&N IV, Herestraat 49, box 602, B-3000, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2467, B-3000, Leuven, Belgium.
| |
Collapse
|
109
|
|
110
|
Ferrer C, Hsieh H, Wollmuth LP. Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. J Neurophysiol 2018; 120:3063-3076. [PMID: 30303753 DOI: 10.1152/jn.00495.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit dynamics. In terms of the excitation driving PV interneuron activity, the N-methyl-d-aspartate receptor (NMDAR)-mediated component onto PV interneurons tends to be smaller than that onto pyramidal neurons but makes a significant contribution to their physiology and development. In the visual cortex, PV interneurons mature during the critical period. We hypothesize that during the critical period, the NMDAR-mediated signaling and functional properties of glutamatergic synapses onto PV interneurons are developmentally regulated. We therefore compared the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and NMDAR-mediated synaptic responses before (postnatal days 15-20, P15-P20), during (P25-P40), and after (P50-P60) the visual critical period. AMPAR miniature excitatory postsynaptic currents (mEPSCs) showed a developmental decrease in frequency, whereas NMDAR mEPSCs were absent or showed extremely low frequencies throughout development. For evoked responses, we consistently saw a NMDAR-mediated component, suggesting pre- or postsynaptic differences between evoked and spontaneous neurotransmission. Evoked responses showed input-specific developmental changes. For intralaminar inputs, the NMDAR-mediated component significantly decreased with development. This resulted in adult intralaminar inputs almost exclusively mediated by AMPARs, suited for the computation of synaptic inputs with precise timing, and likely having NMDAR-independent forms of plasticity. In contrast, interlaminar inputs maintained a stable NMDAR-mediated component throughout development but had a shift in the AMPAR paired-pulse ratio from depression to facilitation. Adult interlaminar inputs with facilitating AMPAR responses and a substantial NMDAR component would favor temporal integration of synaptic responses and could be modulated by NMDAR-dependent forms of plasticity. NEW & NOTEWORTHY We show for the first time input-specific developmental changes in the N-methyl-d-aspartate receptor component and short-term plasticity of the excitatory drive onto layers 2/3 parvalbumin-expressing (PV) interneurons in the visual cortex during the critical period. These developmental changes would lead to functionally distinct adult intralaminar and interlaminar glutamatergic inputs that would engage PV interneuron-mediated inhibition differently.
Collapse
Affiliation(s)
- Camilo Ferrer
- Graduate Program in Neuroscience, Stony Brook University , Stony Brook, New York.,Department of Neurobiology & Behavior, Stony Brook University , Stony Brook, New York
| | - Helen Hsieh
- Department of Surgery, Stony Brook University , Stony Brook, New York
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University , Stony Brook, New York.,Department of Biochemistry & Cell Biology, Stony Brook University , Stony Brook, New York.,Center for Nervous System Disorders, Stony Brook University , Stony Brook, New York
| |
Collapse
|
111
|
Aggrecan Directs Extracellular Matrix-Mediated Neuronal Plasticity. J Neurosci 2018; 38:10102-10113. [PMID: 30282728 DOI: 10.1523/jneurosci.1122-18.2018] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 01/07/2023] Open
Abstract
In the adult brain, the extracellular matrix (ECM) influences recovery after injury, susceptibility to mental disorders, and is in general a strong regulator of neuronal plasticity. The proteoglycan aggrecan is a core component of the condensed ECM structures termed perineuronal nets (PNNs), and the specific role of PNNs on neural plasticity remains elusive. Here, we genetically targeted the Acan gene encoding for aggrecan using a novel animal model. This allowed for conditional and targeted loss of aggrecan in vivo, which ablated the PNN structure and caused a shift in the population of parvalbumin-expressing inhibitory interneurons toward a high plasticity state. Selective deletion of the Acan gene in the visual cortex of male adult mice reinstated juvenile ocular dominance plasticity, which was mechanistically identical to critical period plasticity. Brain-wide targeting improved object recognition memory.SIGNIFICANCE STATEMENT The study provides the first direct evidence of aggrecan as the main functional constituent and orchestrator of perineuronal nets (PNNs), and that loss of PNNs by aggrecan removal induces a permanent state of critical period-like plasticity. Loss of aggrecan ablates the PNN structure, resulting in invoked juvenile plasticity in the visual cortex and enhanced object recognition memory.
Collapse
|
112
|
Patton MH, Blundon JA, Zakharenko SS. Rejuvenation of plasticity in the brain: opening the critical period. Curr Opin Neurobiol 2018; 54:83-89. [PMID: 30286407 DOI: 10.1016/j.conb.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
Cortical circuits are particularly sensitive to incoming sensory information during well-defined intervals of postnatal development called 'critical periods'. The critical period for cortical plasticity closes in adults, thus restricting the brain's ability to indiscriminately store new sensory information. For example, children acquire language in an exposure-based manner, whereas learning language in adulthood requires more effort and attention. It has been suggested that pairing sounds with the activation of neuromodulatory circuits involved in attention reopens this critical period. Here, we review two critical period hypotheses related to neuromodulation: cortical disinhibition and thalamic adenosine. We posit that these mechanisms co-regulate the critical period for auditory cortical plasticity. We also discuss ways to reopen this period and rejuvenate cortical plasticity in adults.
Collapse
Affiliation(s)
- Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
113
|
Soula A, Valere M, López-González MJ, Ury-Thiery V, Groppi A, Landry M, Nikolski M, Favereaux A. Small RNA-Seq reveals novel miRNAs shaping the transcriptomic identity of rat brain structures. Life Sci Alliance 2018; 1:e201800018. [PMID: 30456375 PMCID: PMC6238413 DOI: 10.26508/lsa.201800018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
Small RNA-Seq of the rat central nervous system reveals known and novel miRNAs specifically regulated in brain structures and correlated with the expression of their predicted target genes, suggesting a critical role in the transcriptomic identity of brain structures. In the central nervous system (CNS), miRNAs are involved in key functions, such as neurogenesis and synaptic plasticity. Moreover, they are essential to define specific transcriptomes in tissues and cells. However, few studies were performed to determine the miRNome of the different structures of the rat CNS, although a major model in neuroscience. Here, we determined by small RNA-Seq, the miRNome of the olfactory bulb, the hippocampus, the cortex, the striatum, and the spinal cord and showed the expression of 365 known miRNAs and 90 novel miRNAs. Differential expression analysis showed that several miRNAs were specifically enriched/depleted in these CNS structures. Transcriptome analysis by mRNA-Seq and correlation based on miRNA target predictions suggest that the specifically enriched/depleted miRNAs have a strong impact on the transcriptomic identity of the CNS structures. Altogether, these results suggest the critical role played by these enriched/depleted miRNAs, in particular the novel miRNAs, in the functional identities of CNS structures.
Collapse
Affiliation(s)
- Anaïs Soula
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Mélissa Valere
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - María-José López-González
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Vicky Ury-Thiery
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Alexis Groppi
- Centre de Bioinformatique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Marc Landry
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Macha Nikolski
- Centre de Bioinformatique de Bordeaux, University of Bordeaux, Bordeaux, France.,CNRS/Laboratoire Bordelais de Recherche en Informatique, University of Bordeaux, Talence, France
| | - Alexandre Favereaux
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| |
Collapse
|
114
|
Umemori J, Winkel F, Didio G, Llach Pou M, Castrén E. iPlasticity: Induced juvenile-like plasticity in the adult brain as a mechanism of antidepressants. Psychiatry Clin Neurosci 2018; 72:633-653. [PMID: 29802758 PMCID: PMC6174980 DOI: 10.1111/pcn.12683] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The network hypothesis of depression proposes that mood disorders reflect problems in information processing within particular neural networks. Antidepressants (AD), including selective serotonin reuptake inhibitors (SSRI), function by gradually improving information processing within these networks. AD have been shown to induce a state of juvenile-like plasticity comparable to that observed during developmental critical periods: Such critical-period-like plasticity allows brain networks to better adapt to extrinsic and intrinsic signals. We have coined this drug-induced state of juvenile-like plasticity 'iPlasticity.' A combination of iPlasticity induced by chronic SSRI treatment together with training, rehabilitation, or psychotherapy improves symptoms of neuropsychiatric disorders and issues underlying the developmentally or genetically malfunctioning networks. We have proposed that iPlasticity might be a critical component of AD action. We have demonstrated that iPlasticity occurs in the visual cortex, fear erasure network, extinction of aggression caused by social isolation, and spatial reversal memory in rodent models. Chronic SSRI treatment is known to promote neurogenesis and to cause dematuration of granule cells in the dentate gyrus and of interneurons, especially parvalbumin interneurons enwrapped by perineuronal nets in the prefrontal cortex, visual cortex, and amygdala. Brain-derived neurotrophic factor (BDNF), via its receptor tropomyosin kinase receptor B, is involved in the processes of synaptic plasticity, including neurogenesis, neuronal differentiation, weight of synapses, and gene regulation of synaptic formation. BDNF can be activated by both chronic SSRI treatment and neuronal activity. Accordingly, the BDNF/tropomyosin kinase receptor B pathway is critical for iPlasticity, but further analyses will be needed to provide mechanical insight into the processes of iPlasticity.
Collapse
Affiliation(s)
- Juzoh Umemori
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Frederike Winkel
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Giuliano Didio
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Maria Llach Pou
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Eero Castrén
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
115
|
Galvin VC, Arnsten AFT, Wang M. Evolution in Neuromodulation-The Differential Roles of Acetylcholine in Higher Order Association vs. Primary Visual Cortices. Front Neural Circuits 2018; 12:67. [PMID: 30210306 PMCID: PMC6121028 DOI: 10.3389/fncir.2018.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022] Open
Abstract
This review contrasts the neuromodulatory influences of acetylcholine (ACh) on the relatively conserved primary visual cortex (V1), compared to the newly evolved dorsolateral prefrontal association cortex (dlPFC). ACh is critical both for proper circuit development and organization, and for optimal functioning of mature systems in both cortical regions. ACh acts through both nicotinic and muscarinic receptors, which show very different expression profiles in V1 vs. dlPFC, and differing effects on neuronal firing. Cholinergic effects mediate attentional influences in V1, enhancing representation of incoming sensory stimuli. In dlPFC ACh plays a permissive role for network communication. ACh receptor expression and ACh actions in higher visual areas have an intermediate profile between V1 and dlPFC. This changing role of ACh modulation across association cortices may help to illuminate the particular susceptibility of PFC in cognitive disorders, and provide therapeutic targets to strengthen cognition.
Collapse
Affiliation(s)
- Veronica C. Galvin
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | | | | |
Collapse
|
116
|
Nissen NI, Anderson KR, Wang H, Lee HS, Garrison C, Eichelberger SA, Ackerman K, Im W, Miwa JM. Augmenting the antinociceptive effects of nicotinic acetylcholine receptor activity through lynx1 modulation. PLoS One 2018; 13:e0199643. [PMID: 29969495 PMCID: PMC6029753 DOI: 10.1371/journal.pone.0199643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) of the cholinergic system have been linked to antinociception, and therefore could be an alternative target for pain alleviation. nAChR activity has been shown to be regulated by the nicotinic modulator, lynx1, which forms stable complexes with nAChRs and has a negative allosteric action on their function. The objective in this study was to investigate the contribution of lynx1 to nicotine-mediated antinociception. Lynx1 contribution was investigated by mRNA expression analysis and electrophysiological responses to nicotine in the dorsal raphe nucleus (DRN), a part of the pain signaling pathway. In vivo antinociception was investigated in a test of nociception, the hot-plate analgesia assay with behavioral pharmacology. Lynx1/α4β2 nAChR interactions were investigated using molecular dynamics computational modeling. Nicotine evoked responses in serotonergic and GABAergic neurons in the DRN are augmented in slices lacking lynx1 (lynx1KO). The antinociceptive effect of nicotine and epibatidine is enhanced in lynx1KO mice and blocked by mecamylamine and DHβE. Computer simulations predict preferential binding affinity of lynx1 to the α:α interface that exists in the stoichiometry of the low sensitivity (α4)3(β2)2 nAChRs. Taken together, these data point to a role of lynx1 in mediating pain signaling in the DRN through preferential affinity to the low sensitivity α4β2 nAChRs. This study suggests that lynx1 is a possible alternative avenue for nociceptive modulation outside of opioid-based strategies.
Collapse
Affiliation(s)
- Neel I. Nissen
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kristin R. Anderson
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Huaixing Wang
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Hui Sun Lee
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Carly Garrison
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | | | - Kasarah Ackerman
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Wonpil Im
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Julie M. Miwa
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
- * E-mail:
| |
Collapse
|
117
|
Abstract
Although historically, treatment of amblyopia has been recommended prior to closure of a critical window in visual development, the existence and duration of that critical window is currently unclear. Moreover, there is clear evidence, both from animal and human studies of deprivation amblyopia, that there are different critical windows for different visual functions and that monocular and binocular deprivation have different neural and behavioral consequences. In view of the spectrum of critical windows for different visual functions and for different types of amblyopia, combined with individual variability in these windows, treatment of amblyopia has been increasingly offered to older children and adults. Nevertheless, treatment beyond the age of 7 years tends to be, on average, less effective than in younger children, and the high degree of variability in treatment response suggests that age is only one of many factors determining treatment response. Newly emerging treatment modalities may hold promise for more effective treatment of amblyopia at older ages. Additional studies are needed to characterize amblyopia by using new and existing clinical tests, leading to improved clinical classification and better prediction of treatment response. Attention also needs to be directed toward characterizing and measuring the impact of amblyopia on the patients' functional vision and health-related quality of life.
Collapse
|
118
|
Abstract
Emerging technologies are now giving us unprecedented access to manipulate brain circuits, shedding new light on treatments for amblyopia. This research is identifying key circuit elements that control brain plasticity and highlight potential therapeutic targets to promote rewiring in the visual system during and beyond early life. Here, we explore how such recent advancements may guide future pharmacological, genetic, and behavioral approaches to treat amblyopia. We will discuss how animal research, which allows us to probe and tap into the underlying circuit and synaptic mechanisms, should best be used to guide therapeutic strategies. Uncovering cellular and molecular pathways that can be safely targeted to promote recovery may pave the way for effective new amblyopia treatments across the lifespan.
Collapse
|
119
|
Abstract
The shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular 'brakes'. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.
Collapse
|
120
|
Stephany CÉ, Ma X, Dorton HM, Wu J, Solomon AM, Frantz MG, Qiu S, McGee AW. Distinct Circuits for Recovery of Eye Dominance and Acuity in Murine Amblyopia. Curr Biol 2018; 28:1914-1923.e5. [PMID: 29887305 PMCID: PMC6008222 DOI: 10.1016/j.cub.2018.04.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/20/2018] [Accepted: 04/17/2018] [Indexed: 02/05/2023]
Abstract
Degrading vision by one eye during a developmental critical period yields enduring deficits in both eye dominance and visual acuity. A predominant model is that "reactivating" ocular dominance (OD) plasticity after the critical period is required to improve acuity in amblyopic adults. However, here we demonstrate that plasticity of eye dominance and acuity are independent and restricted by the nogo-66 receptor (ngr1) in distinct neuronal populations. Ngr1 mutant mice display greater excitatory synaptic input onto both inhibitory and excitatory neurons with restoration of normal vision. Deleting ngr1 in excitatory cortical neurons permits recovery of eye dominance but not acuity. Reciprocally, deleting ngr1 in thalamus is insufficient to rectify eye dominance but yields improvement of acuity to normal. Abolishing ngr1 expression in adult mice also promotes recovery of acuity. Together, these findings challenge the notion that mechanisms for OD plasticity contribute to the alterations in circuitry that restore acuity in amblyopia.
Collapse
Affiliation(s)
- Céleste-Élise Stephany
- Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Xiaokuang Ma
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; Department of Physiology, Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Hilary M Dorton
- Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Jie Wu
- Department of Physiology, Shantou University Medical College, Shantou, 515041 Guangdong, China; Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Alexander M Solomon
- Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Michael G Frantz
- Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; Department of Physiology, Shantou University Medical College, Shantou, 515041 Guangdong, China.
| | - Aaron W McGee
- Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
121
|
In utero electroporation-based translating ribosome affinity purification identifies age-dependent mRNA expression in cortical pyramidal neurons. Neurosci Res 2018; 143:44-52. [PMID: 29857015 DOI: 10.1016/j.neures.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/10/2018] [Accepted: 05/28/2018] [Indexed: 02/02/2023]
Abstract
We combined translating ribosome affinity purification (TRAP) with in utero electroporation (IUE), called iTRAP to identify the molecular profile of specific neuronal populations during neonatal development without the need for viral approaches and FACS sorting. We electroporated a plasmid encoding EGFP-tagged ribosomal protein L10a at embryonic day (E) 14-15 to target layer 2-4 cortical neurons of the somatosensory cortex. At three postnatal (P) ages-P0, P7, and P14-when morphogenesis occurs and synapses are forming, TRAP and molecular profiling was performed from electroporated regions. We found that ribosome bound (Ribo)-mRNAs from ∼7300 genes were significantly altered over time and included classical neuronal genes known to decrease (e.g., Tbr1, Dcx) or increase (e.g., Eno2, Camk2a, Syn1) as neurons mature. This approach led to the identification of specific developmental patterns for Ribo-mRNAs not previously reported to be developmentally regulated in neurons, providing rationale for future examination of their role in selective biological processes. These include upregulation of Lynx1, Nrn1, Cntnap1 over time; downregulation of St8sia2 and Draxin; and bidirectional changes to Fkbp1b. iTRAP is a versatile approach that allows researchers to easily assess the molecular profile of specific neuronal populations in selective brain regions under various conditions, including overexpression and knockdown of target genes, and in disease settings.
Collapse
|
122
|
Bradshaw KP, Figueroa Velez DX, Habeeb M, Gandhi SP. Precocious deposition of perineuronal nets on Parvalbumin inhibitory neurons transplanted into adult visual cortex. Sci Rep 2018; 8:7480. [PMID: 29748633 PMCID: PMC5945847 DOI: 10.1038/s41598-018-25735-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/23/2018] [Indexed: 11/14/2022] Open
Abstract
The end of the critical period for primary visual cortex (V1) coincides with the deposition of perineuronal nets (PNN) onto Parvalbumin (PV) inhibitory neurons. Recently, we found that transplantation of embryonic inhibitory neurons into adult V1 reinstates a new critical period. Here we used Wisteria Floribunda Agglutinin (WFA) staining to compare the deposition of PNNs onto neurons during normal development and following transplantation at equivalent cell ages. In accord with previous findings, PV and PNN expression increases from negligible levels at postnatal day 14 (P14) to mature levels by P70. In contrast to P14, PNNs are found on transplanted PV neurons by 21 days after transplantation and persist to 105 days after transplantation. This precocious deposition was specific to PV neurons and excluded transplanted neurons expressing Somatostatin. Notably, the onset of PV expression in transplanted inhibitory neurons follows the timing of PV expression in juvenile V1. Moreover, transplantation has no discernible effect on host PNNs. The precocious deposition of PNNs onto transplanted PV neurons suggests that PNN expression identified by WFA does not reflect neuronal maturity and may be an inaccurate marker for transplant-induced plasticity of cortical circuits.
Collapse
Affiliation(s)
- Karen P Bradshaw
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697-4550, USA
| | - Dario X Figueroa Velez
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697-4550, USA
| | - Mariyam Habeeb
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697-4550, USA
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697-4550, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697-4550, USA.
| |
Collapse
|
123
|
Synaptic and circuit development of the primary sensory cortex. Exp Mol Med 2018; 50:1-9. [PMID: 29628505 PMCID: PMC5938038 DOI: 10.1038/s12276-018-0029-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023] Open
Abstract
Animals, including humans, optimize their primary sensory cortex through the use of input signals, which allow them to adapt to the external environment and survive. The time window at the beginning of life in which external input signals are connected sensitively and strongly to neural circuit optimization is called the critical period. The critical period has attracted the attention of many neuroscientists due to the rapid activity-/experience-dependent circuit development that occurs, which is clearly differentiated from other developmental time periods and brain areas. This process involves various types of GABAergic inhibitory neurons, the extracellular matrix, neuromodulators, transcription factors, and neurodevelopmental factors. In this review, I discuss recent progress regarding the biological nature of the critical period that contribute to a better understanding of brain development.
Collapse
|
124
|
Vasilyeva NA, Loktyushov EV, Bychkov ML, Shenkarev ZO, Lyukmanova EN. Three-Finger Proteins from the Ly6/uPAR Family: Functional Diversity within One Structural Motif. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523067 DOI: 10.1134/s0006297917130090] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery in higher animals of proteins from the Ly6/uPAR family, which have structural homology with snake "three-finger" neurotoxins, has generated great interest in these molecules and their role in the functioning of the organism. These proteins have been found in the nervous, immune, endocrine, and reproductive systems of mammals. There are two types of the Ly6/uPAR proteins: those associated with the cell membrane by GPI-anchor and secreted ones. For some of them (Lynx1, SLURP-1, SLURP-2, Lypd6), as well as for snake α-neurotoxins, the target of action is nicotinic acetylcholine receptors, which are widely represented in the central and peripheral nervous systems, and in many other tissues, including epithelial cells and the immune system. However, the targets of most proteins from the Ly6/uPAR family and the mechanism of their action remain unknown. This review presents data on the structural and functional properties of the Ly6/uPAR proteins, which reveal a variety of functions within a single structural motif.
Collapse
Affiliation(s)
- N A Vasilyeva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
125
|
Takesian AE, Bogart LJ, Lichtman JW, Hensch TK. Inhibitory circuit gating of auditory critical-period plasticity. Nat Neurosci 2018; 21:218-227. [PMID: 29358666 PMCID: PMC5978727 DOI: 10.1038/s41593-017-0064-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
Cortical sensory maps are remodeled during early life to adapt to the surrounding environment. Both sensory and contextual signals are important for induction of this plasticity, but how these signals converge to sculpt developing thalamocortical circuits remains largely unknown. Here we show that layer 1 (L1) of primary auditory cortex (A1) is a key hub where neuromodulatory and topographically organized thalamic inputs meet to tune the cortical layers below. Inhibitory interneurons in L1 send narrowly descending projections to differentially modulate thalamic drive to pyramidal and parvalbumin-expressing (PV) cells in L4, creating brief windows of intracolumnar activation. Silencing of L1 (but not VIP-expressing) cells abolishes map plasticity during the tonotopic critical period. Developmental transitions in nicotinic acetylcholine receptor (nAChR) sensitivity in these cells caused by Lynx1 protein can be overridden to extend critical-period closure. Notably, thalamocortical maps in L1 are themselves stable, and serve as a scaffold for cortical plasticity throughout life.
Collapse
Affiliation(s)
- Anne E Takesian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Luke J Bogart
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jeff W Lichtman
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
126
|
Smith MR, Glicksberg BS, Li L, Chen R, Morishita H, Dudley JT. Loss-of-function of neuroplasticity-related genes confers risk for human neurodevelopmental disorders. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018; 23:68-79. [PMID: 29218870 PMCID: PMC5728668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High and increasing prevalence of neurodevelopmental disorders place enormous personal and economic burdens on society. Given the growing realization that the roots of neurodevelopmental disorders often lie in early childhood, there is an urgent need to identify childhood risk factors. Neurodevelopment is marked by periods of heightened experience-dependent neuroplasticity wherein neural circuitry is optimized by the environment. If these critical periods are disrupted, development of normal brain function can be permanently altered, leading to neurodevelopmental disorders. Here, we aim to systematically identify human variants in neuroplasticity-related genes that confer risk for neurodevelopmental disorders. Historically, this knowledge has been limited by a lack of techniques to identify genes related to neurodevelopmental plasticity in a high-throughput manner and a lack of methods to systematically identify mutations in these genes that confer risk for neurodevelopmental disorders. Using an integrative genomics approach, we determined loss-of-function (LOF) variants in putative plasticity genes, identified from transcriptional profiles of brain from mice with elevated plasticity, that were associated with neurodevelopmental disorders. From five shared differentially expressed genes found in two mouse models of juvenile-like elevated plasticity (juvenile wild-type or adult Lynx1-/- relative to adult wild-type) that were also genotyped in the Mount Sinai BioMe Biobank we identified multiple associations between LOF genes and increased risk for neurodevelopmental disorders across 10,510 patients linked to the Mount Sinai Electronic Medical Records (EMR), including epilepsy and schizophrenia. This work demonstrates a novel approach to identify neurodevelopmental risk genes and points toward a promising avenue to discover new drug targets to address the unmet therapeutic needs of neurodevelopmental disease.
Collapse
Affiliation(s)
- Milo R Smith
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl. New York City, NY 10029, USA, ²Departments of Psychiatry and Opthamology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl. New York City, NY 10029, USA, ³Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl. New York City, NY 10029, USA, ⁴Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl. New York City, NY 10029, USA, ⁵Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl. New York City, NY 10029, USA, ⁶Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl. New York City, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
127
|
Maher MP, Matta JA, Gu S, Seierstad M, Bredt DS. Getting a Handle on Neuropharmacology by Targeting Receptor-Associated Proteins. Neuron 2017; 96:989-1001. [PMID: 29216460 DOI: 10.1016/j.neuron.2017.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Targeted therapy for neuropsychiatric disorders requires selective modulation of dysfunctional neuronal pathways. Receptors relevant to CNS disorders typically have associated proteins discretely expressed in specific neuronal pathways; these accessory proteins provide a new dimension for drug discovery. Recent studies show that targeting a TARP auxiliary subunit of AMPA receptors selectively modulates neuronal excitability in specific forebrain pathways relevant to epilepsy. Other medicinally important ion channels, gated by glutamate, γ-aminobutyric acid (GABA), and acetylcholine, also have associated proteins, which may be druggable. This emerging pharmacology of receptor-associated proteins provides a new approach for improving drug efficacy while mitigating side effects.
Collapse
Affiliation(s)
- Michael P Maher
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Jose A Matta
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Shenyan Gu
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Mark Seierstad
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
128
|
Deletion of lynx1 reduces the function of α6* nicotinic receptors. PLoS One 2017; 12:e0188715. [PMID: 29206881 PMCID: PMC5716591 DOI: 10.1371/journal.pone.0188715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022] Open
Abstract
The α6 nicotinic acetylcholine receptor (nAChR) subunit is an attractive drug target for treating nicotine addiction because it is present at limited sites in the brain including the reward pathway. Lynx1 modulates several nAChR subtypes; lynx1-nAChR interaction sites could possibly provide drug targets. We found that dopaminergic cells from the substantia nigra pars compacta (SNc) express lynx1 mRNA transcripts and, as assessed by co-immunoprecipitation, α6 receptors form stable complexes with lynx1 protein, although co-transfection with lynx1 did not affect nicotine-induced currents from cell lines transfected with α6 and β2. To test whether lynx1 is important for the function of α6 nAChRs in vivo, we bred transgenic mice carrying a hypersensitive mutation in the α6 nAChR subunit (α6L9′S) with lynx1 knockout mice, providing a selective probe of the effects of lynx1 on α6* nAChRs. Lynx1 removal reduced the α6 component of nicotine-mediated rubidium efflux and dopamine (DA) release from synaptosomal preparations with no effect on numbers of α6β2 binding sites, indicating that lynx1 is functionally important for α6* nAChR activity. No effects of lynx1 removal were detected on nicotine-induced currents in slices from SNc, suggesting that lynx1 affects presynaptic α6* nAChR function more than somatic function. In the absence of agonist, lynx1 removal did not alter DA release in dorsal striatum as measured by fast scan cyclic voltammetry. Lynx1 removal affected some behaviors, including a novel-environment assay and nicotine-stimulated locomotion. Trends in 24-hour home-cage behavior were also suggestive of an effect of lynx1 removal. Conditioned place preference for nicotine was not affected by lynx1 removal. The results show that some functional and behavioral aspects of α6-nAChRs are modulated by lynx1.
Collapse
|
129
|
Ji D, Wang S, Li M, Zhang S, Li H. Involvement of Lypge in the formation of eye and pineal gland in zebrafish. Gene 2017; 642:491-497. [PMID: 29196253 DOI: 10.1016/j.gene.2017.11.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 11/19/2022]
Abstract
The proteins of Ly-6 (lymphocyte antigen-6) family are involved in the regulation of immunoreaction, cell migration and adhesion, and neuronal excitability. However, little is known about the function of Ly-6 proteins in embryogenesis. Herein, we identified a GPI anchored Ly-6 member named ly6 expressed in pineal gland and eye (lypge). Dynamic expression pattern of lypge was revealed by whole mount in situ hybridization. It was strikingly expressed in the pineal gland and cone photoreceptor, and its expression was regulated by orthodenticle homolog 5 (otx5) which has been shown to control the expression of many pineal genes. In addition, we demonstrated that lypge was rhythmically expressed in larvae from 4dpf on. Moreover, knockdown of lypge resulted in small head and small eye formed in zebrafish embryos. These suggest that Lypge is involved in the formation of the eye and pineal gland in early development of zebrafish.
Collapse
Affiliation(s)
- Dongrui Ji
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Su Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Mingyue Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
130
|
Duffy KR, Fong MF, Mitchell DE, Bear MF. Recovery from the anatomical effects of long-term monocular deprivation in cat lateral geniculate nucleus. J Comp Neurol 2017; 526:310-323. [PMID: 29023717 DOI: 10.1002/cne.24336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/06/2022]
Abstract
Monocular deprivation (MD) imposed early in postnatal life elicits profound structural and functional abnormalities throughout the primary visual pathway. The ability of MD to modify neurons within the visual system is restricted to a so-called critical period that, for cats, peaks at about one postnatal month and declines thereafter so that by about 3 months of age MD has little effect. Recovery from the consequences of MD likewise adheres to a critical period that ends by about 3 months of age, after which the effects of deprivation are thought to be permanent and without capacity for reversal. The attenuation of plasticity beyond early development is a formidable obstacle for conventional therapies to stimulate recovery from protracted visual deprivation. In the current study we examined the efficacy of dark exposure and retinal inactivation with tetrodotoxin to promote anatomical recovery in the dorsal lateral geniculate nuclues (dLGN) from long-term MD started at the peak of the critical period. Whereas 10 days of dark exposure or binocular retinal inactivation were not better at promoting recovery than conventional treatment with reverse occlusion, inactivation of only the non-deprived (fellow) eye for 10 days produced a complete restoration of neuron soma size, and also reversed the significant loss of neurofilament protein within originally deprived dLGN layers. These results reveal a capacity for neural plasticity and recovery that is larger than anything previously observed following protracted MD in cat, and they highlight a possibility for alternative therapies applied at ages thought to be recalcitrant to recovery.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ming-Fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Donald E Mitchell
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
131
|
Le Floch A, Ropars G. Left-right asymmetry of the Maxwell spot centroids in adults without and with dyslexia. Proc Biol Sci 2017; 284:20171380. [PMID: 29046375 PMCID: PMC5666095 DOI: 10.1098/rspb.2017.1380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
In human vision, the brain has to select one view of the world from our two eyes. However, the existence of a clear anatomical asymmetry providing an initial imbalance for normal neural development is still not understood. Using a so-called foveascope, we found that for a cohort of 30 normal adults, the two blue cone-free areas at the centre of the foveas are asymmetrical. The noise-stimulated afterimage dominant eye introduced here corresponds to the circular blue cone-free area, while the non-dominant eye corresponds to the diffuse and irregular elliptical outline. By contrast, we found that this asymmetry is absent or frustrated in a similar cohort of 30 adults with normal ocular status, but with dyslexia, i.e. with visual and phonological deficits. In this case, our results show that the two Maxwell centroid outlines are both circular but lead to an undetermined afterimage dominance with a coexistence of primary and mirror images. The interplay between the lack of asymmetry and the development in the neural maturation of the brain pathways suggests new implications in both fundamental and biomedical sciences.
Collapse
Affiliation(s)
- Albert Le Floch
- Laboratoire de Physique des Lasers, UFR SPM, Université de Rennes 1, 35042 Rennes, France
- Laboratoire d'Electronique Quantique et Chiralités, 20 Square Marcel Bouget, 35700 Rennes, France
- Université Bretagne Loire, 35044 Rennes, France
| | - Guy Ropars
- Laboratoire de Physique des Lasers, UFR SPM, Université de Rennes 1, 35042 Rennes, France
- Université Bretagne Loire, 35044 Rennes, France
| |
Collapse
|
132
|
Li Y, Wang L, Zhang X, Huang M, Li S, Wang X, Chen L, Jiang B, Yang Y. Inhibition of Cdk5 rejuvenates inhibitory circuits and restores experience-dependent plasticity in adult visual cortex. Neuropharmacology 2017; 128:207-220. [PMID: 29031852 DOI: 10.1016/j.neuropharm.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) acts as an essential modulator for neural development and neurological disorders. Here we show that Cdk5 plays a pivotal role in modulating GABAergic signaling and the maturation of visual system. In adult mouse primary visual cortex, Cdk5 formed complex with the GABA synthetic enzyme glutamate decarboxylase GAD67, but not with GAD65. In addition to enhancement in the surface level of NR2B-containing NMDA receptors, inhibition of Cdk5 reduced the protein levels of GADs and Otx2, while leaving intact the expression of vesicular GABA transporter and subunits of GABAA or AMPA receptors. Whole-cell patch-clamp recording in layer II/III pyramidal neurons revealed a decrease in the frequency of miniature inhibitory postsynaptic current (mIPSC). Consequently, pharmacological inhibition and genetic knockdown of Cdk5 in adult mice led to a restoration of juvenile-like ocular dominance plasticity in vivo and long-term synaptic potential in layer II/III induced by white matter stimulation in vitro. Interestingly, we did not observe an alteration of perineuronal nets of extracellular matrix, but a reinstatement of the capability to evoke long-term depression at inhibitory synapses (iLTD), which depended on presynaptic endocannabinoid receptors and was a sign of the rejuvenated GABAergic synapses. Enhancement of GABA signaling by diazepam impeded ocular dominance plasticity rescued by Cdk5 inhibition. These results thus suggest that a physiological role of Cdk5 in visual cortex is to consolidate and stabilize neural circuits through controlling GABAergic signaling.
Collapse
Affiliation(s)
- Yue Li
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Laijian Wang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xinxin Zhang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mengyao Huang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Sitong Li
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xinxing Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lin Chen
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Yupeng Yang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
133
|
Chondroitin Sulfate Is Required for Onset and Offset of Critical Period Plasticity in Visual Cortex. Sci Rep 2017; 7:12646. [PMID: 28974755 PMCID: PMC5626782 DOI: 10.1038/s41598-017-04007-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
Ocular dominance plasticity is easily observed during the critical period in early postnatal life. Chondroitin sulfate (CS) is the most abundant component in extracellular structures called perineuronal nets (PNNs), which surround parvalbumin-expressing interneurons (PV-cells). CS accumulates in PNNs at the critical period, but its function in earlier life is unclear. Here, we show that initiation of ocular dominance plasticity was impaired with reduced CS, using mice lacking a key CS-synthesizing enzyme, CSGalNAcT1. Two-photon in vivo imaging showed a weaker visual response of PV-cells with reduced CS compared to wild-type mice. Plasticity onset was restored by a homeoprotein Otx2, which binds the major CS-proteoglycan aggrecan and promotes its further expression. Continuous CS accumulation together with Otx2 contributed bidirectionally to both onset and offset of plasticity, and was substituted by diazepam, which enhances GABA function. Therefore, CS and Otx2 may act as common inducers of both onset and offset of the critical period by promoting PV-cell function throughout the lifetime.
Collapse
|
134
|
Lynx1 Limits Dendritic Spine Turnover in the Adult Visual Cortex. J Neurosci 2017; 36:9472-8. [PMID: 27605620 DOI: 10.1523/jneurosci.0580-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/04/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dendritic spine turnover becomes limited in the adult cerebral cortex. Identification of specific aspects of spine dynamics that can be unmasked in adulthood and its regulatory molecular mechanisms could provide novel therapeutic targets for inducing plasticity at both the functional and structural levels for robust recovery from brain disorders and injuries in adults. Lynx1, an endogenous inhibitor of nicotinic acetylcholine receptors, was previously shown to increase its expression in adulthood and thus to limit functional ocular dominance plasticity in adult primary visual cortex (V1). However, the role of this "brake" on spine dynamics is not known. We examined the contribution of Lynx1 on dendritic spine turnover before and after monocular deprivation (MD) in adult V1 with chronic in vivo imaging using two-photon microscopy and determined the spine turnover rate of apical dendrites of layer 5 (L5) and L2/3 pyramidal neurons in adult V1 of Lynx1 knock-out (KO) mice. We found that the deletion of Lynx1 doubled the baseline spine turnover rate, suggesting that the spine dynamics in the adult cortex is actively limited by the presence of Lynx1. After MD, adult Lynx1-KO mice selectively exhibit higher rate of spine loss with no difference in gain rate in L5 neurons compared with control wild-type counterparts, revealing a key signature of spine dynamics associated with robust functional plasticity in adult V1. Overall, Lynx1 could be a promising therapeutic target to induce not only functional, but also structural plasticity at the level of spine dynamics in the adult brain. SIGNIFICANCE STATEMENT Dendritic spine turnover becomes limited in the adult cortex. In mouse visual cortex, a premier model of experience-dependent plasticity, we found that the deletion of Lynx1, a nicotinic "brake" for functional plasticity, doubled the baseline spine turnover in adulthood, suggesting that the spine dynamics in the adult cortex is actively limited by Lynx1. After visual deprivation, spine loss, but not gain rate, remains higher in adult Lynx1 knock-out mice than in control wild-type mice, revealing a key signature of spine dynamics associated with robust functional plasticity. Lynx1 would be a promising target to induce not only functional, but also structural plasticity at the level of spine dynamics in adulthood.
Collapse
|
135
|
Chung STL, Li RW, Silver MA, Levi DM. Donepezil Does Not Enhance Perceptual Learning in Adults with Amblyopia: A Pilot Study. Front Neurosci 2017; 11:448. [PMID: 28824369 PMCID: PMC5545606 DOI: 10.3389/fnins.2017.00448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022] Open
Abstract
Amblyopia is a developmental disorder that results in a wide range of visual deficits. One proven approach to recovering vision in adults with amblyopia is perceptual learning (PL). Recent evidence suggests that neuromodulators can enhance adult plasticity. In this pilot study, we asked whether donepezil, a cholinesterase inhibitor, enhances visual PL in adults with amblyopia. Nine adults with amblyopia were first trained on a low-contrast single-letter identification task while taking a daily dose (5 mg) of donepezil throughout training. Following 10,000 trials of training, participants showed improved contrast sensitivity for identifying single letters. However, the magnitude of improvement was no greater than, and the rate of improvement was slower than, that obtained in a previous study in which six adults with amblyopia were trained using an identical task and protocol but without donepezil (Chung et al., 2012). In addition, we measured transfer of learning effects to other tasks and found that for donepezil, the post-pre performance ratios in both a size-limited (acuity) and a spacing-limited (crowding) task were not significantly different from those found in the previous study without donepezil administration. After an interval of several weeks, six participants returned for a second course of training on identifying flanked (crowded) letters, again with concurrent donepezil administration. Although this task has previously been shown to be highly amenable to PL in adults with amblyopia (Chung et al., 2012; Hussain et al., 2012), only one observer in our study showed significant learning over 10,000 trials of training. Auxiliary experiments showed that the lack of a learning effect on this task during donepezil administration was not due to either the order of training of the two tasks or the use of a sequential training paradigm. Our results reveal that cholinergic enhancement with donepezil during training does not improve or speed up PL of single-letter identification in adults with amblyopia, and importantly, it may even halt learning and transfer related to a crowding task. Clinical Trial Registration: This study was registered with ClinicalTrials.gov (NCT03109314).
Collapse
Affiliation(s)
- Susana T L Chung
- School of Optometry, Vision Science Graduate Group, Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, United States
| | - Roger W Li
- School of Optometry, Vision Science Graduate Group, Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, United States
| | - Michael A Silver
- School of Optometry, Vision Science Graduate Group, Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, United States
| | - Dennis M Levi
- School of Optometry, Vision Science Graduate Group, Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
136
|
Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 2017; 22:1085-1095. [PMID: 28397840 PMCID: PMC5510719 DOI: 10.1038/mp.2017.61] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023]
Abstract
Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs activate neurotrophin signaling and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate; the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of currently existing drugs into new indications.
Collapse
|
137
|
Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 2017. [PMID: 28625420 DOI: 10.1016/j.bbagen.2017.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan.
| |
Collapse
|
138
|
Environmental Enrichment Rescues Binocular Matching of Orientation Preference in the Mouse Visual Cortex. J Neurosci 2017; 37:5822-5833. [PMID: 28500220 DOI: 10.1523/jneurosci.3534-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 11/21/2022] Open
Abstract
Neural circuits are shaped by experience during critical periods of development. Sensory deprivation during these periods permanently compromises an organism's ability to perceive the outside world. In the mouse visual system, normal visual experience during a critical period in early life drives the matching of individual cortical neurons' orientation preferences through the two eyes, likely a key step in the development of binocular vision. Here, in mice of both sexes, we show that the binocular matching process is completely blocked by monocular deprivation spanning the entire critical period. We then show that 3 weeks of environmental enrichment (EE), a paradigm of enhanced sensory, motor, and cognitive stimulation, is sufficient to rescue binocular matching to the level seen in unmanipulated mice. In contrast, 6 weeks of conventional housing only resulted in a partial rescue. Finally, we use two-photon calcium imaging to track the matching process chronically in individual cells during EE-induced rescue. We find that for cells that are clearly dominated by one of the two eyes, the input representing the weaker eye changes its orientation preference to align with that of the dominant eye. These results thus reveal ocular dominance as a key driver of the binocular matching process, and suggest a model whereby the dominant input instructs the development of the weaker input. Such a mechanism may operate in the development of other systems that need to integrate inputs from multiple sources to generate normal neuronal functions.SIGNIFICANCE STATEMENT Critical periods are developmental windows of opportunity that ensure the proper wiring of neural circuits, as well as windows of vulnerability when abnormal experience could cause lasting damage to the developing brain. In the visual system, critical period plasticity drives the establishment of binocularly matched orientation preferences in cortical neurons. Here, we show that binocular matching is completely blocked by monocular deprivation during the critical period. Moreover, environmental enrichment can fully rescue the disrupted matching, whereas conventional housing of twice the duration results in a partial rescue. We then use two-photon calcium imaging to track individual cells chronically during the EE-induced recovery, and reveal important insights into how appropriate function can be restored to the nervous system after the critical period.
Collapse
|
139
|
Crespi A, Colombo SF, Gotti C. Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update. Br J Pharmacol 2017; 175:1869-1879. [PMID: 28294298 DOI: 10.1111/bph.13777] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 01/03/2023] Open
Abstract
Neuronal nicotinic ACh receptors (nAChRs) are a family of ACh-gated cation channels, and their homeostasis or proteostasis is essential for the correct physiology of the central and peripheral nervous systems. The proteostasis network regulates the folding, assembly, degradation and trafficking of nAChRs in order to ensure their efficient and functional expression at the cell surface. However, as nAChRs are multi-subunit, multi-span, integral membrane proteins, the folding and assembly is a very inefficient process, and only a small proportion of subunits can form functional pentamers. Moreover, the efficiency of assembly and trafficking varies widely depending on the nAChR subtypes and the cell type in which they are expressed. A detailed understanding of the mechanisms that regulate the functional expression of nAChRs in neurons and non-neuronal cells is therefore important. The purpose of this short review is to describe more recent findings concerning the chaperone proteins and target-specific and target-nonspecific pharmacological chaperones that modulate the expression of nAChR subtypes, and the possible mechanisms that underlie the dynamic changes of cell surface nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
|
140
|
Kessler P, Marchot P, Silva M, Servent D. The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions. J Neurochem 2017; 142 Suppl 2:7-18. [PMID: 28326549 DOI: 10.1111/jnc.13975] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 12/26/2022]
Abstract
Three-finger fold toxins are miniproteins frequently found in Elapidae snake venoms. This fold is characterized by three distinct loops rich in β-strands and emerging from a dense, globular core reticulated by four highly conserved disulfide bridges. The number and diversity of receptors, channels, and enzymes identified as targets of three-finger fold toxins is increasing continuously. Such manifold diversity highlights the specific adaptability of this fold for generating pleiotropic functions. Although this toxin superfamily disturbs many biological functions by interacting with a large diversity of molecular targets, the most significant target is the cholinergic system. By blocking the activity of the nicotinic and muscarinic acetylcholine receptors or by inhibiting the enzyme acetylcholinesterase, three-finger fold toxins interfere most drastically with neuromuscular junction functioning. Several of these toxins have become powerful pharmacological tools for studying the function and structure of their molecular targets. Most importantly, since dysfunction of these receptors/enzyme is involved in many diseases, exploiting the three-finger scaffold to create novel, highly specific therapeutic agents may represent a major future endeavor. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Pascal Kessler
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascale Marchot
- Aix-Marseille Université/Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Faculté des Sciences Campus Luminy, Marseille, France
| | - Marcela Silva
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
141
|
Transplantation of GABAergic interneurons for cell-based therapy. PROGRESS IN BRAIN RESEARCH 2017; 231:57-85. [PMID: 28554401 DOI: 10.1016/bs.pbr.2016.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many neurological disorders stem from defects in or the loss of specific neurons. Neuron transplantation has tremendous clinical potential for central nervous system therapy as it may allow for the targeted replacement of those cells that are lost in diseases. Normally, most neurons are added during restricted periods of embryonic and fetal development. The permissive milieu of the developing brain promotes neuronal migration, neuronal differentiation, and synaptogenesis. Once this active period of neurogenesis ends, the chemical and physical environment of the brain changes dramatically. The brain parenchyma becomes highly packed with neuronal and glial processes, extracellular matrix, myelin, and synapses. The migration of grafted cells to allow them to home into target regions and become functionally integrated is a key challenge to neuronal transplantation. Interestingly, transplanted young telencephalic inhibitory interneurons are able to migrate, differentiate, and integrate widely throughout the postnatal brain. These grafted interneurons can also functionally modify local circuit activity. These features have facilitated the use of interneuron transplantation to study fundamental neurodevelopmental processes including cell migration, cell specification, and programmed neuronal cell death. Additionally, these cells provide a unique opportunity to develop interneuron-based strategies for the treatment of diseases linked to interneuron dysfunction and neurological disorders associated to circuit hyperexcitability.
Collapse
|
142
|
Baumann VJ, Koch U. Perinatal nicotine exposure impairs the maturation of glutamatergic inputs in the auditory brainstem. J Physiol 2017; 595:3573-3590. [PMID: 28190266 DOI: 10.1113/jp274059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Chronic perinatal nicotine exposure causes abnormal auditory brainstem responses and auditory processing deficits in children and animal models. The effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem was investigated in granule cells in the ventral nucleus of the lateral lemniscus, which receive a single calyx-like input from the cochlear nucleus. Perinatal nicotine exposure caused a massive reduction in the amplitude of the excitatory input current. This caused a profound decrease in the number and temporal precision of spikes in these neurons. Perinatal nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons. ABSTRACT Maternal smoking causes chronic nicotine exposure during early development and results in auditory processing deficits including delayed speech development and learning difficulties. Using a mouse model of chronic, perinatal nicotine exposure we explored to what extent synaptic inputs to granule cells in the ventral nucleus of the lateral lemniscus are affected by developmental nicotine treatment. These neurons receive one large calyx-like input from octopus cells in the cochlear nucleus and play a role in sound pattern analysis, including speech sounds. In addition, they exhibit high levels of α7 nicotinic acetylcholine receptors, especially during early development. Our whole-cell patch-clamp experiments show that perinatal nicotine exposure causes a profound reduction in synaptic input amplitude. In contrast, the number of inputs innervating each neuron and synaptic release properties of this calyx-like synapse remained unaltered. Spike number and spiking precision in response to synaptic stimulation were greatly diminished, especially for later stimuli during a stimulus train. Moreover, chronic nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons, indicating a direct action of nicotine in this brain area. This presumably direct effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem might be one of the underlying causes for auditory processing difficulties in children of heavy smoking mothers.
Collapse
Affiliation(s)
- Veronika J Baumann
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
143
|
|
144
|
George AA, Bloy A, Miwa JM, Lindstrom JM, Lukas RJ, Whiteaker P. Isoform-specific mechanisms of α3β4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1. FASEB J 2017; 31:1398-1420. [PMID: 28100642 DOI: 10.1096/fj.201600733r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 11/11/2022]
Abstract
This study investigates-for the first time to our knowledge-the existence and mechanisms of functional interactions between the endogenous mammalian prototoxin, lynx1, and α3- and β4-subunit-containing human nicotinic acetylcholine receptors (α3β4*-nAChRs). Concatenated gene constructs were used to express precisely defined α3β4*-nAChR isoforms (α3β4)2β4-, (α3β4)2α3-, (α3β4)2α5(398D)-, and (α3β4)2α5(398N)-nAChR in Xenopus oocytes. In the presence or absence of lynx1, α3β4*-nAChR agonist responses were recorded by using 2-electrode voltage clamp and single-channel electrophysiology, whereas radioimmunolabeling measured cell-surface expression. Lynx1 reduced (α3β4)2β4-nAChR function principally by lowering cell-surface expression, whereas single-channel effects were primarily responsible for reducing (α3β4)2α3-nAChR function [decreased unitary conductance (≥50%), altered burst proportions (3-fold reduction in the proportion of long bursts), and enhanced closed dwell times (3- to 6-fold increase)]. Alterations in both cell-surface expression and single-channel properties accounted for the reduction in (α3β4)2α5-nAChR function that was mediated by lynx1. No effects were observed when α3β4*-nAChRs were coexpressed with mutated lynx1 (control). Lynx1 is expressed in the habenulopeduncular tract, where α3β4*-α5*-nAChR subtypes are critical contributors to the balance between nicotine aversion and reward. This gives our findings a high likelihood of physiologic significance. The exquisite isoform selectivity of lynx1 interactions provides new insights into the mechanisms and allosteric sites [α(-)-interface containing] by which prototoxins can modulate nAChR function.-George, A. A., Bloy, A., Miwa, J. M., Lindstrom, J. M., Lukas, R. J., Whiteaker, P. Isoform-specific mechanisms of α3β4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1.
Collapse
Affiliation(s)
- Andrew A George
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA;
| | - Abigail Bloy
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.,Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Jon M Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
145
|
Short-Term Monocular Deprivation Enhances Physiological Pupillary Oscillations. Neural Plast 2017; 2017:6724631. [PMID: 28163935 PMCID: PMC5253512 DOI: 10.1155/2017/6724631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/18/2016] [Indexed: 11/17/2022] Open
Abstract
Short-term monocular deprivation alters visual perception in adult humans, increasing the dominance of the deprived eye, for example, as measured with binocular rivalry. This form of plasticity may depend upon the inhibition/excitation balance in the visual cortex. Recent work suggests that cortical excitability is reliably tracked by dilations and constrictions of the pupils of the eyes. Here, we ask whether monocular deprivation produces a systematic change of pupil behavior, as measured at rest, that is independent of the change of visual perception. During periods of minimal sensory stimulation (in the dark) and task requirements (minimizing body and gaze movements), slow pupil oscillations, “hippus,” spontaneously appear. We find that hippus amplitude increases after monocular deprivation, with larger hippus changes in participants showing larger ocular dominance changes (measured by binocular rivalry). This tight correlation suggests that a single latent variable explains both the change of ocular dominance and hippus. We speculate that the neurotransmitter norepinephrine may be implicated in this phenomenon, given its important role in both plasticity and pupil control. On the practical side, our results indicate that measuring the pupil hippus (a simple and short procedure) provides a sensitive index of the change of ocular dominance induced by short-term monocular deprivation, hence a proxy for plasticity.
Collapse
|
146
|
VanPatten S, Al-Abed Y. The challenges of modulating the ‘rest and digest’ system: acetylcholine receptors as drug targets. Drug Discov Today 2017; 22:97-104. [DOI: 10.1016/j.drudis.2016.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/09/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
|
147
|
Morishita H, Arora M. Tooth-Matrix Biomarkers to Reconstruct Critical Periods of Brain Plasticity. Trends Neurosci 2016; 40:1-3. [PMID: 28038829 DOI: 10.1016/j.tins.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Developmental brain plasticity involves complex, time-dependent dynamic molecular interactions that cannot be observed directly in humans. We propose that the shared evolutionary homology of teeth and the neurosensory system, and the archival nature of dentine microstructure, allows the development of 'biologic hard drives' that can characterize perinatal temporal dynamics in neuroplasticity.
Collapse
Affiliation(s)
- Hirofumi Morishita
- Department of Psychiatry, Neuroscience, and Ophthalmology, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Manish Arora
- Division of Environmental Health, Department of Environmental Medicine and Public Health, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
148
|
Misiewicz Z, Hiekkalinna T, Paunio T, Varilo T, Terwilliger JD, Partonen T, Hovatta I. A genome-wide screen for acrophobia susceptibility loci in a Finnish isolate. Sci Rep 2016; 6:39345. [PMID: 27996024 PMCID: PMC5171840 DOI: 10.1038/srep39345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/16/2016] [Indexed: 12/02/2022] Open
Abstract
Acrophobia, an abnormal fear of heights, is a specific phobia characterized as apprehension cued by the occurrence or anticipation of elevated spaces. It is considered a complex trait with onset influenced by both genetic and environmental factors. Identification of genetic risk variants would provide novel insight into the genetic basis of the fear of heights phenotype and contribute to the molecular-level understanding of its aetiology. Genetic isolates may facilitate identification of susceptibility alleles due to reduced genetic heterogeneity. We took advantage of an internal genetic isolate in Finland in which a distinct acrophobia phenotype appears to be segregating in pedigrees originally ascertained for schizophrenia. We conducted parametric, nonparametric, joint linkage and linkage disequilibrium analyses using a microsatellite marker panel, genotyped in families to search for chromosomal regions correlated with acrophobia. Our results implicated a few regions with suggestive evidence for linkage on chromosomes 4q28 (LOD = 2.17), 8q24 (LOD = 2.09) and 13q21-q22 (LOD = 2.22). We observed no risk haplotypes shared between different families. These results suggest that genetic predisposition to acrophobia in this genetic isolate is unlikely to be mediated by a small number of shared high-risk alleles, but rather has a complex genetic architecture.
Collapse
Affiliation(s)
- Zuzanna Misiewicz
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tero Hiekkalinna
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Tiina Paunio
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Development of Work and Work Organizations, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Teppo Varilo
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Joseph D Terwilliger
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, Department of Genetics and Development, and Gertrude H. Sergievsky Center, Columbia University, New York NY, USA.,Division of Medical Genetics, New York State Psychiatric Institute, New York NY, USA
| | - Timo Partonen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW This review article is an update on the current treatments for amblyopia. In particular, the authors focus on the concepts of brain plasticity and their implications for novel treatment strategies for both children and adults affected by amblyopia. RECENT FINDINGS A variety of strategies has been developed to treat amblyopia in children and adults. New evidence on the pathogenesis of amblyopia has been obtained both in animal models and in clinical trials. Mainly, these studies have challenged the classical concept that amblyopia becomes untreatable after the 'end' of the sensitive or critical period of visual development, because of a lack of sufficient plasticity in the adult brain. SUMMARY New treatments for amblyopia in children and adults are desirable and should be encouraged. However, further studies should be completed before such therapies are widely accepted into clinical practice.
Collapse
|
150
|
Nicotinic regulation of experience-dependent plasticity in visual cortex. ACTA ACUST UNITED AC 2016; 110:29-36. [PMID: 27840212 DOI: 10.1016/j.jphysparis.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/19/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
Abstract
While the cholinergic neuromodulatory system and muscarinic acetylcholine receptors (AChRs) have been appreciated as permissive factors for developmental critical period plasticity in visual cortex, it was unknown why plasticity becomes limited after the critical period even in the presence of massive cholinergic projections to visual cortex. In this review we highlighted the recent progresses that started to shed light on the role of the nicotinic cholinergic neuromodulatory signaling on limiting juvenile form of plasticity in the adult brain. We introduce the Lynx family of proteins and Lynx1 as its representative, as endogenous proteins structurally similar to α-bungarotoxin with the ability to bind and modulate nAChRs to effectively regulate functional and structural plasticity. Remarkably, Lynx family members are expressed in distinct subpopulations of GABAergic interneurons, placing them in unique positions to potentially regulate the convergence of GABAergic and nicotinic neuromodulatory systems to regulate plasticity. Continuing studies of the potentially differential roles of Lynx family of proteins may further our understanding of the fundamentals of molecular and cell type-specific mechanisms of plasticity that we may be able to harness through nicotinic cholinergic signaling.
Collapse
|