101
|
Cabalzar K, Pelzer C, Wolf A, Lenz G, Iwaszkiewicz J, Zoete V, Hailfinger S, Thome M. Monoubiquitination and activity of the paracaspase MALT1 requires glutamate 549 in the dimerization interface. PLoS One 2013; 8:e72051. [PMID: 23977204 PMCID: PMC3747146 DOI: 10.1371/journal.pone.0072051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/06/2013] [Indexed: 12/17/2022] Open
Abstract
The mucosa-associated lymphoid tissue protein-1 (MALT1, also known as paracaspase) is a protease whose activity is essential for the activation of lymphocytes and the growth of cells derived from human diffuse large B-cell lymphomas of the activated B-cell subtype (ABC DLBCL). Crystallographic approaches have shown that MALT1 can form dimers via its protease domain, but why dimerization is relevant for the biological activity of MALT1 remains largely unknown. Using a molecular modeling approach, we predicted Glu 549 (E549) to be localized within the MALT1 dimer interface and thus potentially relevant. Experimental mutation of this residue into alanine (E549A) led to a complete impairment of MALT1 proteolytic activity. This correlated with an impaired capacity of the mutant to form dimers of the protease domain in vitro, and a reduced capacity to promote NF-κB activation and transcription of the growth-promoting cytokine interleukin-2 in antigen receptor-stimulated lymphocytes. Moreover, this mutant could not rescue the growth of ABC DLBCL cell lines upon MALT1 silencing. Interestingly, the MALT1 mutant E549A was unable to undergo monoubiquitination, which we identified previously as a critical step in MALT1 activation. Collectively, these findings suggest a model in which E549 at the dimerization interface is required for the formation of the enzymatically active, monoubiquitinated form of MALT1.
Collapse
Affiliation(s)
- Katrin Cabalzar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Christiane Pelzer
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Annette Wolf
- Department of Hematology, Oncology and Tumor Immunology, Molecular Cancer Research Center, Charité - Universitätsmedizin Berlin, Germany
| | - Georg Lenz
- Department of Hematology, Oncology and Tumor Immunology, Molecular Cancer Research Center, Charité - Universitätsmedizin Berlin, Germany
| | | | - Vincent Zoete
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Hailfinger
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
102
|
Odqvist L, Sánchez-Beato M, Montes-Moreno S, Martín-Sánchez E, Pajares R, Sánchez-Verde L, Ortiz-Romero PL, Rodriguez J, Rodríguez-Pinilla SM, Iniesta-Martínez F, Solera-Arroyo JC, Ramos-Asensio R, Flores T, Palanca JM, Bragado FG, Franjo PD, Piris MA. NIK controls classical and alternative NF-κB activation and is necessary for the survival of human T-cell lymphoma cells. Clin Cancer Res 2013; 19:2319-30. [PMID: 23536439 DOI: 10.1158/1078-0432.ccr-12-3151] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Peripheral T-cell lymphomas (PTCL) are a heterogeneous entity of neoplasms with poor prognosis, a lack of effective therapies, and a largely unknown molecular pathology. Deregulated NF-κB activity has been associated with several lymphoproliferative diseases, but its importance in T-cell lymphomagenesis is poorly understood. We investigated the function of the NF-κB-inducing kinase (NIK), in this pathway and its role as a potential molecular target in T-cell lymphomas. EXPERIMENTAL DESIGN We used immunohistochemistry to analyze the expression of different NF-κB members in primary human PTCL samples and to study its clinical impact. With the aim of inhibiting the pathway, we used genetic silencing of NIK in several T-cell lymphoma cell lines and observed its effect on downstream targets and cell viability. RESULTS We showed that the NF-κB pathway was activated in a subset of PTCLs associated with poor overall survival. NIK was overexpressed in a number of PTCL cell lines and primary samples, and a pivotal role for NIK in the survival of these tumor cells was unveiled. NIK depletion led to a dramatic induction of apoptosis in NIK-overexpressing cell lines and also showed a more pronounced effect on cell survival than inhibitor of kappa B kinase (IKK) knockdown. NIK silencing induced a blockage of both classical and alternative NF-κB activation and reduced expression of several prosurvival and antiapoptotic factors. CONCLUSIONS The results of the present study indicate that NIK could be a promising therapeutic target in these aggressive malignancies.
Collapse
Affiliation(s)
- Lina Odqvist
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K, Satoh T, Mino T, Suzuki Y, Standley D, Tsujimura T, Rakugi H, Isaka Y, Takeuchi O, Akira S. Malt1-Induced Cleavage of Regnase-1 in CD4+ Helper T Cells Regulates Immune Activation. Cell 2013; 153:1036-49. [DOI: 10.1016/j.cell.2013.04.034] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/05/2013] [Accepted: 04/19/2013] [Indexed: 01/07/2023]
|
104
|
Abstract
In this issue of Structure, de Leon-Boenig and colleagues bring to light several key characteristics of NF-κB inducing kinase (NIK), which is at the center of many pathological disorders, using an impressive body of structural and functional studies. Structures of NIK described here provide deep insights into the mechanism of NIK activity regulation and may facilitate the design of new generation inhibitors for therapeutic use.
Collapse
Affiliation(s)
- Zhihua Tao
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
105
|
Pelzer C, Cabalzar K, Wolf A, Gonzalez M, Lenz G, Thome M. The protease activity of the paracaspase MALT1 is controlled by monoubiquitination. Nat Immunol 2013; 14:337-45. [DOI: 10.1038/ni.2540] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
|
106
|
Sagaert X, Tousseyn T, Yantiss RK. Gastrointestinal B-cell lymphomas: From understanding B-cell physiology to classification and molecular pathology. World J Gastrointest Oncol 2012; 4:238-49. [PMID: 23443141 PMCID: PMC3581849 DOI: 10.4251/wjgo.v4.i12.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/29/2012] [Accepted: 11/20/2012] [Indexed: 02/05/2023] Open
Abstract
The gut is the most common extranodal site where lymphomas arise. Although all histological lymphoma types may develop in the gut, small and large B-cell lymphomas predominate. The sometimes unexpected finding of a lymphoid lesion in an endoscopic biopsy of the gut may challenge both the clinician (who is not always familiar with lymphoma pathogenesis) and the pathologist (who will often be hampered in his/her diagnostic skill by the limited amount of available tissue). Moreover, the past 2 decades have spawned an avalanche of new data that encompasses both the function of the reactive B-cell as well as the pathogenic pathways that lead to its neoplastic counterpart, the B-cell lymphoma. Therefore, this review aims to offer clinicians an overview of B-cell lymphomas in the gut, and their pertinent molecular features that have led to new insights regarding lymphomagenesis. It addresses the question as how to incorporate all presently available information on normal and neoplastic B-cell differentiation, and how this knowledge can be applied in daily clinical practice (e.g., diagnostic tools, prognostic biomarkers or therapeutic targets) to optimalise the managment of this heterogeneous group of neoplasms.
Collapse
Affiliation(s)
- Xavier Sagaert
- Xavier Sagaert, Thomas Tousseyn, Department of Pathology University Hospitals Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
107
|
Nagel D, Spranger S, Vincendeau M, Grau M, Raffegerst S, Kloo B, Hlahla D, Neuenschwander M, Peter von Kries J, Hadian K, Dörken B, Lenz P, Lenz G, Schendel DJ, Krappmann D. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell 2012; 22:825-37. [PMID: 23238017 DOI: 10.1016/j.ccr.2012.11.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 09/14/2012] [Accepted: 11/02/2012] [Indexed: 12/14/2022]
Abstract
Proteolytic activity of the mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) paracaspase is required for survival of the activated B cell subtype of diffuse large B cell lymphoma (ABC-DLBCL). We have identified distinct derivatives of medicinal active phenothiazines, namely mepazine, thioridazine, and promazine, as small molecule inhibitors of the MALT1 protease. These phenothiazines selectively inhibit cleavage activity of recombinant and cellular MALT1 by a noncompetitive mechanism. Consequently, the compounds inhibit anti-apoptotic NF-κB signaling and elicit toxic effects selectively on MALT1-dependent ABC-DLBCL cells in vitro and in vivo. Our data provide a conceptual proof for a clinical application of distinct phenothiazines in the treatment of ABC-DLBCL.
Collapse
Affiliation(s)
- Daniel Nagel
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Molecular Toxicology and Pharmacology, Ingolstädter Landstrasse. 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
de Leon-Boenig G, Bowman KK, Feng JA, Crawford T, Everett C, Franke Y, Oh A, Stanley M, Staben ST, Starovasnik MA, Wallweber HJA, Wu J, Wu LC, Johnson AR, Hymowitz SG. The crystal structure of the catalytic domain of the NF-κB inducing kinase reveals a narrow but flexible active site. Structure 2012; 20:1704-14. [PMID: 22921830 DOI: 10.1016/j.str.2012.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022]
Abstract
The NF-κB inducing kinase (NIK) regulates the non-canonical NF-κB pathway downstream of important clinical targets including BAFF, RANKL, and LTβ. Despite numerous genetic studies associating dysregulation of this pathway with autoimmune diseases and hematological cancers, detailed molecular characterization of this central signaling node has been lacking. We undertook a systematic cloning and expression effort to generate soluble, well-behaved proteins encompassing the kinase domains of human and murine NIK. Structures of the apo NIK kinase domain from both species reveal an active-like conformation in the absence of phosphorylation. ATP consumption and peptide phosphorylation assays confirm that phosphorylation of NIK does not increase enzymatic activity. Structures of murine NIK bound to inhibitors possessing two different chemotypes reveal conformational flexibility in the gatekeeper residue controlling access to a hydrophobic pocket. Finally, a single amino acid difference affects the ability of some inhibitors to bind murine and human NIK with the same affinity.
Collapse
Affiliation(s)
- Gladys de Leon-Boenig
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Jou SY, Chang CC, Wu CH, Chen MR, Tsai CH, Chuang WH, Chen YH, Cheng AL, Doong SL. BCL10GFP fusion protein as a substrate for analysis of determinants required for mucosa-associated lymphoid tissue 1 (MALT1)-mediated cleavage. J Biomed Sci 2012; 19:85. [PMID: 23035874 PMCID: PMC3500650 DOI: 10.1186/1423-0127-19-85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/01/2012] [Indexed: 11/25/2022] Open
Abstract
Background MALT1 belongs to a family of paracaspase and modulates NF-κB signaling pathways through its scaffolding function and proteolytic activity. MALT1 cleaves protein substrates after a positively charged Arginine residue. BCL10, a 233 amino acids polypeptide, is identified as one of the MALT1 proteolytic substrates. MALT1 cleaves BCL10 at the C-terminal end of Arg228. A mere 5 amino acids difference between the substrate and the proteolytic product made it difficult to tell whether the cleavage event took place by using a simple western blot analysis. Here, BCL10GFP was constructed and utilized to examine the specificity and domain determinants for MALT1 cleavage in cells. Methods Various BCL10GFP constructs were transfected into HEK293T cell with MALT1 construct by using calcium phosphate-DNA precipitation method. Lysates of transfectants were resolved by SDS/PAGE and analyzed by western blot analysis. Results BCL10GFP was proteolytically processed by MALT1 as BCL10. The integrity of caspase recruitment domain (CARD) and MALT1-interacting domain on BCL10 were required for MALT1 proteolytic activity. Besides the invariant P1 cleavage site Arg228, P4 Leu225 played a role in defining BCL10 as a good substrate for MALT1. Conclusions We offered a way of monitoring the catalytic activity of MALT1 in HEK293T cells using BCL10GFP as a substrate. BCL10GFP can be utilized as a convenient tool for studying the determinants for efficient MALT1 cleavage in HEK293T cells
Collapse
Affiliation(s)
- Shin-Yi Jou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No.1, Section 1, Jen-Ai Road, Taipei 10051, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Degroote A, Knippenberg L, Vander Borght S, Spaepen M, Matthijs G, Schaeffer DF, Owen DA, Libbrecht L, Lambein K, De Hertogh G, Tousseyn T, Sagaert X. Analysis of microsatellite instability in gastric mucosa-associated lymphoid tissue lymphoma. Leuk Lymphoma 2012; 54:812-8. [PMID: 22916837 DOI: 10.3109/10428194.2012.723211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Helicobacter pylori gastritis, constant antigenic stimulation triggers a sustained B-cell proliferation. Errors made during this continuous DNA replication are supposed to be corrected by the DNA mismatch repair mechanism. Failure of this mismatch repair mechanism has been described in hereditary non-polyposis colorectal cancer (HNPCC) and results in a replication error phenotype. Inherent to their instability during replication, microsatellites are the best markers of this replication error phenotype. We aimed to evaluate the role of defects in the DNA mismatch repair (MMR) mechanism and microsatellite instability (MSI) in relation to the most frequent genetic anomaly, translocation t(11;18)(q21;q21), in gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Therefore, we examined 10 microsatellite loci (BAT25, BAT26, D5S346, D17S250, D2S123, TGFB, BAT40, D18S58, D17S787 and D18S69) for instability in 28 patients with MALT lymphomas. In addition, these tumors were also immunostained for MLH1, MSH2, MSH6 and PMS2, as well as screened for the presence of t(11;18)(q21;q21) by real-time polymerase chain reaction (RT-PCR). We found MSI in 5/28 (18%) lymphomas, with MSI occurring in both t(11;18)(q21;q21)-positive and -negative tumors. One tumor displayed high levels of instability, and, remarkably, this was the only case displaying features of a diffuse large B-cell lymphoma. All microsatellite unstable lymphomas showed a loss of MSH6 expression. In conclusion, our data suggest that a MMR-defect may be involved in the development of gastric MALT lymphomas, and that a defect of MSH6 might be associated with those MSI-driven gastric lymphomas.
Collapse
|
111
|
Liu J, Sudom A, Min X, Cao Z, Gao X, Ayres M, Lee F, Cao P, Johnstone S, Plotnikova O, Walker N, Chen G, Wang Z. Structure of the nuclear factor κB-inducing kinase (NIK) kinase domain reveals a constitutively active conformation. J Biol Chem 2012; 287:27326-34. [PMID: 22718757 PMCID: PMC3431628 DOI: 10.1074/jbc.m112.366658] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/15/2012] [Indexed: 11/29/2022] Open
Abstract
NF-κB-inducing kinase (NIK) is a central component in the non-canonical NF-κB signaling pathway. Excessive NIK activity is implicated in various disorders, such as autoimmune conditions and cancers. Here, we report the first crystal structure of truncated human NIK in complex with adenosine 5'-O-(thiotriphosphate) at a resolution of 2.5 Å. This truncated protein is a catalytically active construct, including an N-terminal extension of 60 residues prior to the kinase domain, the kinase domain, and 20 residues afterward. The structure reveals that the NIK kinase domain assumes an active conformation in the absence of any phosphorylation. Analysis of the structure uncovers a unique role for the N-terminal extension sequence, which stabilizes helix αC in the active orientation and keeps the kinase domain in the catalytically competent conformation. Our findings shed light on the long-standing debate over whether NIK is a constitutively active kinase. They also provide a molecular basis for the recent observation of gain-of-function activity for an N-terminal deletion mutant (ΔN324) of NIK, leading to constitutive non-canonical NF-κB signaling with enhanced B-cell adhesion and apoptosis resistance.
Collapse
Affiliation(s)
- Jinsong Liu
- From Amgen Inc., South San Francisco, California 94080
| | - Athena Sudom
- From Amgen Inc., South San Francisco, California 94080
| | - Xiaoshan Min
- From Amgen Inc., South San Francisco, California 94080
| | - Zhaodan Cao
- From Amgen Inc., South San Francisco, California 94080
| | - Xiong Gao
- From Amgen Inc., South San Francisco, California 94080
| | - Merrill Ayres
- From Amgen Inc., South San Francisco, California 94080
| | - Fei Lee
- From Amgen Inc., South San Francisco, California 94080
| | - Ping Cao
- From Amgen Inc., South San Francisco, California 94080
| | | | | | - Nigel Walker
- From Amgen Inc., South San Francisco, California 94080
| | - Guoqing Chen
- From Amgen Inc., South San Francisco, California 94080
| | - Zhulun Wang
- From Amgen Inc., South San Francisco, California 94080
| |
Collapse
|
112
|
Beug ST, Cheung HH, LaCasse EC, Korneluk RG. Modulation of immune signalling by inhibitors of apoptosis. Trends Immunol 2012; 33:535-45. [PMID: 22836014 DOI: 10.1016/j.it.2012.06.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/08/2012] [Accepted: 06/21/2012] [Indexed: 12/17/2022]
Abstract
The inhibitor of apoptosis (IAP) genes are critical regulators of multiple pathways that control cell death, proliferation, and differentiation. Several members of the IAP family regulate innate and adaptive immunity through modulation of signal transduction pathways, cytokine production, and cell survival. The regulation of immunity by the IAPs is primarily mediated through the ubiquitin ligase function of cellular IAP (cIAP)1, cIAP2, and X-linked IAP (XIAP), the targets of which impact nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signalling pathways. In addition, neuronal apoptosis inhibitory protein (NAIP), cIAP1, and cIAP2 modulate innate immune responses through control of the inflammasome complex. This review examines the role of mammalian IAPs in regulating immunity and describes the implications of a new class of pan-IAP antagonists for the treatment of immune disorders.
Collapse
Affiliation(s)
- Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | | | | | | |
Collapse
|
113
|
Lim KH, Yang Y, Staudt LM. Pathogenetic importance and therapeutic implications of NF-κB in lymphoid malignancies. Immunol Rev 2012; 246:359-78. [PMID: 22435566 DOI: 10.1111/j.1600-065x.2012.01105.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Derangement of the nuclear factor κB (NF-κB) pathway initiates and/or sustains many types of human cancer. B-cell malignancies are particularly affected by oncogenic mutations, translocations, and copy number alterations affecting key components the NF-κB pathway, most likely owing to the pervasive role of this pathway in normal B cells. These genetic aberrations cause tumors to be 'addicted' to NF-κB, which can be exploited therapeutically. Since each subtype of lymphoid cancer utilizes different mechanisms to activate NF-κB, several different therapeutic strategies are needed to address this pathogenetic heterogeneity. Fortunately, a number of drugs that block signaling cascades leading to NF-κB are in early phase clinical trials, several of which are already showing activity in lymphoid malignancies.
Collapse
Affiliation(s)
- Kian-Huat Lim
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
114
|
Thu YM, Su Y, Yang J, Splittgerber R, Na S, Boyd A, Mosse C, Simons C, Richmond A. NF-κB inducing kinase (NIK) modulates melanoma tumorigenesis by regulating expression of pro-survival factors through the β-catenin pathway. Oncogene 2012; 31:2580-92. [PMID: 21963849 PMCID: PMC3253179 DOI: 10.1038/onc.2011.427] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/13/2011] [Accepted: 08/20/2011] [Indexed: 02/07/2023]
Abstract
Nuclear factor-κB (NF-κB) inducing kinase (NIK) is a MAP3K that regulates the activation of NF-κB. NIK is often highly expressed in tumor cells, including melanoma, but the significance of this in melanoma progression has been unclear. Tissue microarray analysis of NIK expression reveals that dysplastic nevi (n=22), primary (n=15) and metastatic melanoma (n=13) lesions showed a statistically significant elevation in NIK expression when compared with benign nevi (n=30). Moreover, when short hairpin RNA techniques were used to knock-down NIK, the resultant NIK-depleted melanoma cell lines exhibited decreased proliferation, increased apoptosis, delayed cell cycle progression and reduced tumor growth in a mouse xenograft model. As expected, when NIK was depleted there was decreased activation of the non-canonical NF-κB pathway, whereas canonical NF-κB activation remained intact. NIK depletion also resulted in reduced expression of genes that contribute to tumor growth, including CXCR4, c-MYC and c-MET, and pro-survival factors such as BCL2 and survivin. These changes in gene expression are not fully explained by the attenuation of the non-canonical NF-κB pathway. Shown here for the first time is the demonstration that NIK modulates β-catenin-mediated transcription to promote expression of survivin. NIK-depleted melanoma cells exhibited downregulation of survivin as well as other β-catenin regulated genes including c-MYC, c-MET and CCND2. These data indicate that NIK mediates both β-catenin and NF-κB regulated transcription to modulate melanoma survival and growth. Thus, NIK may be a promising therapeutic target for melanoma.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Yingjun Su
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jinming Yang
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ryan Splittgerber
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Songqing Na
- Oncology Research, Eli Lily and Co., Indianapolis, IN 46285
| | - Alan Boyd
- Division of Dermatology, Vanderbilt University School of Medicine, Nashville, TN 37204
| | - Claudio Mosse
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Christopher Simons
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ann Richmond
- Department of Veterans Affairs Medical Center, Nashville, TN
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
115
|
|
116
|
Structural Determinants of MALT1 Protease Activity. J Mol Biol 2012; 419:4-21. [PMID: 22366302 DOI: 10.1016/j.jmb.2012.02.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 11/21/2022]
|
117
|
Hachmann J, Snipas S, van Raam B, Cancino E, Houlihan E, Poreba M, Kasperkiewicz P, Drag M, Salvesen G. Mechanism and specificity of the human paracaspase MALT1. Biochem J 2012; 443:287-95. [PMID: 22309193 PMCID: PMC3304489 DOI: 10.1042/bj20120035] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 12/20/2022]
Abstract
The paracaspase domain of MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a component of a gene translocation fused to the N-terminal domains of the cellular inhibitor of apoptosis protein 2. The paracaspase itself, commonly known as MALT1, participates in the NF-κB (nuclear factor κB) pathway, probably by driving survival signals downstream of the B-cell antigen receptor through MALT1 proteolytic activity. We have developed methods for the expression and purification of recombinant full-length MALT1 and its constituent catalytic domain alone. Both are activated by dimerization without cleavage, with a similar dimerization barrier to the distantly related cousins, the apical caspases. By using positional-scanning peptidyl substrate libraries we demonstrate that the activity and specificity of full-length MALT1 is recapitulated by the catalytic domain alone, showing a stringent requirement for cleaving after arginine, and with striking peptide length constraints for efficient hydrolysis. Rates of cleavage (kcat/Km values) of optimal peptidyl substrates are in the same order (10(3)-10(4) M(-1)·s(-1)) as for a putative target protein CYLD. Thus MALT1 has many similarities to caspase 8, even cleaving the putative target protein CYLD with comparable efficiencies, but with diametrically opposite primary substrate specificity.
Collapse
Key Words
- cyld
- mucosa-associated lymphoid tissue lymphoma translocation protein 1 (malt1)
- paracaspase
- positional-scanning substrate library
- protease
- substrate specificity
- ac, acetyl
- acc, 7-amino-4-carbamoylmethylcoumarin
- afc, 7-amino-4-trifluoromethylcoumarin
- amc, 7-amino-4-methylcoumarin
- bir, baculovirus inhibitor of apoptosis protein repeat
- card, caspase recruitment domain
- carma1, card-containing maguk (membrane-associated guanylate kinase) 1
- ciap2, cellular inhibitor of apoptosis protein 2
- dd, death domain
- dtt, dithiothreitol
- fkbp, fk506-binding protein
- fmk, fluoromethylketone
- hek, human embryonic kidney
- iap, inhibitor of apoptosis protein
- iptg, isopropyl β-d-thiogalactopyranoside
- jnk, c-jun n-terminal kinase
- malt1, mucosa-associated lymphoid tissue lymphoma translocation protein 1
- nf-κb, nuclear factor κb
- nik, nf-κb-inducing kinase
- ni-nta, ni2+-nitrilotriacetate
- ps-scl, positional-scanning substrate combinatorial library
- tca, trichloroacetic acid
- wt, wild-type
- z, benzyloxycarbonyl
Collapse
Affiliation(s)
- Janna Hachmann
- *Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, U.S.A
- †Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, U.S.A
| | - Scott J. Snipas
- *Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, U.S.A
| | - Bram J. van Raam
- *Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, U.S.A
| | - Erik M. Cancino
- ‡University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Emily J. Houlihan
- *Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, U.S.A
| | - Marcin Poreba
- §Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- §Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- §Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S. Salvesen
- *Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, U.S.A
| |
Collapse
|
118
|
Abstract
The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
119
|
Abstract
The mechanisms that drive normal B cell differentiation and activation are frequently subverted by B cell lymphomas for their unlimited growth and survival. B cells are particularly prone to malignant transformation because the machinery used for antibody diversification can cause chromosomal translocations and oncogenic mutations. The advent of functional and structural genomics has greatly accelerated our understanding of oncogenic mechanisms in lymphomagenesis. The signaling pathways that normal B cells utilize to sense antigens are frequently derailed in B cell malignancies, leading to constitutive activation of prosurvival pathways. These malignancies co-opt transcriptional regulatory systems that characterize their normal B cell counterparts and frequently alter epigenetic regulators of chromatin structure and gene expression. These mechanistic insights are ushering in an era of targeted therapies for these cancers based on the principles of pathogenesis.
Collapse
Affiliation(s)
- Arthur L Shaffer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
120
|
Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, Nakahashi H, Di Virgilio M, Bothmer A, Nussenzweig A, Robbiani DF, Casellas R, Nussenzweig MC. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 2011; 147:95-106. [PMID: 21962510 DOI: 10.1016/j.cell.2011.07.048] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/14/2011] [Accepted: 07/27/2011] [Indexed: 02/06/2023]
Abstract
Chromosomal rearrangements, including translocations, require formation and joining of DNA double strand breaks (DSBs). These events disrupt the integrity of the genome and are frequently involved in producing leukemias, lymphomas and sarcomas. Despite the importance of these events, current understanding of their genesis is limited. To examine the origins of chromosomal rearrangements we developed Translocation Capture Sequencing (TC-Seq), a method to document chromosomal rearrangements genome-wide, in primary cells. We examined over 180,000 rearrangements obtained from 400 million B lymphocytes, revealing that proximity between DSBs, transcriptional activity and chromosome territories are key determinants of genome rearrangement. Specifically, rearrangements tend to occur in cis and to transcribed genes. Finally, we find that activation-induced cytidine deaminase (AID) induces the rearrangement of many genes found as translocation partners in mature B cell lymphoma.
Collapse
Affiliation(s)
- Isaac A Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Razani B, Reichardt AD, Cheng G. Non-canonical NF-κB signaling activation and regulation: principles and perspectives. Immunol Rev 2011; 244:44-54. [PMID: 22017430 DOI: 10.1111/j.1600-065x.2011.01059.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear-factor κB (NF-κB) transcription factors are activated by a wide variety of stimuli in diverse cell types and control key aspects of immune function and development. Receptor-mediated activation of NF-κB appears to occur through two distinct signaling pathways termed as the canonical and non-canonical NF-κB pathways. Although much work has demonstrated the physiological importance of non-canonical NF-κB signaling to immunity and its involvement in diverse pathologies, such as cancers and autoimmune disease, the architecture and regulation of the pathway is only beginning to be understood. The non-canonical pathway appears to be activated by a select set of receptors within the tumor necrosis factor superfamily, and we discuss the molecular mechanisms that connect ligation of these receptors to pathway activation. It has become increasingly clear that the key regulatory step of the pathway involves modulation of the post-translational degradation of NF-κB-inducing kinase (NIK), the central activating kinase of non-canonical NF-κB signaling. How NIK post-translational stability is controlled before and after receptor ligation is an important aspect of understanding non-canonical NF-κB signaling. Furthermore, how release of NF-κB dimers downstream of the pathway's activation is actually connected to its identified physiological and pathological roles is a key remaining question in the field.
Collapse
Affiliation(s)
- Bahram Razani
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
122
|
Dia VP, de Mejia EG. Differential gene expression of RAW 264.7 macrophages in response to the RGD peptide lunasin with and without lipopolysaccharide stimulation. Peptides 2011; 32:1979-88. [PMID: 21964376 DOI: 10.1016/j.peptides.2011.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/10/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
Lunasin is a novel peptide from soybean with demonstrated chemopreventive property. We compared the effect of lunasin on gene expression of RAW 264.7 macrophages with and without lipopolysaccharide (LPS)-stimulation. Our hypothesis was that lunasin will have a differential effect in RAW 264.7 gene expression in a normal and challenged state. Analysis of the microarray data using False Discovery Rate (FDR) method resulted in the identification of 340 up-regulated and 162 down-regulated genes (FDR p-value <0.05) associated with simultaneous treatment of lunasin and LPS for 24h. Treatment of lunasin with no LPS for 24h resulted in the up-regulation of 855 genes and down-regulation of 397 genes. Pre-treatment of lunasin for 24h resulted in the up-regulation of 35 genes and down-regulation of 65 genes in LPS-stimulated RAW 264.7 macrophages. GeneVenn analysis of these three sets of genes showed that there are 66 genes common among the three groups which are mostly associated with regulation of cell death, ion binding and transcription as datamined by DAVID. Analysis of the 838 genes unique to lunasin alone by functional annotation clustering tool showed that lunasin mostly affected genes associated with RNA processing, apoptosis and protein kinase activity. Further datamining of these genes by ingenuity pathway analysis (IPA) showed that lunasin affected genes involved in cellular growth and proliferation, cellular function and maintenance, and cell to cell signaling and interaction. These findings support the potential chemopreventive and chemotherapeutic use of lunasin against cancer.
Collapse
Affiliation(s)
- Vermont P Dia
- University of Illinois, Department of Food Science and Human Nutrition, Urbana, IL 61801, United States
| | | |
Collapse
|
123
|
Abstract
At great human cost, cancer is the largest genetic experiment ever conducted. This review highlights how lymphoid malignancies have genetically perverted normal immune signaling and regulatory mechanisms for their selfish oncogenic goals of unlimited proliferation, perpetual survival and evasion of the immune response.
Collapse
|
124
|
McAllister-Lucas LM, Baens M, Lucas PC. MALT1 protease: a new therapeutic target in B lymphoma and beyond? Clin Cancer Res 2011; 17:6623-31. [PMID: 21868762 DOI: 10.1158/1078-0432.ccr-11-0467] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) as a gene that is perturbed in the B-cell neoplasm MALT lymphoma, already more than a decade ago, was the starting point for an intense area of research. The fascination with MALT1 was fueled further by the observation that it contains a domain homologous to the catalytic domain of caspases and thus, potentially, could function as a protease. Discoveries since then initially revealed that MALT1 is a key adaptor molecule in antigen receptor signaling to the transcription factor NF-κB, which is crucial for lymphocyte function. However, recent discoveries show that this function of MALT1 is not restricted to lymphocytes, witnessed by the ever-increasing list of receptors from cells within and outside of the immune system that require MALT1 for NF-κB activation. Yet, a role for MALT1 protease activity was shown only recently in immune signaling, and its importance was then further strengthened by the dependency of NF-κB-addicted B-cell lymphomas on this proteolytic activity. Therapeutic targeting of MALT1 protease activity might, therefore, become a useful approach for the treatment of these lymphomas and, additionally, an effective strategy for treating other neoplastic and inflammatory disorders associated with deregulated NF-κB signaling.
Collapse
Affiliation(s)
- Linda M McAllister-Lucas
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
125
|
Oetjen KA, Duckett CS. Identifying the trigger of c-IAPs: structural and functional characterization of CARD-mediated modulation of ubiquitin ligase activity. Mol Cell 2011; 42:553-4. [PMID: 21658595 DOI: 10.1016/j.molcel.2011.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this issue of Molecular Cell, Lopez et al. (2011) examine the caspase-recruitment domain (CARD) of c-IAP1 to reveal an intriguing mechanism in which conformational changes of the CARD determine c-IAP1's ubiquitin ligase activity, with implications for regulation of cell proliferation and survival by the IAPs.
Collapse
Affiliation(s)
- Karolyn A Oetjen
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
126
|
Rosebeck S, Rehman AO, Lucas PC, McAllister-Lucas LM. From MALT lymphoma to the CBM signalosome: three decades of discovery. Cell Cycle 2011; 10:2485-96. [PMID: 21750409 DOI: 10.4161/cc.10.15.16923] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The advent of molecular cytogenetics has led to the elucidation of genetic abnormalities that cause various congenital and oncological disorders. In B cell lymphoma, for example, a number of chromosomal translocations have been identified in and associated with the etiology of specific subtypes of lymphoma. Several recurrent chromosomal translocations have been identified in extranodal marginal zone B cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). Cloning and characterization of the products of three mutually exclusive translocation breakpoints found in MALT lymphoma led to the discovery of a novel NF-κB-activating complex comprising the CARMA, Bcl10, and MALT1 proteins. This "CBM signalosome" acts downstream of the antigen receptors in lymphocytes as well as a number of non-lymphoid cell-surface receptors involved in a variety of biological processes. CBM signalosome activity is important for normal cellular functions and is perturbed in neoplastic and inflammatory disorders, making it a viable target for novel therapeutic design.
Collapse
Affiliation(s)
- Shaun Rosebeck
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
127
|
Abstract
Activation of NF-κB transcription factors by receptors of the innate or adaptive immune system is essential for host defense. However, after danger is eliminated, NF-κB signaling needs to be tightly downregulated for the maintenance of tissue homeostasis. This review highlights key negative regulatory principles that affect the amount, localization or conformational properties of NF-κB-activating proteins to attenuate the NF-κB response. These mechanisms are needed to prevent inflammation, autoimmune disease and oncogenesis.
Collapse
Affiliation(s)
- Jürgen Ruland
- Institut für Molekulare Immunologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
128
|
Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, Grunn A, Fangazio M, Capello D, Monti S, Cresta S, Gargiulo E, Forconi F, Guarini A, Arcaini L, Paulli M, Laurenti L, Larocca LM, Marasca R, Gattei V, Oscier D, Bertoni F, Mullighan CG, Foá R, Pasqualucci L, Rabadan R, Dalla-Favera R, Gaidano G. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. ACTA ACUST UNITED AC 2011; 208:1389-401. [PMID: 21670202 PMCID: PMC3135373 DOI: 10.1084/jem.20110921] [Citation(s) in RCA: 491] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Next generation sequencing and copy number analysis provide insights into the complexity of the CLL coding genome, and reveal an association between NOTCH1 mutational activation and poor prognosis. The pathogenesis of chronic lymphocytic leukemia (CLL), the most common leukemia in adults, is still largely unknown. The full spectrum of genetic lesions that are present in the CLL genome, and therefore the number and identity of dysregulated cellular pathways, have not been identified. By combining next-generation sequencing and copy number analysis, we show here that the typical CLL coding genome contains <20 clonally represented gene alterations/case, including predominantly nonsilent mutations, and fewer copy number aberrations. These analyses led to the discovery of several genes not previously known to be altered in CLL. Although most of these genes were affected at low frequency in an expanded CLL screening cohort, mutational activation of NOTCH1, observed in 8.3% of CLL at diagnosis, was detected at significantly higher frequency during disease progression toward Richter transformation (31.0%), as well as in chemorefractory CLL (20.8%). Consistent with the association of NOTCH1 mutations with clinically aggressive forms of the disease, NOTCH1 activation at CLL diagnosis emerged as an independent predictor of poor survival. These results provide initial data on the complexity of the CLL coding genome and identify a dysregulated pathway of diagnostic and therapeutic relevance.
Collapse
Affiliation(s)
- Giulia Fabbri
- Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Rosebeck S, Lucas PC, McAllister-Lucas LM. Protease activity of the API2-MALT1 fusion oncoprotein in MALT lymphoma development and treatment. Future Oncol 2011; 7:613-7. [PMID: 21568677 PMCID: PMC3124218 DOI: 10.2217/fon.11.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gastric mucosa-associated lymphoid tissue (MALT) lymphoma is a prototypical cancer that occurs in the setting of chronic inflammation and an important model for understanding how deregulated NF-κB transcriptional activity contributes to malignancy. Most gastric MALT lymphomas require ongoing antigenic stimulation for continued tumor growth, and Stage I disease is usually cured by eradicating the causative microorganism, Helicobacter pylori, with antibiotics. However, in a subset of MALT lymphomas, chromosomal translocations are acquired that render the lymphoma antigen-independent. The recurrent translocation t(11;18)(q21;q21) is associated with failure to respond to antibiotic therapy and increased rate of dissemination. This translocation creates the API2-MALT1 fusion oncoprotein, which comprises the amino terminus of inhibitor of apoptosis 2 (API2 or cIAP2) fused to the carboxy terminus of MALT1. A common characteristic of chromosomal translocations in MALT lymphoma, including t(11;18), is that genes involved in the regulation of the NF-κB transcription factor are targeted by the translocations, and these genetic perturbations thereby result in deregulated, constitutive NF-κB stimulation. In the last decade, great insights into the roles of API2 and MALT1 in NF-κB signaling have been made. For example, recent pivotal studies have uncovered the long sought-after proteolytic activity of MALT1 and have demonstrated its critical involvement in the survival of certain lymphomas. Here, we review the current understanding of the role of MALT1 in normal lymphocyte function and lymphomagenesis. We then highlight our recent work that has revealed an intriguing link between the proteolytic activity of the API2-MALT1 fusion and its ability to influence lymphomagenesis by cleaving a key NF-κB regulatory protein, NF-κB-inducing kinase.
Collapse
MESH Headings
- Humans
- Lymphoma, B-Cell, Marginal Zone/drug therapy
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, B-Cell, Marginal Zone/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Peptide Hydrolases/genetics
- Peptide Hydrolases/metabolism
- Signal Transduction/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Shaun Rosebeck
- Department of Pediatrics & Communicable Diseases, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Peter C Lucas
- Department of Pathology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Linda M McAllister-Lucas
- Department of Pediatrics & Communicable Diseases, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|