101
|
Regulation of Fibrotic Processes in the Liver by ADAM Proteases. Cells 2019; 8:cells8101226. [PMID: 31601007 PMCID: PMC6830092 DOI: 10.3390/cells8101226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
Fibrosis in the liver is mainly associated with the activation of hepatic stellate cells (HSCs). Both activation and clearance of HSCs can be mediated by ligand–receptor interactions. Members of the a disintegrin and metalloprotease (ADAM) family are involved in the proteolytic release of membrane-bound ligands and receptor ectodomains and the remodelling of the extracellular matrix. ADAM proteases are therefore major regulators of intercellular signalling pathways. In the present review we discuss how ADAM proteases modulate pro- and anti-fibrotic processes and how ADAM proteases might be harnessed therapeutically in the future.
Collapse
|
102
|
Ge CX, Xu MX, Qin YT, Gu TT, Lou DS, Li Q, Hu LF, Wang BC, Tan J. Endoplasmic reticulum stress-induced iRhom2 up-regulation promotes macrophage-regulated cardiac inflammation and lipid deposition in high fat diet (HFD)-challenged mice: Intervention of fisetin and metformin. Free Radic Biol Med 2019; 141:67-83. [PMID: 31153974 DOI: 10.1016/j.freeradbiomed.2019.05.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
Endoplasmic reticulum stress (ERS) has been implicated in obesity-associated cardiac remodeling and dysfunction. Inactive rhomboid protein 2 (iRhom2), also known as Rhbdf2, is an inactive member of the rhomboid intramembrane proteinase family, playing an essential role in regulating inflammation. Nevertheless, the role of ERS-meditated iRhom2 pathway in metabolic stress-induced cardiomyopathy remains unknown. In the study, we showed that 4-PBA, as an essential ERS inhibitor, significantly alleviated high fat diet (HFD)-induced metabolic disorder and cardiac dysfunction in mice. Additionally, lipid deposition in heart tissues was prevented by 4-PBA in HFD-challenged mice. Moreover, 4-PBA blunted the expression of iRhom2, TACE, TNFR2 and phosphorylated NF-κB to prevent HFD-induced expression of inflammatory factors. Further, 4-PBA restrained HFD-triggered oxidative stress by promoting Nrf-2 signaling. Importantly, 4-PBA markedly suppressed cardiac ERS in HFD mice. The anti-inflammation, anti-ERS and anti-oxidant effects of 4-PBA were verified in palmitate (PAL)-incubated macrophages and cardiomyocytes. In addition, promoting ERS could obviously enhance iRhom2 signaling in vitro. Intriguingly, our data demonstrated that PAL-induced iRhom2 up-regulation apparently promoted macrophage to generate inflammatory factors that could promote cardiomyocyte inflammation and lipid accumulation. Finally, interventions by adding fisetin or metformin significantly abrogated metabolic stress-induced cardiomyopathy through the mechanisms mentioned above. In conclusion, this study provided a novel mechanism for metabolic stress-induced cardiomyopathy pathogenesis. Therapeutic strategy to restrain ROS/ERS/iRhom2 signaling pathway could be developed to prevent myocardial inflammation and lipid deposition, consequently alleviating obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Chen-Xu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Min-Xuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| | - Yu-Ting Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, PR China
| | - Ting-Ting Gu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, PR China
| | - De-Shuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bo-Chu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| |
Collapse
|
103
|
Veit M, Ahrens B, Seidel J, Sommer A, Bhakdi S, Reiss K. Mutagenesis of the ADAM17-phosphatidylserine-binding motif leads to embryonic lethality in mice. Life Sci Alliance 2019; 2:2/5/e201900430. [PMID: 31455669 PMCID: PMC6712283 DOI: 10.26508/lsa.201900430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
ADAM17, prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Several of these play central roles in oncogenesis and inflammation, yet despite its importance, the mechanism by which ADAM17 is activated is not fully understood. We recently presented evidence that surface exposure of phosphatidylserine (PS) is the penultimate event required for sheddase activation, which occurs upon binding of a membrane-proximal, cationic binding motif to the anionic phospholipid headgroup. Here, we show that mutagenesis of the 3 amino acids constituting the PS-binding motif leads to embryonic lethality in mice. Heterozygotes showed no abnormalities. Primary hepatocytes and fibroblasts were analysed and found to express the mutant protease on the cell surface. However, PMA-stimulated release of ADAM17 substrates was completely abolished. The results directly support the novel concept of transiently externalised PS as essential trigger of extracellular protease function in vivo.
Collapse
Affiliation(s)
- Martin Veit
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Björn Ahrens
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Jana Seidel
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Anselm Sommer
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Sucharit Bhakdi
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Karina Reiss
- Department of Dermatology, University of Kiel, Kiel, Germany
| |
Collapse
|
104
|
Wichert R, Scharfenberg F, Colmorgen C, Koudelka T, Schwarz J, Wetzel S, Potempa B, Potempa J, Bartsch JW, Sagi I, Tholey A, Saftig P, Rose-John S, Becker-Pauly C. Meprin β induces activities of A disintegrin and metalloproteinases 9, 10, and 17 by specific prodomain cleavage. FASEB J 2019; 33:11925-11940. [PMID: 31381863 DOI: 10.1096/fj.201801371r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Meprin β is a membrane-bound metalloprotease involved in extracellular matrix assembly and inflammatory processes in health and disease. A disintegrin and metalloproteinase (ADAM)10 and ADAM17 are physiologic relevant sheddases of inactive promeprin β, which influences its substrate repertoire and subsequent biologic functions. Proteomic analysis also revealed several ADAMs as putative meprin β substrates. Here, we demonstrate specific N-terminal processing of ADAM9, 10, and 17 by meprin β and identify cleavage sites within their prodomains. Because ADAM prodomains can act as specific inhibitors, we postulate a role for meprin β in the regulation of ADAM activities. Indeed, prodomain cleavage by meprin β caused increased ADAM protease activities, as observed by peptide-based cleavage assays and demonstrated by increased ectodomain shedding activity. Direct interaction of meprin β and ADAM proteases could be shown by immunofluorescence microscopy and immunoprecipitation experiments. As demonstrated by a bacterial activator of meprin β and additional measurement of TNF-α shedding on bone marrow-derived macrophages, meprin β/ADAM protease interactions likely influence inflammatory conditions. Thus, we identified a novel proteolytic pathway of meprin β with ADAM proteases to control protease activities at the cell surface as part of the protease web.-Wichert, R., Scharfenberg, F., Colmorgen, C., Koudelka, T., Schwarz, J., Wetzel, S., Potempa, B., Potempa, J., Bartsch, J. W., Sagi, I., Tholey, A., Saftig, P., Rose-John, S., Becker-Pauly, C. Meprin β induces activities of A disintegrin and metalloproteinases 9, 10, and 17 by specific prodomain cleavage.
Collapse
Affiliation(s)
- Rielana Wichert
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | | | | | - Tomas Koudelka
- Institute of Experimental Medicine, University of Kiel, Kiel, Germany
| | | | | | - Barbara Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.,Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | | | | |
Collapse
|
105
|
Geesala R, Issuree PD, Maretzky T. Novel functions of inactive rhomboid proteins in immunity and disease. J Leukoc Biol 2019; 106:823-835. [PMID: 31369701 DOI: 10.1002/jlb.3vmr0219-069r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
iRhoms are related to a family of intramembrane serine proteinases called rhomboids but lack proteolytic activity. In mammals, there are two iRhoms, iRhom1 and iRhom2, which have similar domain structures and overlapping specificities as well as distinctive functions. These catalytically inactive rhomboids are essential regulators for the maturation and trafficking of the disintegrin metalloprotease ADAM17 from the endoplasmic reticulum to the cell surface, and are required for the cleavage and release of a variety of membrane-associated proteins, including the IL-6 receptor, l-selectin, TNF, and EGFR ligands. iRhom2-dependent regulation of ADAM17 function has been recently implicated in the development and progression of several autoimmune diseases including rheumatoid arthritis, lupus nephritis, as well as hemophilic arthropathy. In this review, we discuss our current understanding of iRhom biology, their implications in autoimmune pathologies, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Priya D Issuree
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
106
|
Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 2019; 76:3055-3081. [PMID: 31236626 PMCID: PMC11105368 DOI: 10.1007/s00018-019-03173-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Tobias Brummer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Yuanpeng Zheng
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
- Fondazione Ri.MED, Department of Research, IRCCS-ISMETT, via Tricomi 5, 90127, Palermo, Italy
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany.
- Munich Center for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
107
|
Seegar TC, Blacklow SC. Domain integration of ADAM family proteins: Emerging themes from structural studies. Exp Biol Med (Maywood) 2019; 244:1510-1519. [PMID: 31333048 DOI: 10.1177/1535370219865901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ADAM (a disintegrin and metalloproteinase) proteins are type-1 transmembrane and secreted proteins that function in cell adhesion and signal transduction. Here we review the structural features of ADAM proteins that direct their biological functions in ectodomain shedding and cell adhesion. Impact statement Recent structural advances have provided a deeper appreciation for interdomain relationships that modulate the activity of ADAM proteins in ectodomain shedding and cellular adhesion. Our review covers these new findings, and places them into historical context. The new results make clear that the metalloproteinase domain works in combination with its ancillary domains to execute its biological function. The ADAM ectodomain is dynamic, and accesses conformations that require interdomain movements during its enzymatic “lifecycle.” Fundamental questions about ADAM activation and substrate selection, however, still remain unanswered. Elucidating the biochemical and structural basis for ADAM regulation will be an exciting avenue of future research that should greatly advance our understanding of ADAM function in biology and human pathogenesis.
Collapse
Affiliation(s)
- Tom Cm Seegar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| |
Collapse
|
108
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
109
|
Düsterhöft S, Lokau J, Garbers C. The metalloprotease ADAM17 in inflammation and cancer. Pathol Res Pract 2019; 215:152410. [PMID: 30992230 DOI: 10.1016/j.prp.2019.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/23/2022]
Abstract
Proteolytic cleavage of transmembrane proteins is an important post-translational modification that regulates the biological function of numerous transmembrane proteins. Among the 560 proteases encoded in the human genome, the metalloprotease A Disintegrin and Metalloprotease 17 (ADAM17) has gained much attention in recent years and has emerged as a central regulatory hub in inflammation, immunity and cancer development. In order to do so, ADAM17 cleaves a variety of substrates, among them the interleukin-6 receptor (IL-6R), the pro-inflammatory cytokine tumor necrosis factor α (TNFα) and most ligands of the epidermal growth factor receptor (EGFR). This review article provides an overview of the functions of ADAM17 with a special focus on its cellular regulation. It highlights the importance of ADAM17 to understand the biology of IL-6 and TNFα and their role in inflammatory diseases. Finally, the role of ADAM17 in the formation and progression of different tumor entities is discussed.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Institute for Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
110
|
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
111
|
Zhang C, Chen-Yu Hsu A, Pan H, Gu Y, Zuo X, Dong B, Wang Z, Zheng J, Lu J, Zheng R, Wang F. Columbianadin Suppresses Lipopolysaccharide (LPS)-Induced Inflammation and Apoptosis through the NOD1 Pathway. Molecules 2019; 24:molecules24030549. [PMID: 30717343 PMCID: PMC6384818 DOI: 10.3390/molecules24030549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/22/2023] Open
Abstract
Columbianadin (CBN) is one of the main bioactive constituents isolated from the root of Angelica pubescens. Although the anti-inflammatory activity of CBN has been reported, the underpinning mechanism of this remains unclear. In this study, we investigated the anti-inflammatory effect of CBN on lipopolysaccharide (LPS)-stimulated THP-1 cells and explored the possible underlying molecular mechanisms. The results showed that CBN suppressed LPS-mediated inflammatory response mainly through the inactivation of the NOD1 and NF-κB p65 signaling pathways. Knockdown of NOD1 reduced the degree to which inflammatory cytokines decreased following CBN treatment, whereas forced expression of NOD1 and CBN treatment reduced NF-κB p65 activation and the secretion of inflammatory cytokines. Furthermore, CBN significantly reduced cellular apoptosis by inhibiting the NOD1 pathway. Collectively, our results indicate that CBN suppressed the LPS-mediated inflammatory response by inhibiting NOD1/NF-κB activation. Further investigations are required to determine the mechanisms of action of CBN in the inhibition of NOD signaling: However, CBN may be employed as a therapeutic agent for multiple inflammatory diseases.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and University of Newcastle, Newcastle 2308, Australia;
| | - He Pan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
| | - Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
| | - Bing Dong
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
| | - Ziyan Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
| | - Jingtong Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
| | - Junying Lu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
| | - Ruipeng Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.Z.); (H.P.); (Y.G.); (X.Z.); (B.D.); (Z.W.); (J.Z.); (J.L.); (R.Z.)
- Correspondence: ; Tel.: +86-135-0431-0544
| |
Collapse
|
112
|
Geesala R, Schanz W, Biggs M, Dixit G, Skurski J, Gurung P, Meyerholz DK, Elliott D, Issuree PD, Maretzky T. Loss of RHBDF2 results in an early-onset spontaneous murine colitis. J Leukoc Biol 2019; 105:767-781. [PMID: 30694569 DOI: 10.1002/jlb.4a0718-283rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous group of inflammation-mediated pathologies that include Crohn's disease and ulcerative colitis and primarily affects the colon and small intestine. Previous studies have shown that a disintegrin and metalloprotease (ADAM) 17, a membrane-bound sheddase, capable of cleaving the proinflammatory cytokine TNF and epidermal growth factor receptor ligands, plays a critical role in maintaining gut homeostasis and modulating intestinal inflammation during IBD. Rhomboid 5 homolog 2 (RHBDF2), a catalytically inactive member of the rhomboid family of intramembrane serine proteases, was recently identified as a crucial regulator of ADAM17. Here, we assessed the role of RHBDF2 in the development of colitis in the context of IL10 deficiency. Il10-/- /Rhbdf2-/- mice developed spontaneous colitis and experienced severe weight loss starting at 8 wk of age, without the need for exogenous triggers. Severity of disease pathology in Il10-/- /Rhbdf2-/- mice correlated with a dysbiotic gut microbiota and elevated Th1-associated immune responses with increased interferon gamma and IL2 production. In addition, Il10-/- /Rhbdf2-/- mice failed to maintain their epithelial cell homeostasis, although the intestinal epithelial barrier of Rhbdf2-/- mice is intact and loss of Rhbdf2 did not significantly exacerbate sensitivity to dextran sulfate sodium-induced colitis, suggesting differences in the underlying disease pathway of intestinal inflammation in this model. Taken together, our results demonstrate a critical regulatory role for RHBDF2 in the maintenance of the unique homeostasis between intestinal microbiota and host immune responses in the gut that is dysregulated during the pathogenesis of IBD.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Willow Schanz
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Mikayla Biggs
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Garima Dixit
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Joseph Skurski
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Immunology Graduate Program, Iowa City, Iowa, USA
| | - Prajwal Gurung
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Immunology Graduate Program, Iowa City, Iowa, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - David Elliott
- Department of Veterans Affairs Medical Center, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Priya D Issuree
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Immunology Graduate Program, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
113
|
Zhao Z, Kesti T, Uğurlu H, Baur AS, Fagerlund R, Saksela K. Tyrosine phosphorylation directs TACE into extracellular vesicles via unconventional secretion. Traffic 2019; 20:202-212. [PMID: 30569492 DOI: 10.1111/tra.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
When studying how HIV-1 Nef can promote packaging of the proinflammatory transmembrane protease TACE (tumor necrosis factor-α converting enzyme) into extracellular vesicles (EVs) we have revealed a novel tyrosine kinase-regulated unconventional protein secretion (UPS) pathway for TACE. When TACE was expressed without its trafficking cofactor iRhom allosteric Hck activation by Nef triggered translocation of TACE into EVs. This process was insensitive to blocking of classical secretion by inhibiting endoplasmic reticulum (ER) to Golgi transport, and involved a distinct form of TACE devoid of normal glycosylation and incompletely processed for prodomain removal. Like most other examples of UPS this process was Golgi reassembly stacking protein (GRASP)-dependent but was not associated with ER stress. These data indicate that Hck-activated UPS provides an alternative pathway for TACE secretion that can bypass iRhom-dependent ER to Golgi transfer, and suggest that tyrosine phosphorylation might have a more general role in regulating UPS.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tapio Kesti
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hasan Uğurlu
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Andreas S Baur
- Department of Dermatology, Translational Research Center, University Hospital Erlangen, Erlangen, Germany
| | - Riku Fagerlund
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
114
|
Schubert K, Collins LE, Green P, Nagase H, Troeberg L. LRP1 Controls TNF Release via the TIMP-3/ADAM17 Axis in Endotoxin-Activated Macrophages. THE JOURNAL OF IMMUNOLOGY 2019; 202:1501-1509. [PMID: 30659107 DOI: 10.4049/jimmunol.1800834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.
Collapse
Affiliation(s)
- Kristin Schubert
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Laura E Collins
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Patricia Green
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
115
|
Recinto SJ, Paschkowsky S, Munter LM. An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4. Biol Chem 2018; 399:1399-1408. [DOI: 10.1515/hsz-2018-0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Abstract
AbstractSince the first genetic description of a rhomboid inDrosophila melanogaster, tremendous efforts have been geared towards elucidating the proteolytic mechanism of this particular class of intramembrane proteases. In particular, mammalian rhomboid proteases sparked our interest and we aimed to investigate the human homologue RHBDL4. In light of our recent finding of the amyloid precursor protein (APP) family as efficient substrates of RHBDL4, we were enticed to further study the specific proteolytic mechanism of this enzyme by comparing cleavage patterns of wild type APP and APP TMS chimeras. Here, we demonstrate that the introduction of positively charged amino acid residues in the TMS redirects the RHBDL4-mediated cleavage of APP from its ectodomain closer towards the TMS, possibly inducing an ER-associated degradation (ERAD) of the substrate. In addition, we concluded that the cytoplasmic tail and proposed palmitoylation sites in the ectodomain of APP are not essential for the RHBDL4-mediated APP processing. In summary, our previously identified APP ectodomain cleavages by RHBDL4 are a subsidiary mechanism to the proposed RHBDL4-mediated ERAD of substrates likely through a single cleavage near or within the TMS.
Collapse
|
116
|
Cabron AS, El Azzouzi K, Boss M, Arnold P, Schwarz J, Rosas M, Dobert JP, Pavlenko E, Schumacher N, Renné T, Taylor PR, Linder S, Rose-John S, Zunke F. Structural and Functional Analyses of the Shedding Protease ADAM17 in HoxB8-Immortalized Macrophages and Dendritic-like Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3106-3118. [PMID: 30355783 PMCID: PMC6215251 DOI: 10.4049/jimmunol.1701556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/16/2018] [Indexed: 01/19/2023]
Abstract
A disintegrin and metalloproteinase (ADAM) 17 has been implicated in many shedding processes. Major substrates of ADAM17 are TNF-α, IL-6R, and ligands of the epidermal growth factor receptor. The essential role of the protease is emphasized by the fact that ADAM17 deficiency is lethal in mice. To study ADAM17 function in vivo, we generated viable hypomorphic ADAM17 mice called ADAM17ex/ex mice. Recent studies indicated regulation of proteolytic ADAM17 activity by cellular processes such as cytoplasmic phosphorylation and removal of the prodomain by furin cleavage. Maturation and thus activation of ADAM17 is not fully understood. So far, studies of ADAM17 maturation have been mainly limited to mouse embryonic fibroblasts or transfected cell lines relying on nonphysiologic stimuli such as phorbol esters, thus making interpretation of the results difficult in a physiologic context. In this article, we present a robust cell system to study ADAM17 maturation and function in primary cells of the immune system. To this end, HoxB8 conditionally immortalized macrophage precursor cell lines were derived from bone marrow of wild-type and hypomorphic ADAM17ex/ex mice, which are devoid of measurable ADAM17 activity. ADAM17 mutants were stably expressed in macrophage precursor cells, differentiated to macrophages under different growth factor conditions (M-CSF versus GM-CSF), and analyzed for cellular localization, proteolytic activity, and podosome disassembly. Our study reveals maturation and activity of ADAM17 in a more physiological-immune cell system. We show that this cell system can be further exploited for genetic modifications of ADAM17 and for studying its function in immune cells.
Collapse
Affiliation(s)
- Anne-Sophie Cabron
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Karim El Azzouzi
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Melanie Boss
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Philipp Arnold
- Institute of Anatomy, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Jeanette Schwarz
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Marcela Rosas
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF10 3AT, United Kingdom
| | - Jan Philipp Dobert
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Egor Pavlenko
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Neele Schumacher
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Thomas Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Solna, SE-171 76 Stockholm, Sweden; and
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philip R Taylor
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF10 3AT, United Kingdom
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | - Friederike Zunke
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| |
Collapse
|
117
|
Kreutzberger AJB, Urban S. Single-Molecule Analyses Reveal Rhomboid Proteins Are Strict and Functional Monomers in the Membrane. Biophys J 2018; 115:1755-1761. [PMID: 30342748 PMCID: PMC6224778 DOI: 10.1016/j.bpj.2018.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023] Open
Abstract
Intramembrane proteases hydrolyze peptide bonds within the membrane as a regulatory paradigm that is conserved across all forms of cellular life. Many of these enzymes are thought to be oligomeric, and that their resulting quaternary interactions form the basis of their regulation. However, technical limitations have precluded directly determining the oligomeric state of intramembrane proteases in any membrane. Using single-molecule photobleaching, we determined the quaternary structure of 10 different rhomboid proteins (the largest superfamily of intramembrane proteases) and six unrelated control proteins in parallel detergent micelle, planar supported lipid bilayer, and whole-cell systems. Bacterial, parasitic, insect, and human rhomboid proteases and inactive rhomboid pseudoproteases all proved to be monomeric in all membrane conditions but dimeric in detergent micelles. These analyses establish that rhomboid proteins are, as a strict family rule, structurally and functionally monomeric by nature and that rhomboid dimers are unphysiological.
Collapse
Affiliation(s)
- Alex J B Kreutzberger
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Siniša Urban
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
118
|
iNOS promotes CD24 +CD133 + liver cancer stem cell phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proc Natl Acad Sci U S A 2018; 115:E10127-E10136. [PMID: 30297396 PMCID: PMC6205478 DOI: 10.1073/pnas.1722100115] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD24+CD133+ liver cancer stem cells (LCSCs) express higher levels of the inducible nitric oxide synthase (iNOS) and possess self-renewal and tumor growth properties. iNOS is associated with more aggressive hepatocellular carcinoma (HCC), leading to the upregulation of Notch1 signaling. The activation of Notch1 by iNOS/NO is dependent on cGMP/PKG-mediated activation of TACE and upregulation of iRhom-2. The expression of iNOS, CD24, and CD133 correlates with the expression of activated TACE and Notch signaling in more aggressive human HCC. These findings have implications for understanding how LCSCs are regulated in the setting of chronic inflammation, where signals to upregulate iNOS are often present. Targeting iNOS could have therapeutic benefit in HCC. The inducible nitric oxide synthase (iNOS) is associated with more aggressive solid tumors, including hepatocellular carcinoma (HCC). Notch signaling in cancer stem cells promotes cancer progression and requires Notch cleavage by ADAM (a disintegrin and metalloprotease) proteases. We hypothesized that iNOS/NO promotes Notch1 activation through TACE/ADAM17 activation in liver cancer stem cells (LCSCs), leading to a more aggressive cancer phenotype. Expression of the stem cell markers CD24 and CD133 in the tumors of patients with HCC was associated with greater iNOS expression and worse outcomes. The expression of iNOS in CD24+CD133+ LCSCs, but not CD24−CD133− LCSCs, promoted Notch1 signaling and stemness characteristics in vitro and in vivo, as well as accelerating HCC initiation and tumor formation in the mouse xenograft tumor model. iNOS/NO led to Notch1 signaling through a pathway involving the soluble guanylyl cyclase/cGMP/PKG-dependent activation of TACE/ADAM17 and up-regulation of iRhom2 in LCSCs. In patients with HCC, higher TACE/ADAM17 expression and Notch1 activation correlated with poor prognosis. These findings link iNOS to Notch1 signaling in CD24+CD133+ LCSCs through the activation of TACE/ADAM17 and identify a mechanism for how iNOS contributes to progression of CD24+CD133+ HCC.
Collapse
|
119
|
Li J, Bai TR, Gao S, Zhou Z, Peng XM, Zhang LS, Dou DL, Zhang ZS, Li LY. Human rhomboid family-1 modulates clathrin coated vesicle-dependent pro-transforming growth factor α membrane trafficking to promote breast cancer progression. EBioMedicine 2018; 36:229-240. [PMID: 30279141 PMCID: PMC6197618 DOI: 10.1016/j.ebiom.2018.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) signalling is critical in epithelial cancer development. Human rhomboid family-1 (RHBDF1) facilitates the secretion of TGFα, an EGFR ligand, in breast cancer; however, the underlying mechanism remains unclear. We evaluated the role for RHBDF1 in clathrin-coated vesicle (CCV)-dependent pro-TGFα membrane trafficking in breast cancer cells upon stimulation by G-protein coupled receptor (GPCR) agonists. METHODS RHBDF1 was silenced in various breast cancer cells using shRNA. TGFα levels, subcellular localization, and secretion were evaluated using ELISA, immunofluorescent staining, and coimmunoprecipitation. Phosphorylation and expression of relevant proteins were measured by western blotting. RHBDF1-dependent cell viability and invasion were measured. FINDINGS RHBDF1 mediates GPCR agonist-induced EGFR phosphorylation by promoting TGFα secretion in various types of breast cancer cells. RHBDF1 not only mediates ADAM17-dependent shedding of TGFα, but is essential in membrane trafficking of pro-TGFα. RHBDF1 silencing results in blocking of clathrin uncoating from CCV, a crucial step for the plasma membrane release of pro-TGFα. Interaction of RHBDF1 with auxilin-2, a CCV protein, determines the recruitment of HSC70 to CCV to facilitate clathrin uncoating. RHBDF1 function is required for the proliferation and mobility of breast cancer cells upon stimulation by Sphingosine 1 Phosphate (S1P), a GPCR agonist. We demonstrate a significant correlation between RHBDF1 overexpression and EGFR activation in breast cancer tissues. INTERPRETATION RHBDF1 is an indispensable component of the protein trafficking machinery involved in GPCR-mediated EGFR transactivation, and is an attractive therapeutic target for cancer. FUND: National Natural Science Foundation of China (81,672,740 to ZSZ, 81,272,356 and 81,330,029 to LYL).
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Tai-Ran Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhuan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Xue-Mei Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Li-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dao-Lei Dou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
120
|
|
121
|
Haxaire C, Hakobyan N, Pannellini T, Carballo C, McIlwain D, Mak TW, Rodeo S, Acharya S, Li D, Szymonifka J, Song X, Monette S, Srivastava A, Salmon JE, Blobel CP. Blood-induced bone loss in murine hemophilic arthropathy is prevented by blocking the iRhom2/ADAM17/TNF-α pathway. Blood 2018; 132:1064-1074. [PMID: 29776906 PMCID: PMC6128089 DOI: 10.1182/blood-2017-12-820571] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Hemophilic arthropathy (HA) is a debilitating degenerative joint disease that is a major manifestation of the bleeding disorder hemophilia A. HA typically begins with hemophilic synovitis that resembles inflammatory arthritides, such as rheumatoid arthritis, and frequently results in bone loss in patients. A major cause of rheumatoid arthritis is inappropriate release of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) by the TNF-α convertase (TACE; also referred to as ADAM17) and its regulator, iRhom2. Therefore, we hypothesized that iRhom2/ADAM17-dependent shedding of TNF-α also has a pivotal role in mediating HA. Here, we show that addition of blood or its components to macrophages activates iRhom2/ADAM17-dependent TNF-α shedding, providing the premise to study the activation of this pathway by blood in the joint in vivo. For this, we turned to hemophilic FVIII-deficient mice (F8-/- mice), which develop a hemarthrosis following needle puncture injury with synovial inflammation and significant osteopenia adjacent to the affected joint. We found that needle puncture-induced bleeding leads to increased TNF-α levels in the affected joint of F8-/- mice. Moreover, inactivation of TNF-α or iRhom2 in F8-/- mice reduced the osteopenia and synovial inflammation that develops in this mouse model for HA. Taken together, our results suggest that blood entering the joint activates the iRhom2/ADAM17/TNF-α pathway, thereby contributing to osteopenia and synovitis in mice. Therefore, this proinflammatory signaling pathway could emerge as an attractive new target to prevent osteoporosis and joint damage in HA patients.
Collapse
Affiliation(s)
- Coline Haxaire
- Arthritis and Tissue Degeneration Program and
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY
| | - Narine Hakobyan
- Pediatric Hematology/Oncology, Rush University Medical Center, Chicago, IL
| | | | - Camila Carballo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - David McIlwain
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Scott Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Suchitra Acharya
- Pediatric Hematology/Oncology, Northwell Health, New Hyde Park, NY
| | - Daniel Li
- Arthritis and Tissue Degeneration Program and
| | - Jackie Szymonifka
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY
| | - Xiangqian Song
- Pediatric Hematology/Oncology, Rush University Medical Center, Chicago, IL
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY
| | - Alok Srivastava
- Department of Hematology, Christian Medical College, Vellore, India
| | - Jane E Salmon
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY
- Department of Medicine and
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program and
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medicine and
- Department of Biophysics, Physiology, and Systems Biology, Weill Cornell Medicine, New York, NY; and
- Institute for Advanced Studies, Technical University Munich, Garching, Germany
| |
Collapse
|
122
|
The Rhomboid Superfamily: Structural Mechanisms and Chemical Biology Opportunities. Trends Biochem Sci 2018; 43:726-739. [DOI: 10.1016/j.tibs.2018.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/08/2018] [Accepted: 06/30/2018] [Indexed: 12/27/2022]
|
123
|
iRhom2 promotes atherosclerosis through macrophage inflammation and induction of oxidative stress. Biochem Biophys Res Commun 2018; 503:1897-1904. [DOI: 10.1016/j.bbrc.2018.07.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
|
124
|
Merilahti JAM, Elenius K. Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene 2018; 38:151-163. [PMID: 30166589 PMCID: PMC6756091 DOI: 10.1038/s41388-018-0465-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022]
Abstract
Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug development are discussed.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland. .,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland. .,Department of Oncology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
125
|
iRhom2 loss alleviates renal injury in long-term PM2.5-exposed mice by suppression of inflammation and oxidative stress. Redox Biol 2018; 19:147-157. [PMID: 30165303 PMCID: PMC6118040 DOI: 10.1016/j.redox.2018.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Particulate matter (PM2.5) is a risk factor for organ injury and disease progression, such as lung, brain and liver. However, its effects on renal injury and the underlying molecular mechanism have not been understood. The inactive rhomboid protein 2 (iRhom2), also known as rhomboid family member 2 (Rhbdf2), is a necessary modulator for shedding of tumor necrosis factor-α (TNF-α) in immune cells, and has been explored in the pathogenesis of chronic renal diseases. In the present study, we found that compared to the wild type (iRhom2+/+) mice, iRhom2 knockout (iRhom2-/-) protected PM2.5-exposed mice from developing severe renal injury, accompanied with improved renal pathological changes and functions. iRhom2-/- mice exhibited reduced inflammatory response, as evidenced by the reduction of interleukin 1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and IL-18 in kidney samples, which might be, at least partly, through inactivating TNF-α converting enzyme/TNF-α receptors (TACE/TNFRs) and inhibitor of α/nuclear factor κ B (IκBα/NF-κB) signaling pathways. In addition, oxidative stress was also restrained by iRhom2-/- in kidney of PM2.5-exposed mice by enhancing heme oxygenase/nuclear factor erythroid 2-related factor 2 (HO-1/Nrf-2) expressions, and reducing phosphorylated c-Jun N-terminal kinase (JNK). In vitro, blockage of HO-1 or Nrf-2 rescued the inflammatory response and oxidative stress that were reduced by iRhom2 knockdown in PM2.5-incubated RAW264.7 cells. Similar results were observed in JNK activator-treated cells. Taken together, our findings indicated that iRhom2 played an essential role in regulating PM2.5-induced chronic renal damage, thus revealing a potential target for preventing chronic kidney diseases development. Suppression of iRhom2 negatively regulates inflammatory response in mouse macrophages RAW264.7 cells. iRhom2 deficiency alleviates PM2.5-induced renal injury by reducing inflammatory infiltration. iRhom2 inhibition reduces oxidative stress and JNK activation in PM2.5-induced renal injury in vitro and in vivo. PM2.5-induced renal injury via iRhom2-regulated oxidative stress and inflammation.
Collapse
|
126
|
Neutrophil and Macrophage Cell Surface Colony-Stimulating Factor 1 Shed by ADAM17 Drives Mouse Macrophage Proliferation in Acute and Chronic Inflammation. Mol Cell Biol 2018; 38:MCB.00103-18. [PMID: 29891514 DOI: 10.1128/mcb.00103-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/06/2018] [Indexed: 02/04/2023] Open
Abstract
Macrophages are prominent cells in acute and chronic inflammatory diseases. Recent studies highlight a role for macrophage proliferation post-monocyte recruitment under inflammatory conditions. Using an acute peritonitis model, we identify a significant defect in macrophage proliferation in mice lacking the leukocyte transmembrane protease ADAM17. The defect is associated with decreased levels of macrophage colony-stimulating factor 1 (CSF-1) in the peritoneum and is rescued by intraperitoneal injection of CSF-1. Cell surface CSF-1 (csCSF-1) is one of the substrates of ADAM17. We demonstrate that both infiltrated neutrophils and macrophages are major sources of csCSF-1. Furthermore, acute shedding of csCSF-1 following neutrophil extravasation is associated with elevated expression of iRhom2, a member of the rhomboid-like superfamily, which promotes ADAM17 maturation and trafficking to the neutrophil surface. Accordingly, deletion of hematopoietic iRhom2 is sufficient to prevent csCSF-1 release from neutrophils and macrophages and to prevent macrophage proliferation. In acute inflammation, csCSF-1 release and macrophage proliferation are self-limiting due to transient leukocyte recruitment and temporally restricted csCSF-1 expression. In chronic inflammation, such as atherosclerosis, the ADAM17-mediated lesional macrophage proliferative response is prolonged. Our results demonstrate a novel mechanism whereby ADAM17 promotes macrophage proliferation in states of acute and chronic inflammation.
Collapse
|
127
|
Lichtenthaler SF, Lemberg MK, Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J 2018; 37:e99456. [PMID: 29976761 PMCID: PMC6068445 DOI: 10.15252/embj.201899456] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/05/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolytic removal of membrane protein ectodomains (ectodomain shedding) is a post-translational modification that controls levels and function of hundreds of membrane proteins. The contributing proteases, referred to as sheddases, act as important molecular switches in processes ranging from signaling to cell adhesion. When deregulated, ectodomain shedding is linked to pathologies such as inflammation and Alzheimer's disease. While proteases of the "a disintegrin and metalloprotease" (ADAM) and "beta-site APP cleaving enzyme" (BACE) families are widely considered as sheddases, in recent years a much broader range of proteases, including intramembrane and soluble proteases, were shown to catalyze similar cleavage reactions. This review demonstrates that shedding is a fundamental process in cell biology and discusses the current understanding of sheddases and their substrates, molecular mechanisms and cellular localizations, as well as physiological functions of protein ectodomain shedding. Moreover, we provide an operational definition of shedding and highlight recent conceptual advances in the field. While new developments in proteomics facilitate substrate discovery, we expect that shedding is not a rare exception, but rather the rule for many membrane proteins, and that many more interesting shedding functions await discovery.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, School of Medicine, and Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedizinisches Centrum (BMC), Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
128
|
Hosur V, Farley ML, Low BE, Burzenski LM, Shultz LD, Wiles MV. RHBDF2-Regulated Growth Factor Signaling in a Rare Human Disease, Tylosis With Esophageal Cancer: What Can We Learn From Murine Models? Front Genet 2018; 9:233. [PMID: 30022999 PMCID: PMC6039722 DOI: 10.3389/fgene.2018.00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
Tylosis with esophageal cancer syndrome (TOC) is a rare autosomal dominant proliferative skin disease caused by missense mutations in the rhomboid 5 homolog 2 (RHBDF2) gene. TOC is characterized by thickening of the skin in the palms and feet and is strongly linked with the development of esophageal squamous cell carcinoma. Murine models of human diseases have been valuable tools for investigating the underlying genetic and molecular mechanisms of a broad range of diseases. Although current mouse models do not fully recapitulate all aspects of human TOC, and the molecular mechanisms underlying TOC are still emerging, the available mouse models exhibit several key aspects of the disease, including a proliferative skin phenotype, a rapid wound healing phenotype, susceptibility to epithelial cancer, and aberrant epidermal growth factor receptor (EGFR) signaling. Furthermore, we and other investigators have used these models to generate new insights into the causes and progression of TOC, including findings suggesting a tissue-specific role of the RHBDF2-EGFR pathway, rather than a role of the immune system, in mediating TOC; and indicating that amphiregulin, an EGFR ligand, is a functional driver of the disease. This review highlights the mouse models of TOC available to researchers for use in investigating the disease mechanisms and possible therapies, and the significance of genetic modifiers of the disease identified in these models in delineating the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | | | | | | |
Collapse
|
129
|
Urbahn MA, Kaup SC, Reusswig F, Krüger I, Spelleken M, Jurk K, Klier M, Lang PA, Elvers M. Phospholipase D1 regulation of TNF-alpha protects against responses to LPS. Sci Rep 2018; 8:10006. [PMID: 29968773 PMCID: PMC6030188 DOI: 10.1038/s41598-018-28331-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/14/2018] [Indexed: 01/18/2023] Open
Abstract
Sepsis is a systemic inflammatory disorder with organ dysfunction and represents the leading cause of mortality in non-coronary intensive care units. A key player in septic shock is Tumor Necrosis Factor-alpha (TNF-α). Phospholipase (PL)D1 is involved in the regulation of TNF-α upon ischemia/reperfusion injury in mice. In this study we analyzed the impact of PLD1 in the regulation of TNF-α, inflammation and organ damage in experimental sepsis. PLD1 deficiency increased survival of mice and decreased vital organ damage after LPS injections. Decreased TNF-α plasma levels and reduced migration of leukocytes and platelets into lungs was associated with reduced apoptosis in lung and liver tissue of PLD1 deficient mice. PLD1 deficient platelets contribute to preserved outcome after LPS-induced sepsis because platelets exhibit an integrin activation defect suggesting reduced platelet activation in PLD1 deficient mice. Furthermore, reduced thrombin generation of PLD1 deficient platelets might be responsible for reduced fibrin formation in lungs suggesting reduced disseminated intravascular coagulation (DIC). The analysis of Pld1fl/fl-PF4-Cre mice revealed that migration of neutrophils and cell apoptosis in septic animals is not due to platelet-mediated processes. The present study has identified PLD1 as a regulator of innate immunity that may be a new target to modulate sepsis.
Collapse
Affiliation(s)
- Marc-Andre Urbahn
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Sonja Charlotte Kaup
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Friedrich Reusswig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Irena Krüger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Martina Spelleken
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Meike Klier
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany.
| |
Collapse
|
130
|
Luo WW, Shu HB. Delicate regulation of the cGAS-MITA-mediated innate immune response. Cell Mol Immunol 2018; 15:666-675. [PMID: 29456253 PMCID: PMC6123429 DOI: 10.1038/cmi.2016.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/14/2022] Open
Abstract
Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.
Collapse
Affiliation(s)
- Wei-Wei Luo
- Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan, 430071, China
| | - Hong-Bing Shu
- Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
131
|
Künzel U, Grieve AG, Meng Y, Sieber B, Cowley SA, Freeman M. FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex. eLife 2018; 7:e35012. [PMID: 29897336 PMCID: PMC6042961 DOI: 10.7554/elife.35012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/26/2018] [Indexed: 01/04/2023] Open
Abstract
Many intercellular signals are synthesised as transmembrane precursors that are released by proteolytic cleavage ('shedding') from the cell surface. ADAM17, a membrane-tethered metalloprotease, is the primary shedding enzyme responsible for the release of the inflammatory cytokine TNFα and several EGF receptor ligands. ADAM17 exists in complex with the rhomboid-like iRhom proteins, which act as cofactors that regulate ADAM17 substrate shedding. Here we report that the poorly characterised FERM domain-containing protein FRMD8 is a new component of the iRhom2/ADAM17 sheddase complex. FRMD8 binds to the cytoplasmic N-terminus of iRhoms and is necessary to stabilise iRhoms and ADAM17 at the cell surface. In the absence of FRMD8, iRhom2 and ADAM17 are degraded via the endolysosomal pathway, resulting in the reduction of ADAM17-mediated shedding. We have confirmed the pathophysiological significance of FRMD8 in iPSC-derived human macrophages and mouse tissues, thus demonstrating its role in the regulated release of multiple cytokine and growth factor signals.
Collapse
Affiliation(s)
- Ulrike Künzel
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Adam Graham Grieve
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Yao Meng
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Boris Sieber
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Sally A Cowley
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Matthew Freeman
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
132
|
Oikonomidi I, Burbridge E, Cavadas M, Sullivan G, Collis B, Naegele H, Clancy D, Brezinova J, Hu T, Bileck A, Gerner C, Bolado A, von Kriegsheim A, Martin SJ, Steinberg F, Strisovsky K, Adrain C. iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE. eLife 2018; 7:35032. [PMID: 29897333 PMCID: PMC6042963 DOI: 10.7554/elife.35032] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/10/2018] [Indexed: 12/11/2022] Open
Abstract
The apical inflammatory cytokine TNF regulates numerous important biological processes including inflammation and cell death, and drives inflammatory diseases. TNF secretion requires TACE (also called ADAM17), which cleaves TNF from its transmembrane tether. The trafficking of TACE to the cell surface, and stimulation of its proteolytic activity, depends on membrane proteins, called iRhoms. To delineate how the TNF/TACE/iRhom axis is regulated, we performed an immunoprecipitation/mass spectrometry screen to identify iRhom-binding proteins. This identified a novel protein, that we name iTAP (iRhom Tail-Associated Protein) that binds to iRhoms, enhancing the cell surface stability of iRhoms and TACE, preventing their degradation in lysosomes. Depleting iTAP in primary human macrophages profoundly impaired TNF production and tissues from iTAP KO mice exhibit a pronounced depletion in active TACE levels. Our work identifies iTAP as a physiological regulator of TNF signalling and a novel target for the control of inflammation. Inflammation forms part of the body's defense system against pathogens, but if the system becomes faulty, it can cause problems linked to inflammatory and autoimmune diseases. Immune cells coordinate their activity using specific signaling molecules called cytokines. For example, the cytokine TNF is an important trigger of inflammation and is produced at the surface of immune cells. A specific enzyme called TACE is needed to release TNF, as well as other signaling molecules, including proteins that trigger healing. Previous work revealed that TACE works with proteins called iRhoms, which regulate its activity and help TACE to reach the surface of the cell to release TNF. To find out how, Oikonomidi et al. screened human cells to see what other proteins interact with iRhoms. The results revealed a new protein named iTAP, which is required to release TNF from the surface of cells. It also protects the TACE-iRhom complex from being destroyed by the cell’s waste disposal system. When iTAP was experimentally removed in human immune cells, the cells were unable to release TNF. Instead, iRhom and TACE travelled to the cell's garbage system, the lysosome, where the proteins were destroyed. Removing the iTAP gene in mice had the same effect, and the TACE-iRhom complex was no longer found on the surface of the cell, but instead degraded in lysosomes. This suggests that in healthy cells, the iTAP protein prevents the cell from destroying this protein complex. TNF controls many beneficial processes, including fighting infection and cancer. However, when the immune system releases too many cytokines, it can lead to inflammatory diseases or even cause cancer. Specific drugs that target TNF are not always effective administered on their own, and sometimes, patients stop responding to the drugs. Since the new protein iTAP works as a switch to turn TNF release on or off, it could provide a target for the development of new treatments.
Collapse
Affiliation(s)
- Ioanna Oikonomidi
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Emma Burbridge
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Miguel Cavadas
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Graeme Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Blanka Collis
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Heike Naegele
- Center for Biological Systems Analysis, Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Danielle Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Jana Brezinova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tianyi Hu
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrea Bileck
- Institut für Analytische Chemie, Universität Wien, Vienna, Austria
| | | | - Alfonso Bolado
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Florian Steinberg
- Center for Biological Systems Analysis, Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Colin Adrain
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
133
|
Herrlich A, Kefaloyianni E. iRhoms: A Potential Path to More Specific Therapeutic Targeting of Lupus Nephritis. Am J Kidney Dis 2018; 72:617-619. [PMID: 29887489 DOI: 10.1053/j.ajkd.2018.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Andreas Herrlich
- Washington University School of Medicine in St. Louis, St. Louis, MO.
| | | |
Collapse
|
134
|
Marakalala MJ, Martinez FO, Plüddemann A, Gordon S. Macrophage Heterogeneity in the Immunopathogenesis of Tuberculosis. Front Microbiol 2018; 9:1028. [PMID: 29875747 PMCID: PMC5974223 DOI: 10.3389/fmicb.2018.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Macrophages play a central role in tuberculosis, as the site of primary infection, inducers and effectors of inflammation, innate and adaptive immunity, as well as mediators of tissue destruction and repair. Early descriptions by pathologists have emphasized their morphological heterogeneity in granulomas, followed by delineation of T lymphocyte-dependent activation of anti-mycobacterial resistance. More recently, powerful genetic and molecular tools have become available to describe macrophage cellular properties and their role in host-pathogen interactions. In this review we discuss aspects of macrophage heterogeneity relevant to the pathogenesis of tuberculosis and, conversely, lessons that can be learnt from mycobacterial infection, with regard to the immunobiological functions of macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Mohlopheni J. Marakalala
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fernando O. Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
135
|
Lee MY, Kang JS, Go RE, Byun YS, Wi YJ, Hwang KA, Choi JH, Kim HC, Choi KC, Nam KH. Collagen-Induced Arthritis Analysis in Rhbdf2 Knockout Mouse. Biomol Ther (Seoul) 2018; 26:298-305. [PMID: 29223140 PMCID: PMC5933897 DOI: 10.4062/biomolther.2017.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/02/2022] Open
Abstract
Rhomboid family member 2 gene (Rhbdf2) is an inactive homologue lacking essential catalytic residues of rhomboid intramembrane serine proteases. The protein is necessary for maturation of tumor necrosis factor-alpha (TNF-α) converting enzyme, which is the molecule responsible for the release of TNF-α. In this study, Rhbdf2 knockout (KO) mice were produced by CRISPR/CAS9. To see the effects of the failure of TNF-α release induced by Rhbdf2 gene KO, collagen-induced arthritis (CIA), which is the representative TNF-α related disease, was induced in the Rhbdf2 mutant mouse using chicken collagen type II. The severity of the CIA was measured by traditional clinical scores and histopathological analysis of hind limb joints. A rota-rod test and grip strength test were employed to evaluate the severity of CIA based on losses of physical functions. The results indicated that Rhbdf2 mutant mice showed clear alleviation of the clinical severity of CIA as demonstrated by the significantly lower severity indexes. Moreover, a grip strength test was shown to be useful for the evaluation of physical functional losses by CIA. Overall, the results showed that the Rhbdf2 gene has a significant effect on the induction of CIA, which is related to TNF-α.
Collapse
Affiliation(s)
- Min-Young Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea.,Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ju-Seong Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yong-Sub Byun
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea
| | - Young Jin Wi
- Department of Life Science, College of Natureal Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natureal Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, Republic of Korea
| |
Collapse
|
136
|
Mygind KJ, Störiko T, Freiberg ML, Samsøe-Petersen J, Schwarz J, Andersen OM, Kveiborg M. Sorting nexin 9 (SNX9) regulates levels of the transmembrane ADAM9 at the cell surface. J Biol Chem 2018; 293:8077-8088. [PMID: 29622675 DOI: 10.1074/jbc.ra117.001077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
ADAM9 is an active member of the family of transmembrane ADAMs (a disintegrin and metalloproteases). It plays a role in processes such as bone formation and retinal neovascularization, and importantly, its expression in human cancers correlates with disease stage and poor prognosis. Functionally, ADAM9 can cleave several transmembrane proteins, thereby shedding their ectodomains from the cell surface. Moreover, ADAM9 regulates cell behavior by binding cell-surface receptors such as integrin and membrane-type matrix metalloproteases. Because these functions are mainly restricted to the cell surface, understanding the mechanisms regulating ADAM9 localization and activity at this site is highly important. To this end, we here investigated how intracellular trafficking regulates ADAM9 availability at the cell surface. We found that ADAM9 undergoes constitutive clathrin-dependent internalization and subsequent degradation or recycling to the plasma membrane. We confirmed previous findings of an interaction between ADAM9 and the intracellular sorting protein, sorting nexin 9 (SNX9), as well as its close homolog SNX18. Knockdown of either SNX9 or SNX18 had no apparent effects on ADAM9 internalization or recycling. However, double knockdown of SNX9 and SNX18 decreased ADAM9 internalization significantly, demonstrating a redundant role in this process. Moreover, SNX9 knockdown revealed a nonredundant effect on overall ADAM9 protein levels, resulting in increased ADAM9 levels at the cell surface, and a corresponding increase in the shedding of Ephrin receptor B4, a well-known ADAM9 substrate. Together, our findings demonstrate that intracellular SNX9-mediated trafficking constitutes an important ADAM9 regulatory pathway.
Collapse
Affiliation(s)
- Kasper J Mygind
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Theresa Störiko
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marie L Freiberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jeanette Schwarz
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Olav M Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Ole Worms Alle 3, 8000 Aarhus C, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
137
|
Li J, Perfetto M, Neuner R, Bahudhanapati H, Christian L, Mathavan K, Bridges LC, Alfandari D, Wei S. Xenopus ADAM19 regulates Wnt signaling and neural crest specification by stabilizing ADAM13. Development 2018. [PMID: 29540504 DOI: 10.1242/dev.158154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During vertebrate gastrulation, canonical Wnt signaling induces the formation of neural plate border (NPB). Wnt is also thought to be required for the subsequent specification of neural crest (NC) lineage at the NPB, but the direct evidence is lacking. We found previously that the disintegrin metalloproteinase ADAM13 is required for Wnt activation and NC induction in Xenopus Here, we report that knockdown of ADAM13 or its close paralog ADAM19 severely downregulates Wnt activity at the NPB, inhibiting NC specification without affecting earlier NPB formation. Surprisingly, ADAM19 functions nonproteolytically in NC specification by interacting with ADAM13 and inhibiting its proteasomal degradation. Ectopic expression of stabilized ADAM13 mutants that function independently of ADAM19 can induce the NC marker/specifier snail2 in the future epidermis via Wnt signaling. These results unveil the essential roles of a novel protease-protease interaction in regulating a distinct wave of Wnt signaling, which directly specifies the NC lineage.
Collapse
Affiliation(s)
- Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Mark Perfetto
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Russell Neuner
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Laura Christian
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Ketan Mathavan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Lance C Bridges
- Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, Arkansas Colleges of Health Education, Fort Smith, AR 72916, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
138
|
Motani K, Kosako H. Activation of stimulator of interferon genes (STING) induces ADAM17-mediated shedding of the immune semaphorin SEMA4D. J Biol Chem 2018; 293:7717-7726. [PMID: 29618514 DOI: 10.1074/jbc.ra118.002175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Indexed: 01/06/2023] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum-resident membrane protein that mediates cytosolic pathogen DNA-induced innate immunity and inflammatory responses in host defenses. STING is activated by cyclic di-nucleotides and is then translocated to the Golgi apparatus, an event that triggers STING assembly with the downstream enzyme TANK-binding kinase 1 (TBK1). This assembly leads to the phosphorylation of the transcription factor interferon regulatory factor 3 (IRF3), which in turn induces expression of type-I interferon (IFN) and chemokine genes. STING also mediates inflammatory responses independently of IRF3, but these molecular pathways are largely unexplored. Here, we analyzed the RAW264.7 macrophage secretome to comprehensively identify proinflammatory factors released into the extracellular medium upon STING activation. In total, we identified 1299 proteins in macrophage culture supernatants, of which 23 were significantly increased after STING activation. These proteins included IRF3-dependent cytokines, as well as previously unknown targets of STING, such as the immune semaphorin SEMA4D/CD100, which possesses proinflammatory cytokine-like activities. Unlike for canonical cytokines, the expression of the SEMA4D gene was not up-regulated. Instead, upon STING activation, membrane-bound SEMA4D was cleaved into a soluble form, suggesting the presence of a post-translational shedding machinery. Importantly, the SEMA4D shedding was blocked by TMI-1, an inhibitor of the sheddase ADAM metallopeptidase domain 17 (ADAM17) but not by the TBK1 inhibitor BX795. These results suggest that STING activates ADAM17 and that this activation produces soluble proinflammatory SEMA4D independently of the TBK1/IRF3-mediated transcriptional pathway.
Collapse
Affiliation(s)
- Kou Motani
- From the Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hidetaka Kosako
- From the Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
139
|
Gardiner EE. Proteolytic processing of platelet receptors. Res Pract Thromb Haemost 2018; 2:240-250. [PMID: 30046726 PMCID: PMC6055504 DOI: 10.1002/rth2.12096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Platelets have a major role in hemostasis and an emerging role in biological processes including inflammation and immunity. Many of these processes require platelet adhesion and localization at sites of tissue damage or infection and regulated platelet activation, mediated by platelet adheso-signalling receptors, glycoprotein (GP) Ib-IX-V and GPVI. Work from a number of laboratories has demonstrated that levels of these receptors are closely regulated by metalloproteinases of the A Disintegrin And Metalloproteinase (ADAM) family, primarily ADAM17 and ADAM10. It is becoming increasingly evident that platelets have important roles in innate immunity, inflammation, and in combating infection that extends beyond processes of hemostasis. This overview will examine the molecular events that regulate levels of platelet receptors and then assess ramifications for these events in settings where hemostasis, inflammation, and infection processes are triggered.
Collapse
Affiliation(s)
- Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
140
|
Hosur V, Farley ML, Burzenski LM, Shultz LD, Wiles MV. ADAM17 is essential for ectodomain shedding of the EGF-receptor ligand amphiregulin. FEBS Open Bio 2018; 8:702-710. [PMID: 29632822 PMCID: PMC5881543 DOI: 10.1002/2211-5463.12407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/30/2022] Open
Abstract
The epidermal growth factor (EGF)-receptor ligand amphiregulin (AREG) is a potent growth factor implicated in proliferative skin diseases and in primary and metastatic epithelial cancers. AREG, synthesized as a propeptide, requires conversion to an active peptide by metalloproteases by a process known as ectodomain shedding. Although (ADAM17) a disintegrin and metalloprotease 17 is a key sheddase of AREG, ADAM8-, ADAM15-, and batimastat (broad metalloprotease inhibitor)-sensitive metalloproteases have also been implicated in AREG shedding. In the present study, using a curly bare (Rhbdf2cub ) mouse model that shows loss-of-hair, enlarged sebaceous gland, and rapid cutaneous wound-healing phenotypes mediated by enhanced Areg mRNA and protein levels, we sought to identify the principal ectodomain sheddase of AREG. To this end, we generated Rhbdf2cub mice lacking ADAM17 specifically in the skin and examined the above phenotypes of Rhbdf2cub mice. We find that ADAM17 deficiency in the skin of Rhbdf2cub mice restores a full hair coat, prevents sebaceous gland enlargement, and impairs the rapid wound-healing phenotype observed in Rhbdf2cub mice. Furthermore, in vitro, stimulated shedding of AREG is abolished in Rhbdf2cub mouse embryonic keratinocytes lacking ADAM17. Thus, our data support previous findings demonstrating that ADAM17 is the major ectodomain sheddase of AREG.
Collapse
|
141
|
Qing X, Chinenov Y, Redecha P, Madaio M, Roelofs JJ, Farber G, Issuree PD, Donlin L, Mcllwain DR, Mak TW, Blobel CP, Salmon JE. iRhom2 promotes lupus nephritis through TNF-α and EGFR signaling. J Clin Invest 2018; 128:1397-1412. [PMID: 29369823 DOI: 10.1172/jci97650] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Lupus nephritis (LN) often results in progressive renal dysfunction. The inactive rhomboid 2 (iRhom2) is a newly identified key regulator of A disintegrin and metalloprotease 17 (ADAM17), whose substrates, such as TNF-α and heparin-binding EGF (HB-EGF), have been implicated in the pathogenesis of chronic kidney diseases. Here, we demonstrate that deficiency of iRhom2 protects the lupus-prone Fcgr2b-/- mice from developing severe kidney damage without altering anti-double-stranded DNA (anti-dsDNA) Ab production by simultaneously blocking HB-EGF/EGFR and TNF-α signaling in the kidney tissues. Unbiased transcriptome profiling of kidneys and kidney macrophages revealed that TNF-α and HB-EGF/EGFR signaling pathways are highly upregulated in Fcgr2b-/- mice, alterations that were diminished in the absence of iRhom2. Pharmacological blockade of either TNF-α or EGFR signaling protected Fcgr2b-/- mice from severe renal damage. Finally, kidneys from LN patients showed increased iRhom2 and HB-EGF expression, with interstitial HB-EGF expression significantly associated with chronicity indices. Our data suggest that activation of iRhom2/ADAM17-dependent TNF-α and EGFR signaling plays a crucial role in mediating irreversible kidney damage in LN, thereby uncovering a target for selective and simultaneous dual inhibition of 2 major pathological pathways in the effector arm of the disease.
Collapse
Affiliation(s)
| | - Yurii Chinenov
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | | | - Michael Madaio
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Joris Jth Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gregory Farber
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA
| | - Priya D Issuree
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Laura Donlin
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - David R Mcllwain
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA.,Institute for Advanced Study, Technical University Munich, Munich, Germany.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jane E Salmon
- Program in Inflammation and Autoimmunity, and.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
142
|
Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem Sci 2018; 43:269-284. [PMID: 29506880 DOI: 10.1016/j.tibs.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/23/2022]
Abstract
Limited proteolytic processing is an essential and ubiquitous post-translational modification (PTM) affecting secreted proteins; failure to regulate the process is often associated with disease. Glycosylation is also a ubiquitous protein PTM and site-specific O-glycosylation in close proximity to sites of proteolysis can regulate and direct the activity of proprotein convertases, a disintegrin and metalloproteinases (ADAMs), and metalloproteinases affecting the activation or inactivation of many classes of proteins, including G-protein-coupled receptors (GPCRs). Here, we summarize the emerging data that suggest O-glycosylation to be a key regulator of limited proteolysis, and highlight the potential for crosstalk between multiple PTMs.
Collapse
|
143
|
Role of iRhom2 in intestinal ischemia-reperfusion-mediated acute lung injury. Sci Rep 2018; 8:3797. [PMID: 29491382 PMCID: PMC5830505 DOI: 10.1038/s41598-018-22218-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/19/2018] [Indexed: 11/14/2022] Open
Abstract
Intestinal ischemia-reperfusion (I/R) may cause acute systemic and lung inflammation. However, the detailed mechanism of this inflammatory cascade has not been fully elucidated. Inactive rhomboid protein 2 (iRhom2) is essential for the maturation of TNF-α converting enzyme (TACE), which is required for TNF-α secretion. We evaluated the role of iRhom2 in a mouse model of intestinal I/R using iRhom2 knockout (KO) and wild-type (WT) mice. Lung injury following intestinal I/R was significantly attenuated in iRhom2 KO mice compared with WT mice. After intestinal I/R, lungs from iRhom2 KO mice showed significantly lower myeloperoxidase (MPO) activity and markedly reduced cell apoptosis associated with a decreased level of active caspase 3 and decreased TUNEL staining compared with lungs from WT mice. TNF-α levels were elevated in the serum and lungs of WT mice with intestinal I/R and significantly reduced in iRhom2 KO mice with intestinal I/R. iRhom2 may play a critical role in the pathogenesis of acute lung injury (ALI) after intestinal I/R and thus may be a novel therapeutic target for ALI after intestinal I/R injury.
Collapse
|
144
|
Colombo A, Hsia HE, Wang M, Kuhn PH, Brill MS, Canevazzi P, Feederle R, Taveggia C, Misgeld T, Lichtenthaler SF. Non-cell-autonomous function of DR6 in Schwann cell proliferation. EMBO J 2018; 37:embj.201797390. [PMID: 29459438 DOI: 10.15252/embj.201797390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Death receptor 6 (DR6) is an orphan member of the TNF receptor superfamily and controls cell death and differentiation in a cell-autonomous manner in different cell types. Here, we report an additional non-cell-autonomous function for DR6 in the peripheral nervous system (PNS). DR6-knockout (DR6 KO) mice showed precocious myelination in the PNS Using an in vitro myelination assay, we demonstrate that neuronal DR6 acts in trans on Schwann cells (SCs) and reduces SC proliferation and myelination independently of its cytoplasmic death domain. Mechanistically, DR6 was found to be cleaved in neurons by "a disintegrin and metalloprotease 10" (ADAM10), releasing the soluble DR6 ectodomain (sDR6). Notably, in the in vitro myelination assay, sDR6 was sufficient to rescue the DR6 KO phenotype. Thus, in addition to the cell-autonomous receptor function of full-length DR6, the proteolytically released sDR6 can unexpectedly also act as a paracrine signaling factor in the PNS in a non-cell-autonomous manner during SC proliferation and myelination. This new mode of DR6 signaling will be relevant in future attempts to target DR6 in disease settings.
Collapse
Affiliation(s)
- Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University Munich, Munich, Germany
| | - Mengzhe Wang
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- Neuroproteomics, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University Munich, Munich, Germany
| | - Monika S Brill
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Paolo Canevazzi
- Division of Neuroscience, INSPE at San Raffaele Scientific Institute, Milan, Italy
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Diabetes and Obesity, Monoclonal Antibody Research Group, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany.,Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Carla Taveggia
- Division of Neuroscience, INSPE at San Raffaele Scientific Institute, Milan, Italy
| | - Thomas Misgeld
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.,Munich Center for Systems Neurology (SyNergy), Munich, Germany.,Center for Integrated Protein Sciences (CIPSM), Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Neuroproteomics, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University Munich, Munich, Germany.,Munich Center for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
145
|
Cordova ZM, Grönholm A, Kytölä V, Taverniti V, Hämäläinen S, Aittomäki S, Niininen W, Junttila I, Ylipää A, Nykter M, Pesu M. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget 2018; 7:54392-54404. [PMID: 27527873 PMCID: PMC5342350 DOI: 10.18632/oncotarget.11106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/22/2016] [Indexed: 01/30/2023] Open
Abstract
The proprotein convertase enzyme FURIN processes immature pro-proteins into functional end- products. FURIN is upregulated in activated immune cells and it regulates T-cell dependent peripheral tolerance and the Th1/Th2 balance. FURIN also promotes the infectivity of pathogens by activating bacterial toxins and by processing viral proteins. Here, we evaluated the role of FURIN in LysM+ myeloid cells in vivo. Mice with a conditional deletion of FURIN in their myeloid cells (LysMCre-fur(fl/fl)) were healthy and showed unchanged proportions of neutrophils and macrophages. Instead, LysMCre-fur(fl/fl) mice had elevated serum IL-1β levels and reduced numbers of splenocytes. An LPS injection resulted in accelerated mortality, elevated serum pro-inflammatory cytokines and upregulated numbers of pro-inflammatory macrophages. A genome-wide gene expression analysis revealed the overexpression of several pro-inflammatory genes in resting FURIN-deficient macrophages. Moreover, FURIN inhibited Nos2 and promoted the expression of Arg1, which implies that FURIN regulates the M1/M2-type macrophage balance. FURIN was required for the normal production of the bioactive TGF-β1 cytokine, but it inhibited the maturation of the inflammation-provoking TACE and Caspase-1 enzymes. In conclusion, FURIN has an anti-inflammatory function in LysM+ myeloid cells in vivo.
Collapse
Affiliation(s)
- Zuzet Martinez Cordova
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Anna Grönholm
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Ville Kytölä
- Computational Biology, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Milan, Italy
| | - Sanna Hämäläinen
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Saara Aittomäki
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Wilhelmiina Niininen
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Ilkka Junttila
- School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Antti Ylipää
- Computational Biology, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Matti Nykter
- Computational Biology, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Marko Pesu
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Department of Dermatology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
146
|
Redundancy of protein disulfide isomerases in the catalysis of the inactivating disulfide switch in A Disintegrin and Metalloprotease 17. Sci Rep 2018; 8:1103. [PMID: 29348576 PMCID: PMC5773583 DOI: 10.1038/s41598-018-19429-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
A Disintegrin and Metalloprotease 17 (ADAM17) can cause the fast release of growth factors and inflammatory mediators from the cell surface. Its activity has to be turned on which occurs by various stimuli. The active form can be inactivated by a structural change in its ectodomain, related to the pattern of the formed disulphide bridges. The switch-off is executed by protein disulfide isomerases (PDIs) that catalyze an isomerization of two disulfide bridges and thereby cause a disulfide switch. We demonstrate that the integrity of the CGHC-motif within the active site of PDIs is indispensable. In particular, no major variation is apparent in the activities of the two catalytic domains of PDIA6. The affinities between PDIA1, PDIA3, PDIA6 and the targeted domain of ADAM17 are all in the nanomolar range and display no significant differences. The redundancy between PDIs and their disulfide switch activity in ectodomains of transmembrane proteins found in vitro appears to be a basic characteristic. However, different PDIs might be required in vivo for disulfide switches in different tissues and under different cellular and physiological situations.
Collapse
|
147
|
Schaal JB, Maretzky T, Tran DQ, Tran PA, Tongaonkar P, Blobel CP, Ouellette AJ, Selsted ME. Macrocyclic θ-defensins suppress tumor necrosis factor-α (TNF-α) shedding by inhibition of TNF-α-converting enzyme. J Biol Chem 2018; 293:2725-2734. [PMID: 29317500 DOI: 10.1074/jbc.ra117.000793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/03/2018] [Indexed: 12/16/2022] Open
Abstract
Theta-defensins (θ-defensins) are macrocyclic peptides expressed exclusively in granulocytes and selected epithelia of Old World monkeys. They contribute to anti-pathogen host defense responses by directly killing a diverse range of microbes. Of note, θ-defensins also modulate microbe-induced inflammation by affecting the production of soluble tumor necrosis factor (sTNF) and other proinflammatory cytokines. Here, we report that natural rhesus macaque θ-defensin (RTD) isoforms regulate sTNF cellular release by inhibiting TNF-α-converting enzyme (TACE; also known as adisintegrin and metalloprotease 17; ADAM17), the primary pro-TNF sheddase. Dose-dependent inhibition of cellular TACE activity by RTDs occurred when leukocytes were stimulated with live Escherichia coli cells as well as numerous Toll-like receptor agonists. Moreover, the relative inhibitory potencies of the RTD isoforms strongly correlated with their suppression of TNF release by stimulated blood leukocytes and THP-1 monocytes. RTD isoforms also inhibited ADAM10, a sheddase closely related to TACE. TACE inhibition was abrogated by introducing a single opening in the RTD-1 backbone, demonstrating that the intact macrocycle is required for enzyme inhibition. Enzymologic analyses showed that RTD-1 is a fast binding, reversible, non-competitive inhibitor of TACE. We conclude that θ-defensin-mediated inhibition of pro-TNF proteolysis by TACE represents a rapid mechanism for the regulation of sTNF and TNF-dependent inflammatory pathways. Molecules with structural and functional features mimicking those of θ-defensins may have clinical utility as TACE inhibitors for managing TNF-driven diseases.
Collapse
Affiliation(s)
- Justin B Schaal
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Thorsten Maretzky
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York 10021; Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Dat Q Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Patti A Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Prasad Tongaonkar
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Carl P Blobel
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York 10021
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089; Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, California 90033
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089; Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, California 90033.
| |
Collapse
|
148
|
Li R, Wang T, Walia K, Gao B, Krepinsky JC. ADAM17 activation and regulation of profibrotic responses by high glucose requires its C-terminus and FAK kinase. J Cell Sci 2018; 131:jcs.208629. [DOI: 10.1242/jcs.208629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/28/2017] [Indexed: 12/23/2022] Open
Abstract
Glomerular matrix accumulation is the hallmark of diabetic nephropathy. The metalloprotease ADAM17 mediates high glucose (HG)-induced matrix production by kidney mesangial cells through release of ligands for the epidermal growth factor receptor. Here we study the mechanism by which HG activates ADAM17. We find that the C-terminus is essential for ADAM17 activation and the profibrotic response to HG. In the C-terminus, Src-mediated Y702 phosphorylation and PI3K/MEK/Erk-mediated T735 phosphorylation are critical to ADAM17 activation, but play divergent roles in ADAM17 trafficking in response to HG. While T735 phosphorylation is required for the HG-induced increase in cell surface mature ADAM17, Y702 phosphorylation is dispensable. Src, however, enables trafficking independently of its phosphorylation of ADAM17. The nonreceptor tyrosine kinase FAK is a central mediator of these processes. These data not only support a critical role for the C-terminus in ADAM17 activation and downstream profibrotic responses to HG, but also highlight FAK as a potential alternate therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Renzhong Li
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Tony Wang
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Khyati Walia
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
149
|
Embedded in the Membrane: How Lipids Confer Activity and Specificity to Intramembrane Proteases. J Membr Biol 2017; 251:369-378. [PMID: 29260282 DOI: 10.1007/s00232-017-0008-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Proteases, sharp yet unforgivable tools of every cell, require tight regulation to ensure specific non-aberrant cleavages. The relatively recent discovered class of intramembrane proteases has gained increasing interest due to their involvement in important signaling pathways linking them to diseases including Alzheimer's disease and cancer. Despite tremendous efforts, their regulatory mechanisms have only started to unravel. There is evidence that the membrane composition itself can regulate intramembrane protease activity and specificity. In this review, we highlight the work on γ-secretase and rhomboid proteases and summarize several studies as to how different lipids impact on enzymatic activity.
Collapse
|
150
|
Liu S, Ye L, Tao J, Ge C, Huang L, Yu J. Total flavones of Abelmoschus manihot improve diabetic nephropathy by inhibiting the iRhom2/TACE signalling pathway activity in rats. PHARMACEUTICAL BIOLOGY 2017; 56:1-11. [PMID: 29221422 PMCID: PMC6130561 DOI: 10.1080/13880209.2017.1412467] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/14/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
CONTEXT Total flavones extracted from Abelmoschus manihot L. (Malvaceae) medic (TFA) have been proven clinically effective at improving renal inflammation and glomerular injury in chronic kidney disease (CKD). OBJECTIVE This study evaluated the function of TFA as an inhibitor of iRhom2/TACE (tumour necrosis factor-α converting enzyme) signalling and investigated its anti-DN (diabetic nephropathy) effects in a DN rat model. MATERIALS AND METHODS In vitro, cells were treated with 200 μg/mL advanced glycation end products (AGEs), and then co-cultured with 20 μg/mL TFA for 24 h. Real time PCR, western blotting and co-immunoprecipitation assays were performed. In vivo, DN was induced in 8 week old male Sprague-Dawley rats via unilateral nephrectomy and intraperitoneal injection of streptozotocin, then TFA were administered to rats by gavage for 12 weeks at three different doses (300, 135 and 75 mg/kg/d). 4-Phenylbutanoic acid (2.5 mg/kg/d) was used as a positive control. RESULTS IC50 of TFA is 35.6 μM in HK2 and 39.6 μM in HRMC. TFA treatment (20 μM) inhibited the activation of iRhom2/TACE signalling in cultured cells induced by AGEs. LD50>26 g/kg and ED50=67 mg/kg of TFA in rat by gavage, TFA dose-dependently downregulated the expression of proinflammatory cytokines and exerted anti-inflammatory effects significantly though inhibiting the activation of iRhom2/TACE signalling. DISCUSSION AND CONCLUSIONS Our results show that TFA could dose-dependently ameliorate renal inflammation by inhibiting the activation of iRhom2/TACE signalling and attenuating ER stress. These results suggest that TFA has potential therapeutic value for the treatment of DN in humans.
Collapse
Affiliation(s)
- Su Liu
- Department of Endocrinology, Jiangsu Province Hosipital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lifang Ye
- Department of Endocrinology, Jiangsu Province Hosipital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Tao
- Department of Nephrology, Jiangsu Province Hosipital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Ge
- Department of Gastroenterology, Jiangsu Province Hosipital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Liji Huang
- Department of Endocrinology, Jiangsu Province Hosipital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hosipital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- CONTACT Jiangyi YuDepartment of Endocrinology, Jiangsu Province Hosipital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|