101
|
Xu ZH, Wang WQ, Liu L, Lou WH. A special subtype: Revealing the potential intervention and great value of KRAS wildtype pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188751. [PMID: 35732240 DOI: 10.1016/j.bbcan.2022.188751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and has devastating consequences on affected families and society. Its dismal prognosis is attributed to poor specificity of symptoms during early stages. It is widely believed that PDAC patients with the wildtype (WT) KRAS gene benefit more from currently available treatments than those with KRAS mutations. The oncogenic genetic changes alternations generally found in KRAS wildtype PDAC are related to either the KRAS pathway or microsatellite instability/mismatch repair deficiency (MSI/dMMR), which enable the application of tailored treatments based on each patient's genetic characteristics. This review focuses on targeted therapies against alternative tumour mechanisms in KRAS WT PDAC.
Collapse
Affiliation(s)
- Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wen-Hui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
102
|
Hamdan A, Ewing A. Unravelling the tumour genome: The evolutionary and clinical impacts of structural variants in tumourigenesis. J Pathol 2022; 257:479-493. [PMID: 35355264 PMCID: PMC9321913 DOI: 10.1002/path.5901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Structural variants (SVs) represent a major source of aberration in tumour genomes. Given the diversity in the size and type of SVs present in tumours, the accurate detection and interpretation of SVs in tumours is challenging. New classes of complex structural events in tumours are discovered frequently, and the definitions of the genomic consequences of complex events are constantly being refined. Detailed analyses of short-read whole-genome sequencing (WGS) data from large tumour cohorts facilitate the interrogation of SVs at orders of magnitude greater scale and depth. However, the inherent technical limitations of short-read WGS prevent us from accurately detecting and investigating the impact of all the SVs present in tumours. The expanded use of long-read WGS will be critical for improving the accuracy of SV detection, and in fully resolving complex SV events, both of which are crucial for determining the impact of SVs on tumour progression and clinical outcome. Despite the present limitations, we demonstrate that SVs play an important role in tumourigenesis. In particular, SVs contribute significantly to late-stage tumour development and to intratumoural heterogeneity. The evolutionary trajectories of SVs represent a window into the clonal dynamics in tumours, a comprehensive understanding of which will be vital for influencing patient outcomes in the future. Recent findings have highlighted many clinical applications of SVs in cancer, from early detection to biomarkers for treatment response and prognosis. As the methods to detect and interpret SVs improve, elucidating the full breadth of the complex SV landscape and determining how these events modulate tumour evolution will improve our understanding of cancer biology and our ability to capitalise on the utility of SVs in the clinical management of cancer patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alhafidz Hamdan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Ailith Ewing
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
103
|
McMahon DJ, Gleeson JP, O'Reilly S, Bambury RM. Management of newly diagnosed glioblastoma multiforme: current state of the art and emerging therapeutic approaches. Med Oncol 2022; 39:129. [PMID: 35716200 DOI: 10.1007/s12032-022-01708-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme represent > 50% of primary gliomas and have five year survival rates of ~ 5%. Maximal safe surgical resection followed by radiotherapy with concurrent and adjuvant temozolomide remains the standard treatment since published by Stupp et al. (in N Engl J Med 352:987-996, 2005), with additional benefit for patients with MGMT-methylated tumors. We review the current treatment landscape and ongoing efforts to improve these outcomes. An extensive literature search of Pubmed and Google Scholar involving the search terms "glioblastoma," "glioblastoma multiforme," or "GBM" for papers published to July 2021 was conducted and papers evaluated for relevance. As well as current data that informs clinical practice, we review ongoing clinical research in both newly diagnosed and recurrent settings that provides hope for a breakthrough. The Stupp protocol remains standard of care in 2021. Addition of tumor treating fields improved mOS modestly, with benefit seen in MGMT-methylated and unmethylated cohorts and also improved time to cognitive decline but has not been widely adopted. The addition of lomustine to temozolomide, in MGMT-methylated patients, also showed a mOS benefit but further investigation is required. Other promising therapeutic strategies including anti-angiogenic therapy, targeted therapy, and immunotherapy have yet to show a survival advantage. Improvements in the multidisciplinary management, surgical techniques and equipment, early palliative care, carrier support, and psychological support may be responsible for improving survival over time. Despite promising preclinical rationale, immunotherapy and targeted therapy are struggling to impact survival. A number of ongoing clinical trials provide hope for a breakthrough.
Collapse
Affiliation(s)
- D J McMahon
- Cork University Hospital, Cork, Ireland, UK.
| | | | - S O'Reilly
- Cork University Hospital, Cork, Ireland, UK
| | | |
Collapse
|
104
|
Hong C, Wei J, Zhou T, Wang X, Cai J. FGFR2-ERC1: A Subtype of FGFR2 Oncogenic Fusion Variant in Lung Adenocarcinoma and the Response to Anlotinib. Onco Targets Ther 2022; 15:651-657. [PMID: 35712652 PMCID: PMC9196998 DOI: 10.2147/ott.s364566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Fibroblast growth factor receptor (FGFR) fusions in non-small cell lung cancer (NSCLC) are small genomic events. At present, there is no standard treatment strategy for patients with NSCLC carrying an FGFR fusion. Case Presentation We report the case of a 45-year-old female patient who was diagnosed with lung adenocarcinoma and underwent right upper lobectomy and postoperative adjuvant chemotherapy. After 13 months, the patient’s lung lesions progressed. Next-generation sequencing of venous blood and lung tissues confirmed an FGFR2-ERC1 fusion, and she received chemotherapy and immunotherapy. Two months later, the patient’s lung lesions progressed again. Based on the target effect of anlotinib on FGFR, the patient was subsequently treated with anlotinib, and the progression-free survival interval exceeded 8.0 months. Conclusion These findings showed that patients with lung adenocarcinoma carrying an FGFR2-ERC1 fusion gene may benefit from anlotinib. This case provided evidence to support the use of anlotinib in the treatment of NSCLC patients with FGFR fusion gene subtypes.
Collapse
Affiliation(s)
- Chen Hong
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jianping Wei
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Tao Zhou
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xia Wang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jing Cai
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| |
Collapse
|
105
|
Khabibov M, Garifullin A, Boumber Y, Khaddour K, Fernandez M, Khamitov F, Khalikova L, Kuznetsova N, Kit O, Kharin L. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int J Oncol 2022; 60:69. [PMID: 35445737 PMCID: PMC9084550 DOI: 10.3892/ijo.2022.5359] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor and is associated with a poor clinical prognosis. Despite the progress in the understanding of the molecular and genetic changes that promote tumorigenesis, effective treatment options are limited. The present review intended to identify and summarize major signaling pathways and genetic abnormalities involved in the pathogenesis of GBM, as well as therapies that target these pathways. Glioblastoma remains a difficult to treat tumor; however, in the last two decades, significant improvements in the understanding of GBM biology have enabled advances in available therapeutics. Significant genomic events and signaling pathway disruptions (NF‑κB, Wnt, PI3K/AKT/mTOR) involved in the formation of GBM were discussed. Current therapeutic options may only marginally prolong survival and the current standard of therapy cures only a small fraction of patients. As a result, there is an unmet requirement for further study into the processes of glioblastoma pathogenesis and the discovery of novel therapeutic targets in novel signaling pathways implicated in the evolution of glioblastoma.
Collapse
Affiliation(s)
- Marsel Khabibov
- Department of Oncology, I. M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Airat Garifullin
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Yanis Boumber
- Division of Hematology/Oncology at The Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Karam Khaddour
- Department of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Manuel Fernandez
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Firat Khamitov
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Larisa Khalikova
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Natalia Kuznetsova
- Department of Neuro-Oncology, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
| | - Oleg Kit
- Abdominal Oncology Department, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
| | - Leonid Kharin
- Abdominal Oncology Department, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
106
|
Abstract
This article provides an update of the recent developments in mesenchymal tumors of lower genital tract. We focus on the characterization of recurrent molecular events in certain genital stromal tumors, for instance angiomyofibroblastomas and superficial myofibroblastomas. Moreover, fusions involving Tyrosine-kinases receptors (NTRK, FRFR1, RET, COL1A1-PDGFB) have been demonstrated in an emerging group of mesenchymal tumors characterized by a fibrosarcoma-like morphology and a predilection for uterine cervix of premenopausal women. We also cover the topic of smooth muscle tumors of the lower genital tract, which can be now classified using the same diagnostic criteria than their uterine counterpart..
Collapse
Affiliation(s)
- Sabrina Croce
- Biopathology Department, Anticancer Center, Institut Bergonié, Bordeaux, France; INSERM U 1218, Action Unit, Bordeaux, France.
| | - Raul Perret
- Biopathology Department, Anticancer Center, Institut Bergonié, Bordeaux, France; INSERM U 1218, Action Unit, Bordeaux, France
| | - François Le Loarer
- Biopathology Department, Anticancer Center, Institut Bergonié, Bordeaux, France; INSERM U 1218, Action Unit, Bordeaux, France; University of Bordeaux, Talence, France
| |
Collapse
|
107
|
Lassman AB, Sepúlveda-Sánchez JM, Cloughesy TF, Gil-Gil MJ, Puduvalli VK, Raizer JJ, De Vos FY, Wen PY, Butowski NA, Clement PM, Groves MD, Belda-Iniesta C, Giglio P, Soifer HS, Rowsey S, Xu C, Avogadri F, Wei G, Moran S, Roth P. Infigratinib in Patients with Recurrent Gliomas and FGFR Alterations: A Multicenter Phase II Study. Clin Cancer Res 2022; 28:2270-2277. [PMID: 35344029 PMCID: PMC9167702 DOI: 10.1158/1078-0432.ccr-21-2664] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE FGFR genomic alterations (amplification, mutations, and/or fusions) occur in ∼8% of gliomas, particularly FGFR1 and FGFR3. We conducted a multicenter open-label, single-arm, phase II study of a selective FGFR1-3 inhibitor, infigratinib (BGJ398), in patients with FGFR-altered recurrent gliomas. PATIENTS AND METHODS Adults with recurrent/progressive gliomas harboring FGFR alterations received oral infigratinib 125 mg on days 1 to 21 of 28-day cycles. The primary endpoint was investigator-assessed 6-month progression-free survival (PFS) rate by Response Assessment in Neuro-Oncology criteria. Comprehensive genomic profiling was performed on available pretreatment archival tissue to explore additional molecular correlations with efficacy. RESULTS Among 26 patients, the 6-month PFS rate was 16.0% [95% confidence interval (CI), 5.0-32.5], median PFS was 1.7 months (95% CI, 1.1-2.8), and objective response rate was 3.8%. However, 4 patients had durable disease control lasting longer than 1 year. Among these, 3 had tumors harboring activating point mutations at analogous positions of FGFR1 (K656E; n = 2) or FGFR3 (K650E; n = 1) in pretreatment tissue; an FGFR3-TACC3 fusion was detected in the other. Hyperphosphatemia was the most frequently reported treatment-related adverse event (all-grade, 76.9%; grade 3, 3.8%) and is a known on-target toxicity of FGFR inhibitors. CONCLUSIONS FGFR inhibitor monotherapy with infigratinib had limited efficacy in a population of patients with recurrent gliomas and different FGFR genetic alterations, but durable disease control lasting more than 1 year was observed in patients with tumors harboring FGFR1 or FGFR3 point mutations or FGFR3-TACC3 fusions. A follow-up study with refined biomarker inclusion criteria and centralized FGFR testing is warranted.
Collapse
Affiliation(s)
- Andrew B. Lassman
- Division of Neuro-Oncology, Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York
- Corresponding Author: Andrew B. Lassman, Columbia University Irving Medical Center, 710 W 168th St, New York, NY 10032. Phone: 212-342-0871; Fax: 212-342-1246; E-mail:
| | | | | | - Miguel J. Gil-Gil
- Institut Català d'Oncologia, Hospitalet de Llobregat, Barcelona, Spain
| | - Vinay K. Puduvalli
- Division of Neuro-Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jeffrey J. Raizer
- Northwestern University, Department of Neurology, Section of Neuro-Oncology, Chicago, Illinois
| | - Filip Y.F. De Vos
- Department Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | - Pierre Giglio
- Division of Neuro-Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | | | - Cindy Xu
- QED Therapeutics, San Francisco, California
| | | | - Ge Wei
- QED Therapeutics, San Francisco, California
| | | | - Patrick Roth
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
108
|
Li Z, Sun Q, Shi Y. Somatic structural variations in pediatric brain tumors. Minerva Pediatr (Torino) 2022; 74:358-364. [DOI: 10.23736/s2724-5276.17.04830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
109
|
Gabler L, Jaunecker CN, Katz S, van Schoonhoven S, Englinger B, Pirker C, Mohr T, Vician P, Stojanovic M, Woitzuck V, Laemmerer A, Kirchhofer D, Mayr L, LaFranca M, Erhart F, Grissenberger S, Wenninger-Weinzierl A, Sturtzel C, Kiesel B, Lang A, Marian B, Grasl-Kraupp B, Distel M, Schüler J, Gojo J, Grusch M, Spiegl-Kreinecker S, Donoghue DJ, Lötsch D, Berger W. Fibroblast growth factor receptor 4 promotes glioblastoma progression: a central role of integrin-mediated cell invasiveness. Acta Neuropathol Commun 2022; 10:65. [PMID: 35484633 PMCID: PMC9052585 DOI: 10.1186/s40478-022-01363-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma (GBM) is characterized by a particularly invasive phenotype, supported by oncogenic signals from the fibroblast growth factor (FGF)/ FGF receptor (FGFR) network. However, a possible role of FGFR4 remained elusive so far. Several transcriptomic glioma datasets were analyzed. An extended panel of primary surgical specimen-derived and immortalized GBM (stem)cell models and original tumor tissues were screened for FGFR4 expression. GBM models engineered for wild-type and dominant-negative FGFR4 overexpression were investigated regarding aggressiveness and xenograft formation. Gene set enrichment analyses of FGFR4-modulated GBM models were compared to patient-derived datasets. Despite widely absent in adult brain, FGFR4 mRNA was distinctly expressed in embryonic neural stem cells and significantly upregulated in glioblastoma. Pronounced FGFR4 overexpression defined a distinct GBM patient subgroup with dismal prognosis. Expression levels of FGFR4 and its specific ligands FGF19/FGF23 correlated both in vitro and in vivo and were progressively upregulated in the vast majority of recurrent tumors. Based on overexpression/blockade experiments in respective GBM models, a central pro-oncogenic function of FGFR4 concerning viability, adhesion, migration, and clonogenicity was identified. Expression of dominant-negative FGFR4 resulted in diminished (subcutaneous) or blocked (orthotopic) GBM xenograft formation in the mouse and reduced invasiveness in zebrafish xenotransplantation models. In vitro and in vivo data consistently revealed distinct FGFR4 and integrin/extracellular matrix interactions. Accordingly, FGFR4 blockade profoundly sensitized FGFR4-overexpressing GBM models towards integrin/focal adhesion kinase inhibitors. Collectively, FGFR4 overexpression contributes to the malignant phenotype of a highly aggressive GBM subgroup and is associated with integrin-related therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lisa Gabler
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Carola Nadine Jaunecker
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sonja Katz
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Sushilla van Schoonhoven
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Bernhard Englinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Christine Pirker
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Mirjana Stojanovic
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Valentin Woitzuck
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anna Laemmerer
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lisa Mayr
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Mery LaFranca
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | | | | | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Brigitte Marian
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Bettina Grasl-Kraupp
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Julia Schüler
- Charles River Discovery Research Services Germany GmbH, Freiburg, Germany
| | - Johannes Gojo
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Grusch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University Linz, Wagner-Jauregg-Weg 15, 4020, Linz and Altenberger Strasse 69, 4020, Linz, Austria
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, 92093-0367, USA
| | - Daniela Lötsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria.
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
110
|
Li T, Mehraein-Ghomi F, Forbes ME, Namjoshi SV, Ballard EA, Song Q, Chou PC, Wang X, Parker Kerrigan BC, Lang FF, Lesser G, Debinski W, Yang X, Zhang W. HSP90-CDC37 functions as a chaperone for the oncogenic FGFR3-TACC3 fusion. Mol Ther 2022; 30:1610-1627. [PMID: 35151844 PMCID: PMC9077375 DOI: 10.1016/j.ymthe.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
The FGFR3-TACC3 (F3-T3) fusion gene was discovered as an oncogenic molecule in glioblastoma and bladder cancers, and has subsequently been found in many cancer types. Notably, F3-T3 was found to be highly expressed in both untreated and matched recurrence glioblastoma under the concurrent radiotherapy and temozolomide (TMZ) treatment, suggesting that targeting F3-T3 is a valid strategy for treatment. Here, we show that the F3-T3 protein is a client of heat shock protein 90 (HSP90), forming a ternary complex with the cell division cycle 37 (CDC37). Deprivation of HSP90 or CDC37 disrupts the formation of the ternary complex, which destabilizes glycosylated F3-T3, and thereby suppresses F3-T3 oncogenic activity. Gliomas harboring F3-T3 are resistant to TMZ chemotherapy. HSP90 inhibitors sensitized F3-T3 glioma cells to TMZ via the inhibition of F3-T3 activation and potentiated TMZ-induced DNA damage. These results demonstrate that F3-T3 oncogenic function is dependent on the HSP90 chaperone system and suggests a new clinical option for targeting this genetic aberration in cancer.
Collapse
Affiliation(s)
- Tao Li
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Farideh Mehraein-Ghomi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - M Elizabeth Forbes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Sanjeev V Namjoshi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - E Ashley Ballard
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Ping-Chieh Chou
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | | | - Frederick F Lang
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Glenn Lesser
- Department of Internal Medicine-Section of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China.
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| |
Collapse
|
111
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
112
|
Salles D, Santino SF, Ribeiro DA, Malinverni AC, Stávale JN. The involvement of the MAPK pathway in pilocytic astrocytomas. Pathol Res Pract 2022; 232:153821. [DOI: 10.1016/j.prp.2022.153821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022]
|
113
|
Thomas J, Sonpavde G. Molecularly Targeted Therapy towards Genetic Alterations in Advanced Bladder Cancer. Cancers (Basel) 2022; 14:1795. [PMID: 35406567 PMCID: PMC8997162 DOI: 10.3390/cancers14071795] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the introduction of immune checkpoint inhibitors and antibody-drug conjugates to the management of advanced urothelial carcinoma, the disease is generally incurable. The increasing incorporation of next-generation sequencing of tumor tissue into the characterization of bladder cancer has led to a better understanding of the somatic genetic aberrations potentially involved in its pathogenesis. Genetic alterations have been observed in kinases, such as FGFRs, ErbBs, PI3K/Akt/mTOR, and Ras-MAPK, and genetic alterations in critical cellular processes, such as chromatin remodeling, cell cycle regulation, and DNA damage repair. However, activating mutations or fusions of FGFR2 and FGFR3 remains the only validated therapeutically actionable alteration, with erdafitinib as the only targeted agent currently approved for this group. Bladder cancer is characterized by genomic heterogeneity and a high tumor mutation burden. This review highlights the potential relevance of aberrations and discusses the current status of targeted therapies directed at them.
Collapse
Affiliation(s)
- Jonathan Thomas
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Guru Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| |
Collapse
|
114
|
Capone S, Ketonen L, Weathers SP, Subbiah V. Activity of Pemigatinib in Pilocytic Astrocytoma and FGFR1N546K Mutation. JCO Precis Oncol 2022; 6:e2100371. [PMID: 35507888 PMCID: PMC9200395 DOI: 10.1200/po.21.00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stephen Capone
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Leena Ketonen
- Department of Diagnostic Imaging, MD Anderson Cancer Center, Houston, TX
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
- MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
115
|
Fei X, Zhao J, Wei W, Wang W, Kong X, Qian R, Niu C, Yao Y. Clinical, Radiological, Pathological Features and Seizure Outcome With Surgical Management of Polymorphous Low-Grade Neuroepithelial Tumor of the Young Associated With Epilepsy. Front Oncol 2022; 12:863373. [PMID: 35372027 PMCID: PMC8971723 DOI: 10.3389/fonc.2022.863373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePolymorphous low-grade neuroepithelial tumor of the young (PLNTY) is a novel distinct epileptogenic neoplasm, and its clinical, imaging, histopathological, and molecular features were already known in the existing literature. We aimed to analyze the surgical management of PLNTY combined with these known characteristics.MethodsEight patients underwent surgical treatment in our center between December 2017 and December 2020, and the postoperative pathology was diagnosed as PLNTY. Their clinical data, imaging, pathological, molecular characteristics, and seizure outcome were retrospectively analyzed. Follow-up evaluations and a literature review were performed.ResultsThe 8 patients included 1 woman and 7 men, aged between 5 and 51 years old (mean = 31.6, median = 29). The preoperative symptoms of all 8 cases were seizures. Four tumors were situated in the temporal lobes, and one of the four extratemporal tumors was in the occipital lobe and three were in the frontal lobe. Enlarged and gross total resections were performed in 2 cases and the other 6 cases, respectively. All cases exhibited intense labeling of CD34, and absence of 1p/19q codeletion and IDH1 or IDH2 mutation. B-Raf proto-oncogene (BRAF) V600E mutation was presented in 4 (66.7%) of 6 detected cases. The postoperative seizure outcome of Engel class I was achieved in 6 cases (75%).ConclusionPLNTY represents distinctive histologic, immunophenotypic and biomolecular features, and has high epileptogenicity. Early surgical intervention and enlarged resection of PLNTY associated with epilepsy will help to improve the postoperative seizure-free rate.
Collapse
Affiliation(s)
- Xiaorui Fei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Kong
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ruobing Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Yao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yang Yao,
| |
Collapse
|
116
|
Shibata N, Cho N, Koyama H, Naito M. Development of a degrader against oncogenic fusion protein FGFR3-TACC3. Bioorg Med Chem Lett 2022; 60:128584. [PMID: 35085722 DOI: 10.1016/j.bmcl.2022.128584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3), which has been identified in many cancers such as glioblastoma and bladder cancer, is a potent oncogenic fusion protein that induces constitutive activation of FGFR signaling, resulting in uncontrolled cell proliferation. Although several tyrosine kinase inhibitors against FGFR are currently under development, resistance to such types of inhibitors in patients has become a concern. In this study, a chimeric molecule SNIPER(TACC3)-11 (5a) was developed and found to reduce FGFR3-TACC3 levels effectively. Compound 5a conjugated KHS108 (a TACC3 ligand) to an LCL161 derivative (11) (an inhibitor of apoptosis protein [IAP] ligand) with a PEG linker (n = 2). Mechanistical analysis showed that cellular IAP1 was required for the reduction of FGFR3-TACC3 levels. Consistent with the decrease in FGFR3-TACC3 levels, compound 5a suppressed the growth of FGFR3-TACC3 positive cells. Thus, compound 5a is a candidate therapeutic with a novel drug modality against cancers that exhibit FGFR3-TACC3-dependent proliferation and exerts pharmacological effects distinct from FGFR3 kinase inhibitors because it lacks substructures crucial for kinase inhibition.
Collapse
Affiliation(s)
- Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Nobuo Cho
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikihiko Naito
- Social Cooperation Program of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
117
|
Whitfield BT, Huse JT. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol 2022; 32:e13062. [PMID: 35289001 PMCID: PMC9245936 DOI: 10.1111/bpa.13062] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, developments in molecular profiling have radically altered the diagnosis, classification, and management of numerous cancer types, with primary brain tumors being no exception. Although historically brain tumors have been classified based on their morphological characteristics, recent advances have allowed refinement of tumor classification based on molecular alterations. This shift toward molecular classification of primary brain tumors is reflected in the 2021 5th edition of the WHO classification of central nervous system tumors (WHO 2021). In this review, we will discuss the most recent updates to the classification of adult‐type diffuse gliomas, a group of highly infiltrative and largely incurable CNS malignancies. It is our hope continued that refinement of molecular criteria will improve diagnosis, prognostication, and eventually treatment of these devastating tumors.
Collapse
Affiliation(s)
- Benjamin T Whitfield
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
118
|
Bale TA, Rosenblum MK. The 2021 WHO Classification of Tumors of the Central Nervous System: An update on pediatric low-grade gliomas and glioneuronal tumors. Brain Pathol 2022; 32:e13060. [PMID: 35218102 PMCID: PMC9245930 DOI: 10.1111/bpa.13060] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
The 2021 5th edition of the WHO Classification of Tumors of the Central Nervous System reflects the discovery of genetic alterations underlying many central nervous system (CNS) neoplasms. Insights gained from technologic advances and novel applications in molecular diagnostics, including next‐generation sequencing and DNA methylation‐based profiling, coupled with the recognition of clinicopathologic correlates, have prompted substantial changes to CNS tumor classification; this is particularly true for pediatric low‐grade gliomas and glioneuronal tumors (pLGG/GNTs). The 2021 WHO now classifies gliomas, glioneuronal tumors and neuronal tumors into 6 families, three of which encompass pLGG/LGNTs: “Pediatric type diffuse low‐grade gliomas,” “circumscribed astrocytic gliomas,” and “glioneuronal and neuronal tumors.” Among these are six newly recognized tumor types: “diffuse astrocytoma, MYB or MYBL1‐altered”; “polymorphous low grade neuroepithelial tumor of the young (PLNTY)”; “diffuse low‐grade glioma‐MAPK altered”; “Diffuse glioneuronal tumor with oligodendroglioma‐like features and nuclear clusters (DGONC)”; “myxoid glioneuronal tumor (MGT)”; and “multinodular and vacuolating neuronal tumor (MVNT).” We review these newly recognized entities in the context of general changes to the WHO schema, discuss implications of the new classification for treatment of pLGG/LGNT, and consider strategies for molecular testing and interpretation.
Collapse
Affiliation(s)
- Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
119
|
Picca A, Guyon D, Santonocito OS, Baldini C, Idbaih A, Carpentier A, Naccarato AG, Caccese M, Lombardi G, Di Stefano AL. Innovating Strategies and Tailored Approaches in Neuro-Oncology. Cancers (Basel) 2022; 14:1124. [PMID: 35267432 PMCID: PMC8909701 DOI: 10.3390/cancers14051124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Diffuse gliomas, the most frequent and aggressive primary central nervous system neoplasms, currently lack effective curative treatments, particularly for cases lacking the favorable prognostic marker IDH mutation. Nonetheless, advances in molecular biology allowed to identify several druggable alterations in a subset of IDH wild-type gliomas, such as NTRK and FGFR-TACC fusions, and BRAF hotspot mutations. Multi-tyrosine kinase inhibitors, such as regorafenib, also showed efficacy in the setting of recurrent glioblastoma. IDH inhibitors are currently in the advanced phase of clinical evaluation for patients with IDH-mutant gliomas. Several immunotherapeutic approaches, such as tumor vaccines or checkpoint inhibitors, failed to improve patients' outcomes. Even so, they may be still beneficial in a subset of them. New methods, such as using pulsed ultrasound to disrupt the blood-brain barrier, gene therapy, and oncolytic virotherapy, are well tolerated and may be included in the therapeutic armamentarium soon.
Collapse
Affiliation(s)
- Alberto Picca
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, 75013 Paris, France; (A.P.); (A.I.)
| | - David Guyon
- Department of Medical Oncology, Gustave Roussy University Hospital, 94800 Villejuif, France;
| | - Orazio Santo Santonocito
- Division of Neurosurgery, Spedali Riuniti di Livorno—USL Toscana Nord-Ovest, 57124 Livorno, Italy;
| | - Capucine Baldini
- Drug Development Department (DITEP), Gustave Roussy University Hospital, 94800 Villejuif, France;
| | - Ahmed Idbaih
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, 75013 Paris, France; (A.P.); (A.I.)
| | - Alexandre Carpentier
- Service de Neurochirurgie, Hôpital Universitaire La Pitié Salpêtrière, 75013 Paris, France;
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Pathology, University of Pisa, 56100 Pisa, Italy;
- Anatomia Patologica 1, Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Anna Luisa Di Stefano
- Division of Neurosurgery, Spedali Riuniti di Livorno—USL Toscana Nord-Ovest, 57124 Livorno, Italy;
- Department of Neurology, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
120
|
Dermawan JK, Vanderbilt CM, Chang JC, Untch BR, Singer S, Chi P, Tap WD, Antonescu CR. FGFR2::TACC2 fusion as a novel KIT-independent mechanism of targeted therapy failure in a multidrug-resistant gastrointestinal stromal tumor. Genes Chromosomes Cancer 2022; 61:412-419. [PMID: 35170141 DOI: 10.1002/gcc.23030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/06/2022] Open
Abstract
Genetic alterations in FGF/FGFR pathway are infrequent in gastrointestinal stromal tumors (GIST), with rare cases of quadruple wildtype GISTs harboring FGFR1 gene fusions and mutations. Additionally, FGF/FGFR overexpression was shown to promote drug resistance to kinase inhibitors in GISTs. However, FGFR gene fusions have not been directly implicated as a mechanism of drug resistance in GISTs. Herein, we report a patient presenting with a primary small bowel spindle cell GIST and concurrent peritoneal and liver metastases displaying an imatinib-sensitive KIT exon 11 in-frame deletion. After an initial 9-month benefit to imatinib, the patient experienced intraabdominal peritoneal recurrence owing to secondary KIT exon 13 missense mutation and FGFR4 amplification. Despite several additional rounds of tyrosine kinase inhibitors (TKI), the patient's disease progressed after 2 years and presented with multiple peritoneal and liver metastases, including one pericolonic mass harboring secondary KIT exon 18 missense mutation, and a concurrent transverse colonic mass with a FGFR2::TACC2 fusion and AKT2 amplification. All tumors, including primary and recurrent masses, harbored an MGA c.7272 T > G (p.Y2424*) nonsense mutation and CDKN2A/CDKN2B/MTAP deletions. The transcolonic mass showed elevated mitotic count (18/10 HPF), as well as significant decrease in CD117 and DOG1 expression, in contrast to all the other resistant nodules that displayed diffuse and strong CD117 and DOG1 immunostaining. The FGFR2::TACC2 fusion resulted from a 742 kb intrachromosomal inversion at the chr10q26.3 locus, leading to a fusion between exons 1-17 of FGFR2 and exons 7-17 TACC2, which preserves the extracellular and protein tyrosine kinase domains of FGFR2. We present the first report of a multi-drug resistant GIST patient who developed an FGFR2 gene fusion as a secondary genetic event to the selective pressure of various TKIs. This case also highlights the heterogeneous escape mechanisms to targeted therapy across various tumor nodules, spanning from both KIT-dependent and KIT-independent off-target activation pathways.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chad M Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason C Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brian R Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
121
|
Li J, Lu H, Ng PKS, Pantazi A, Ip CKM, Jeong KJ, Amador B, Tran R, Tsang YH, Yang L, Song X, Dogruluk T, Ren X, Hadjipanayis A, Bristow CA, Lee S, Kucherlapati M, Parfenov M, Tang J, Seth S, Mahadeshwar HS, Mojumdar K, Zeng D, Zhang J, Protopopov A, Seidman JG, Creighton CJ, Lu Y, Sahni N, Shaw KR, Meric-Bernstam F, Futreal A, Chin L, Scott KL, Kucherlapati R, Mills GB, Liang H. A functional genomic approach to actionable gene fusions for precision oncology. SCIENCE ADVANCES 2022; 8:eabm2382. [PMID: 35138907 PMCID: PMC8827659 DOI: 10.1126/sciadv.abm2382] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2023]
Abstract
Fusion genes represent a class of attractive therapeutic targets. Thousands of fusion genes have been identified in patients with cancer, but the functional consequences and therapeutic implications of most of these remain largely unknown. Here, we develop a functional genomic approach that consists of efficient fusion reconstruction and sensitive cell viability and drug response assays. Applying this approach, we characterize ~100 fusion genes detected in patient samples of The Cancer Genome Atlas, revealing a notable fraction of low-frequency fusions with activating effects on tumor growth. Focusing on those in the RTK-RAS pathway, we identify a number of activating fusions that can markedly affect sensitivity to relevant drugs. Last, we propose an integrated, level-of-evidence classification system to prioritize gene fusions systematically. Our study reiterates the urgent clinical need to incorporate similar functional genomic approaches to characterize gene fusions, thereby maximizing the utility of gene fusions for precision oncology.
Collapse
Affiliation(s)
- Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hengyu Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angeliki Pantazi
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Carman Ka Man Ip
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bianca Amador
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Tran
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lixing Yang
- Ben May Department for Cancer Research and Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Turgut Dogruluk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xiaojia Ren
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Angela Hadjipanayis
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christopher A. Bristow
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Semin Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Melanie Kucherlapati
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael Parfenov
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jiabin Tang
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Sahil Seth
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Harshad S. Mahadeshwar
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Kamalika Mojumdar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dong Zeng
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Alexei Protopopov
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Chad J. Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiling Lu
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Kenna R. Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Lynda Chin
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
- Dell Medical School, The University of Texas Austin, Austin, TX, USA
| | - Kenneth L. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Raju Kucherlapati
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gordon B. Mills
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
122
|
Broggi G, Piombino E, Altieri R, Romano C, Certo F, Barbagallo GMV, Vigneri P, Condorelli D, Colarossi L, Colarossi C, Magro G, Tirrò E. Glioblastoma, IDH-Wild Type With FGFR3-TACC3 Fusion: When Morphology May Reliably Predict the Molecular Profile of a Tumor. A Case Report and Literature Review. Front Neurol 2022; 13:823015. [PMID: 35222252 PMCID: PMC8863931 DOI: 10.3389/fneur.2022.823015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
It has been reported that in-frame FGFR3-TACC3 fusions confer to glioblastomas, IDH-wild type (GBMs, IDHwt) some unusual morphologic features, including monomorphous rounded cells with ovoid nuclei, nuclear palisading, endocrinoid network of “chicken-wire” vessels, microcalcifications and desmoplastic stroma, whose observation may predict the molecular profile of the tumor. We herein present a case of recurrent GBMs, IDHwt, exhibiting some of the above-mentioned morphological features and a molecularly-proven FGFR3-TACC3 fusion. A 56-year-old man presented to our hospital for a recurrent GBM, IDHwt, surgically treated at another center. Histologically, the tumor, in addition to the conventional GBM morphology, exhibited the following peculiar morphologic features: (1) monomorphous neoplastic cells with rounded nuclei and scant pale cytoplasm; (2) thin capillary-like vessels with “chicken-wire” pattern; (3) nuclear palisading; (4) formation of vague perivascular pseudorosettes; (5) spindled tumor cells embedded in a loose, myxoid background. Based on this unusual morphology, molecular analyses were performed and an FGFR3 exon17-TACC3 exon 10 fusion was found. The present case contributes to widening the morphologic spectrum of FGFR3-TACC3-fused GBM, IDHwt and emphasizes that pathologists, in the presence of a GBM, IDHwt with unconventional morphology, should promptly search for this fusion gene.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
- *Correspondence: Giuseppe Broggi
| | - Eliana Piombino
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Francesco Certo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Dario Condorelli
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-San Marco”, Catania, Italy
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
123
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 402] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
124
|
Fabro F, Lamfers MLM, Leenstra S. Advancements, Challenges, and Future Directions in Tackling Glioblastoma Resistance to Small Kinase Inhibitors. Cancers (Basel) 2022; 14:600. [PMID: 35158868 PMCID: PMC8833415 DOI: 10.3390/cancers14030600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Despite clinical intervention, glioblastoma (GBM) remains the deadliest brain tumor in adults. Its incurability is partly related to the establishment of drug resistance, both to standard and novel treatments. In fact, even though small kinase inhibitors have changed the standard clinical practice for several solid cancers, in GBM, they did not fulfill this promise. Drug resistance is thought to arise from the heterogeneity of GBM, which leads the development of several different mechanisms. A better understanding of the evolution and characteristics of drug resistance is of utmost importance to improve the current clinical practice. Therefore, the development of clinically relevant preclinical in vitro models which allow careful dissection of these processes is crucial to gain insights that can be translated to improved therapeutic approaches. In this review, we first discuss the heterogeneity of GBM, which is reflected in the development of several resistance mechanisms. In particular, we address the potential role of drug resistance mechanisms in the failure of small kinase inhibitors in clinical trials. Finally, we discuss strategies to overcome therapy resistance, particularly focusing on the importance of developing in vitro models, and the possible approaches that could be applied to the clinic to manage drug resistance.
Collapse
Affiliation(s)
| | | | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| |
Collapse
|
125
|
Yau DT, Lacambra MD, Chow C, To K. The Novel finding of an
FGFR1‐TACC1
Fusion in an Undifferentiated Spindle Cell Sarcoma of Soft Tissue with Aggressive Clinical Course. Genes Chromosomes Cancer 2022; 61:206-211. [PMID: 35064610 DOI: 10.1002/gcc.23024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Derek Tsz‐Wai Yau
- Department of Anatomical and Cellular Pathology the Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong SAR China
| | - Maribel D. Lacambra
- Department of Anatomical and Cellular Pathology the Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong SAR China
| | - Chit Chow
- Department of Anatomical and Cellular Pathology the Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong SAR China
| | - Ka‐Fai To
- Department of Anatomical and Cellular Pathology the Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong SAR China
| |
Collapse
|
126
|
van de Geer WS, Hoogstrate Y, Draaisma K, Robe PA, Bins S, Mathijssen RHJ, French P, van de Werken HJG, de Vos FYF. Landscape of driver gene events, biomarkers, and druggable targets identified by whole-genome sequencing of glioblastomas. Neurooncol Adv 2022; 4:vdab177. [PMID: 35047820 PMCID: PMC8760899 DOI: 10.1093/noajnl/vdab177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The survival of glioblastoma patients is poor. Median survival after diagnosis is 15 months, despite treatment involving surgical resection, radiotherapy, and/or temozolomide chemotherapy. Identification of novel targets and stratification strategies of glioblastoma patients to improve patient survival is urgently needed. Whole-genome sequencing (WGS) is the most comprehensive means to identify such DNA-level targets. We report a unique set of WGS samples along with comprehensive analyses of the glioblastoma genome and potential clinical impact of WGS. METHODS Our cohort consisted of 42 glioblastoma tumor tissue and matched whole-blood samples, which were whole-genome sequenced as part of the CPCT-02 study. Somatic single-nucleotide variants, small insertions/deletions, multi-nucleotide variants, copy-number alterations (CNAs), and structural variants were analyzed. These aberrations were harnessed to investigate driver genes, enrichments in CNAs, mutational signatures, fusion genes, and potential targeted therapies. RESULTS Tumor mutational burden (TMB) was similar to other WGS efforts (1-342 mutations per megabase pair). Mutational analysis in low TMB samples showed that the age-related CpG demethylation signature was dominant, while hyper- and ultramutated tumors had additional defective DNA mismatch repair signatures and showed microsatellite instability in their genomes. We detected chromothripsis in 24% of our cohort, recurrently on chromosomes 1 and 12. Recurrent noncoding regions only resulted in TERT promoter variants. Finally, we found biomarkers and potentially druggable changes in all but one of our tumor samples. CONCLUSIONS With high-quality WGS data and comprehensive methods, we identified the landscape of driver gene events and druggable targets in glioblastoma patients.
Collapse
Affiliation(s)
- Wesley S van de Geer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Youri Hoogstrate
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Kaspar Draaisma
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Pim French
- Department of Neurology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Filip Y F de Vos
- Department of Medical Oncology, Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
127
|
Fang SG, Xia TL, Fu JC, Li T, Zhong Q, Han F. BCL6-SPECC1L: A Novel Fusion Gene in Nasopharyngeal Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221139981. [PMID: 36412101 PMCID: PMC9706053 DOI: 10.1177/15330338221139981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Background: Nasopharyngeal carcinomas (NPCs) are malignant tumors originating from the lining epithelium of the nasopharynx. Fusion genes have been confirmed to play important roles in the occurrence and development of various malignant tumors, but the role of fusion genes in NPC is poorly understood. We aimed to explore new fusion genes that promote the occurrence and development of NPC. Methods: RNA-seq was used to search for interchromosomal translocations in 18 NPC tissues. Polymerase chain reaction (PCR) and Sanger sequencing were applied to verify the presence of BCL6-SPECC1L (BS); quantitative PCR (qPCR) and Western blotting were used to measure the expression level of BCL-6 in NPC cells; MTT and in vivo tumorigenesis assays were applied to evaluate the cell proliferation ability; immunofluorescence assays were used to determine the cellular localization of BCL6 and BS; and a luciferase reporter assay was performed to evaluate the ability of BCL6 and BS to inhibit transcription. Results: BS was present in 5.34% (11/206) of primary NPC biopsies and 2.13% (1/47) of head and neck cancer biopsies. The expression of BCL6 was downregulated in NPC, and silencing of endogenous BCL6 promoted NPC cell proliferation in vitro. Overexpression of BCL6 but not BS inhibited the growth of NPC cells in vivo and in vitro. Mechanistically, BCL6 localized in the nucleus can inhibit the G1/S transition to suppress the growth of NPC cells. However, after the fusion of BCL6 and SPECC1L, the product cannot localize to the nucleus, and the transcriptional inhibitory function of BCL6 is abolished, eventually abolishing its tumor suppressor effect and leading to the development of NPC. Conclusion: BS is a novel fusion gene in NPC that may play an important role in the occurrence and development of this cancer. The clinical significance of the BS fusion gene needs further elucidation.
Collapse
Affiliation(s)
- Shuo-Gui Fang
- Department of Radiation Oncology, Sun Yat-sen University Cancer
Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer
Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou,
China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Guangzhou,
China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
| | - Jian-Chang Fu
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
- Department of Pathology, Sun Yat-Sen University Cancer
Center, Guangzhou, China
| | - Tong Li
- Department of Cancer Prevention, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangzhou,
China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer
Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou,
China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and
Therapy, Guangzhou, China
| |
Collapse
|
128
|
Abstract
ABSTRACT Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most prevalent cancer worldwide, with an annual incidence of 600,000 new cases. Despite advances in surgery, chemotherapy, and radiotherapy, the overall survival for HNSCC patients has not been significantly improved over the past several decades. Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) genomic alterations are frequently detected in HNSCC, including amplification, activating mutation, and chromosomal rearrangement. Among them, FGFR1 amplification, FGF amplifications, and FGFR3 mutations are the most prevalent. In addition, FGF/FGFR expression has also been observed in most HNSCCs. However, the prognostic value of FGF/FGFR aberrations remains unclear, especially for gene amplification and overexpression. Nonetheless, FGF/FGFR has been a promising target for HNSCC treatment, and recent preclinical studies demonstrate the potential of the combination treatment regimens involving FGFR inhibitors on HNSCC. Therefore, there are a number of FGFR inhibitors currently in clinical trials for the treatment of head and neck cancers.
Collapse
|
129
|
Dučić T, Ninkovic M, Martínez-Rovira I, Sperling S, Rohde V, Dimitrijević D, Jover Mañas GV, Vaccari L, Birarda G, Yousef I. Live-Cell Synchrotron-Based FTIR Evaluation of Metabolic Compounds in Brain Glioblastoma Cell Lines after Riluzole Treatment. Anal Chem 2021; 94:1932-1940. [PMID: 34965097 DOI: 10.1021/acs.analchem.1c02076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, characterized by short median survival and an almost 100% tumor-related mortality. The standard of care treatment for newly diagnosed GBM includes surgical resection followed by concomitant radiochemotherapy. The prevention of disease progression fails due to the poor therapeutic effect caused by the great molecular heterogeneity of this tumor. Previously, we exploited synchrotron radiation-based soft X-ray tomography and hard X-ray fluorescence for elemental microimaging of the shock-frozen GBM cells. The present study focuses instead on the biochemical profiling of live GBM cells and provides new insight into tumor heterogenicity. We studied bio-macromolecular changes by exploring the live-cell synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy in a set of three GBM cell lines, including the patient-derived glioblastoma cell line, before and after riluzole treatment, a medicament with potential anticancer properties. SR-FTIR microspectroscopy shows that GBM live cells of different origins recruit different organic compounds. The riluzole treatment of all GBM cell lines mainly affected carbohydrate metabolism and the DNA structure. Lipid structures and protein secondary conformation are affected as well by the riluzole treatment: cellular proteins assumed cross β-sheet conformation while parallel β-sheet conformation was less represented for all GBM cells. Moreover, we hope that a new live-cell approach for GBM simultaneous treatment and examination can be devised to target cancer cells more specifically, i.e., future therapies can develop more specific treatments according to the specific bio-macromolecular signature of each tumor type.
Collapse
Affiliation(s)
- Tanja Dučić
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Milena Ninkovic
- The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Immaculada Martínez-Rovira
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain.,Ionizing Radiation Research Group, Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Swetlana Sperling
- The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Veit Rohde
- The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Dragoljub Dimitrijević
- Institute for Multidisciplinary Research, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | | | - Lisa Vaccari
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Giovanni Birarda
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Ibraheem Yousef
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
130
|
Mahmood HTNA, Tomas Bort E, Walker AJ, Grose RP, Chioni AM. FGF signalling facilitates cervical cancer progression. FEBS J 2021; 289:3440-3456. [PMID: 34951738 DOI: 10.1111/febs.16331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
Cervical cancer is one of the most frequently diagnosed cancers in women worldwide. While cervical cancer is caused by human papillomavirus (HPV), not all females infected with HPV develop the disease, suggesting that other factors might facilitate its progression. Growing evidence supports the involvement of the fibroblast growth factor receptor (FGFR) axis in several cancers, including gynecological. However, for cervical cancer, the molecular mechanisms that underpin the disease remain poorly understood, including the role of FGFR signaling. The aim of this study was to investigate FGF(R) signaling in cervical cancer through bioinformatic analysis of cell line and patient data and through detailed expression profiling, manipulation of the FGFR axis, and downstream phenotypic analysis in cell lines (HeLa, SiHa, and CaSki). Expression (protein and mRNA) analysis demonstrated that FGFR1b/c, FGFR2b/c, FGFR4, FGF2, FGF4, and FGF7 were expressed in all three lines. Interestingly, FGFR1 and 2 localized to the nucleus, supporting that nuclear FGFRs could act as transcription factors. Importantly, 2D and 3D cell cultures demonstrated that FGFR activation can facilitate cell functions correlated with invasive disease. Collectively, this study supports an association between FGFR signaling and cervical cancer progression, laying the foundations for the development of therapeutic approaches targeting FGFR in this disease.
Collapse
Affiliation(s)
| | - Elena Tomas Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Anthony J Walker
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| |
Collapse
|
131
|
Guo X, Chen T, Chen S, Song C, Shan D, Xu S, Xu S. Case Report: Identification of Multiple TERT and FGFR2 Gene Fusions in a Pineal Region Glioblastoma Case. Front Oncol 2021; 11:739309. [PMID: 34976798 PMCID: PMC8716851 DOI: 10.3389/fonc.2021.739309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
As an oncogenic somatic variant, telomerase reverse transcriptase promoter (TERTp) mutations are frequently observed in adult glioblastoma (GBM). Alternatively, we report the first case of glioblastoma with TERT amplification accompanied by multiple TERT and FGFR2 gene fusions instead of TERTp mutation. A 55-year-old woman presented with dizziness, headache, and diplopia for three weeks. Magnetic resonance imaging (MRI) demonstrated a heterogeneously enhancing lobulated mass centered in the pineal region. Partial tumor resection and ventriculoperitoneal shunt were achieved, and the residual tumor was then treated with standard radiation. The tumor was diagnosed as GBM, IDH-wild type, WHO grade IV, and the Ki67 proliferation index was high (30–40%). Intriguingly, TERT amplification without TERTp mutation was identified via next generation sequencing (NGS). Further analysis revealed multiple TERT (TERT–NUBPL, MARCH6–TERT, and CJD4–TERT) and FGFR2 (CXCL17–FGFR2, SIPA1L3–FGFR2, FGFR2–SIPA1L3, and FGFR2–CEACAM1) gene fusions. After the surgery, the patient’s condition deteriorated rapidly due to the malignant nature of the tumor and she died with an overall survival of 3 months. Our report provides the molecular clue for a novel telomerase activation and maintenance mechanism in GBM.
Collapse
Affiliation(s)
- Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Teng Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shiming Chen
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Chao Song
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Dezhi Shan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shuo Xu,
| |
Collapse
|
132
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
133
|
Qin A, Musket A, Musich PR, Schweitzer JB, Xie Q. Receptor tyrosine kinases as druggable targets in glioblastoma: Do signaling pathways matter? Neurooncol Adv 2021; 3:vdab133. [PMID: 34806012 PMCID: PMC8598918 DOI: 10.1093/noajnl/vdab133] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor without effective therapies. Since bevacizumab was FDA approved for targeting vascular endothelial growth factor receptor 2 (VEGFR2) in adult patients with recurrent GBM, targeted therapy against receptor tyrosine kinases (RTKs) has become a new avenue for GBM therapeutics. In addition to VEGFR, the epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), hepatocyte growth factor receptor (HGFR/MET), and fibroblast growth factor receptor (FGFR) are major RTK targets. However, results from clinical Phase II/III trials indicate that most RTK-targeting therapeutics including tyrosine kinase inhibitors (TKIs) and neutralizing antibodies lack clinical efficacy, either alone or in combination. The major challenge is to uncover the genetic RTK alterations driving GBM initiation and progression, as well as to elucidate the mechanisms toward therapeutic resistance. In this review, we will discuss the genetic alterations in these 5 commonly targeted RTKs, the clinical trial outcomes of the associated RTK-targeting therapeutics, and the potential mechanisms toward the resistance. We anticipate that future design of new clinical trials with combination strategies, based on the genetic alterations within an individual patient’s tumor and mechanisms contributing to therapeutic resistance after treatment, will achieve durable remissions and improve outcomes in GBM patients.
Collapse
Affiliation(s)
- Anna Qin
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Anna Musket
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Phillip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - John B Schweitzer
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Qian Xie
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
134
|
Aldaz P, Arozarena I. Tyrosine Kinase Inhibitors in Adult Glioblastoma: An (Un)Closed Chapter? Cancers (Basel) 2021; 13:5799. [PMID: 34830952 PMCID: PMC8616487 DOI: 10.3390/cancers13225799] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal form of malignant brain tumor. GBM patients normally undergo surgery plus adjuvant radiotherapy followed by chemotherapy. Numerous studies into the molecular events driving GBM highlight the central role played by the Epidermal Growth Factor Receptor (EGFR), as well as the Platelet-derived Growth Factor Receptors PDGFRA and PDGFRB in tumor initiation and progression. Despite strong preclinical evidence for the therapeutic potential of tyrosine kinase inhibitors (TKIs) that target EGFR, PDGFRs, and other tyrosine kinases, clinical trials performed during the last 20 years have not led to the desired therapeutic breakthrough for GBM patients. While clinical trials are still ongoing, in the medical community there is the perception of TKIs as a lost opportunity in the fight against GBM. In this article, we review the scientific rationale for the use of TKIs targeting glioma drivers. We critically analyze the potential causes for the failure of TKIs in the treatment of GBM, and we propose alternative approaches to the clinical evaluation of TKIs in GBM patients.
Collapse
Affiliation(s)
- Paula Aldaz
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain
| | - Imanol Arozarena
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
135
|
Chioni AM, Grose RP. Biological Significance and Targeting of the FGFR Axis in Cancer. Cancers (Basel) 2021; 13:5681. [PMID: 34830836 PMCID: PMC8616401 DOI: 10.3390/cancers13225681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes shown by many FGF/R knockout mice, highlight the diversity, complexity and functional importance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeostasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involvement of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal antibodies and some have already been approved for the treatment of cancer patients. The heterogeneous tumour microenvironment and complexity of FGFR signalling may be some of the factors responsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. In the present review we will focus on the structure and function of FGF(R)s, their common irregularities in cancer and the therapeutic value of targeting their function in cancer.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| |
Collapse
|
136
|
Asuzu DT, Desai B, Maggio D, Mandell J, Ray-Chaudhury A, Abdullaev Z, Aldape K, Heiss J, Buchholz AL. FGFR1-TACC1 fusion associated with malignant transformation in a primary spinal cord glioma: a case report. JOURNAL OF SPINE SURGERY 2021; 7:434-438. [PMID: 34734147 DOI: 10.21037/jss-21-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022]
Abstract
Molecular mechanisms of malignant transformation in spinal cord gliomas are not well-understood. Our objective was to investigate genetic causes of malignant transformation in a primary spinal cord glioma. A 32-year-old female patient presented with bilateral lower extremity weakness and was diagnosed with a primary spinal cord glioma from T9 to T12, with a syrinx extending from the craniocervical junction to the conus. She underwent resection in 2006. Pathology showed an abundance of Rosenthal fibers, calcification and degenerative features consistent with a low-grade pilocytic astrocytoma. She presented in 2020 with tumor recurrence and underwent re-resection. Whole exome sequencing, DNA methylation profiling and immunohistochemistry were performed on her initial and recurrent tumor samples. Immunohistochemical profiling of her recurrent tumor showed pleomorphic cells with extensive necrosis consistent with a high-grade glioma. DNA methylation profiling showed that the initial tumor clustered with pilocytic astrocytomas, whereas the recurrent lesion clustered with anaplastic astrocytomas, confirming malignant transformation. Whole-exome sequencing showed interim acquisition of a rare fibroblast growth factor receptor-transforming acidic coiled-coil (FGFR1-TACC1) gene fusion. We report an FGFR1-TACC1 fusion associated with malignant transformation in a primary spinal cord glioma. Our study adds to growing reports of FGFR-TACC fusions, which are amenable to receptor tyrosine kinase inhibition.
Collapse
Affiliation(s)
- David T Asuzu
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Bhargav Desai
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Dominic Maggio
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - James Mandell
- Division of Neuropathology, University of Virginia, Charlottesville, Virginia, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Zied Abdullaev
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth Aldape
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Avery L Buchholz
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
137
|
Chen L, Zhang Y, Yin L, Cai B, Huang P, Li X, Liang G. Fibroblast growth factor receptor fusions in cancer: opportunities and challenges. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:345. [PMID: 34732230 PMCID: PMC8564965 DOI: 10.1186/s13046-021-02156-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play critical roles in many biological processes and developmental functions. Chromosomal translocation of FGFRs result in the formation of chimeric FGFR fusion proteins, which often cause aberrant signaling leading to the development and progression of human cancer. Due to the high recurrence rate and carcinogenicity, oncogenic FGFR gene fusions have been identified as promising therapeutic targets. Erdafitinib and pemigatinib, two FGFR selective inhibitors targeting FGFR fusions, have been approved by the U.S. Food and Drug Administration (FDA) to treat patients with urothelial cancer and cholangiocarcinoma, respectively. Futibatinib, a third-generation FGFR inhibitor, is under phase III clinical trials in patients with FGFR gene rearrangements. Herein, we review the current understanding of the FGF/FGFRs system and the oncogenic effect of FGFR fusions, summarize promising inhibitors under clinical development for patients with FGFR fusions, and highlight the challenges in this field.
Collapse
Affiliation(s)
- Lingfeng Chen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China. .,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China.
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guang Liang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China. .,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
138
|
Wu Y, Jin W, Wang Q, Zhou J, Wang Y, Tan Y, Cui X, Tong F, Yang E, Wang J, Kang C. Precise editing of FGFR3-TACC3 fusion genes with CRISPR-Cas13a in glioblastoma. Mol Ther 2021; 29:3305-3318. [PMID: 34274537 PMCID: PMC8571169 DOI: 10.1016/j.ymthe.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/10/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022] Open
Abstract
FGFR3-TACC3 (F3-T3) gene fusions are regarded as a "low-hanging fruit" paradigm for precision therapy in human glioblastoma (GBM). Small molecules designed to target the kinase in FGFR currently serve as one form of potential treatment but cause off-target effects and toxicity. Here, CRISPR-Cas13a, which is known to directly suppress gene expression at the transcriptional level and induce a collateral effect in eukaryotes, was leveraged as a possible precision therapy in cancer cells harboring F3-T3 fusion genes. A library consisting of crRNAs targeting the junction site of F3-T3 was designed, and an in silico simulation scheme was created to select the optimal crRNA candidates. An optimal crRNA, crRNA1, showed efficiency and specificity in inducing the collateral effect in only U87 cells expressing F3-T3 (U87-F3-T3). Expression profiles obtained with microarray analysis were consistent with induction of the collateral effect by the CRISPR-Cas13a system. Tumor cell proliferation and colony formation were decreased in U87-F3-T3 cells expressing the Cas13a-based tool, and tumor growth was suppressed in an orthotopic tumor model in mice. These findings demonstrate that the CRISPR-Cas13a system induces the collateral damage effect in cancer cells and provides a viable strategy for precision tumor therapy based on the customized design of a CRISPR-Cas13a-based tool against F3-T3 fusion genes.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- CRISPR-Cas Systems
- Cell Line, Tumor
- Disease Models, Animal
- Disease Progression
- Gene Editing
- Gene Expression
- Gene Expression Profiling
- Glioblastoma/genetics
- Glioblastoma/pathology
- Heterografts
- Humans
- Hydrogen Bonding
- Mice
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Protein Binding
- Protein Conformation
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Receptor, Fibroblast Growth Factor, Type 3/chemistry
- Receptor, Fibroblast Growth Factor, Type 3/genetics
Collapse
Affiliation(s)
- Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Weili Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Hebei University School of Basic Medical Sciences, Hebei 071000, China; Department of Pathology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China
| | - Xiaoteng Cui
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Fei Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Eryan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China; Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway.
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China.
| |
Collapse
|
139
|
You G, Fan X, Hu H, Jiang T, Chen CC. Fusion Genes Altered in Adult Malignant Gliomas. Front Neurol 2021; 12:715206. [PMID: 34671307 PMCID: PMC8520976 DOI: 10.3389/fneur.2021.715206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Malignant gliomas are highly heterogeneous brain tumors in molecular genetic background. Despite the many recent advances in the understanding of this disease, patients with adult high-grade gliomas retain a notoriously poor prognosis. Fusions involving oncogenes have been reported in gliomas and may serve as novel therapeutic targets to date. Understanding the gene fusions and how they regulate oncogenesis and malignant progression will contribute to explore new approaches for personalized treatment. By now, studies on gene fusions in gliomas remain limited. However, some current clinical trials targeting fusion genes have presented exciting preliminary findings. The aim of this review is to summarize all the reported fusion genes in high-grade gliomas so far, discuss the characterization of some of the most popular gene fusions occurring in malignant gliomas, as well as their function in tumorigenesis, and the underlying clinical implication as therapeutic targets.
Collapse
Affiliation(s)
- Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Xing Fan
- Department of Neurophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Huimin Hu
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
140
|
Application of Mesenchymal Stem Cells in Targeted Delivery to the Brain: Potential and Challenges of the Extracellular Vesicle-Based Approach for Brain Tumor Treatment. Int J Mol Sci 2021; 22:ijms222011187. [PMID: 34681842 PMCID: PMC8538190 DOI: 10.3390/ijms222011187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Treating brain tumors presents enormous challenges, and there are still poor prognoses in both adults and children. Application of novel targets and potential drugs is hindered by the function of the blood-brain barrier, which significantly restricts therapeutic access to the tumor. Mesenchymal stem cells (MSCs) can cross biological barriers, migrate to sites of injuries to exert many healing effects, and be engineered to incorporate different types of cargo, making them an ideal vehicle to transport anti-tumor agents to the central nervous system. Extracellular vesicles (EVs) produced by MSCs (MSC-EVs) have valuable innate properties from parent cells, and are being exploited as cell-free treatments for many neurological diseases. Compared to using MSCs, targeted delivery via MSC-EVs has a better pharmacokinetic profile, yet avoids many critical issues of cell-based systems. As the field of MSC therapeutic applications is quickly expanding, this article aims to give an overall picture for one direction of EV-based targeting of brain tumors, with updates on available techniques, outcomes of experimental models, and critical challenges of this concept.
Collapse
|
141
|
Caruso JP, Shi C, Rail B, Aoun SG, Bagley CA. Aggressively recurring cervical intramedullary anaplastic astrocytoma in a pregnant patient. Surg Neurol Int 2021; 12:466. [PMID: 34621581 PMCID: PMC8492418 DOI: 10.25259/sni_759_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022] Open
Abstract
Background Many patients with spinal juvenile pilocytic astrocytoma can experience prolonged remission after resection. However, some reports suggest that pregnancy may be associated with progression. Case Description The authors provide an image report highlighting a case of rapid and aggressive transformation of an intramedullary astrocytoma of the cervical spine in a pregnant patient. Over the course of 1 year, the lesion progressed from a juvenile pilocytic astrocytoma to an anaplastic astrocytoma. Genetic testing revealed mutations associated with aggressive behavior. Conclusion The case and associated imaging demonstrate the importance of close neurologic monitoring and counseling regarding risk of progression in pregnant patients with spinal gliomas.
Collapse
Affiliation(s)
- James P Caruso
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| | - Chen Shi
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| | - Benjamin Rail
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| | - Salah G Aoun
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| | - Carlos A Bagley
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| |
Collapse
|
142
|
Repetto M, Crimini E, Giugliano F, Morganti S, Belli C, Curigliano G. Selective FGFR/FGF pathway inhibitors: inhibition strategies, clinical activities, resistance mutations, and future directions. Expert Rev Clin Pharmacol 2021; 14:1233-1252. [PMID: 34591728 DOI: 10.1080/17512433.2021.1947246] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Fibroblast growth factor receptor (FGFR)/fibroblast growth factor (FGF) is a pathway characterized by recurring alterations in cancer. Its dysregulations enhance cancer cell proliferation, survival, migration and invasion, as well as angiogenesis and immune evasion.Areas covered: FGFR/FGF selective inhibitors belong to a broad class of drugs with some being approved for specific indications and others under investigation in ongoing phase I and II clinical trials. In this review, all available clinical data from trials on selective FGFR/FGF inhibitors as well as described resistance mutations and mechanisms are presented. FGFR/FGF pathway inhibitors are classified according to the mechanism they employ to dampen/suppress signaling and to the preferred FGFR binding mode when X-ray crystal structure is available.Expert opinion: Data presented suggests the general actionability of FGFR1,2,3 mutations and fusions across histologies, whereas FGFR1,2,3 amplifications alone are poor predictors of response to tyrosine kinase inhibitors. Overexpression on immunohistochemistry (IHC) of FGF19, the stimulatory ligand of FGFR4, can predict response to FGFR selective inhibitors in hepatocellular carcinoma. Whereas IHC overexpression of FGFR1,2,3 is not sufficient to predict benefit from FGFR inhibitors across solid tumors. FGFR1,2,3 mRNA overexpression can predict response even in absence of structural alteration. Data on resistance mutations suggests the need for new inhibitors to overcome gatekeeper mutations.
Collapse
Affiliation(s)
- Matteo Repetto
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Edoardo Crimini
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Giugliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Morganti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmen Belli
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
143
|
Xiao JF, Caliri AW, Duex JE, Theodorescu D. Targetable Pathways in Advanced Bladder Cancer: FGFR Signaling. Cancers (Basel) 2021; 13:4891. [PMID: 34638374 PMCID: PMC8507635 DOI: 10.3390/cancers13194891] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 01/08/2023] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer in the world, accounting for around 573,000 new cases and 213,000 deaths in 2020. The current standard treatment for locally advanced bladder cancer is neoadjuvant cisplatin (NAC)-based chemotherapy followed by cystectomy. The significant progress being made in the genomic and molecular understandings of bladder cancer has uncovered the genetic alterations and signaling pathways that drive bladder cancer progression. These developments have led to a dramatic increase in the evaluation of molecular agents targeting at these alterations. One example is Erdafitinib, a first-in-class FGFR inhibitor being approved as second-line treatment for locally advanced or metastatic urothelial carcinoma with FGFR mutations. Immunotherapy has also been approved as second-line treatment for advanced and metastatic bladder cancer. Preclinical studies suggest targeted therapy combined with immunotherapy has the potential to markedly improve patient outcome. Given the prevalence of FGFR alternations in bladder cancer, here we review recent preclinical and clinical studies on FGFR inhibitors and analyze possible drug resistance mechanisms to these agents. We also discuss FGFR inhibitors in combination with other therapies and its potential to improve outcome.
Collapse
Affiliation(s)
- Jin-Fen Xiao
- Division of Medical Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.-F.X.); (A.W.C.)
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA;
| | - Andrew W. Caliri
- Division of Medical Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.-F.X.); (A.W.C.)
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA;
| | - Jason E. Duex
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA;
| | - Dan Theodorescu
- Division of Medical Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.-F.X.); (A.W.C.)
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA;
| |
Collapse
|
144
|
Nguyen MLT, Toan NL, Bozko M, Bui KC, Bozko P. Cholangiocarcinoma Therapeutics: An Update. Curr Cancer Drug Targets 2021; 21:457-475. [PMID: 33563168 DOI: 10.2174/1568009621666210204152028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is the second most common hepatobiliary cancer and associated with a poor prognosis. Only one-third of CCA cases are diagnosed at operable stages. However, a high rate of relapse has been observed postoperatively. Besides screening for operable individuals, efficacious therapeutic for recurrent and advanced CCA is urgently needed. The treatment outcome of available therapeutics is important to clarify clinical indication and facilitate the development of treatment strategies. OBJECTIVE This review aims to compare the treatment outcome of different therapeutics based on both overall survival and progression-free survival. METHODS Over one hundred peer-reviewed articles were examined. We compared the treatment outcome between different treatment methods, including tumor resection with or without postoperative systematic therapy, chemotherapies including FOFLOX, and targeted therapies, such as IDH1, K-RAS, and FGFR inhibitors. Notably, the scientific basis and outcome of available treatment methods were compared with the standard first-line therapy. RESULTS CCAs at early stages should firstly undergo tumor resection surgery, followed by postoperative treatment with Capecitabine. Chemotherapy can be considered as a preoperative option for unresectable CCAs. Inoperable CCAs with genetic aberrances like FGFR alterations, IDH1, and KRAS mutations should be considered with targeted therapies. Fluoropyrimidine prodrug (S-1)/Gemcitabine/Cisplatin and nab-Paclitaxel/Gemcitabine/Cisplatin show favorable outcome which hints at the triplet regimen to be superior to Gemcitabine/Cisplatin on CCA. The triplet chemotherapeutic should be tested further compared to Gemcitabine/Cisplatin among CCAs without genetic alterations. Gemcitabine plus S-1 was recently suggested as the convenient and equivalent standard first-line for advanced/recurrent biliary tract cancer. CONCLUSION This review provides a comparative outcome between novel targeted therapies and currently available therapeutics.
Collapse
Affiliation(s)
- Mai Ly Thi Nguyen
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Maria Bozko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Khac Cuong Bui
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| |
Collapse
|
145
|
Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021; 171:105780. [PMID: 34302977 PMCID: PMC8384724 DOI: 10.1016/j.phrs.2021.105780] [Citation(s) in RCA: 358] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges. The standard treatment for GBMs is surgical resection followed by chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells and glioma initiating cells (GICs), respectively, promote resistance against all current treatment modalities. Thus, durable GBM management will require the invention of innovative treatment strategies. In this review, we will describe biological and molecular targets for GBM therapy, the current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment approaches. To date, medical imaging is primarily used to determine the location, size and macroscopic morphology of GBM before, during, and after therapy. In the future, molecular and cellular imaging approaches will more dynamically monitor the expression of molecular targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of tumor-tailored, targeted therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Klockow
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Michael Zhang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Yang Wu
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Bayern 81675, Germany
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
146
|
Abstract
ABSTRACT High-grade gliomas are among the deadliest of all cancers despite standard treatments, and new therapeutic strategies are needed to improve patient outcome. Targeting the altered metabolic state of tumors with traditional chemotherapeutic agents has a history of success, and our increased understanding of cellular metabolism in the past 2 decades has reinvigorated the concept of novel metabolic therapies in brain tumors. Here we highlight metabolic alterations in advanced gliomas and their translation into clinical trials using both novel agents and already established drugs repurposed for cancer treatment in an effort to improve outcome for these deadly diseases.
Collapse
Affiliation(s)
- Andrew J. Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Daniel R. Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109; University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
147
|
Glenfield C, Innan H. Gene Duplication and Gene Fusion Are Important Drivers of Tumourigenesis during Cancer Evolution. Genes (Basel) 2021; 12:1376. [PMID: 34573358 PMCID: PMC8466788 DOI: 10.3390/genes12091376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023] Open
Abstract
Chromosomal rearrangement and genome instability are common features of cancer cells in human. Consequently, gene duplication and gene fusion events are frequently observed in human malignancies and many of the products of these events are pathogenic, representing significant drivers of tumourigenesis and cancer evolution. In certain subsets of cancers duplicated and fused genes appear to be essential for initiation of tumour formation, and some even have the capability of transforming normal cells, highlighting the importance of understanding the events that result in their formation. The mechanisms that drive gene duplication and fusion are unregulated in cancer and they facilitate rapid evolution by selective forces akin to Darwinian survival of the fittest on a cellular level. In this review, we examine current knowledge of the landscape and prevalence of gene duplication and gene fusion in human cancers.
Collapse
Affiliation(s)
| | - Hideki Innan
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawar 240-0193, Japan;
| |
Collapse
|
148
|
Chang MM, Wu SZ, Yang SH, Wu CC, Wang CY, Huang BM. FGF9/FGFR1 promotes cell proliferation, epithelial-mesenchymal transition, M2 macrophage infiltration and liver metastasis of lung cancer. Transl Oncol 2021; 14:101208. [PMID: 34438248 PMCID: PMC8390529 DOI: 10.1016/j.tranon.2021.101208] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
FGF9 induced cell proliferation, EMT, migration, and invasion of mouse Lewis lung cancer (LLC) cells, in vitro. FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13) and reduced the expression of E-cadherin. FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with tumor growth, angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. The FGF9/LLC syngeneic animal model provides a useful tool for the mechanism studies of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.
Fibroblast growth factors 9 (FGF9) modulates cell proliferation, differentiation and motility for development and repair in normal cells. Abnormal activation of FGF9 signaling is associated with tumor progression in many cancers. Also, FGF9 may be an unfavorable prognostic indicator for non-small cell lung cancer patients. However, the effects and mechanisms of FGF9 in lung cancer remain elusive. In this study, we investigated the FGF9-induced effects and signal activation profiles in mouse Lewis lung carcinoma (LLC) in vitro and in vivo. Our results demonstrated that FGF9 significantly induced cell proliferation and epithelial-to-mesenchymal transition (EMT) phenomena (migration and invasion) in LLC cells. Mechanism-wise, FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13), and reduced the expression of E-cadherin. Moreover, in the allograft mouse model, intratumor injection of FGF9 to LLC-tumor bearing C57BL/6 mice enhanced LLC tumor growth which were the results of increased Ki67 expression and decreased cleaved caspase-3 expression compared to control groups. Furthermore, we have a novel finding that FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. In conclusion, FGF9 activated FAK, AKT, and ERK signaling through FGFR1 with induction of EMT to stimulate LLC tumorigenesis and hepatic metastasis. This novel FGF9/LLC allograft animal model may therefore be useful to study the mechanism of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, Republic of China
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China.
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40406, Taiwan, Republic of China.
| |
Collapse
|
149
|
Gu W, Yang J, Wang Y, Xu J, Wang X, Du F, Hu X, Guo H, Song C, Tao R, Zhang X. Comprehensive identification of FGFR1-4 alterations in 5 557 Chinese patients with solid tumors by next-generation sequencing. Am J Cancer Res 2021; 11:3893-3906. [PMID: 34522456 PMCID: PMC8414391 DOI: pmid/34522456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023] Open
Abstract
Deregulation of fibroblast growth factor receptor (FGFR) network is common in cancer due to activating mutations, gene amplifications and chromosomal translocations. Currently, various FGFR inhibitors are being developed. In order to optimize their clinical applications, understanding the frequencies and types of FGFR alterations in multiple cancer types appears to be extremely important. This study characterized FGFR1-4 alterations in solid tumors by next-generation sequencing (NGS). Between Jun. 2019 and Aug. 2020, the sequencing data of 5 557 solid tumors of diverse types in the database of Simcere Diagnostics, Inc. (Nanjing, China) were retrospectively analyzed. A panel-based NGS assay was used to detect FGFR1-4 alterations in tumor samples. 9.2% of cancer cases had FGFR1-4 alterations, in which gene amplifications (51.5%) and mutations (40.7%) were frequent, whereas gene rearrangements were less common (10.0%). FGFR1 was involved in 4.6% of 5 557 cases, FGFR2 in 2.1%, FGFR3 in 1.6%, and FGFR4 in 1.4%. Of patients with FGFR1-4 alterations, TP53, MUC16, NSD3, MYC and LRP1B genes were the top 5 mutant genes. FGFR1-4 aberrations occurred in almost every type of solid tumors, with the most common tumor being endometrial carcinoma (22.2%), followed by sarcoma (17.3%), breast cancer (13.2%), gastric cancer (12.2%), and more. 0.6% of cancer cases harbored FGFR1-4 fusions, with the most common fusion partner being TACC3. Two cases of GBM harboring FGFR3-TACC3 fusions were responsive to anlotinib treatment. In conclusion, FGFR1-4 alterations are prevalent in solid tumors of diverse types, with the majority being gene amplifications and mutations. FGFR1-4 fusions only occur in a minority of cancer cases, and those with glioblastoma harboring FGFR3-TACC3 fusions may benefit from anlotinib.
Collapse
Affiliation(s)
- Weiquan Gu
- Department of Thoracic Surgery, The First People’s Hospital of FoshanFoshan 528041, Guangdong, China
| | - Jie Yang
- Department of Thoracic Surgery, The First People’s Hospital of FoshanFoshan 528041, Guangdong, China
| | - Yong Wang
- Cheeloo College of Medicine, Shandong UniversityJinan 250012, Shandong, China
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinan 250117, Shandong, China
| | - Jun Xu
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinan 250117, Shandong, China
| | - Xiaoxuan Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd.Nanjing 210042, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd.Nanjing 210042, Jiangsu, China
| | - Furong Du
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd.Nanjing 210042, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd.Nanjing 210042, Jiangsu, China
| | - Xiangjing Hu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd.Nanjing 210042, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd.Nanjing 210042, Jiangsu, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd.Nanjing 210042, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd.Nanjing 210042, Jiangsu, China
| | - Chao Song
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd.Nanjing 210042, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd.Nanjing 210042, Jiangsu, China
- Henan Key Laboratory of Precision MedicineZhengzhou 450052, Henan, China
| | - Rongjie Tao
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinan 250117, Shandong, China
| | - Xuchao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical SciencesGuangzhou 510080, Guandong, China
| |
Collapse
|
150
|
Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis Oncol 2021; 5:66. [PMID: 34272467 PMCID: PMC8285406 DOI: 10.1038/s41698-021-00204-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
Various genetic alterations of the fibroblast growth factor receptor (FGFR) family have been detected across a wide range of cancers. However, inhibition of FGFR signaling by kinase inhibitors demonstrated limited clinical effectiveness. Herein, we evaluated the transforming activity and sensitivity of 160 nonsynonymous FGFR mutations and ten fusion genes to seven FGFR tyrosine kinase inhibitors (TKI) using the mixed-all-nominated-in-one (MANO) method, a high-throughput functional assay. The oncogenicity of 71 mutants was newly discovered in this study. The FGFR TKIs showed anti-proliferative activities against the wild-type FGFRs and their fusions, while several hotspot mutants were relatively resistant to those TKIs. The drug sensitivities assessed with the MANO method were well concordant with those evaluated using in vitro and in vivo assays. Comprehensive analysis of published FGFR structures revealed a possible mechanism through which oncogenic FGFR mutations reduce sensitivity to TKIs. It was further revealed that recurrent compound mutations within FGFRs affect the transforming potential and TKI-sensitivity of corresponding kinases. In conclusion, our study suggests the importance of selecting suitable inhibitors against individual FGFR variants. Moreover, it reveals the necessity to develop next-generation FGFR inhibitors, which are effective against all oncogenic FGFR variants.
Collapse
|