101
|
Hasley A, Chavez S, Danilchik M, Wühr M, Pelegri F. Vertebrate Embryonic Cleavage Pattern Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:117-171. [PMID: 27975272 PMCID: PMC6500441 DOI: 10.1007/978-3-319-46095-6_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.
Collapse
Affiliation(s)
- Andrew Hasley
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Shawn Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Michael Danilchik
- Department of Integrative Biosciences, L499, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Martin Wühr
- Department of Molecular Biology & The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Icahn Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
102
|
Ishihara K, Korolev KS, Mitchison TJ. Physical basis of large microtubule aster growth. eLife 2016; 5. [PMID: 27892852 PMCID: PMC5207775 DOI: 10.7554/elife.19145] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
Microtubule asters - radial arrays of microtubules organized by centrosomes - play a fundamental role in the spatial coordination of animal cells. The standard model of aster growth assumes a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we recently found evidence for non-centrosomal microtubule nucleation. Here, we combine autocatalytic nucleation and polymerization dynamics to develop a biophysical model of aster growth. Our model predicts that asters expand as traveling waves and recapitulates all major aspects of aster growth. With increasing nucleation rate, the model predicts an explosive transition from stationary to growing asters with a discontinuous jump of the aster velocity to a nonzero value. Experiments in frog egg extract confirm the main theoretical predictions. Our results suggest that asters observed in large fish and amphibian eggs are a meshwork of short, unstable microtubules maintained by autocatalytic nucleation and provide a paradigm for the assembly of robust and evolvable polymer networks. DOI:http://dx.doi.org/10.7554/eLife.19145.001 Cells must carefully organize their contents in order to work effectively. Protein filaments called microtubules often play important roles in this organization, as well as giving structure to the cell. Many cells contain structures called asters that are formed of microtubules that radiate out from a central point (much like a star shape). Textbooks generally state that all microtubules in the aster grow outward from its center. If this was the case, the microtubules at the edge of large asters – such as those found in frog egg cells and other extremely large cells – would be spread relatively far apart from each other. However, even at the edges of large asters, the microtubules are quite densely packed. In 2014, a group of researchers proposed that new microtubules could form throughout the aster instead of all originating from the center. This model had not been tested; it was also unclear under what conditions an aster would be able to grow to fill a large cell. Ishihara et al. – including some of the researchers involved in the 2014 work – have now developed a mathematical theory of aster growth that is based on the assumption that microtubules stimulate the generation of new microtubules. The theory reproduces the key features seen during the growth of asters in large cells, and predicts that the asters may stay at a constant size or grow continuously. The condition required for the aster to grow is simple: each microtubule in it has to trigger the generation of at least one new microtubule during its lifetime. Ishihara et al. have named this process “collective growth”. Experiments performed using microtubules taken from crushed frog eggs and assembled under a cover slip provided further evidence that asters grow via a collective growth process. Future studies could now investigate whether collective growth also underlies the formation of other cellular structures. DOI:http://dx.doi.org/10.7554/eLife.19145.002
Collapse
Affiliation(s)
- Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Cell Division Group, Marine Biological Laboratory, Woods Hole, United Sates
| | - Kirill S Korolev
- Department of Physics and Graduate Program in Bioinformatics, Boston University, Boston, United States
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Cell Division Group, Marine Biological Laboratory, Woods Hole, United Sates
| |
Collapse
|
103
|
Abstract
Concentration gradients of soluble proteins are believed to be responsible for control of morphogenesis of subcellular systems, but the mechanisms that generate the spatial organization of these subcellular gradients remain poorly understood. Here, we use a newly developed multipoint fluorescence fluctuation spectroscopy technique to study the ras-related nuclear protein (Ran) pathway, which forms soluble gradients around chromosomes in mitosis and is thought to spatially regulate microtubule behaviors during spindle assembly. We found that the distribution of components of the Ran pathway that influence microtubule behaviors is determined by their interactions with microtubules, resulting in microtubule nucleators being localized by the microtubules whose formation they stimulate. Modeling and perturbation experiments show that this feedback makes the length of the spindle insensitive to the length scale of the Ran gradient, allows the spindle to assemble outside the peak of the Ran gradient, and explains the scaling of the spindle with cell size. Such feedback between soluble signaling pathways and the mechanics of the cytoskeleton may be a general feature of subcellular organization.
Collapse
|
104
|
Field CM, Pelletier JF, Mitchison TJ. Xenopus extract approaches to studying microtubule organization and signaling in cytokinesis. Methods Cell Biol 2016; 137:395-435. [PMID: 28065319 DOI: 10.1016/bs.mcb.2016.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We report optimized methods for preparing actin-intact Xenopus egg extract. This extract is minimally perturbed, undiluted egg cytoplasm where the cell cycle can be experimentally controlled. It contains abundant organelles and glycogen and supports active metabolism and cytoskeletal dynamics that closely mimic egg physiology. The concentration of the most abundant ∼11,000 proteins is known from mass spectrometry. Actin-intact egg extract can be used for analysis of actin dynamics and interaction of actin with other cytoplasmic systems, as well as microtubule organization. It can be spread as thin layers and naturally depletes oxygen though mitochondrial metabolism, which makes it ideal for fluorescence imaging. When combined with artificial lipid bilayers, it allows reconstitution and analysis of the spatially controlled signaling that positions the cleavage furrow during early cytokinesis. Actin-intact extract is generally useful for probing the biochemistry and biophysics of the large Xenopus egg. Protocols are provided for preparation of actin-intact egg extract, control of the cell cycle, fluorescent probes for cytoskeleton and cytoskeleton-dependent signaling, preparation of glass surfaces for imaging experiments, and immunodepletion to probe the role of specific proteins and protein complexes. We also describe methods for adding supported lipid bilayers to mimic the plasma membrane and for confining in microfluidic droplets to explore size scaling issues.
Collapse
Affiliation(s)
- C M Field
- Harvard Medical School, Boston, MA, United States; Marine Biological Laboratory, Woods Hole, MA, United States
| | - J F Pelletier
- Harvard Medical School, Boston, MA, United States; Marine Biological Laboratory, Woods Hole, MA, United States
| | - T J Mitchison
- Harvard Medical School, Boston, MA, United States; Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
105
|
Gergely ZR, Crapo A, Hough LE, McIntosh JR, Betterton MD. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast. Mol Biol Cell 2016; 27:3490-3514. [PMID: 27146110 PMCID: PMC5221583 DOI: 10.1091/mbc.e15-07-0505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Kinesin-8 motor proteins destabilize microtubules and increase chromosome loss in mitosis. In fission yeast, aberrant microtubule-driven kinetochore pushing movements, tripolar mitotic spindles, and fluctuations in metaphase spindle length occurred in kinesin-8–deletion mutants. A mathematical model can explain these results. Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen.
Collapse
Affiliation(s)
- Zachary R Gergely
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309.,Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Ammon Crapo
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - Loren E Hough
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - J Richard McIntosh
- Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | | |
Collapse
|
106
|
Abstract
The cell represents a highly organized state of living matter in which numerous geometrical parameters are under dynamic regulation in order to match the form of a cell with its function. Cells appear capable of regulating not only the total quantity of their internal organelles, but also the size and number of those organelles. The regulation of three parameters, size, number, and total quantity, can in principle be accomplished by regulating the production or growth of organelles, their degradation or disassembly, and their partitioning among daughter cells during division. Any or all of these steps could in principle be under regulation. But if organelle assembly or disassembly is regulated by number or size, how would the cell know how many copies of an organelle it has, or how big they are?
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143;
| |
Collapse
|
107
|
Phillips PC, Bowerman B. Cell biology: scaling and the emergence of evolutionary cell biology. Curr Biol 2016; 25:R223-R225. [PMID: 25784038 DOI: 10.1016/j.cub.2015.01.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new study investigating the origins of diversity in the structure of the mitotic spindle in nematode embryos, at timescales spanning a few generations to hundreds of millions of years, finds that most features of the spindle evolve via a scaling relationship generated by natural selection acting directly upon embryo size.
Collapse
Affiliation(s)
- Patrick C Phillips
- Institute of Ecology and Evolution, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Bruce Bowerman
- Institute of Ecology and Evolution, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
108
|
Abstract
Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ∼200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes.
Collapse
Affiliation(s)
- Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014;
| |
Collapse
|
109
|
Krutkramelis K, Xia B, Oakey J. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device. LAB ON A CHIP 2016; 16:1457-65. [PMID: 26987384 PMCID: PMC4829474 DOI: 10.1039/c6lc00254d] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
PEG-based hydrogels have become widely used as drug delivery and tissue scaffolding materials. Common among PEG hydrogel-forming polymers are photopolymerizable acrylates such as polyethylene glycol diacrylate (PEGDA). Microfluidics and microfabrication technologies have recently enabled the miniaturization of PEGDA structures, thus enabling many possible applications for nano- and micro- structured hydrogels. The presence of oxygen, however, dramatically inhibits the photopolymerization of PEGDA, which in turn frustrates hydrogel formation in environments of persistently high oxygen concentration. Using PEGDA that has been emulsified in fluorocarbon oil via microfluidic flow focusing within polydimethylsiloxane (PDMS) devices, we show that polymerization is completely inhibited below critical droplet diameters. By developing an integrated model incorporating reaction kinetics and oxygen diffusion, we demonstrate that the critical droplet diameter is largely determined by the oxygen transport rate, which is dictated by the oxygen saturation concentration of the continuous oil phase. To overcome this fundamental limitation, we present a nitrogen micro-jacketed microfluidic device to reduce oxygen within the droplet, enabling the continuous on-chip photopolymerization of microscale PEGDA particles.
Collapse
Affiliation(s)
- K Krutkramelis
- Department of Chemical Engineering, University of Wyoming, USA.
| | - B Xia
- Department of Chemical Engineering, University of Wyoming, USA.
| | - J Oakey
- Department of Chemical Engineering, University of Wyoming, USA.
| |
Collapse
|
110
|
Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance. Curr Biol 2016; 26:1221-8. [PMID: 27151661 DOI: 10.1016/j.cub.2016.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
Abstract
It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model.
Collapse
|
111
|
Milunović-Jevtić A, Mooney P, Sulerud T, Bisht J, Gatlin JC. Centrosomal clustering contributes to chromosomal instability and cancer. Curr Opin Biotechnol 2016; 40:113-118. [PMID: 27046071 DOI: 10.1016/j.copbio.2016.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
Cells assemble mitotic spindles during each round of division to insure accurate segregation of their duplicated genome. In animal cells, stereotypical spindles have two poles, each containing one centrosome, from which microtubules are nucleated. By contrast, many cancer cells often contain more than two centrosomes and form transient multipolar spindle structures with more than two poles. In order to divide and produce viable progeny, the multipolar spindle intermediate must be reshaped into a pseudo-bipolar structure via a process called centrosomal clustering. Pseudo-bipolar spindles appear to function normally during mitosis, but they occasionally give rise to aneuploid and transformed daughter cells. Agents that inhibit centrosomal clustering might therefore work as a potential cancer therapy, specifically targeting mitosis in supernumerary centrosome-containing cells.
Collapse
Affiliation(s)
| | - P Mooney
- University of Wyoming, Department of Molecular Biology, United States
| | - T Sulerud
- University of Wyoming, Department of Molecular Biology, United States
| | - J Bisht
- University of Wyoming, Department of Molecular Biology, United States
| | - J C Gatlin
- University of Wyoming, Department of Molecular Biology, United States.
| |
Collapse
|
112
|
Abstract
Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.
Collapse
Affiliation(s)
- Richik N Mukherjee
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Pan Chen
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Daniel L Levy
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| |
Collapse
|
113
|
Novakova L, Kovacovicova K, Dang-Nguyen TQ, Sodek M, Skultety M, Anger M. A Balance between Nuclear and Cytoplasmic Volumes Controls Spindle Length. PLoS One 2016; 11:e0149535. [PMID: 26886125 PMCID: PMC4757572 DOI: 10.1371/journal.pone.0149535] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/02/2016] [Indexed: 01/02/2023] Open
Abstract
Proper assembly of the spindle apparatus is crucially important for faithful chromosome segregation during anaphase. Thanks to the effort over the last decades, we have very detailed information about many events leading to spindle assembly and chromosome segregation, however we still do not understand certain aspects, including, for example, spindle length control. When tight regulation of spindle size is lost, chromosome segregation errors emerge. Currently, there are several hypotheses trying to explain the molecular mechanism of spindle length control. The number of kinetochores, activity of molecular rulers, intracellular gradients, cell size, limiting spindle components, and the balance of the spindle forces seem to contribute to spindle size regulation, however some of these mechanisms are likely specific to a particular cell type. In search for a general regulatory mechanism, in our study we focused on the role of cell size and nuclear to cytoplasmic ratio in this process. To this end, we used relatively large cells isolated from 2-cell mouse embryos. Our results showed that the spindle size upper limit is not reached in these cells and suggest that accurate control of spindle length requires balanced ratio between nuclear and cytoplasmic volumes.
Collapse
Affiliation(s)
- Lucia Novakova
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics AS CR, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Kristina Kovacovicova
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics AS CR, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Thanh Quang Dang-Nguyen
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Martin Sodek
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics AS CR, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Michal Skultety
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Martin Anger
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics AS CR, Rumburska 89, 277 21 Libechov, Czech Republic
- * E-mail:
| |
Collapse
|
114
|
Cytoplasmic Determination of Meiotic Spindle Size Revealed by a Unique Inter-Species Germinal Vesicle Transfer Model. Sci Rep 2016; 6:19827. [PMID: 26813698 PMCID: PMC4728387 DOI: 10.1038/srep19827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
Spindle sizes are different in diverse species and cell types. In frogs, the meiotic spindle size is positively correlated with the egg cell volume. Across species, relatively small mouse oocytes (70–80 μm) have a relatively large spindle while larger pig oocytes (about 120 μm) have a considerably smaller spindle. In this study we investigated whether species-specific oocyte spindle size was determined by cytoplasmic or nuclear factors. By exchanging the germinal vesicle between mouse and pig oocytes, we obtained two kinds of reconstructed oocytes: one with mouse ooplasm and pig GV (mCy-pGV oocyte), and the other with pig ooplasm and mouse GV (pCy-mGV oocyte). We show that the MII spindle size of the mCy-pGV oocyte is similar to that of the mouse meiotic spindle and significantly larger than that of the pig meiotic spindle. The timing of oocyte maturation also followed that of the species from which the oocyte cytoplasm arose, although some impact of the origin of the GV was observed. These data suggest that spindle size and the timing of meiotic progression are governed by cytoplasmic components rather than cytoplasmic volume and GV materials.
Collapse
|
115
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
116
|
Chaigne A, Campillo C, Voituriez R, Gov NS, Sykes C, Verlhac MH, Terret ME. F-actin mechanics control spindle centring in the mouse zygote. Nat Commun 2016; 7:10253. [PMID: 26727405 PMCID: PMC4725770 DOI: 10.1038/ncomms10253] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.
Collapse
Affiliation(s)
- Agathe Chaigne
- CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Equipe labellisée Ligue contre le Cancer, Paris F-75005, France
| | - Clément Campillo
- Université Evry Val d'Essonne, LAMBE, Boulevard F Mitterrand, Evry 91025, France
| | | | - Nir S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Cécile Sykes
- CNRS-UMR168, Paris F-75248, France.,UPMC, 4 Place Jussieu, Paris F-75248, France.,Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, Paris F-75248, France
| | - Marie-Hélène Verlhac
- CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Equipe labellisée Ligue contre le Cancer, Paris F-75005, France
| | - Marie-Emilie Terret
- CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Equipe labellisée Ligue contre le Cancer, Paris F-75005, France
| |
Collapse
|
117
|
Encapsulation of Xenopus Egg and Embryo Extract Spindle Assembly Reactions in Synthetic Cell-Like Compartments with Tunable Size. Methods Mol Biol 2016; 1413:87-108. [PMID: 27193845 DOI: 10.1007/978-1-4939-3542-0_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methods are described for preparing Xenopus laevis egg and embryo cytoplasm and encapsulating extract spindle assembly reactions in cell-like compartments to investigate the effects of cell size on intracellular assembly. Cytoplasm prepared from the eggs or embryos of individual frogs is screened for the ability to form interphase nuclei and metaphase spindles, and subsequently packaged, along with DNA, into droplets of varying size using microfluidics. The dimensions of these cell-like droplets are specified to match the range of cell diameters present in early embryo development. The scaling relationship between droplets and spindles is quantified using live fluorescence imaging on a spinning-disk confocal microscope. By comparing the encapsulated assembly of spindles formed from cytoplasmic extracts prepared from embryos at distinct stages of Xenopus early development, the influence of cell composition and cell size on spindle scaling can be evaluated. Because the extract system is biochemically tractable, the function of individual proteins in spindle scaling can be evaluated by supplementing or depleting factors in the cytoplasm.
Collapse
|
118
|
Geiser C, Mandáková T, Arrigo N, Lysak MA, Parisod C. Repeated Whole-Genome Duplication, Karyotype Reshuffling, and Biased Retention of Stress-Responding Genes in Buckler Mustard. THE PLANT CELL 2016; 28:17-27. [PMID: 26668305 PMCID: PMC4746682 DOI: 10.1105/tpc.15.00791] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/10/2015] [Indexed: 05/04/2023]
Abstract
Whole-genome duplication (WGD) is usually followed by gene loss and karyotype repatterning. Despite evidence of new adaptive traits associated with WGD, the underpinnings and evolutionary significance of such genome fractionation remain elusive. Here, we use Buckler mustard (Biscutella laevigata) to infer processes that have driven the retention of duplicated genes after recurrent WGDs. In addition to the β- and α-WGD events shared by all Brassicaceae, cytogenetic and transcriptome analyses revealed two younger WGD events that occurred at times of environmental changes in the clade of Buckler mustard (Biscutelleae): a mesopolyploidy event from the late Miocene that was followed by considerable karyotype reshuffling and chromosome number reduction and a neopolyploidy event during the Pleistocene. Although a considerable number of the older duplicates presented signatures of retention under positive selection, the majority of retained duplicates arising from the younger mesopolyploidy WGD event matched predictions of the gene balance hypothesis and showed evidence of strong purifying selection as well as enrichment in gene categories responding to abiotic stressors. Retention of large stretches of chromosomes for both genomic copies supported the hypothesis that cycles of WGD and biased fractionation shaped the genome of this stress-tolerant polypolyloid, promoting the adaptive recruitment of stress-responding genes in the face of environmental challenges.
Collapse
Affiliation(s)
- Céline Geiser
- Laboratory of Evolutionary Botany, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Nils Arrigo
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martin A Lysak
- Plant Cytogenomics Research Group, Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Christian Parisod
- Laboratory of Evolutionary Botany, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
119
|
Abstract
In eukaryotes, the microtubule-based spindle drives chromosome segregation. In this issue, Schweizer et al. (2015; J. Cell Biol.http://dx.doi.org/10.1083/jcb.201506107) find that the spindle area is demarcated by a semipermeable organelle barrier. Molecular crowding, which is microtubule independent, causes the enrichment and/or retention of crucial factors in the spindle region. Their results add an important new feature to the models of how this structure assembles and is regulated.
Collapse
Affiliation(s)
- Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anne-Marie Ladouceur
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
120
|
Schmoller KM, Skotheim JM. The Biosynthetic Basis of Cell Size Control. Trends Cell Biol 2015; 25:793-802. [PMID: 26573465 DOI: 10.1016/j.tcb.2015.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022]
Abstract
Cell size is an important physiological trait that sets the scale of all biosynthetic processes. Although physiological studies have revealed that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained unclear. Here we review recent progress in identifying the molecular mechanisms of cell size control. We focus on budding yeast, where cell growth dilutes a cell cycle inhibitor to couple growth and division. We discuss a new model for size control based on the titration of activator and inhibitor molecules whose synthesis rates are differentially dependent on cell size.
Collapse
Affiliation(s)
- Kurt M Schmoller
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
121
|
Marshall WF. How Cells Measure Length on Subcellular Scales. Trends Cell Biol 2015; 25:760-768. [PMID: 26437596 DOI: 10.1016/j.tcb.2015.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
Cells are not just amorphous bags of enzymes, but precise and complex machines. With any machine, it is important that the parts be of the right size, yet our understanding of the mechanisms that control size of cellular structures remains at a rudimentary level in most cases. One problem with studying size control is that many cellular organelles have complex 3D structures that make their size hard to measure. Here we focus on linear structures within cells, for which the problem of size control reduces to the problem of length control. We compare and contrast potential mechanisms for length control to understand how cells solve simple geometry problems.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, Center for Systems and Synthetic Biology, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| |
Collapse
|
122
|
Abstract
It is pointed out that the mystery of how biological systems measure their lengths vanishes away if one premises that they have discovered a way to generate linear waves analogous to compressional sound. These can be used to detect length at either large or small scales using echo timing and fringe counting. It is shown that suitable linear chemical potential waves can, in fact, be manufactured by tuning to criticality conventional reaction-diffusion with a small number substance. Min oscillations in Escherichia coli are cited as precedent resonant length measurement using chemical potential waves analogous to laser detection. Mitotic structures in eukaryotes are identified as candidates for such an effect at higher frequency. The engineering principle is shown to be very general and functionally the same as that used by hearing organs.
Collapse
|
123
|
Levy DL, Heald R. Biological Scaling Problems and Solutions in Amphibians. Cold Spring Harb Perspect Biol 2015; 8:a019166. [PMID: 26261280 DOI: 10.1101/cshperspect.a019166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Size is a primary feature of biological systems that varies at many levels, from the organism to its constituent cells and subcellular structures. Amphibians populate some of the extremes in biological size and have provided insight into scaling mechanisms, upper and lower size limits, and their physiological significance. Body size variation is a widespread evolutionary tactic among amphibians, with miniaturization frequently correlating with direct development that occurs without a tadpole stage. The large genomes of salamanders lead to large cell sizes that necessitate developmental modification and morphological simplification. Amphibian extremes at the cellular level have provided insight into mechanisms that accommodate cell-size differences. Finally, how organelles scale to cell size between species and during development has been investigated at the molecular level, because subcellular scaling can be recapitulated using Xenopus in vitro systems.
Collapse
Affiliation(s)
- Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
124
|
Mitchison TJ, Ishihara K, Nguyen P, Wühr M. Size Scaling of Microtubule Assemblies in Early Xenopus Embryos. Cold Spring Harb Perspect Biol 2015; 7:a019182. [PMID: 26261283 DOI: 10.1101/cshperspect.a019182] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The first 12 cleavage divisions in Xenopus embryos provide a natural experiment in size scaling, as cell radius decreases ∼16-fold with little change in biochemistry. Analyzing both natural cleavage and egg extract partitioned into droplets revealed that mitotic spindle size scales with cell size, with an upper limit in very large cells. We discuss spindle-size scaling in the small- and large-cell regimes with a focus on the "limiting-component" hypotheses. Zygotes and early blastomeres show a scaling mismatch between spindle and cell size. This problem is solved, we argue, by interphase asters that act to position the spindle and transport chromosomes to the center of daughter cells. These tasks are executed by the spindle in smaller cells. We end by discussing possible mechanisms that limit mitotic aster size and promote interphase aster growth to cell-spanning dimensions.
Collapse
Affiliation(s)
- Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Phuong Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
125
|
Abstract
Organelle function is often directly related to organelle size. However, it is not necessarily absolute size but the organelle-to-cell-size ratio that is critical. Larger cells generally have increased metabolic demands, must segregate DNA over larger distances, and require larger cytokinetic rings to divide. Thus, organelles often must scale to the size of the cell. The need for scaling is particularly acute during early development during which cell size can change rapidly. Here, we highlight scaling mechanisms for cellular structures as diverse as centrosomes, nuclei, and the mitotic spindle, and distinguish them from more general mechanisms of size control. In some cases, scaling is a consequence of the underlying mechanism of organelle size control. In others, size-control mechanisms are not obviously related to cell size, implying that scaling results indirectly from cell-size-dependent regulation of size-control mechanisms.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute of Molecular Genetics and Cell Biology, 01307 Dresden, Germany Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Nathan W Goehring
- The Francis Crick Institute, WC2A 3LY London, United Kingdom MRC Laboratory of Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| |
Collapse
|
126
|
Forbes DJ, Travesa A, Nord MS, Bernis C. Reprint of "Nuclear transport factors: global regulation of mitosis". Curr Opin Cell Biol 2015. [PMID: 26196321 DOI: 10.1016/j.ceb.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator – the γ-TuRC complex – and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.
Collapse
Affiliation(s)
- Douglass J Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States.
| | - Anna Travesa
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Matthew S Nord
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| |
Collapse
|
127
|
Abstract
A metaphase spindle is a complex structure consisting of microtubules and a myriad of different proteins that modulate microtubule dynamics together with chromatin and kinetochores. A decade ago, a full description of spindle formation and function seemed a lofty goal. Here, we describe how work in the last 10 years combining cataloging of spindle components, the characterization of their biochemical activities using single-molecule techniques, and theory have advanced our knowledge. Taken together, these advances suggest that a full understanding of spindle assembly and function may soon be possible.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
128
|
Cell size modulates oscillation, positioning and length of mitotic spindles. Sci Rep 2015; 5:10504. [PMID: 26015263 PMCID: PMC4444851 DOI: 10.1038/srep10504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/15/2015] [Indexed: 02/05/2023] Open
Abstract
Mitotic spindle is the main subcellular structure that accomplishes the chromosome segregation between daughter cells during cell division. However, how mitotic spindles sense and control their size, position and movement inside the cell still remains unclear. In this paper, we focus on the size effects of mitotic spindles, i.e., how cell size controls various interesting phenomena in the metaphase, such as oscillation, positioning and size limit of mitotic spindles. We systematically studied the frequency doubling phenomenon during chromosome oscillation and found that cell size can regulate the period and amplitude of chromosome oscillation. We found that the relaxation time of the positioning process increases exponentially with cell size. We also showed that the stabler microtubule-kinetochore attachments alone can directly lead to an upper limit of spindle size. Our work not only explains the existing experimental observations, but also provides some interesting predictions that can be verified or rejected by further experiments.
Collapse
|
129
|
Hara Y, Merten CA. Dynein-Based Accumulation of Membranes Regulates Nuclear Expansion in Xenopus laevis Egg Extracts. Dev Cell 2015; 33:562-75. [PMID: 26004509 DOI: 10.1016/j.devcel.2015.04.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/02/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Nuclear size changes dynamically during development and has long been observed to correlate with the space surrounding the nucleus, as well as with the volume of the cell. Here we combine an in vitro cell-free system of Xenopus laevis egg extract with microfluidic devices to systematically analyze the effect of spatial constraints. The speed of nuclear expansion depended on the available space surrounding the nucleus up to a threshold volume in the nanoliter range, herein referred to as the nuclear domain. Under spatial constraints smaller than this nuclear domain, the size of microtubule-occupied space surrounding the nucleus turned out to be limiting for the accumulation of membranes around the nucleus via the motor protein dynein, therefore determining the speed of nuclear expansion. This mechanism explains how spatial information surrounding the nucleus, such as the positioning of the nucleus inside the cell, can control nuclear expansion.
Collapse
Affiliation(s)
- Yuki Hara
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Christoph A Merten
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
130
|
A comparative analysis of spindle morphometrics across metazoans. Curr Biol 2015; 25:1542-50. [PMID: 26004761 DOI: 10.1016/j.cub.2015.04.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/21/2022]
Abstract
Cell division in all eukaryotes depends on function of the spindle, a microtubule-based structure that segregates chromosomes to generate daughter cells in mitosis or haploid gametes in meiosis. Spindle size adapts to changes in cell size and shape, which vary dramatically across species and within a multicellular organism, but the nature of scaling events and their underlying mechanisms are poorly understood. Cell size variations are most pronounced in early animal development, as egg diameters range from tens of microns up to millimeters across animal phyla, and decrease several orders of magnitude during rapid reductive divisions. During early embryogenesis in the model organisms X. laevis and C. elegans, the spindle scales with cell size [1, 2], a phenomenon regulated by molecules that modulate microtubule dynamics [3-6], as well as by limiting cytoplasmic volume [7, 8]. However, it is not known to what extent spindle scaling is conserved across organisms and among different cell types. Here we show that in a range of metazoan phyla, mitotic spindle length decreased with cell size across an ∼30-fold difference in zygote size. Maximum spindle length varied, but linear spindle scaling occurred similarly in all species once embryonic cell diameter reduced to 140 μm. In contrast, we find that the female meiotic spindle does not scale as closely to egg size, adopting a more uniform size across species that most likely reflects its specialized function. Our analysis reveals that spindle morphometrics change abruptly, within one cell cycle, at the transition from meiosis to mitosis in most animals.
Collapse
|
131
|
Forbes DJ, Travesa A, Nord MS, Bernis C. Nuclear transport factors: global regulation of mitosis. Curr Opin Cell Biol 2015; 35:78-90. [PMID: 25982429 DOI: 10.1016/j.ceb.2015.04.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/01/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator - the γ-TuRC complex - and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.
Collapse
Affiliation(s)
- Douglass J Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States.
| | - Anna Travesa
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Matthew S Nord
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| |
Collapse
|
132
|
Abstract
The microtubule (MT) cytoskeleton gives cells their shape, organizes the cellular interior, and segregates chromosomes. These functions rely on the precise arrangement of MTs, which is achieved by the coordinated action of MT-associated proteins (MAPs). We highlight the first and most important examples of how different MAP activities are combined in vitro to create an ensemble function that exceeds the simple addition of their individual activities, and how the Xenopus laevis egg extract system has been utilized as a powerful intermediate between cellular and purified systems to uncover the design principles of self-organized MT networks in the cell.
Collapse
Affiliation(s)
- Ray Alfaro-Aco
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Sabine Petry
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
133
|
Abstract
All of the same conceptual questions about size in organisms apply equally at the level of single cells. What determines the size, not only of the whole cell, but of all of its parts? What ensures that subcellular components are properly proportioned relative to the whole cell? How does alteration in organelle size affect biochemical function? Answering such fundamental questions requires us to understand how the size of individual organelles and other cellular structures is determined. Knowledge of organelle biogenesis and dynamics has advanced rapidly in recent years. Does this knowledge give us enough information to formulate reasonable models for organelle size control, or are we still missing something?
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
134
|
Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0459. [PMID: 25047613 PMCID: PMC4113103 DOI: 10.1098/rstb.2013.0459] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A centrosome consists of two barrel-shaped centrioles embedded in a matrix of proteins known as the pericentriolar material (PCM). The PCM serves as a platform for protein complexes that regulate organelle trafficking, protein degradation and spindle assembly. Perhaps most important for cell division, the PCM concentrates tubulin and serves as the primary organizing centre for microtubules in metazoan somatic cells. Thus, similar to other well-described organelles, such as the nucleus and mitochondria, the cell has compartmentalized a multitude of vital biochemical reactions in the PCM. However, unlike these other organelles, the PCM is not membrane bound, but rather a dynamic collection of protein complexes and nucleic acids that constitute the organelle's interior and determine its boundary. How is the complex biochemical machinery necessary for the myriad centrosome functions concentrated and maintained in the PCM? Recent advances in proteomics and RNAi screening have unveiled most of the key PCM components and hinted at their molecular interactions (
table 1). Now we must understand how the interactions between these molecules contribute to the mesoscale organization and the assembly of the centrosome. Among outstanding questions are the intrinsic mechanisms that determine PCM shape and size, and how it functions as a biochemical reaction hub.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Oliver Wueseke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
135
|
Farhadifar R, Baer CF, Valfort AC, Andersen EC, Müller-Reichert T, Delattre M, Needleman DJ. Scaling, selection, and evolutionary dynamics of the mitotic spindle. Curr Biol 2015; 25:732-740. [PMID: 25683802 PMCID: PMC10504684 DOI: 10.1016/j.cub.2014.12.060] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cellular structures such as the nucleus, Golgi, centrioles, and spindle show remarkable diversity between species, but the mechanisms that produce these variations in cell biology are not known. RESULTS Here we investigate the mechanisms that contribute to variations in morphology and dynamics of the mitotic spindle, which orchestrates chromosome segregation in all Eukaryotes and positions the division plane in many organisms. We use high-throughput imaging of the first division in nematodes to demonstrate that the measured effects of spontaneous mutations, combined with stabilizing selection on cell size, are sufficient to quantitatively explain both the levels of within-species variation in the spindle and its diversity over ∼100 million years of evolution. Furthermore, our finding of extensive within-species variation for the spindle demonstrates that there is not just one "wild-type" form, rather that cellular structures can exhibit a surprisingly broad diversity of naturally occurring behaviors. CONCLUSIONS Our results argue that natural selection acts predominantly on cell size and indirectly influences the spindle through the scaling of the spindle with cell size. Previous studies have shown that the spindle also scales with cell size during early development. Thus, the scaling of the spindle with cell size controls its variation over both ontogeny and phylogeny.
Collapse
Affiliation(s)
- Reza Farhadifar
- School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Charles F Baer
- Department of Biology and University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Aurore-Cécile Valfort
- Laboratory of Molecular Biology of the Cell, UMR 5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Marie Delattre
- Laboratory of Molecular Biology of the Cell, UMR 5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
136
|
Weber SC, Brangwynne CP. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr Biol 2015; 25:641-6. [PMID: 25702583 DOI: 10.1016/j.cub.2015.01.012] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control.
Collapse
Affiliation(s)
- Stephanie C Weber
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
137
|
Lázaro-Diéguez F, Ispolatov I, Müsch A. Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum. Mol Biol Cell 2015; 26:1286-95. [PMID: 25657320 PMCID: PMC4454176 DOI: 10.1091/mbc.e14-08-1330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spindle confinement within the x-z plane occurs in cultured MDCK and HeLa cells due to incomplete cell rounding and yields nonrandom x-z spindle orientation when astral MTs are absent. On the other hand, astral MT–based rotation forces disrupt the core metaphase spindle in situations in which the metaphase plate does not clear the cortex. All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Iaroslav Ispolatov
- Departamento de Física, Universidad de Santiago de Chile, 9170124 Santiago, Chile
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
138
|
Kittur H, Weaver W, Di Carlo D. Well-plate mechanical confinement platform for studies of mechanical mutagenesis. Biomed Microdevices 2014; 16:439-47. [PMID: 24619125 DOI: 10.1007/s10544-014-9846-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Limited space for cell division, perhaps similar to the compressed microenvironment of a growing tumor, has been shown to induce phenotypic and karyotypic changes to a cell during mitosis. To expand understanding of this missegregation of chromosomes in aberrant multi-daughter or asymmetric cell divisions, we present a simple technique for subjecting mammalian cells to adjustable levels of confinement which allows subsequent interrogation of intracellular molecular components using high resolution confocal imaging. PDMS micropatterned confinement structures of subcellular height with neighboring taller media reservoir channels were secured on top of confluent cells with a custom compression well-plate system. The system improved ease of use over previous devices since confined cells could be initially grown on glass coverslips in a 12-well plate, and subsequently be imaged by high resolution confocal imaging, or during compression by live cell imaging. Live cell imaging showed a significant increase in abnormal divisions of confined cells across three different cell lines (HeLa, A375, and A549). Immunofluoresecence stains revealed a significant increase in cell diameter and chromosome area of confined cells, but no significant increase in centrosome-centromere distance upon division when compared to unconfined cells. The developed system could open up studies more broadly on confinement effects on mitotic processes, and increase the throughput of such studies.
Collapse
Affiliation(s)
- H Kittur
- University of California - Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
139
|
Ward JJ, Roque H, Antony C, Nédélec F. Mechanical design principles of a mitotic spindle. eLife 2014; 3:e03398. [PMID: 25521247 PMCID: PMC4290452 DOI: 10.7554/elife.03398] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.
Collapse
Affiliation(s)
- Jonathan J Ward
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hélio Roque
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Claude Antony
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
140
|
Abstract
Spindle length varies dramatically across species and during early development to segregate chromosomes optimally. Both intrinsic factors, such as regulatory molecules, and extrinsic factors, such as cytoplasmic volume, determine spindle length scaling. However, the properties that govern spindle shape and whether these features can be modulated remain unknown. Here, we analyzed quantitatively how the molecular players which regulate microtubule dynamics control the kinetics of spindle formation and shape. We find that, in absence of Clasp1 and Clasp2, spindle assembly is biphasic due to unopposed inward pulling forces from the kinetochore-fibers and that kinetochore-fibers also alter spindle geometry. We demonstrate that spindle shape scaling is independent of the nature of the molecules that regulate dynamic microtubule properties, but is dependent on the steady-state metaphase spindle length. The shape of the spindle scales anisotropically with increasing length. Our results suggest that intrinsic mechanisms control the shape of the spindle to ensure the efficient capture and alignment of chromosomes independently of spindle length.
Collapse
Affiliation(s)
- Sarah Young
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Sébastien Besson
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
141
|
Sazer S, Lynch M, Needleman D. Deciphering the evolutionary history of open and closed mitosis. Curr Biol 2014; 24:R1099-103. [PMID: 25458223 DOI: 10.1016/j.cub.2014.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Daniel Needleman
- School of Engineering and Applied Sciences, and Department of Molecular and Cellular Biology, and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
142
|
Nannas NJ, O'Toole ET, Winey M, Murray AW. Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle. Mol Biol Cell 2014; 25:4034-48. [PMID: 25318669 PMCID: PMC4263447 DOI: 10.1091/mbc.e14-01-0016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Altering the number of kinetochores revealed that chromosomal attachments set the length of the metaphase spindle and the number of microtubules within it. Reducing the number of kinetochores increases length, whereas adding extra kinetochores shortens it, suggesting that kinetochore-generated inward forces help set spindle length in budding yeast. The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to microtubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore–microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.
Collapse
Affiliation(s)
- Natalie J Nannas
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138 FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Mark Winey
- Molecular, Cellular, and Developmental Biology Department, University of Colorado, Boulder, CO 80309
| | - Andrew W Murray
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138 FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
143
|
Zieske K, Schwille P. Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife 2014; 3. [PMID: 25271375 PMCID: PMC4215534 DOI: 10.7554/elife.03949] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/30/2014] [Indexed: 11/13/2022] Open
Abstract
Intracellular protein gradients are significant determinants of spatial organization. However, little is known about how protein patterns are established, and how their positional information directs downstream processes. We have accomplished the reconstitution of a protein concentration gradient that directs the assembly of the cell division machinery in E.coli from the bottom-up. Reconstituting self-organized oscillations of MinCDE proteins in membrane-clad soft-polymer compartments, we demonstrate that distinct time-averaged protein concentration gradients are established. Our minimal system allows to study complex organizational principles, such as spatial control of division site placement by intracellular protein gradients, under simplified conditions. In particular, we demonstrate that FtsZ, which marks the cell division site in many bacteria, can be targeted to the middle of a cell-like compartment. Moreover, we show that compartment geometry plays a major role in Min gradient establishment, and provide evidence for a geometry-mediated mechanism to partition Min proteins during bacterial development.
Collapse
Affiliation(s)
- Katja Zieske
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| |
Collapse
|
144
|
Moorhouse KS, Burgess DR. How to be at the right place at the right time: the importance of spindle positioning in embryos. Mol Reprod Dev 2014; 81:884-95. [PMID: 25258000 DOI: 10.1002/mrd.22418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
Abstract
Spindle positioning is an imperative cellular process that regulates a number of different developmental events throughout embryogenesis. The spindle must be properly positioned in embryos not only for the segregation of chromosomes, but also to segregate developmental determinants into different daughter blastomeres. In this review, the role of spindle positioning is explored in several different developmental model systems, which have revealed the diversity of factors that regulate spindle positioning. The C. elegans embryo, the Drosophila neuroblast, and ascidian embryos have all been utilized for the study of polarity-dependent spindle positioning, and exploration of the proteins that are required for asymmetric cell division. Work in the sea urchin embryo has examined the influence of cell shape and factors that affect secondary furrow formation. The issue of size scaling in extremely large cells, as well as the requirement for spindle positioning in developmental fate decisions in vertebrates, has been addressed by work in the Xenopus embryo. Further work in mouse oocytes has examined the roles of actin and myosin in spindle positioning. The data generated from these model organisms have made unique contributions to our knowledge of spindle positioning. Future work will address how all of these different factors work together to regulate the position of the spindle.
Collapse
|
145
|
Experiments inside a box lead to out-of-the-box ideas on cellular organization. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:223-6. [PMID: 25136384 DOI: 10.1007/s11693-014-9139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
Abstract
Microtubules are biopolymers that assemble from tubulin dimers into hollow tubes and play an important role in cellular organization. Their fascinating properties and variety of functions, like for example chromosome segregation, sperm propagation and polarity establishment, have made them a popular subject of study. In this perspective I focus on the contribution of minimal in vitro systems to our understanding of microtubule organization within the physical confinement of a cell.
Collapse
|
146
|
Abstract
The actin cortex plays a pivotal role in cell division, in generating and maintaining cell polarity and in motility. In all these contexts, the cortical network has to break symmetry to generate polar cytoskeletal dynamics. Despite extensive research, the mechanisms responsible for regulating cortical dynamics in vivo and inducing symmetry breaking are still unclear. Here we introduce a reconstituted system that self-organizes into dynamic actin cortices at the inner interface of water-in-oil emulsions. This artificial system undergoes spontaneous symmetry breaking, driven by myosin-induced cortical actin flows, which appears remarkably similar to the initial polarization of the embryo in many species. Our in vitro model system recapitulates the rich dynamics of actin cortices in vivo, revealing the basic biophysical and biochemical requirements for cortex formation and symmetry breaking. Moreover, this synthetic system paves the way for further exploration of artificial cells towards the realization of minimal model systems that can move and divide. DOI:http://dx.doi.org/10.7554/eLife.01433.001 Cells are extremely complex because they have to perform a vast number of processes. However, this also makes it difficult for researchers to figure out how the individual parts of the cell work. There is interest, therefore, in developing simple artificial cells that can accurately mimic how specific parts of a cell behave. An important process for a cell is called polarization. This is where the contents of the cell arrange themselves in a way that is not symmetrical. Polarization is necessary for many cellular functions, and is particularly important during embryonic development where it helps to form the complex shape of the developing embryo. The cytoskeleton—a dynamic structure that supports the cell and enables it to move—is crucial for polarization. An important part of the cytoskeleton is the actin cortex. This is a thin active sheet made up of a network of tiny filaments of a protein called actin that assembles at the inner face of the cell membrane. Many aspects of the structure and behavior of the actin cortex are not understood. Abu Shah and Keren have now developed an artificial cell system using aqueous droplets surrounded by oil that can reproduce the behavior of actin cortices in real cells. An actin cortex forms upon the localization of specific nucleation factors at the inner surface of the droplets. The artificial cortices are capable of spontaneous symmetry breaking, similar to the initial polarization in embryonic cells during development. This symmetry breaking is driven by molecular motors called myosins and depends on the connectivity of the actin network in the cortex. Experiments on the artificial cells also rule out several other mechanisms that have been proposed to explain symmetry breaking. The work of Abu Shah and Keren represents a further step towards the goal of creating simple artificial cells that can move and divide. DOI:http://dx.doi.org/10.7554/eLife.01433.002
Collapse
Affiliation(s)
- Enas Abu Shah
- Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kinneret Keren
- Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel Network Biology Research Laboratories, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
147
|
Abstract
The coordinated growth of cells and their organelles is a fundamental and poorly understood problem, with implications for processes ranging from embryonic development to oncogenesis. Recent experiments have shed light on the cell size-dependent assembly of membrane-less cytoplasmic and nucleoplasmic structures, including ribonucleoprotein (RNP) granules and other intracellular bodies. Many of these structures behave as condensed liquid-like phases of the cytoplasm/nucleoplasm. The phase transitions that appear to govern their assembly exhibit an intrinsic dependence on cell size, and may explain the size scaling reported for a number of structures. This size scaling could, in turn, play a role in cell growth and size control.
Collapse
Affiliation(s)
- Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
148
|
Sizing and shaping the nucleus: mechanisms and significance. Curr Opin Cell Biol 2014; 28:16-27. [PMID: 24503411 DOI: 10.1016/j.ceb.2014.01.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/07/2014] [Accepted: 01/11/2014] [Indexed: 01/14/2023]
Abstract
The size and shape of the nucleus are tightly regulated, indicating the physiological significance of proper nuclear morphology, yet the mechanisms and functions of nuclear size and shape regulation remain poorly understood. Correlations between altered nuclear morphology and certain disease states have long been observed, most notably many cancers are diagnosed and staged based on graded increases in nuclear size. Here we review recent studies investigating the mechanisms regulating nuclear size and shape, how mitotic events influence nuclear morphology, and the role of nuclear size and shape in subnuclear chromatin organization and cancer progression.
Collapse
|
149
|
Dumont S. Spindle size: small droplets and a big step forward. Curr Biol 2014; 24:R116-8. [PMID: 24502785 DOI: 10.1016/j.cub.2013.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The spindle is a micron-scale structure that assembles from nanometer-sized tubulin building blocks. How does the spindle know what size to be? Changes in cytoplasmic volume are shown to be sufficient to modulate the size of the spindle.
Collapse
Affiliation(s)
- Sophie Dumont
- Departments of Cell and Tissue Biology and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
150
|
Abstract
We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.
Collapse
Affiliation(s)
- Christine M Field
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA.
| | - Phuong A Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|