101
|
Bergström A, Stringer C, Hajdinjak M, Scerri EML, Skoglund P. Origins of modern human ancestry. Nature 2021; 590:229-237. [PMID: 33568824 DOI: 10.1038/s41586-021-03244-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
New finds in the palaeoanthropological and genomic records have changed our view of the origins of modern human ancestry. Here we review our current understanding of how the ancestry of modern humans around the globe can be traced into the deep past, and which ancestors it passes through during our journey back in time. We identify three key phases that are surrounded by major questions, and which will be at the frontiers of future research. The most recent phase comprises the worldwide expansion of modern humans between 40 and 60 thousand years ago (ka) and their last known contacts with archaic groups such as Neanderthals and Denisovans. The second phase is associated with a broadly construed African origin of modern human diversity between 60 and 300 ka. The oldest phase comprises the complex separation of modern human ancestors from archaic human groups from 0.3 to 1 million years ago. We argue that no specific point in time can currently be identified at which modern human ancestry was confined to a limited birthplace, and that patterns of the first appearance of anatomical or behavioural traits that are used to define Homo sapiens are consistent with a range of evolutionary histories.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Chris Stringer
- Department of Earth Sciences, Natural History Museum, London, UK.
| | - Mateja Hajdinjak
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Eleanor M L Scerri
- Pan-African Evolution Research Group, Max Planck Institute for Science of Human History, Jena, Germany.,Department of Classics and Archaeology, University of Malta, Msida, Malta.,Institute of Prehistoric Archaeology, University of Cologne, Cologne, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
102
|
Bipolar disorder: An evolutionary psychoneuroimmunological approach. Neurosci Biobehav Rev 2021; 122:28-37. [PMID: 33421542 DOI: 10.1016/j.neubiorev.2020.12.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022]
Abstract
Bipolar disorder is a mental health disorder characterized by extreme shifts in mood, high suicide rate, sleep problems, and dysfunction of psychological traits like self-esteem (feeling inferior when depressed and superior when manic). Bipolar disorder is rare among populations that have not adopted contemporary Western lifestyles, which supports the hypothesis that bipolar disorder results from a mismatch between Homo sapiens's evolutionary and current environments. Recent studies have connected bipolar disorder with low-grade inflammation, the malfunctioning of the internal clock, and the resulting sleep disturbances. Stress is often a triggering factor for mania and sleep problems, but stress also causes low-grade inflammation. Since inflammation desynchronizes the internal clock, chronic stress and inflammation are the primary biological mechanisms behind bipolar disorder. Chronic stress and inflammation are driven by contemporary Western lifestyles, including stressful social environments, unhealthy dietary patterns, limited physical activity, and obesity. The treatment of bipolar disorder should focus on reducing stress, stress sensitivity, and inflammation by lifestyle changes rather than just temporarily alleviating symptoms with psychopharmacological interventions.
Collapse
|
103
|
Santos FR, Pinotti T, Fujita R. Population Variation of the Human Genome. HUMAN GENOME STRUCTURE, FUNCTION AND CLINICAL CONSIDERATIONS 2021:329-350. [DOI: 10.1007/978-3-030-73151-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
104
|
Abstract
Evolutionary processes, including mutation, migration and natural selection, have influenced the prevalence and distribution of various disorders in humans. However, despite a few well-known examples, such as the APOL1 variants - which have undergone positive genetic selection for their ability to confer resistance to Trypanosoma brucei infection but confer a higher risk of chronic kidney disease - little is known about the effects of evolutionary processes that have shaped genetic variation on kidney disease. An understanding of basic concepts in evolutionary genetics provides an opportunity to consider how findings from ancient and archaic genomes could inform our knowledge of evolution and provide insights into how population migration and genetic admixture have shaped the current distribution and landscape of human kidney-associated diseases. Differences in exposures to infectious agents, environmental toxins, dietary components and climate also have the potential to influence the evolutionary genetics of kidneys. Of note, selective pressure on loci associated with kidney disease is often from non-kidney diseases, and thus it is important to understand how the link between genome-wide selected loci and kidney disease occurs in relation to secondary nephropathies.
Collapse
|
105
|
KOGANEBUCHI KAE, OOTA HIROKI. Paleogenomics of human remains in East Asia and Yaponesia focusing on current advances and future directions. ANTHROPOL SCI 2021. [DOI: 10.1537/ase.2011302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- KAE KOGANEBUCHI
- Laboratory of Genome Anthropology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nishihara
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara
| | - HIROKI OOTA
- Laboratory of Genome Anthropology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| |
Collapse
|
106
|
Gregory MD, Kippenhan JS, Kohn P, Eisenberg DP, Callicott JH, Kolachana B, Berman KF. Neanderthal-Derived Genetic Variation is Associated with Functional Connectivity in the Brains of Living Humans. Brain Connect 2020; 11:38-44. [PMID: 33218283 DOI: 10.1089/brain.2020.0809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Aim: To determine whether Neanderthal-derived genetic variation relates to functional connectivity patterns in the brains of living modern humans. Introduction: Nearly 50,000 years ago, Neanderthals interbred with ancestors of modern humans, imparting a genetic legacy that lives on today. The vestiges of this Neanderthal-derived genetic variation have been previously shown to be enriched in genes coding for neurogenesis and myelination and to alter skull shape and brain structure in living people. Materials and Methods: Using two independent cohorts totaling 553 healthy individuals, we employed multivariate distance matrix regression (MDMR) to determine whether any brain areas exhibited whole-brain functional connectivity patterns that significantly related to the degree of Neanderthal introgression. Identified clusters were then used as regions of interest in follow-up seed-based functional connectivity analyses to determine the connectivity patterns driving the relationships. Results: The MDMR analysis revealed that the percentage of Neanderthal-originating polymorphisms was significantly associated with the functional connectivity patterns of an area of the intraparietal sulcus (IPS) that was nearly identical in both cohorts. Using these IPS clusters as regions of interest in seed-based connectivity analyses, we found, again in both cohorts, that individuals with a higher proportion of Neanderthal-derived genetic variation showed increased IPS functional connectivity with visual processing regions, but decreased IPS connectivity with regions underlying social cognition. Conclusions: These findings demonstrate that the remnants of Neanderthal admixture continue to influence human brain function today, in ways that are consistent with anthropological conceptualizations of Neanderthal phenotypes, including the possibility that Neanderthals may have depended upon visual processing capabilities at the expense of social cognition, and this may have contributed to the extinction of this species through reduced cultural maintenance and inability to cope with fluctuating resources. This and other studies capitalizing on the emerging science surrounding ancient DNA provide a window through which to view an ancient lineage long past.
Collapse
Affiliation(s)
- Michael D Gregory
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - J Shane Kippenhan
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip Kohn
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel P Eisenberg
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph H Callicott
- Psychosis and Cognitive Studies Section, Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Bhaskar Kolachana
- Human Brain Collection Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen F Berman
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA.,Psychosis and Cognitive Studies Section, Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
107
|
Vizzari MT, Benazzo A, Barbujani G, Ghirotto S. A Revised Model of Anatomically Modern Human Expansions Out of Africa through a Machine Learning Approximate Bayesian Computation Approach. Genes (Basel) 2020; 11:E1510. [PMID: 33339234 PMCID: PMC7766041 DOI: 10.3390/genes11121510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023] Open
Abstract
There is a wide consensus in considering Africa as the birthplace of anatomically modern humans (AMH), but the dispersal pattern and the main routes followed by our ancestors to colonize the world are still matters of debate. It is still an open question whether AMH left Africa through a single process, dispersing almost simultaneously over Asia and Europe, or in two main waves, first through the Arab Peninsula into southern Asia and Australo-Melanesia, and later through a northern route crossing the Levant. The development of new methodologies for inferring population history and the availability of worldwide high-coverage whole-genome sequences did not resolve this debate. In this work, we test the two main out-of-Africa hypotheses through an Approximate Bayesian Computation approach, based on the Random-Forest algorithm. We evaluated the ability of the method to discriminate between the alternative models of AMH out-of-Africa, using simulated data. Once assessed that the models are distinguishable, we compared simulated data with real genomic variation, from modern and archaic populations. This analysis showed that a model of multiple dispersals is four-fold as likely as the alternative single-dispersal model. According to our estimates, the two dispersal processes may be placed, respectively, around 74,000 and around 46,000 years ago.
Collapse
Affiliation(s)
| | | | | | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (M.T.V.); (A.B.); (G.B.)
| |
Collapse
|
108
|
Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 2020; 587:610-612. [PMID: 32998156 DOI: 10.1038/s41586-020-2818-3] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022]
Abstract
A recent genetic association study1 identified a gene cluster on chromosome 3 as a risk locus for respiratory failure after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A separate study (COVID-19 Host Genetics Initiative)2 comprising 3,199 hospitalized patients with coronavirus disease 2019 (COVID-19) and control individuals showed that this cluster is the major genetic risk factor for severe symptoms after SARS-CoV-2 infection and hospitalization. Here we show that the risk is conferred by a genomic segment of around 50 kilobases in size that is inherited from Neanderthals and is carried by around 50% of people in south Asia and around 16% of people in Europe.
Collapse
Affiliation(s)
- Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Okinawa Institute of Science and Technology, Onna-son, Japan.
| |
Collapse
|
109
|
Triticum population sequencing provides insights into wheat adaptation. Nat Genet 2020; 52:1412-1422. [PMID: 33106631 DOI: 10.1038/s41588-020-00722-w] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Bread wheat expanded its habitat from a core area of the Fertile Crescent to global environments within ~10,000 years. The genetic mechanisms of this remarkable evolutionary success are not well understood. By whole-genome sequencing of populations from 25 subspecies within the genera Triticum and Aegilops, we identified composite introgression from wild populations contributing to a substantial portion (4-32%) of the bread wheat genome, which increased the genetic diversity of bread wheat and allowed its divergent adaptation. Meanwhile, convergent adaptation to human selection showed 2- to 16-fold enrichment relative to random expectation-a certain set of genes were repeatedly selected in Triticum species despite their drastic differences in ploidy levels and growing zones, indicating the important role of evolutionary constraints in shaping the adaptive landscape of bread wheat. These results showed the genetic necessities of wheat as a global crop and provided new perspectives on transferring adaptive success across species for crop improvement.
Collapse
|
110
|
Walsh S, Pagani L, Xue Y, Laayouni H, Tyler-Smith C, Bertranpetit J. Positive selection in admixed populations from Ethiopia. BMC Genet 2020; 21:108. [PMID: 33092534 PMCID: PMC7580818 DOI: 10.1186/s12863-020-00908-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the process of adaptation of humans to their environment, positive or adaptive selection has played a main role. Positive selection has, however, been under-studied in African populations, despite their diversity and importance for understanding human history. RESULTS Here, we have used 119 available whole-genome sequences from five Ethiopian populations (Amhara, Oromo, Somali, Wolayta and Gumuz) to investigate the modes and targets of positive selection in this part of the world. The site frequency spectrum-based test SFselect was applied to idfentify a wide range of events of selection (old and recent), and the haplotype-based statistic integrated haplotype score to detect more recent events, in each case with evaluation of the significance of candidate signals by extensive simulations. Additional insights were provided by considering admixture proportions and functional categories of genes. We identified both individual loci that are likely targets of classic sweeps and groups of genes that may have experienced polygenic adaptation. We found population-specific as well as shared signals of selection, with folate metabolism and the related ultraviolet response and skin pigmentation standing out as a shared pathway, perhaps as a response to the high levels of ultraviolet irradiation, and in addition strong signals in genes such as IFNA, MRC1, immunoglobulins and T-cell receptors which contribute to defend against pathogens. CONCLUSIONS Signals of positive selection were detected in Ethiopian populations revealing novel adaptations in East Africa, and abundant targets for functional follow-up.
Collapse
Affiliation(s)
- Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Yali Xue
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Barcelona, Catalonia, Spain
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
111
|
Rinker DC, Simonti CN, McArthur E, Shaw D, Hodges E, Capra JA. Neanderthal introgression reintroduced functional ancestral alleles lost in Eurasian populations. Nat Ecol Evol 2020; 4:1332-1341. [PMID: 32719451 PMCID: PMC7529911 DOI: 10.1038/s41559-020-1261-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/29/2020] [Indexed: 12/31/2022]
Abstract
Neanderthal ancestry remains across modern Eurasian genomes and introgressed sequences influence diverse phenotypes. Here, we demonstrate that introgressed sequences reintroduced thousands of ancestral alleles that were lost in Eurasian populations before introgression. Our simulations and variant effect predictions argue that these reintroduced alleles (RAs) are more likely to be tolerated by modern humans than are introgressed Neanderthal-derived alleles (NDAs) due to their distinct evolutionary histories. Consistent with this, we show enrichment for RAs and depletion for NDAs on introgressed haplotypes with expression quantitative trait loci (eQTL) and phenotype associations. Analysis of available cross-population eQTLs and massively parallel reporter assay data show that RAs commonly influence gene expression independent of linked NDAs. We further validate these independent effects for one RA in vitro. Finally, we demonstrate that NDAs are depleted for regulatory activity compared to RAs, while RAs have activity levels similar to non-introgressed variants. In summary, our study reveals that Neanderthal introgression reintroduced thousands of lost ancestral variants with gene regulatory activity and that these RAs were more tolerated than NDAs. Thus, RAs and their distinct evolutionary histories must be considered when evaluating the effects of introgression.
Collapse
Affiliation(s)
- David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Corinne N Simonti
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Douglas Shaw
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Emily Hodges
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
- Departments of Biomedical Informatics and Computer Science, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
112
|
Quilodrán CS, Tsoupas A, Currat M. The Spatial Signature of Introgression After a Biological Invasion With Hybridization. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The accumulation of genome-wide molecular data has emphasized the important role of hybridization in the evolution of many organisms, which may carry introgressed genomic segments resulting from past admixture events with other taxa. Despite a number of examples of hybridization occurring during biological invasions, the resulting spatial patterns of genomic introgression remain poorly understood. Preliminary simulation studies have suggested a heterogeneous spatial level of introgression for invasive taxa after range expansion. We investigated in detail the robustness of this pattern and its persistence over time for both invasive and local organisms. Using spatially explicit simulations, we explored the spatial distribution of introgression across the area of colonization of an invasive taxon hybridizing with a local taxon. The general pattern for neutral loci supported by our results is an increasing introgression of local genes into the invasive taxon with the increase in the distance from the source of the invasion and a decreasing introgression of invasive genes into the local taxon. However, we also show there is some variation in this general trend depending on the scenario investigated. Spatial heterogeneity of introgression within a given taxon is thus an expected neutral pattern in structured populations after a biological invasion with a low to moderate amount of hybridization. We further show that this pattern is consistent with published empirical observations. Using additional simulations, we argue that the spatial pattern of Neanderthal introgression in modern humans, which has been documented to be higher in Asia than in Europe, can be explained by a model of hybridization with Neanderthals in Eurasia during the range expansion of modern humans from Africa. Our results support the view that weak hybridization during range expansion may explain spatially heterogeneous introgression patterns without the need to invoke selection.
Collapse
|
113
|
Sadanandan KR, Low GW, Sridharan S, Gwee CY, Ng EYX, Yuda P, Prawiradilaga DM, Lee JGH, Tritto A, Rheindt FE. The conservation value of admixed phenotypes in a critically endangered species complex. Sci Rep 2020; 10:15549. [PMID: 32968132 PMCID: PMC7511927 DOI: 10.1038/s41598-020-72428-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022] Open
Abstract
In today's environmental crisis, conservationists are increasingly confronted with terminally endangered species whose last few surviving populations may be affected by allelic introgression from closely related species. Yet there is a worrying lack of evidence-based recommendations and solutions for this emerging problem. We analyzed genome-wide DNA markers and plumage variability in a critically endangered insular songbird, the Black-winged Myna (BWM, Acridotheres melanopterus). This species is highly threatened by the illegal wildlife trade, with its wild population numbering in the low hundreds, and its continued survival urgently depending on ex-situ breeding. Its three subspecies occur along a geographic gradient of melanism and are variably interpreted as three species. However, our integrative approach revealed that melanism poorly reflects the pattern of limited genomic differentiation across BWM subspecies. We also uncovered allelic introgression into the most melanistic subspecies, tertius, from the all-black congeneric Javan Myna (A. javanicus), which is native to the same islands. Based on our results, we recommend the establishment of three separate breeding programs to maintain subspecific traits that may confer local adaptation, but with the option of occasional cross-breeding between insurance populations in order to boost genetic diversity and increase overall viability prospects of each breeding program. Our results underscore the importance of evidence-based integrative approaches when determining appropriate conservation units. Given the rapid increase of terminally endangered organisms in need of ex-situ conservation, this study provides an important blueprint for similar programs dealing with phenotypically variable species.
Collapse
Affiliation(s)
- Keren R Sadanandan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
- Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| | - Gabriel W Low
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Sheeraja Sridharan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Chyi Yin Gwee
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Elize Y X Ng
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Pramana Yuda
- Universitas Atma Jaya, Jl. Babarsari 44, Janti, Caturtunggal, Kec. Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Dewi M Prawiradilaga
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta Bogor KM 46, Cibinong Science Center, Cibinong, 16911, Indonesia
| | - Jessica G H Lee
- Wildlife Reserves Singapore, 80 Mandai Lake Road, Singapore, 729826, Singapore
| | - Anaïs Tritto
- Wildlife Reserves Singapore, 80 Mandai Lake Road, Singapore, 729826, Singapore
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
114
|
Selection against archaic hominin genetic variation in regulatory regions. Nat Ecol Evol 2020; 4:1558-1566. [PMID: 32839541 DOI: 10.1038/s41559-020-01284-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/21/2020] [Indexed: 01/20/2023]
Abstract
Traces of Neandertal and Denisovan DNA persist in the modern human gene pool, but have been systematically purged by natural selection from genes and other functionally important regions. This implies that many archaic alleles harmed the fitness of hybrid individuals, but the nature of this harm is poorly understood. Here, we show that enhancers contain less Neandertal and Denisovan variation than expected given the background selection they experience, suggesting that selection acted to purge these regions of archaic alleles that disrupted their gene regulatory functions. We infer that selection acted mainly on young archaic variation that arose in Neandertals or Denisovans shortly before their contact with humans; enhancers are not depleted of older variants found in both archaic species. Some types of enhancer appear to have tolerated introgression better than others; compared with tissue-specific enhancers, pleiotropic enhancers show stronger depletion of archaic single-nucleotide polymorphisms. To some extent, evolutionary constraint is predictive of introgression depletion, but certain tissues' enhancers are more depleted of Neandertal and Denisovan alleles than expected given their comparative tolerance to new mutations. Foetal brain and muscle are the tissues whose enhancers show the strongest depletion of archaic alleles, but only brain enhancers show evidence of unusually stringent purifying selection. We conclude that epistatic incompatibilities between human and archaic alleles are needed to explain the degree of archaic variant depletion from foetal muscle enhancers, perhaps due to divergent selection for higher muscle mass in archaic hominins compared with humans.
Collapse
|
115
|
Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph. PLoS Genet 2020; 16:e1008895. [PMID: 32760067 PMCID: PMC7410169 DOI: 10.1371/journal.pgen.1008895] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/29/2020] [Indexed: 01/09/2023] Open
Abstract
The sequencing of Neanderthal and Denisovan genomes has yielded many new insights about interbreeding events between extinct hominins and the ancestors of modern humans. While much attention has been paid to the relatively recent gene flow from Neanderthals and Denisovans into modern humans, other instances of introgression leave more subtle genomic evidence and have received less attention. Here, we present a major extension of the ARGweaver algorithm, called ARGweaver-D, which can infer local genetic relationships under a user-defined demographic model that includes population splits and migration events. This Bayesian algorithm probabilistically samples ancestral recombination graphs (ARGs) that specify not only tree topologies and branch lengths along the genome, but also indicate migrant lineages. The sampled ARGs can therefore be parsed to produce probabilities of introgression along the genome. We show that this method is well powered to detect the archaic migration into modern humans, even with only a few samples. We then show that the method can also detect introgressed regions stemming from older migration events, or from unsampled populations. We apply it to human, Neanderthal, and Denisovan genomes, looking for signatures of older proposed migration events, including ancient humans into Neanderthal, and unknown archaic hominins into Denisovans. We identify 3% of the Neanderthal genome that is putatively introgressed from ancient humans, and estimate that the gene flow occurred between 200-300kya. We find no convincing evidence that negative selection acted against these regions. Finally, we predict that 1% of the Denisovan genome was introgressed from an unsequenced, but highly diverged, archaic hominin ancestor. About 15% of these “super-archaic” regions—comprising at least about 4Mb—were, in turn, introgressed into modern humans and continue to exist in the genomes of people alive today. We present ARGweaver-D, an extension of the ARGweaver algorithm which can be applied under a user-defined demographic model including population splits and migration events. Given genome sequence data from a collection of individuals across multiple closely related populations or subspecies, ARGweaver-D can infer trees describing the genetic relationships among these individuals at every location along the genome, conditional on the demographic model. Like ARGweaver, ARGweaver-D is a Bayesian method, sampling trees from the posterior distribution in order to account for uncertainty. Using simulations, we show that ARGweaver-D can successfully identify regions introgressed from Neanderthals and Denisovans into modern humans. It is also well-powered to detect introgressed regions stemming from older gene-flow events. We apply ARGweaver-D to the genomes of two Neanderthals, a Denisovan, and two African humans. We identify 3% of the Neanderthal genome which is likely derived from gene flow from ancient humans. We also identify about 1% of the Denisovan genome that may be traced to an unsequenced archaic hominin; 15% of these regions were subsequently passed to modern humans. We find no convincing evidence that selection acted against any of these introgressed regions.
Collapse
|
116
|
Mughal MR, Koch H, Huang J, Chiaromonte F, DeGiorgio M. Learning the properties of adaptive regions with functional data analysis. PLoS Genet 2020; 16:e1008896. [PMID: 32853200 PMCID: PMC7480868 DOI: 10.1371/journal.pgen.1008896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/09/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Identifying regions of positive selection in genomic data remains a challenge in population genetics. Most current approaches rely on comparing values of summary statistics calculated in windows. We present an approach termed SURFDAWave, which translates measures of genetic diversity calculated in genomic windows to functional data. By transforming our discrete data points to be outputs of continuous functions defined over genomic space, we are able to learn the features of these functions that signify selection. This enables us to confidently identify complex modes of natural selection, including adaptive introgression. We are also able to predict important selection parameters that are responsible for shaping the inferred selection events. By applying our model to human population-genomic data, we recapitulate previously identified regions of selective sweeps, such as OCA2 in Europeans, and predict that its beneficial mutation reached a frequency of 0.02 before it swept 1,802 generations ago, a time when humans were relatively new to Europe. In addition, we identify BNC2 in Europeans as a target of adaptive introgression, and predict that it harbors a beneficial mutation that arose in an archaic human population that split from modern humans within the hypothesized modern human-Neanderthal divergence range.
Collapse
Affiliation(s)
- Mehreen R. Mughal
- Bioinformatics and Genomics at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillary Koch
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jinguo Huang
- Bioinformatics and Genomics at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca Chiaromonte
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, United States of America
| |
Collapse
|
117
|
Dannemann M, He Z, Heide C, Vernot B, Sidow L, Kanton S, Weigert A, Treutlein B, Pääbo S, Kelso J, Camp JG. Human Stem Cell Resources Are an Inroad to Neandertal DNA Functions. Stem Cell Reports 2020; 15:214-225. [PMID: 32559457 PMCID: PMC7363959 DOI: 10.1016/j.stemcr.2020.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) from diverse humans offer the potential to study human functional variation in controlled culture environments. A portion of this variation originates from an ancient admixture between modern humans and Neandertals, which introduced alleles that left a phenotypic legacy on individual humans today. Here, we show that a large iPSC repository harbors extensive Neandertal DNA, including alleles that contribute to human phenotypes and diseases, encode hundreds of amino acid changes, and alter gene expression in specific tissues. We provide a database of the inferred introgressed Neandertal alleles for each individual iPSC line, together with the annotation of the predicted functional variants. We also show that transcriptomic data from organoids generated from iPSCs can be used to track Neandertal-derived RNA over developmental processes. Human iPSC resources provide an opportunity to experimentally explore Neandertal DNA function and its contribution to present-day phenotypes, and potentially study Neandertal traits.
Collapse
Affiliation(s)
- Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christian Heide
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Vernot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Leila Sidow
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sabina Kanton
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Weigert
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland.
| |
Collapse
|
118
|
Testing the “(Neo-)Darwinian” Principles against Reticulate Evolution: How Variation, Adaptation, Heredity and Fitness, Constraints and Affordances, Speciation, and Extinction Surpass Organisms and Species. INFORMATION 2020. [DOI: 10.3390/info11070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Variation, adaptation, heredity and fitness, constraints and affordances, speciation, and extinction form the building blocks of the (Neo-)Darwinian research program, and several of these have been called “Darwinian principles”. Here, we suggest that caution should be taken in calling these principles Darwinian because of the important role played by reticulate evolutionary mechanisms and processes in also bringing about these phenomena. Reticulate mechanisms and processes include symbiosis, symbiogenesis, lateral gene transfer, infective heredity mediated by genetic and organismal mobility, and hybridization. Because the “Darwinian principles” are brought about by both vertical and reticulate evolutionary mechanisms and processes, they should be understood as foundational for a more pluralistic theory of evolution, one that surpasses the classic scope of the Modern and the Neo-Darwinian Synthesis. Reticulate evolution moreover demonstrates that what conventional (Neo-)Darwinian theories treat as intra-species features of evolution frequently involve reticulate interactions between organisms from very different taxonomic categories. Variation, adaptation, heredity and fitness, constraints and affordances, speciation, and extinction therefore cannot be understood as “traits” or “properties” of genes, organisms, species, or ecosystems because the phenomena are irreducible to specific units and levels of an evolutionary hierarchy. Instead, these general principles of evolution need to be understood as common goods that come about through interactions between different units and levels of evolutionary hierarchies, and they are exherent rather than inherent properties of individuals.
Collapse
|
119
|
Senturk N, Ergoren MC. Developing an Online Portal for Determining the Genomic Signature of Archaic DNA that are Associated to Modern Human Genetic Diseases: A Meta-Analysis Study. Eurasian J Med 2020; 52:153-160. [PMID: 32612423 DOI: 10.5152/eurasianjmed.2019.18424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022] Open
Abstract
Objective Mutations or introgression can cause and rise adaptive alleles of which some can be beneficial. Archaic humans lived more than 200,000 years ago in Europe and Western Asia. They were adapted to the environment and pathogens that prevailed in these locations. It can therefore be thought that modern humans obtained significant immune advantage from the archaic alleles. Materials and Methods First, data were collected by meta-analysis from previously identified genetic diseases caused by alleles that were introgressed from archaics. Second, the in silico model portal (http://www.archaics2phenotype.xxx.edu.tr) was designed to trace the history of the Neanderthal allele. The portal also shows the current distribution of the genotypes of the selected alleles within different populations and correlates with the individuals phenotype. Results Our developed model provides a better understanding for the origin of genetic diseases or traits that are associated with the Neanderthal genome. Conclusion The developed medicine model will help individuals and their populations to receive the best treatment. It also clarifies why there are differences in disease phenotypes in modern humans.
Collapse
Affiliation(s)
- Niyazi Senturk
- Department of Biomedical Engineering, Near East University Faculty of Engineering, Nicosia, Cyprus
| | - Mahmut Cerkez Ergoren
- Department of Medical Biology, Near East University School of Medicine, Nicosia, Cyprus.,DESAM Institute, Near East University, Nicosia, Cyprus
| |
Collapse
|
120
|
Schumer M, Powell DL, Corbett-Detig R. Versatile simulations of admixture and accurate local ancestry inference with mixnmatch and ancestryinfer. Mol Ecol Resour 2020; 20:1141-1151. [PMID: 32324964 PMCID: PMC7384932 DOI: 10.1111/1755-0998.13175] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/09/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
It has become clear that hybridization between species is much more common than previously recognized. As a result, we now know that the genomes of many modern species, including our own, are a patchwork of regions derived from past hybridization events. Increasingly researchers are interested in disentangling which regions of the genome originated from each parental species using local ancestry inference methods. Due to the diverse effects of admixture, this interest is shared across disparate fields, from human genetics to research in ecology and evolutionary biology. However, local ancestry inference methods are sensitive to a range of biological and technical parameters which can impact accuracy. Here we present paired simulation and ancestry inference pipelines, mixnmatch and ancestryinfer, to help researchers plan and execute local ancestry inference studies. mixnmatch can simulate arbitrarily complex demographic histories in the parental and hybrid populations, selection on hybrids, and technical variables such as coverage and contamination. ancestryinfer takes as input sequencing reads from simulated or real individuals, and implements an efficient local ancestry inference pipeline. We perform a series of simulations with mixnmatch to pinpoint factors that influence accuracy in local ancestry inference and highlight useful features of the two pipelines. mixnmatch is a powerful tool for simulations of hybridization while ancestryinfer facilitates local ancestry inference on real or simulated data.
Collapse
Affiliation(s)
- Molly Schumer
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”
- Hanna H. Gray Fellow, Howard Hughes Medical Institute
| | - Daniel L. Powell
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”
- Department of Biology, Texas A&M University
| | - Russ Corbett-Detig
- Genomics Institute, University of California, Santa Cruz
- Department of Biomolecular Engineering, University of California, Santa Cruz
| |
Collapse
|
121
|
VolcanoFinder: Genomic scans for adaptive introgression. PLoS Genet 2020; 16:e1008867. [PMID: 32555579 PMCID: PMC7326285 DOI: 10.1371/journal.pgen.1008867] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 06/30/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method—VolcanoFinder—to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder. The process by which beneficial alleles are introduced into a species from a closely-related species is termed adaptive introgression. We present an analytically-tractable model for the effects of adaptive introgression on non-adaptive genetic variation in the genomic region surrounding the beneficial allele. The result we describe is a characteristic volcano-shaped pattern of increased variability that arises around the positively-selected site, and we introduce an open-source method VolcanoFinder to detect this signal in genomic data. Importantly, VolcanoFinder is a population-genetic likelihood-based approach, rather than a comparative-genomic approach, and can therefore probe genomic variation data from a single population for footprints of adaptive introgression, even from a priori unknown and possibly extinct donor species.
Collapse
|
122
|
The Impact of Recessive Deleterious Variation on Signals of Adaptive Introgression in Human Populations. Genetics 2020; 215:799-812. [PMID: 32487519 PMCID: PMC7337073 DOI: 10.1534/genetics.120.303081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Admixture with archaic hominins has altered the landscape of genomic variation in modern human populations. Several gene regions have been identified previously as candidates of adaptive introgression (AI) that facilitated human adaptation to specific environments. However, simulation-based studies have suggested that population genetic processes other than adaptive mutations, such as heterosis from recessive deleterious variants private to populations before admixture, can also lead to patterns in genomic data that resemble AI. The extent to which the presence of deleterious variants affect the false-positive rate and the power of current methods to detect AI has not been fully assessed. Here, we used extensive simulations under parameters relevant for human evolution to show that recessive deleterious mutations can increase the false positive rates of tests for AI compared to models without deleterious variants, especially when the recombination rates are low. We next examined candidates of AI in modern humans identified from previous studies, and show that 24 out of 26 candidate regions remain significant, even when deleterious variants are included in the null model. However, two AI candidate genes, HYAL2 and HLA, are particularly susceptible to high false positive signals of AI due to recessive deleterious mutations. These genes are located in regions of the human genome with high exon density together with low recombination rate, factors that we show increase the rate of false-positives due to recessive deleterious mutations. Although the combination of such parameters is rare in the human genome, caution is warranted in such regions, as well as in other species with more compact genomes and/or lower recombination rates. In sum, our results suggest that recessive deleterious mutations cannot account for the signals of AI in most, but not all, of the top candidates for AI in humans, suggesting they may be genuine signals of adaptation.
Collapse
|
123
|
Sankararaman S. Methods for detecting introgressed archaic sequences. Curr Opin Genet Dev 2020; 62:85-90. [PMID: 32717667 PMCID: PMC7484293 DOI: 10.1016/j.gde.2020.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022]
Abstract
Analysis of genome sequences from archaic and modern humans have revealed multiple episodes of admixture between highly-diverged population groups. Statistical methods that attempt to localize DNA segments introduced by these events offer a powerful tool to investigate recent human evolution. We review recent advances in methods for detecting introgressed sequences.
Collapse
Affiliation(s)
- Sriram Sankararaman
- Department of Computer Science, University of California, Los Angeles, CA 90095, United States; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; Department of Computational Medicine, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
124
|
Rees JS, Castellano S, Andrés AM. The Genomics of Human Local Adaptation. Trends Genet 2020; 36:415-428. [DOI: 10.1016/j.tig.2020.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
|
125
|
Yan SM, McCoy RC. Archaic hominin genomics provides a window into gene expression evolution. Curr Opin Genet Dev 2020; 62:44-49. [PMID: 32615344 PMCID: PMC7483639 DOI: 10.1016/j.gde.2020.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
Differences in gene expression are thought to account for most phenotypic differences within and between species. Consequently, gene expression is a powerful lens through which to study divergence between modern humans and our closest evolutionary relatives, the Neanderthals and Denisovans. Such insights complement biological knowledge gleaned from the fossil record, while also revealing general features of the mode and tempo of regulatory evolution. Because of the degradation of ancient RNA, gene expression profiles of archaic hominins must be studied by indirect means. As such, conclusions drawn from these studies are often laden with assumptions about the genetic architecture of gene expression, the complexity of which is increasingly apparent. Despite these challenges, rapid technical and conceptual advances in the fields of ancient genomics, functional genomics, statistical genomics, and genome engineering are revolutionizing understanding of hominin gene expression evolution.
Collapse
Affiliation(s)
- Stephanie M Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
126
|
Taskent O, Lin YL, Patramanis I, Pavlidis P, Gokcumen O. Analysis of Haplotypic Variation and Deletion Polymorphisms Point to Multiple Archaic Introgression Events, Including from Altai Neanderthal Lineage. Genetics 2020; 215:497-509. [PMID: 32234956 PMCID: PMC7268982 DOI: 10.1534/genetics.120.303167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
The time, extent, and genomic effect of the introgressions from archaic humans into ancestors of extant human populations remain some of the most exciting venues of population genetics research in the past decade. Several studies have shown population-specific signatures of introgression events from Neanderthals, Denisovans, and potentially other unknown hominin populations in different human groups. Moreover, it was shown that these introgression events may have contributed to phenotypic variation in extant humans, with biomedical and evolutionary consequences. In this study, we present a comprehensive analysis of the unusually divergent haplotypes in the Eurasian genomes and show that they can be traced back to multiple introgression events. In parallel, we document hundreds of deletion polymorphisms shared with Neanderthals. A locus-specific analysis of one such shared deletion suggests the existence of a direct introgression event from the Altai Neanderthal lineage into the ancestors of extant East Asian populations. Overall, our study is in agreement with the emergent notion that various Neanderthal populations contributed to extant human genetic variation in a population-specific manner.
Collapse
Affiliation(s)
- Ozgur Taskent
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260
| | - Yen Lung Lin
- Genetics Section, University of Chicago, Illinois 60637
| | | | - Pavlos Pavlidis
- Foundation for Research and Technology, Hellas, Greece 700 13
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260
| |
Collapse
|
127
|
Esteller-Cucala P, Maceda I, Børglum AD, Demontis D, Faraone SV, Cormand B, Lao O. Genomic analysis of the natural history of attention-deficit/hyperactivity disorder using Neanderthal and ancient Homo sapiens samples. Sci Rep 2020; 10:8622. [PMID: 32451437 PMCID: PMC7248073 DOI: 10.1038/s41598-020-65322-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/24/2020] [Indexed: 11/18/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is an impairing neurodevelopmental condition highly prevalent in current populations. Several hypotheses have been proposed to explain this paradox, mainly in the context of the Paleolithic versus Neolithic cultural shift but especially within the framework of the mismatch theory. This theory elaborates on how a particular trait once favoured in an ancient environment might become maladaptive upon environmental changes. However, given the lack of genomic data available for ADHD, these theories have not been empirically tested. We took advantage of the largest GWAS meta-analysis available for this disorder consisting of over 20,000 individuals diagnosed with ADHD and 35,000 controls, to assess the evolution of ADHD-associated alleles in European populations using archaic, ancient and modern human samples. We also included Approximate Bayesian computation coupled with deep learning analyses and singleton density scores to detect human adaptation. Our analyses indicate that ADHD-associated alleles are enriched in loss of function intolerant genes, supporting the role of selective pressures in this early-onset phenotype. Furthermore, we observed that the frequency of variants associated with ADHD has steadily decreased since Paleolithic times, particularly in Paleolithic European populations compared to samples from the Neolithic Fertile Crescent. We demonstrate this trend cannot be explained by African admixture nor Neanderthal introgression, since introgressed Neanderthal alleles are enriched in ADHD risk variants. All analyses performed support the presence of long-standing selective pressures acting against ADHD-associated alleles until recent times. Overall, our results are compatible with the mismatch theory for ADHD but suggest a much older time frame for the evolution of ADHD-associated alleles compared to previous hypotheses.
Collapse
Affiliation(s)
- Paula Esteller-Cucala
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain
| | - Iago Maceda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, and Aarhus Genome Centre, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, and Aarhus Genome Centre, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Spain.
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
128
|
Policies as species Viewing and classifying policy from an evolutionary biology perspective. Politics Life Sci 2020; 38:117-131. [PMID: 32412203 DOI: 10.1017/pls.2019.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article proposes equating policies as species to develop a better understanding of how policies emerge, change, and diffuse across policymaking environments. Scholars have long shown an interest in understanding policy change and reinvention, whether incremental or nonincremental. The two subfields of public policy that can answer how and why policies change are not unified, leading to difficulty in comprehensively assessing policy emergence and change. The policy species concept bridges knowledge of the policy process and knowledge in the policy process by creating an operationalized definition of public policy and suggesting a process for classifying policies to observe subsequent behavior. Drawing from the field of biology, the policy species framework outlines how policies possess genotypes and phenotypes, which dictate what a policy is and how it can change. In tracing genotypic and phenetic change over time, policy evolution and change is more easily discernible. In turn, a more precise picture of how policies function is painted.
Collapse
|
129
|
Berrio A, Haygood R, Wray GA. Identifying branch-specific positive selection throughout the regulatory genome using an appropriate proxy neutral. BMC Genomics 2020; 21:359. [PMID: 32404186 PMCID: PMC7222330 DOI: 10.1186/s12864-020-6752-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Adaptive changes in cis-regulatory elements are an essential component of evolution by natural selection. Identifying adaptive and functional noncoding DNA elements throughout the genome is therefore crucial for understanding the relationship between phenotype and genotype. RESULTS We used ENCODE annotations to identify appropriate proxy neutral sequences and demonstrate that the conservativeness of the test can be modulated during the filtration of reference alignments. We applied the method to noncoding Human Accelerated Elements as well as open chromatin elements previously identified in 125 human tissues and cell lines to demonstrate its utility. Then, we evaluated the impact of query region length, proxy neutral sequence length, and branch count on test sensitivity and specificity. We found that the length of the query alignment can vary between 150 bp and 1 kb without affecting the estimation of selection, while for the reference alignment, we found that a length of 3 kb is adequate for proper testing. We also simulated sequence alignments under different classes of evolution and validated our ability to distinguish positive selection from relaxation of constraint and neutral evolution. Finally, we re-confirmed that a quarter of all non-coding Human Accelerated Elements are evolving by positive selection. CONCLUSION Here, we introduce a method we called adaptiPhy, which adds significant improvements to our earlier method that tests for branch-specific directional selection in noncoding sequences. The motivation for these improvements is to provide a more sensitive and better targeted characterization of directional selection and neutral evolution across the genome.
Collapse
Affiliation(s)
- Alejandro Berrio
- Department of Biology, Duke University, Biological Sciences Building, 124 Science Drive, Durham, NC, 27708, USA.
| | - Ralph Haygood
- Ronin Institute for Independent Scholarship, 127 Haddon Pl., Montclair, NJ, 07043, USA
| | - Gregory A Wray
- Department of Biology, Duke University, Biological Sciences Building, 124 Science Drive, Durham, NC, 27708, USA
| |
Collapse
|
130
|
Skov L, Coll Macià M, Sveinbjörnsson G, Mafessoni F, Lucotte EA, Einarsdóttir MS, Jonsson H, Halldorsson B, Gudbjartsson DF, Helgason A, Schierup MH, Stefansson K. The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes. Nature 2020; 582:78-83. [DOI: 10.1038/s41586-020-2225-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
|
131
|
What have the revelations about Neanderthal DNA revealed about Homo sapiens? ANTHROPOLOGICAL REVIEW 2020. [DOI: 10.2478/anre-2020-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic studies have presented increasing indications about the complexity of the interactions between Homo sapiens, Neanderthals and Denisovans, during Pleistocene. The results indicate potential replacement or admixture of the groups of hominins that lived in the same region at different times. Recently, the time of separation among these hominins in relation to the Last Common Ancestor – LCA has been reasonably well established. Events of mixing with emphasis on the Neanderthal gene flow into H. sapiens outside Africa, Denisovans into H. sapiens ancestors in Oceania and continental Asia, Neanderthals into Denisovans, as well as the origin of some phenotypic features in specific populations such as the color of the skin, eyes, hair and predisposition to develop certain kinds of diseases have also been found. The current information supports the existence of both replacement and interbreeding events, and indicates the need to revise the two main explanatory models, the Multiregional and the Out-of-Africa hypotheses, about the origin and evolution of H. sapiens and its co-relatives. There is definitely no longer the possibility of justifying only one model over the other. This paper aims to provide a brief review and update on the debate around this issue, considering the advances brought about by the recent genetic as well as morphological traits analyses.
Collapse
|
132
|
Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, Chen Y, Felkel S, Hallast P, Kamm J, Blanché H, Deleuze JF, Cann H, Mallick S, Reich D, Sandhu MS, Skoglund P, Scally A, Xue Y, Durbin R, Tyler-Smith C. Insights into human genetic variation and population history from 929 diverse genomes. Science 2020; 367:eaay5012. [PMID: 32193295 PMCID: PMC7115999 DOI: 10.1126/science.aay5012] [Citation(s) in RCA: 482] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.
Collapse
Affiliation(s)
- Anders Bergström
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK.
- The Francis Crick Institute, London NW1 1AT, UK
| | - Shane A McCarthy
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ruoyun Hui
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | | | - Qasim Ayub
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500 Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | | | - Yuan Chen
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Sabine Felkel
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Pille Hallast
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Jack Kamm
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Hélène Blanché
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, 75010 Paris, France
- GENMED Labex, ANR-10-LABX-0013 Paris, France
| | - Jean-François Deleuze
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, 75010 Paris, France
- GENMED Labex, ANR-10-LABX-0013 Paris, France
| | - Howard Cann
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, 75010 Paris, France
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Manjinder S Sandhu
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Yali Xue
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Richard Durbin
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
133
|
Wagner S, Plomion C, Orlando L. Uncovering Signatures of DNA Methylation in Ancient Plant Remains From Patterns of Post-mortem DNA Damage. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
134
|
Women with fair phenotypes seem to confer a survival advantage in a low UV milieu. A nested matched case control study. PLoS One 2020; 15:e0228582. [PMID: 31999788 PMCID: PMC6992199 DOI: 10.1371/journal.pone.0228582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/18/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sun exposure in combination with skin pigmentation is the main determinant for vitamin D status. Human skin color seems to be adapted and optimized for regional sun ultraviolet (UV) intensity. However, we do not know if fair, UV-sensitive skin is a survival advantage in regions with low UV radiation. METHODS A population-based nested case-control study of 29,518 Caucasian women, ages 25 to 64 years from Southern Sweden who responded to a questionnaire regarding risk-factors for malignant melanoma in 1990 and followed for 25 years. For each fair woman, defined as having red hair or freckles (n = 11,993), a control was randomly selected from all non-fair women from within the cohort of similar age, smoking habits, education, marital status, income, and comorbidity, i.e., 11,993 pairs. The main outcome was the difference in all-cause mortality between fair and non-fair women in a low UV milieu, defined as living in Sweden and having low-to-moderate sun exposure habits. Secondary outcomes were mortality by sun exposure, and among those non-overweight. RESULTS In a low UV milieu, fair women were at a significantly lower all-cause mortality risk as compared to non-fair women (log rank test p = 0.04) with an 8% lower all-cause mortality rate (hazard ratio [HR] = 0.92, 95% CI 0.84‒1.0), including a 59% greater risk of dying from skin cancer among fair women (HR 1.59, 95% CI 1.26‒2.0). Thus, it seem that the beneficial health effect from low skin coloration outweigh the risk of skin cancer at high latitudes. CONCLUSION In a region with low UV milieu, evolution seems to improve all-cause survival by selecting a fair skin phenotype, i.e., comprising fair women with a survival advantage.
Collapse
|
135
|
Identifying and Interpreting Apparent Neanderthal Ancestry in African Individuals. Cell 2020; 180:677-687.e16. [PMID: 32004458 DOI: 10.1016/j.cell.2020.01.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 01/27/2023]
Abstract
Admixture has played a prominent role in shaping patterns of human genomic variation, including gene flow with now-extinct hominins like Neanderthals and Denisovans. Here, we describe a novel probabilistic method called IBDmix to identify introgressed hominin sequences, which, unlike existing approaches, does not use a modern reference population. We applied IBDmix to 2,504 individuals from geographically diverse populations to identify and analyze Neanderthal sequences segregating in modern humans. Strikingly, we find that African individuals carry a stronger signal of Neanderthal ancestry than previously thought. We show that this can be explained by genuine Neanderthal ancestry due to migrations back to Africa, predominately from ancestral Europeans, and gene flow into Neanderthals from an early dispersing group of humans out of Africa. Our results refine our understanding of Neanderthal ancestry in African and non-African populations and demonstrate that remnants of Neanderthal genomes survive in every modern human population studied to date.
Collapse
|
136
|
Page A, Gibson J, Meyer RS, Chapman MA. Eggplant Domestication: Pervasive Gene Flow, Feralization, and Transcriptomic Divergence. Mol Biol Evol 2020; 36:1359-1372. [PMID: 31039581 DOI: 10.1093/molbev/msz062] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the context of food security, examining the genomics of domestication will help identify genes underlying adaptive and economically important phenotypes, for example, larger fruit, improved taste, and loss of agronomically inferior phenotypes. Examination of genome-scale single nucleotide polymorphisms demonstrates the relationships between wild ancestors of eggplant (Solanum melongena L.), confirming that Solanum insanum L. is the wild progenitor. This species is split roughly into an Eastern (Malaysian, Thai, and Vietnamese) and Western (Indian, Madagascan, and Sri Lankan) group, with domesticates derived from the former. Additional "wild" accessions from India appear to be feral escapes, derived multiple times from domesticated varieties through admixture. Accessions with small egg-shaped fruit are generally found intermixed with East Asian Solanum insanum confirming they are primitive relative to the large-fruited domesticates. Comparative transcriptomics was used to track the loci under selection. Sequence analysis revealed a genetic bottleneck reducing variation by almost 50% in the primitive accessions relative to the wild species and a further 10% in the landraces. We also show evidence for selection on genes with a role in response to wounding and apoptosis. Genes showing a significant difference in expression between wild and primitive or between primitive and landrace genepools were mostly (>75%) downregulated in the derived populations and enriched for gene ontologies related to defense, flowering, signaling, and response to biotic and abiotic stimuli. This work reveals genomic changes involved in crop domestication and improvement, and the population genetics work explains why defining the eggplant domestication trajectory has been so challenging.
Collapse
Affiliation(s)
- Anna Page
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jane Gibson
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
137
|
Gouy A, Excoffier L. Polygenic Patterns of Adaptive Introgression in Modern Humans Are Mainly Shaped by Response to Pathogens. Mol Biol Evol 2020; 37:1420-1433. [DOI: 10.1093/molbev/msz306] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractAnatomically modern humans carry many introgressed variants from other hominins in their genomes. Some of them affect their phenotype and can thus be negatively or positively selected. Several individual genes have been proposed to be the subject of adaptive introgression, but the possibility of polygenic adaptive introgression has not been extensively investigated yet. In this study, we analyze archaic introgression maps with refined functional enrichment methods to find signals of polygenic adaptation of introgressed variants. We first apply a method to detect sets of connected genes (subnetworks) within biological pathways that present higher-than-expected levels of archaic introgression. We then introduce and apply a new statistical test to distinguish between epistatic and independent selection in gene sets of present-day humans. We identify several known targets of adaptive introgression, and we show that they belong to larger networks of introgressed genes. After correction for genetic linkage, we find that signals of polygenic adaptation are mostly explained by independent and potentially sequential selection episodes. However, we also find some gene sets where introgressed variants present significant signals of epistatic selection. Our results confirm that archaic introgression has facilitated local adaptation, especially in immunity related and metabolic functions and highlight its involvement in a coordinated response to pathogens out of Africa.
Collapse
Affiliation(s)
- Alexandre Gouy
- Institute of Ecology and Evolution, University of Berne, Berne 3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Berne, Berne 3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
138
|
Karban ME. Occipital hemi-bun development and shape covariation in a longitudinal extant human growth sample. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 172:123-134. [PMID: 31797354 DOI: 10.1002/ajpa.23981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Although the homology of the Neanderthal occipital bun and anatomically modern human "hemi-bun" has long been debated, little is known about the developmental timing and patterning of these two patterns of prominent occipital squama convexity. In this study, occipital hemi-bun ontogeny and cranial shape covariation are assessed in a comparative extant human sample. MATERIALS AND METHODS Two-dimensional geometric morphometric methods were used to investigate hemi-bun development in a longitudinal sample of growth study cephalograms representing extant human subjects predominantly of European ancestry. Subjects were each measured at three distinct age points, ranging from 3.0 to 20.4 years, and two-block partial least squares analysis was used to assess patterns of covariation between midsagittal occipital bone morphology and other aspects of craniofacial shape. RESULTS Occipital hemi-bun morphology, when present, was found to develop early in ontogeny, in association with anteroposterior elongation of the frontal and parietal bones. No significant pattern of covariation was found between occipital hemi-bun shape and cranial/basicranial breadth, basicranial length, basicranial angle, or midfacial prognathism. DISCUSSION This study suggests that the occipital hemi-bun, at least in this extant human population, should not be considered an independent trait, as its development is closely linked to shape variation in the frontal and parietal bones. Importantly, these results suggest that occipital hemi-bun morphology is not significantly influenced by basicranial morphology during development, but instead covaries with changes in midsagittal neurocranial vault shape.
Collapse
|
139
|
Identification of African-Specific Admixture between Modern and Archaic Humans. Am J Hum Genet 2019; 105:1254-1261. [PMID: 31809748 DOI: 10.1016/j.ajhg.2019.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/03/2019] [Indexed: 11/21/2022] Open
Abstract
Recent work has demonstrated that two archaic human groups (Neanderthals and Denisovans) interbred with modern humans and contributed to the contemporary human gene pool. These findings relied on the availability of high-coverage genomes from both Neanderthals and Denisovans. Here we search for evidence of archaic admixture from a worldwide panel of 1,667 individuals using an approach that does not require the presence of an archaic human reference genome. We find no evidence for archaic admixture in the Andaman Islands, as previously claimed, or on the island of Flores, where Homo floresiensis fossils have been found. However, we do find evidence for at least one archaic admixture event in sub-Saharan Africa, with the strongest signal in Khoesan and Pygmy individuals from Southern and Central Africa. The locations of these putative archaic admixture tracts are weighted against functional regions of the genome, consistent with the long-term effects of purifying selection against introgressed genetic material.
Collapse
|
140
|
Campbell MC, Ashong B, Teng S, Harvey J, Cross CN. Multiple selective sweeps of ancient polymorphisms in and around LTα located in the MHC class III region on chromosome 6. BMC Evol Biol 2019; 19:218. [PMID: 31791241 PMCID: PMC6889576 DOI: 10.1186/s12862-019-1516-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lymphotoxin-α (LTα), located in the Major Histocompatibility Complex (MHC) class III region on chromosome 6, encodes a cytotoxic protein that mediates a variety of antiviral responses among other biological functions. Furthermore, several genotypes at this gene have been implicated in the onset of a number of complex diseases, including myocardial infarction, autoimmunity, and various types of cancer. However, little is known about levels of nucleotide variation and linkage disequilibrium (LD) in and near LTα, which could also influence phenotypic variance. To address this gap in knowledge, we examined sequence variation across ~ 10 kilobases (kbs), encompassing LTα and the upstream region, in 2039 individuals from the 1000 Genomes Project originating from 21 global populations. RESULTS Here, we observed striking patterns of diversity, including an excess of intermediate-frequency alleles, the maintenance of multiple common haplotypes and a deep coalescence time for variation (dating > 1.0 million years ago), in global populations. While these results are generally consistent with a model of balancing selection, we also uncovered a signature of positive selection in the form of long-range LD on chromosomes with derived alleles primarily in Eurasian populations. To reconcile these findings, which appear to support different models of selection, we argue that selective sweeps (particularly, soft sweeps) of multiple derived alleles in and/or near LTα occurred in non-Africans after their ancestors left Africa. Furthermore, these targets of selection were predicted to alter transcription factor binding site affinity and protein stability, suggesting they play a role in gene function. Additionally, our data also showed that a subset of these functional adaptive variants are present in archaic hominin genomes. CONCLUSIONS Overall, this study identified candidate functional alleles in a biologically-relevant genomic region, and offers new insights into the evolutionary origins of these loci in modern human populations.
Collapse
Affiliation(s)
- Michael C. Campbell
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC 20059 USA
| | - Bryan Ashong
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC 20059 USA
| | - Shaolei Teng
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC 20059 USA
| | - Jayla Harvey
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC 20059 USA
| | - Christopher N. Cross
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059 USA
| |
Collapse
|
141
|
Arntzen JW. An amphibian species pushed out of Britain by a moving hybrid zone. Mol Ecol 2019; 28:5145-5154. [PMID: 31643124 PMCID: PMC6900066 DOI: 10.1111/mec.15285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Classical theory states that hybrid zones will be stable in troughs of low population density where dispersal is hampered. Yet, evidence for moving hybrid zones is mounting. One possible reason that moving zones have been underappreciated is that they may drive themselves into oblivion and with just the superseding species remaining, morphological and genetic signals of past species replacement may be difficult to appreciate. Using genetic data (32 diagnostic single nucleotide polymorphisms) from a clinal hybrid zone of the common toad (Bufo bufo) and the spined toad (Bufo spinosus) in France for comparison, alleles of the latter species were documented in common toads in the south of Great Britain, at frequencies in excess of 10%. Because long distance dispersal across the Channel is unlikely, the conclusion reached was that the continental toad hybrid zone which previously extended into Britain, moved southwards and extirpated B. spinosus. Species distribution models for the mid-Holocene and the present support that climate has locally changed in favour of B. bufo. The system bears resemblance with the demise of Homo neanderthalensis and the rise of Homo sapiens and provides an example that some paleoanthropologists demanded in support of a hominin "leaky replacement" scenario. The toad example is informative just because surviving pure B. spinosus and an extant slowly moving interspecific hybrid zone are available for comparison.
Collapse
|
142
|
Abstract
The purpose of this Milankovitch review is to explain the significance of Quaternary DNA studies and the importance of the recent methodological advances that have enabled the study of late Quaternary remains in more detail, and the testing of new assumptions in evolutionary biology and phylogeography to reconstruct the past. The topic is wide, and this review is not intended to be an exhaustive account of all the aDNA work performed in the last three decades on late-Quaternary remains. Instead, it is a selection of relevant studies aimed at illustrating how aDNA has been used to reconstruct not only environments of the past, but also the history of many species including our own.
Collapse
|
143
|
Gokcumen O. Archaic hominin introgression into modern human genomes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171 Suppl 70:60-73. [PMID: 31702050 DOI: 10.1002/ajpa.23951] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
Ancient genomes from multiple Neanderthal and the Denisovan individuals, along with DNA sequence data from diverse contemporary human populations strongly support the prevalence of gene flow among different hominins. Recent studies now provide evidence for multiple gene flow events that leave genetic signatures in extant and ancient human populations. These events include older gene flow from an unknown hominin in Africa predating out-of-Africa migrations, and in the last 50,000-100,000 years, multiple gene flow events from Neanderthals into ancestral Eurasian human populations, and at least three distinct introgression events from a lineage close to Denisovans into ancestors of extant Southeast Asian and Oceanic populations. Some of these introgression events may have happened as late as 20,000 years before present and reshaped the way in which we think about human evolution. In this review, I aim to answer anthropologically relevant questions with regard to recent research on ancient hominin introgression in the human lineage. How have genomic data from archaic hominins changed our view of human evolution? Is there any doubt about whether introgression from ancient hominins to the ancestors of present-day humans occurred? What is the current view of human evolutionary history from the genomics perspective? What is the impact of introgression on human phenotypes?
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences, North Campus, University at Buffalo, Buffalo, New York
| |
Collapse
|
144
|
Understanding Admixture: Haplodiploidy to the Rescue. Trends Ecol Evol 2019; 35:34-42. [PMID: 31703819 DOI: 10.1016/j.tree.2019.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023]
Abstract
Hybridization has broad evolutionary consequences, from fueling or counteracting speciation to facilitating adaptation to novel environments. Hybridization and subsequent introgression appear widespread along the tree of life. However, our understanding of how distinct evolutionary forces shape admixed genomes and the fate of introgressed genetic variants remains scarce. Most admixture research in animals has focused on diploid organisms. We propose that haplodiploid organisms can help resolve open questions about the genomic consequences of hybridization in natural populations. The ploidy difference between haploid males and diploid females, the availability of genome-wide male haplotypes, and ongoing cases of admixture make haplodiploid organisms promising models to improve our knowledge with regards to the evolution of hybrid genomes.
Collapse
|
145
|
Deng L, Zhang C, Yuan K, Gao Y, Pan Y, Ge X, He Y, Yuan Y, Lu Y, Zhang X, Chen H, Lou H, Wang X, Lu D, Liu J, Tian L, Feng Q, Khan A, Yang Y, Jin ZB, Yang J, Lu F, Qu J, Kang L, Su B, Xu S. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. Natl Sci Rev 2019; 6:1201-1222. [PMID: 34691999 PMCID: PMC8291452 DOI: 10.1093/nsr/nwz108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Human genetic adaptation to high altitudes (>2500 m) has been extensively studied over the last few years, but few functional adaptive genetic variants have been identified, largely owing to the lack of deep-genome sequencing data available to previous studies. Here, we build a list of putative adaptive variants, including 63 missense, 7 loss-of-function, 1,298 evolutionarily conserved variants and 509 expression quantitative traits loci. Notably, the top signal of selection is located in TMEM247, a transmembrane protein-coding gene. The Tibetan version of TMEM247 harbors one high-frequency (76.3%) missense variant, rs116983452 (c.248C > T; p.Ala83Val), with the T allele derived from archaic ancestry and carried by >94% of Tibetans but absent or in low frequencies (<3%) in non-Tibetan populations. The rs116983452-T is strongly and positively correlated with altitude and significantly associated with reduced hemoglobin concentration (p = 5.78 × 10-5), red blood cell count (p = 5.72 × 10-7) and hematocrit (p = 2.57 × 10-6). In particular, TMEM247-rs116983452 shows greater effect size and better predicts the phenotypic outcome than any EPAS1 variants in association with adaptive traits in Tibetans. Modeling the interaction between TMEM247-rs116983452 and EPAS1 variants indicates weak but statistically significant epistatic effects. Our results support that multiple variants may jointly deliver the fitness of the Tibetans on the plateau, where a complex model is needed to elucidate the adaptive evolution mechanism.
Collapse
Affiliation(s)
- Lian Deng
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Gao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueling Ge
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuan Yuan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Lu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxi Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Chen
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiyi Lou
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaojiao Liu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Tian
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qidi Feng
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Asifullah Khan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zi-Bing Jin
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China National Center for International Research in Regenerative Medicine and Neurogenetics, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Jian Yang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China National Center for International Research in Regenerative Medicine and Neurogenetics, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
- Institute for Molecular Bioscience, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fan Lu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China National Center for International Research in Regenerative Medicine and Neurogenetics, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China National Center for International Research in Regenerative Medicine and Neurogenetics, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
146
|
Disease transmission and introgression can explain the long-lasting contact zone of modern humans and Neanderthals. Nat Commun 2019; 10:5003. [PMID: 31676766 PMCID: PMC6825168 DOI: 10.1038/s41467-019-12862-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Neanderthals and modern humans both occupied the Levant for tens of thousands of years prior to the spread of modern humans into the rest of Eurasia and their replacement of the Neanderthals. That the inter-species boundary remained geographically localized for so long is a puzzle, particularly in light of the rapidity of its subsequent movement. Here, we propose that infectious-disease dynamics can explain the localization and persistence of the inter-species boundary. We further propose, and support with dynamical-systems models, that introgression-based transmission of alleles related to the immune system would have gradually diminished this barrier to pervasive inter-species interaction, leading to the eventual release of the inter-species boundary from its geographic localization. Asymmetries between the species in the characteristics of their associated ‘pathogen packages’ could have generated feedback that allowed modern humans to overcome disease burden earlier than Neanderthals, giving them an advantage in their subsequent spread into Eurasia. Modern humans and Neanderthals coexisted in the Levant for tens of thousands of years before modern humans spread and replaced Neanderthals. Here, Greenbaum et al. develop a model showing that transmission of disease and genes can explain the maintenance and then collapse of this contact zone.
Collapse
|
147
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
148
|
Platt RN, McDew-White M, Le Clec’h W, Chevalier FD, Allan F, Emery AM, Garba A, Hamidou AA, Ame SM, Webster JP, Rollinson D, Webster BL, Anderson TJC. Ancient Hybridization and Adaptive Introgression of an Invadolysin Gene in Schistosome Parasites. Mol Biol Evol 2019; 36:2127-2142. [PMID: 31251352 PMCID: PMC6759076 DOI: 10.1093/molbev/msz154] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introgression among parasite species has the potential to transfer traits of biomedical importance across species boundaries. The parasitic blood fluke Schistosoma haematobium causes urogenital schistosomiasis in humans across sub-Saharan Africa. Hybridization with other schistosome species is assumed to occur commonly, because genetic crosses between S. haematobium and livestock schistosomes, including S. bovis, can be staged in the laboratory, and sequencing of mtDNA and rDNA amplified from microscopic miracidia larvae frequently reveals markers from different species. However, the frequency, direction, age, and genomic consequences of hybridization are unknown. We hatched miracidia from eggs and sequenced the exomes from 96 individual S. haematobium miracidia from infected patients from Niger and the Zanzibar archipelago. These data revealed no evidence for contemporary hybridization between S. bovis and S. haematobium in our samples. However, all Nigerien S. haematobium genomes sampled show hybrid ancestry, with 3.3-8.2% of their nuclear genomes derived from S. bovis, providing evidence of an ancient introgression event that occurred at least 108-613 generations ago. Some S. bovis-derived alleles have spread to high frequency or reached fixation and show strong signatures of directional selection; the strongest signal spans a single gene in the invadolysin gene family (Chr. 4). Our results suggest that S. bovis/S. haematobium hybridization occurs rarely but demonstrate profound consequences of ancient introgression from a livestock parasite into the genome of S. haematobium, the most prevalent schistosome species infecting humans.
Collapse
Affiliation(s)
- Roy N Platt
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Marina McDew-White
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Winka Le Clec’h
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Frédéric D Chevalier
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Fiona Allan
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Aidan M Emery
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Amadou Garba
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), Niamey, Niger
| | - Amina A Hamidou
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), Niamey, Niger
| | - Shaali M Ame
- Public Health Laboratory - Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Joanne P Webster
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - David Rollinson
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Bonnie L Webster
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Timothy J C Anderson
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
149
|
Refoyo-Martínez A, da Fonseca RR, Halldórsdóttir K, Árnason E, Mailund T, Racimo F. Identifying loci under positive selection in complex population histories. Genome Res 2019; 29:1506-1520. [PMID: 31362936 PMCID: PMC6724678 DOI: 10.1101/gr.246777.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
Abstract
Detailed modeling of a species' history is of prime importance for understanding how natural selection operates over time. Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of past histories as null models of genetic drift. Here, we present the first method that can detect signatures of strong local adaptation across the genome using arbitrarily complex admixture graphs, which are typically used to describe the history of past divergence and admixture events among any number of populations. The method-called graph-aware retrieval of selective sweeps (GRoSS)-has good power to detect loci in the genome with strong evidence for past selective sweeps and can also identify which branch of the graph was most affected by the sweep. As evidence of its utility, we apply the method to bovine, codfish, and human population genomic data containing panels of multiple populations related in complex ways. We find new candidate genes for important adaptive functions, including immunity and metabolism in understudied human populations, as well as muscle mass, milk production, and tameness in specific bovine breeds. We are also able to pinpoint the emergence of large regions of differentiation owing to inversions in the history of Atlantic codfish.
Collapse
Affiliation(s)
- Alba Refoyo-Martínez
- Lundbeck GeoGenetics Centre, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1350, Denmark
| | - Rute R da Fonseca
- Centre for Macroecology, Evolution and Climate, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copehnagen 2100, Denmark
| | - Katrín Halldórsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík 107, Iceland
| | - Einar Árnason
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík 107, Iceland
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
150
|
Oosting T, Star B, Barrett JH, Wellenreuther M, Ritchie PA, Rawlence NJ. Unlocking the potential of ancient fish DNA in the genomic era. Evol Appl 2019; 12:1513-1522. [PMID: 31462911 PMCID: PMC6708421 DOI: 10.1111/eva.12811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Fish are the most diverse group of vertebrates, fulfil important ecological functions and are of significant economic interest for aquaculture and wild fisheries. Advances in DNA extraction methods, sequencing technologies and bioinformatic applications have advanced genomic research for nonmodel organisms, allowing the field of fish ancient DNA (aDNA) to move into the genomics era. This move is enabling researchers to investigate a multitude of new questions in evolutionary ecology that could not, until now, be addressed. In many cases, these new fields of research have relevance to evolutionary applications, such as the sustainable management of fisheries resources and the conservation of aquatic animals. Here, we focus on the application of fish aDNA to (a) highlight new research questions, (b) outline methodological advances and current challenges, (c) discuss how our understanding of fish ecology and evolution can benefit from aDNA applications and (d) provide a future perspective on how the field will help answer key questions in conservation and management. We conclude that the power of fish aDNA will be unlocked through the application of continually improving genomic resources and methods to well-chosen taxonomic groups represented by well-dated archaeological samples that can provide temporally and/or spatially extensive data sets.
Collapse
Affiliation(s)
- Tom Oosting
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Bastiaan Star
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | - James H. Barrett
- Department of ArchaeologyUniversity of CambridgeCambridgeUK
- Department of Archaeology and Cultural HistoryNTNU University MuseumTrondheimNorway
- Trinity Centre for Environmental HumanitiesTrinity College DublinDublinIreland
| | - Maren Wellenreuther
- Nelson Seafood Research UnitPlant and Food ResearchNelsonNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Peter A. Ritchie
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory, Department of ZoologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|