101
|
Inoue A, Piao L, Yue X, Huang Z, Hu L, Wu H, Meng X, Xu W, Yu C, Sasaki T, Itakura K, Umegaki H, Kuzuya M, Cheng XW. Young bone marrow transplantation prevents aging-related muscle atrophy in a senescence-accelerated mouse prone 10 model. J Cachexia Sarcopenia Muscle 2022; 13:3078-3090. [PMID: 36058630 PMCID: PMC9745469 DOI: 10.1002/jcsm.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Young bone marrow transplantation (YBMT) has been shown to stimulate vascular regeneration in pathological conditions, including ageing. Here, we investigated the benefits and mechanisms of the preventive effects of YBMT on loss of muscle mass and function in a senescence-associated mouse prone 10 (SAMP10) model, with a special focus on the role of growth differentiation factor 11 (GDF-11). METHODS Nine-week-old male SAMP10 mice were randomly assigned to a non-YBMT group (n = 6) and a YBMT group (n = 7) that received the bone marrow of 8-week-old C57BL/6 mice. RESULTS Compared to the non-YBMT mice, the YBMT mice showed the following significant increases (all P < 0.05 in 6-7 mice): endurance capacity (>61.3%); grip strength (>37.9%), percentage of slow myosin heavy chain fibres (>14.9-15.9%). The YBMT also increased the amounts of proteins or mRNAs for insulin receptor substrate 1, p-Akt, p-extracellular signal-regulated protein kinase1/2, p-mammalian target of rapamycin, Bcl-2, peroxisom proliferator-activated receptor-γ coactivator (PGC-1α), plus cytochrome c oxidase IV and the numbers of proliferating cells (n = 5-7, P < 0.05) and CD34+/integrin-α7+ muscle stem cells (n = 5-6, P < 0.05). The YMBT significantly decreased the levels of gp91phox, caspase-9 proteins and apoptotic cells (n = 5-7, P < 0.05) in both muscles; these beneficial changes were diminished by the blocking of GDF-11 (n = 5-6, P < 0.05). An administration of mouse recombinant GDF-11 improved the YBMT-mediated muscle benefits (n = 5-6, P < 0.05). Cell therapy with young bone marrow from green fluorescent protein (GFP) transgenic mice exhibited GFP+ myofibres in aged muscle tissues. CONCLUSIONS These findings suggest that YBMT can prevent muscle wasting and dysfunction by mitigating apoptosis and proliferation via a modulation of GDF-11 signalling and mitochondrial dysfunction in SAMP10 mice.
Collapse
Affiliation(s)
- Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Limei Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Zhe Huang
- Department of Human Cord Applied Cell Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Lina Hu
- Department of Public Health, Guilin Medical College, Guilin, Guangxi, PR China
| | - Hongxian Wu
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xiangkun Meng
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Wenhu Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Chenglin Yu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, Shizuokaken, Japan
| | - Kohji Itakura
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Hiroyuki Umegaki
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Masafumi Kuzuya
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| |
Collapse
|
102
|
Chen F, Zhang XQ, Wu JJ, Jin L, Li GQ. Requirement of Myoglianin for metamorphosis in the beetle Henosepilachna vigintioctopunctata. INSECT MOLECULAR BIOLOGY 2022; 31:671-685. [PMID: 35661293 DOI: 10.1111/imb.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Henosepilachna vigintioctopunctata is a serious defoliating beetle attacking Solanaceae and Cucurbitaceae plants in many Asian countries. In the present paper, we identified a putative myoglianin (myo) gene. Hvmyo was actively transcribed throughout development, from embryo to adult. RNA interference (RNAi)-aided knockdown of Hvmyo delayed larval development by more than 2 days, reduced larval body size, inhibited the growth of antennae, wings and legs and disturbed gut purge. Knockdown of Hvmyo impaired the larval-pupal transition. All the Hvmyo RNAi larvae arrested at the larval stage or formed misshapen pupae or adults. The deformed pupae and adults were partially wrapped with exuviae, bearing separated wings. Moreover, the expression levels of five ecdysteroidogenesis genes (Hvspo, Hvphm, Hvdib, Hvsad and Hvshd), a prothocicotropic hormone (PTTH)/Torso pathway gene (Hvtorso), two 20E receptor genes (HvEcR and HvUSP), and two 20E signalling genes (HvE93 and HvFTZ-F1) were as a result of HvMyo RNAi significantly lowered. Conversely, the expression of a JH biosynthesis gene (Hvjhamt), a JH receptor gene HvMet and a JH signalling gene HvKr-h1 was greatly enhanced. Although ingestion of 20E and Hal rescued the 20E signal, it could not alleviate larval performance and defective phenotypes. Our results suggest that Myo exerts four distinctive roles in ecdysteroidogenesis, JH production, organ growth and larva-pupa-adult transformation in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Feng Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Qing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
103
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
104
|
Wu N, Xiao F, Zhang J, Chi Y, Zhai Y, Chen B, Lu J. Proteomic characteristics of plasma and blood cells in natural aging rhesus monkeys. Proteomics 2022; 22:e2200049. [PMID: 36037246 DOI: 10.1002/pmic.202200049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Aging has become a serious social issue that places a heavy burden on society. However, the underlying mechanisms of aging remain unclear. This study sought to understand the aging process as it may be affected by proteins in the blood, the most important functional system for material transportation in the body. We analyzed and compared the protein expression spectrums in the blood of old and young rhesus monkeys and found 257 proteins expressed differentially in plasma and 1183 proteins expressed differentially in blood cells. Through bioinformatics analysis, we found that the differentially-expressed proteins in plasma were involved in signal pathways related to complement and coagulation cascades, pertussis, malaria, phagosome, and cholesterol metabolism, while the differentially-expressed proteins in blood cells were involved in endocytosis, proteasome, ribosome, protein processing in the endoplasmic reticulum, and Parkinson's disease. We confirmed that the protein levels of complement C2 in plasma and actin-related protein 2/3 complex subunit 2 (ARPC2) in blood cells obviously decreased, whereas the complement C3 and complement component 4 binding protein beta (C4BPB) significantly increased in plasma of old rhesus monkeys and C57BL/6 mice. Our results suggest that C2, C3, C4BPB, and ARPC2 can be used as target proteins for anti-aging research.
Collapse
Affiliation(s)
- Na Wu
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China.,School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Fuchuan Xiao
- Department of Laboratory Animal Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Zhang
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China.,School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Laboratory Animal Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yafei Chi
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China
| | - Yanan Zhai
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China
| | - Baian Chen
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China.,School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Laboratory Animal Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Lu
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China.,School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Laboratory Animal Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
105
|
Wang Z, Jiang P, Liu F, Du X, Ma L, Ye S, Cao H, Sun P, Su N, Lin F, Zhang R, Li C. GDF11 Regulates PC12 Neural Stem Cells via ALK5-Dependent PI3K-Akt Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012279. [PMID: 36293138 PMCID: PMC9602726 DOI: 10.3390/ijms232012279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), belonging to the transforming factor-β superfamily, regulates anterior-posterior patterning and inhibits neurogenesis during embryonic development. However, recent studies recognized GDF11 as a rejuvenating (or anti-ageing) factor to reverse age-related cardiac hypertrophy, repair injured skeletal muscle, promote cognitive function, etc. The effects of GDF11 are contradictory and the mechanism of action is still not well clarified. The objective of the present study was to investigate effects of GDF11 on PC12 neural stem cells in vitro and to reveal the underlying mechanism. We systematically assessed the effects of GDF11 on the life activities of PC12 cells. GDF11 significantly suppressed cell proliferation and migration, promoted differentiation and apoptosis, and arrested cell cycle at G2/M phase. Both TMT-based proteomic analysis and phospho-antibody microarray revealed PI3K-Akt pathway was enriched when treated with GDF11. Inhibition of ALK5 or PI3K obviously attenuated the effects of GDF11 on PC12 neural stem cells, which exerted that GDF11 regulated neural stem cells through ALK5-dependent PI3K-Akt signaling pathway. In summary, these results demonstrated GDF11 could be a negative regulator for neurogenesis via ALK5 activating PI3K-Akt pathway when it directly acted on neural stem cells.
Collapse
Affiliation(s)
- Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Rong Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| |
Collapse
|
106
|
Jessica Lo HT, Yiu TL, Wang Y, Feng L, Li G, Lui MPM, Lee WYW. Fetal muscle extract improves muscle function and performance in aged mice. Front Physiol 2022; 13:816774. [PMID: 36277186 PMCID: PMC9585271 DOI: 10.3389/fphys.2022.816774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Loss of skeletal muscle mass and function is one of the major musculoskeletal health problems in the aging population. Recent studies have demonstrated differential proteomic profiles at different fetal stages, which might be associated with muscle growth and development. We hypothesized that extract derived from fetal muscle tissues at the stage of hypertrophy could ameliorate the loss of muscle mass and strength in aged mice. Methods: To allow sufficient raw materials for investigation, skeletal muscle extract from fetal sheep at week 16 of gestation and maternal tissue were used in the present study. iTRAQ (isobaric tags for relative and absolute quantitation) and KEGG pathway analyses identified differentially expressed proteins in fetal sheep muscle extract vs. adult sheep muscle extract. Effects of FSME and ASME on human myoblast proliferation were studied. To examine the effect of FSME in vivo, C57BL/6 male mice at 20 months of age were subjected to intramuscular administration of FSME or vehicle control for 8 weeks. A grip strength test and ex vivo muscle force frequency test were conducted. Finally, serum samples were collected for multiplex analysis to determine potential changes in immunological cytokines upon FSME injection. Results: Compared with ASME, 697 and 412 peptides were upregulated and downregulated, respectively, in FSME, as indicated by iTRAQ analysis. These peptides were highly related to muscle development, function, and differentiation from GO enrichment analysis. FSME promoted cell proliferation of myoblast cells (+300%, p < 0.01) without causing significant cytotoxicity at the tested concentration range compared with ASME. After 8 weeks of FSME treatment, the percentage of lean mass (+10%, p < 0.05), grip strength (+50%, p < 0.01), and ability in fatigue resistance were significantly higher than those of the control group. Isometric forces stimulated by different frequencies were higher in the control group. Histologically, the control group showed a larger cross-sectional area (+20%, p < 0.01) than the FSME group. The multiplex assay indicated that FSME treatment did not lead to an elevated circulatory level of inflammatory cytokines. Of note, after FSME treatment, we observed a significant drop in the circulating level of IL-12 (p40) from 90.8 ± 48.3 pg/ml to 82.65 ± 4.4 pg/ml, G-CSF from 23476 ± 8341.9 pg/ml to 28.35 ± 24.2 pg/ml, KC from 97.09 ± 21.2 pg/ml to 29.2 ± 7.2 pg/ml, and RANTES from 325.4 ± 17.3 pg/ml to 49.96 ± 32.1 pg/ml. Conclusion: This is the first study demonstrating the beneficial effect of fetal muscle extract on muscle health in aged mice. Further analysis of the active ingredients of the extract will shed light on the development of a novel treatment for sarcopenia.
Collapse
Affiliation(s)
- Hiu Tung Jessica Lo
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tsz Lam Yiu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yujia Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Feng
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | | | - Wayne Yuk-Wai Lee
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk-Wai Lee,
| |
Collapse
|
107
|
Rodriguez SL, Carver CM, Dosch AJ, Huffman DM, Duke Boynton FD, Ayasoufi K, Schafer MJ. An optimized mouse parabiosis protocol for investigation of aging and rejuvenative mechanisms. FRONTIERS IN AGING 2022; 3:993658. [PMID: 36276605 PMCID: PMC9582328 DOI: 10.3389/fragi.2022.993658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022]
Abstract
Surgical parabiosis enables sharing of the circulating milieu between two organisms. This powerful model presents diverse complications based on age, strain, sex, and other experimental parameters. Here, we provide an optimized parabiosis protocol for the surgical union of two mice internally at the elbow and knee joints with continuous external joining of the skin. This protocol incorporates guidance and solutions to complications that can occur, particularly in aging studies, including non-cohesive pairing, variable anesthesia sensitivity, external and internal dehiscence, dehydration, and weight loss. We also offer a straightforward method for validating postoperative blood chimerism and confirming its time course using flow cytometry. Utilization of our optimized protocol can facilitate reproducible parabiosis experimentation to dynamically explore mechanisms of aging and rejuvenation.
Collapse
Affiliation(s)
- Sonia L. Rodriguez
- Department of Physiology and Biomedical Engineering Research, Mayo Clinic, Rochester, MN, United States
| | - Chase M. Carver
- Department of Physiology and Biomedical Engineering Research, Mayo Clinic, Rochester, MN, United States
| | - Andrew J. Dosch
- Department of Physiology and Biomedical Engineering Research, Mayo Clinic, Rochester, MN, United States
| | - Derek M. Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Marissa J. Schafer
- Department of Physiology and Biomedical Engineering Research, Mayo Clinic, Rochester, MN, United States,Department of Neurology, Mayo Clinic, Rochester, MN, United States,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States,*Correspondence: Marissa J. Schafer,
| |
Collapse
|
108
|
Liu Q, Song S, Song L, Bi Y, Zhu K, Qiao X, Wang H, Gao C, Cai H, Ji G. Mesenchymal stem cells alleviate aging in vitro and in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1092. [PMID: 36388801 PMCID: PMC9652517 DOI: 10.21037/atm-22-1206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2023]
Abstract
BACKGROUND Aging is a natural and multi-factorial phenomenon associated with multiple human pathologies. Mesenchymal stem cells (MSCs) hold great promise in clinical fields of medicine including tissue repair, cardiovascular disease, and brain ischemic injury. The purpose of this study was to explore the roles of MSCs in improving the condition of aging cells, repairing aging tissues and organs, and extending the life span of elderly mice. METHODS This study was carried out both in vitro and in vivo. We used MSCs to intervene with IMR-90 senescent cells induced by D-galactose and aged C57BL/6 mice. RESULTS After 48 hours of co-culturing the aged cells with MSCs, the up-regulated expression of inflammatory factor, interleukin 6 (IL6), and the down-regulated expression of several growth factors, such as transforming growth factor (TGFβ1) and growth differentiation factor (GDF11), in D-galactose induced senescent cells were reversed. Moreover, compared with aged cells, the number of mitochondria and the telomere length were increased with MSC treatment. Similarly, in aged mice, the symptoms related to aging were improved after MSC treatment: the mouse hair became shiny and dense, and the symptoms of bladder overactivity were relieved. Hematoxylin and eosin (H&E) and Masson's trichrome staining showed that the histopathological changes in skin, bladder, liver, and lung were apparently improved. CONCLUSIONS Treatment with MSCs effectively improves aging-related phenotypes and plays a beneficial role in improving aging and aging-related diseases.
Collapse
Affiliation(s)
- Qun Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaole Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Song
- University of Chinese Academy of Sciences, Beijing, China
| | - Youkun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Keqi Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinlong Qiao
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao Gao
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Hong Cai
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Guangju Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
109
|
Zhang K, Liu P, Yuan L, Geng Z, Li B, Zhang B. Neuroprotective effects of TRPV1 by targeting GDF11 in the Mpp+/MPTP-induced Parkinson's disease model. Biochem Biophys Res Commun 2022; 623:104-110. [PMID: 35921703 DOI: 10.1016/j.bbrc.2022.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Protecting dopaminergic neurons is a key approach in the prevention of Parkinson's disease (PD). Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is widely distributed in the mammalian nervous system. In this study, we designed experiments to investigate the effect and mechanisms of TRPV1 against DA neurons damage of PD. Our results showed that trpv1-deficient mice showed a significant loss of TH + neurons than PD mice after MPTP intraperitoneal injection, in addition, a significant decline in motor function was observed in trpv1-deficient mice versus the MPTP model. In addition, our study indicated that GDF11 overexpression inhibited MPP + - induced oxidative stress, cell senescence, and apoptosis in neurons. Results also showed that TRPV1 prevented the down-regulation of GDF11 expression in PD model, gdf11 knockdown blocks the effects of TRPV1 on the antioxidant, antiaging, and antiapoptotic activities of dopaminergic neurons. Consequently, our findings indicate that TRPV1 protects dopaminergic neurons from injury by promoting GDF11 expression in PD model.
Collapse
Affiliation(s)
- Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Peng Liu
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Long Yuan
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Zixiang Geng
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Bingrong Li
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
110
|
Chen Y, Ding BS. Comprehensive Review of the Vascular Niche in Regulating Organ Regeneration and Fibrosis. Stem Cells Transl Med 2022; 11:1135-1142. [PMID: 36169406 DOI: 10.1093/stcltm/szac070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/28/2022] [Indexed: 11/14/2022] Open
Abstract
The vasculature occupies a large area of the body, and none of the physiological activities can be carried out without blood vessels. Blood vessels are not just passive conduits and barriers for delivering blood and nutrients. Meanwhile, endothelial cells covering the vascular lumen establish vascular niches by deploying some growth factors, known as angiocrine factors, and actively participate in the regulation of a variety of physiological processes, such as organ regeneration and fibrosis and the occurrence and development of cancer. After organ injury, vascular endothelial cells regulate the repair process by secreting various angiocrine factors, triggering the proliferation and differentiation process of stem cells. Therefore, analyzing the vascular niche and exploring the factors that maintain vascular homeostasis can provide strong theoretical support for clinical treatment targeting blood vessels. Here we mainly discuss the regulatory mechanisms of the vascular niche in organ regeneration and fibrosis.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
111
|
Zieneldien T, Kim J, Sawmiller D, Cao C. The Immune System as a Therapeutic Target for Alzheimer’s Disease. Life (Basel) 2022; 12:life12091440. [PMID: 36143476 PMCID: PMC9506058 DOI: 10.3390/life12091440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder and is the most common cause of dementia. Furthermore, aging is considered the most critical risk factor for AD. However, despite the vast amount of research and resources allocated to the understanding and development of AD treatments, setbacks have been more prominent than successes. Recent studies have shown that there is an intricate connection between the immune and central nervous systems, which can be imbalanced and thereby mediate neuroinflammation and AD. Thus, this review examines this connection and how it can be altered with AD. Recent developments in active and passive immunotherapy for AD are also discussed as well as suggestions for improving these therapies moving forward.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Darrell Sawmiller
- MegaNano BioTech, Inc., 3802 Spectrum Blvd. Suite 122, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA
- Correspondence:
| |
Collapse
|
112
|
Shyu Y, Liao P, Huang T, Yang C, Lu M, Huang S, Lin X, Liou C, Kao Y, Lu C, Peng H, Chen J, Cherng W, Yang N, Chen Y, Pan H, Jiang S, Hsu C, Lin G, Yuan S, Hsu PW, Wu K, Lee T, Shen CJ. Genetic Disruption of KLF1 K74 SUMOylation in Hematopoietic System Promotes Healthy Longevity in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201409. [PMID: 35822667 PMCID: PMC9443461 DOI: 10.1002/advs.202201409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Indexed: 05/22/2023]
Abstract
The quest for rejuvenation and prolonged lifespan through transfusion of young blood has been studied for decades with the hope of unlocking the mystery of the key substance(s) that exists in the circulating blood of juvenile organisms. However, a pivotal mediator has yet been identified. Here, atypical findings are presented that are observed in a knockin mouse model carrying a lysine to arginine substitution at residue 74 of Krüppel-like factor 1 (KLF1/EKLF), the SUMOylation-deficient Klf1K74R/K74R mouse, that displayed significant improvement in geriatric disorders and lifespan extension. Klf1K74R/K74R mice exhibit a marked delay in age-related physical performance decline and disease progression as evidenced by physiological and pathological examinations. Furthermore, the KLF1(K74R) knockin affects a subset of lymphoid lineage cells; the abundance of tumor infiltrating effector CD8+ T cells and NKT cells is increased resulting in antitumor immune enhancement in response to tumor cell administration. Significantly, infusion of hematopoietic stem cells (HSCs) from Klf1K74R/K74R mice extends the lifespan of the wild-type mice. The Klf1K74R/K74R mice appear to be an ideal animal model system for further understanding of the molecular/cellular basis of aging and development of new strategies for antiaging and prevention/treatment of age-related diseases thus extending the healthspan as well as lifespan.
Collapse
Affiliation(s)
- Yu‐Chiau Shyu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of NursingChang Gung University of Science and TechnologyTaoyuan333Taiwan
| | - Po‐Cheng Liao
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Ting‐Shou Huang
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of General SurgeryChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- School of Traditional Chinese MedicineCollege of MedicineChang Gung UniversityTaoyuan333Taiwan
| | - Chun‐Ju Yang
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Mu‐Jie Lu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Shih‐Ming Huang
- Department of Radiation OncologyChung‐Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Xin‐Yu Lin
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Cai‐Cin Liou
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Yu‐Hsiang Kao
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Chi‐Huan Lu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Hui‐Ling Peng
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Jim‐Ray Chen
- Department of PathologyChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Wen‐Jin Cherng
- Department of CardiologyChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
| | - Ning‐I Yang
- Department of CardiologyChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Yung‐Chang Chen
- Department of NephrologyChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Department of MedicineSchool of MedicineChang Gung UniversityTaoyuan333Taiwan
| | - Heng‐Chih Pan
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Si‐Tse Jiang
- Department of General SurgeryChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of Research and DevelopmentNational Laboratory Animal CenterTainan741Taiwan
| | - Chih‐Chin Hsu
- Department of MedicineSchool of MedicineChang Gung UniversityTaoyuan333Taiwan
- Department of Physical Medicine and RehabilitationChang Gung Memorial Hospital Keelung branchKeelung204Taiwan
| | - Gigin Lin
- Department of Medical Imaging and InterventionChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Clinical Metabolomics Core LabChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Department of Medical Imaging and Radiological SciencesChang Gung UniversityTaoyuan333Taiwan
| | - Shin‐Sheng Yuan
- Institute of Statistical ScienceAcademia SinicaTaipei115Taiwan
| | - Paul Wei‐Che Hsu
- Institute of Molecular and Genomic MedicineNational Health Research InstituteZhunan350Taiwan
| | - Kou‐Juey Wu
- Cancer Genome Research CenterChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
| | - Tung‐Liang Lee
- Pro‐Clintech Co. Ltd.Keelung204Taiwan
- Institute of Molecular BiologyAcademia SinicaTaipei115Taiwan
| | - Che‐Kun James Shen
- Institute of Molecular BiologyAcademia SinicaTaipei115Taiwan
- Ph.D. Program in Medical NeuroscienceTaipei Medical UniversityTaipei110Taiwan
| |
Collapse
|
113
|
Höving AL, Schmidt KE, Kaltschmidt B, Kaltschmidt C, Knabbe C. The Role of Blood-Derived Factors in Protection and Regeneration of Aged Tissues. Int J Mol Sci 2022; 23:ijms23179626. [PMID: 36077021 PMCID: PMC9455681 DOI: 10.3390/ijms23179626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.
Collapse
Affiliation(s)
- Anna L. Höving
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Kazuko E. Schmidt
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
114
|
Fernández-Lázaro D, Garrosa E, Seco-Calvo J, Garrosa M. Potential Satellite Cell-Linked Biomarkers in Aging Skeletal Muscle Tissue: Proteomics and Proteogenomics to Monitor Sarcopenia. Proteomes 2022; 10:29. [PMID: 35997441 PMCID: PMC9396989 DOI: 10.3390/proteomes10030029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 12/21/2022] Open
Abstract
Sarcopenia (Sp) is the loss of skeletal muscle mass associated with aging which causes an involution of muscle function and strength. Satellite cells (Sc) are myogenic stem cells, which are activated by injury or stress, and repair muscle tissue. With advancing age, there is a decrease in the efficiency of the regenerative response of Sc. Diagnosis occurs with the Sp established by direct assessments of muscle. However, the detection of biomarkers in real-time biofluids by liquid biopsy could represent a step-change in the understanding of the molecular biology and heterogeneity of Sp. A total of 13 potential proteogenomic biomarkers of Sp by their physiological and biological interaction with Sc have been previously described in the literature. Increases in the expression of GDF11, PGC-1α, Sirt1, Pax7, Pax3, Myf5, MyoD, CD34, MyoG, and activation of Notch signaling stimulate Sc activity and proliferation, which could modulate and delay Sp progression. On the contrary, intensified expression of GDF8, p16INK4a, Mrf4, and activation of the Wnt pathway would contribute to early Sp development by directly inducing reduced and/or altered Sc function, which would attenuate the restorative capacity of skeletal muscle. Additionally, tissue biopsy remains an important diagnostic tool. Proteomic profiling of aged muscle tissues has shown shifts toward protein isoforms characteristic of a fast-to-slow transition process and an elevated number of oxidized proteins. In addition, a strong association between age and plasma values of growth differentiation factor 15 (GDF-15) has been described and serpin family A member 3 (serpin A3n) was more secreted by atrophied muscle cells. The identification of these new biomarkers holds the potential to change personalized medicine because it could predict in real time the course of Sp by monitoring its evolution and assessing responses to potential therapeutic strategies.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Evelina Garrosa
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, Institute of Neurosciences of Castile and Leon (INCYL), University of Valladolid, 47005 Valladolid, Spain
| | - Jesús Seco-Calvo
- Institute of Biomedicine (IBIOMED), Physiotherapy Department, University of Leon, Campus de Vegazana, 24071 Leon, Spain
- Psychology Department, Faculty of Medicine, Basque Country University, 48900 Leioa, Spain
| | - Manuel Garrosa
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, Institute of Neurosciences of Castile and Leon (INCYL), University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
115
|
The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem Cell 2022; 29:1315-1332.e9. [PMID: 35998642 DOI: 10.1016/j.stem.2022.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Abstract
Quiescence regulation is essential for adult stem cell maintenance and sustained regeneration. Our studies uncovered that physiological changes in mitochondrial shape regulate the quiescent state of adult muscle stem cells (MuSCs). We show that MuSC mitochondria rapidly fragment upon an activation stimulus, via systemic HGF/mTOR, to drive the exit from deep quiescence. Deletion of the mitochondrial fusion protein OPA1 and mitochondrial fragmentation transitions MuSCs into G-alert quiescence, causing premature activation and depletion upon a stimulus. OPA1 loss activates a glutathione (GSH)-redox signaling pathway promoting cell-cycle progression, myogenic gene expression, and commitment. MuSCs with chronic OPA1 loss, leading to mitochondrial dysfunction, continue to reside in G-alert but acquire severe cell-cycle defects. Additionally, we provide evidence that OPA1 decline and impaired mitochondrial dynamics contribute to age-related MuSC dysfunction. These findings reveal a fundamental role for OPA1 and mitochondrial dynamics in establishing the quiescent state and activation potential of adult stem cells.
Collapse
|
116
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
117
|
Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci 2022; 79:473. [PMID: 35941268 PMCID: PMC11072869 DOI: 10.1007/s00018-022-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 1628666, Japan
| | - Susumu Goyama
- Division of Molecular Oncology Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
118
|
Shi LL, Zhu KC, Wang HL. Characterization of myogenic regulatory factors, myod and myf5 from Megalobrama amblycephala and the effect of lipopolysaccharide on satellite cells in skeletal muscle. Gene 2022; 834:146608. [PMID: 35659893 DOI: 10.1016/j.gene.2022.146608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Myod and Myf5 are muscle-specific basic helix-loop-helix (bHLH) transcription factors that play essential roles in regulating skeletal muscle development and growth. In order to investigate potential function of myod and myf5 of Megalobrama amblycephala, an economically important freshwater fish species, in the present study, we characterized the sequences and expression profiles of M. amblycephala myod and myf5. The open reading frame (ORF) sequences of myod and myf5 encoded 275 and 240 amino acids, respectively, possessing analogous structure with the highly conserved domains, bHLH and C-terminal helix III domains. Spatio-temporal expression patterns revealed that myod and myf5 were predominant in skeletal muscle with the highest expression in white muscle, and the highest at 10 days post-hatching (dph) and the segmentation period, respectively. Furthermore, we evaluated the effects of lipopolysaccharide (LPS) on the expression of muscle-related genes in white and red muscle, and proliferation and differentiation of satellite cells. The myod, myf5 and pax-7 expression generally increased and then decreased with increase of LPS concentration and treatment time in red muscle, while these genes showed inconsistent expression patterns in white muscle. In addition, LPS administration caused the frequency increase of satellite cells in red and white muscle especially at 3 and 7 days after LPS-injection.
Collapse
Affiliation(s)
- Lin-Lin Shi
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China.
| |
Collapse
|
119
|
Frohlich J, Kovacovicova K, Raffaele M, Virglova T, Cizkova E, Kucera J, Bienertova-Vasku J, Wabitsch M, Peyrou M, Bonomini F, Rezzani R, Chaldakov GN, Tonchev AB, Di Rosa M, Blavet N, Hejret V, Vinciguerra M. GDF11 inhibits adipogenesis and improves mature adipocytes metabolic function via WNT/β-catenin and ALK5/SMAD2/3 pathways. Cell Prolif 2022; 55:e13310. [PMID: 35920128 PMCID: PMC9528760 DOI: 10.1111/cpr.13310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Objective GDF11 is a member of the TGF‐β superfamily that was recently implicated as potential “rejuvenating” factor, which can ameliorate metabolic disorders. The main objective of the presented study was to closely characterize the role of GDF11 signaling in the glucose homeostasis and in the differentiation of white adipose tissue. Methods We performed microscopy imaging, biochemical and transcriptomic analyses of adipose tissues of 9 weeks old ob/ob mice and murine and human pre‐adipocyte cell lines. Results Our in vivo experiments employing GDF11 treatment in ob/ob mice showed improved glucose/insulin homeostasis, decreased weight gain and white adipocyte size. Furthermore, GDF11 treatment inhibited adipogenesis in pre‐adipocytes by ALK5‐SMAD2/3 activation in cooperation with the WNT/β‐catenin pathway, whose inhibition resulted in adipogenic differentiation. Lastly, we observed significantly elevated levels of the adipokine hormone adiponectin and increased glucose uptake by mature adipocytes upon GDF11 exposure. Conclusion We show evidence that link GDF11 to adipogenic differentiation, glucose, and insulin homeostasis, which are pointing towards potential beneficial effects of GDF11‐based “anti‐obesity” therapy.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Psychogenics Inc, Tarrytown, New York, USA
| | - Marco Raffaele
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tereza Virglova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Eliska Cizkova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Kucera
- Research Center for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- Research Center for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic.,Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - George N Chaldakov
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.,Department of Anatomy and Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.,Department of Anatomy and Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Nicolas Blavet
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vaclav Hejret
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Center for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| |
Collapse
|
120
|
Patent highlights December 2021-January 2022. Pharm Pat Anal 2022; 11:89-96. [PMID: 35861046 DOI: 10.4155/ppa-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
121
|
Mallik S, Grodstein F, Bennett DA, Vavvas DG, Lemos B. Novel Epigenetic Clock Biomarkers of Age-Related Macular Degeneration. Front Med (Lausanne) 2022; 9:856853. [PMID: 35783640 PMCID: PMC9244395 DOI: 10.3389/fmed.2022.856853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/19/2022] [Indexed: 01/05/2023] Open
Abstract
Age-Related Macular Degeneration (AMD) is a bilateral ocular condition resulting in irreversible vision impairment caused by the progressive loss of photoreceptors in the macula, a region at the center of the retina. The progressive loss of photoreceptor is a key feature of dry AMD but not always wet AMD, though both forms of AMD can lead to loss of vision. Regression-based biological age clocks are one of the most promising biomarkers of aging but have not yet been used in AMD. Here we conducted analyses to identify regression-based biological age clocks for the retina and explored their use in AMD using transcriptomic data consisting of a total of 453 retina samples including 105 Minnesota Grading System (MGS) level 1 samples, 175 MGS level 2, 112 MGS level 3 and 61 MGS level 4 samples, as well as 167 fibroblast samples. The clocks yielded good separation among AMD samples with increasing severity score viz., MGS1-4, regardless of whether clocks were trained in retina tissue, dermal fibroblasts, or in combined datasets. Clock application to cultured fibroblasts, embryonic stem cells, and induced Pluripotent Stem Cells (iPSCs) were consistent with age reprograming in iPSCs. Moreover, clock application to in vitro neuronal differentiation suggests broader applications. Interesting, many of the age clock genes identified include known targets mechanistically linked to AMD and aging, such as GDF11, C16ORF72, and FBN2. This study provides new observations for retina age clocks and suggests new applications for monitoring in vitro neuronal differentiation. These clocks could provide useful markers for AMD monitoring and possible intervention, as well as potential targets for in vitro screens.
Collapse
Affiliation(s)
- Saurav Mallik
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Fran Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Demetrios G. Vavvas
- Ines and Frederick Yeatts Retina Research Laboratory, Retina Service, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
122
|
Consalvi S, Tucciarone L, Macrì E, De Bardi M, Picozza M, Salvatori I, Renzini A, Valente S, Mai A, Moresi V, Puri PL. Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibro-adipogenic progenitors. EMBO Rep 2022; 23:e54721. [PMID: 35383427 PMCID: PMC9171680 DOI: 10.15252/embr.202254721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological treatment of Duchenne muscular dystrophy (DMD) with histone deacetylase inhibitors (HDACi) is currently being tested in clinical trials; however, pre-clinical studies indicated that the beneficial effects of HDACi are restricted to early stages of disease. We show that FAPs from late-stage mdx mice exhibit aberrant HDAC activity and genome-wide alterations of histone acetylation that are not fully reversed by HDACi. In particular, combinatorial H3K27 and/or H3K9/14 hypo-acetylation at promoters of genes required for cell cycle activation and progression, as well as glycolysis, are associated with their downregulation in late-stage mdx FAPs. These alterations could not be reversed by HDACi, due to a general resistance to HDACi-induced H3K9/14 hyperacetylation. Conversely, H3K9/14 hyper-acetylation at promoters of Senescence Associated Secretory Phenotype (SASP) genes is associated with their upregulation in late-stage mdx FAPs; however, HDACi could reduce promoter acetylation and blunt SASP gene activation. These data reveal that during DMD progression FAPs develop disease-associated features reminiscent of cellular senescence, through epigenetically distinct and pharmacologically dissociable events. They also indicate that HDACi might retain anti-fibrotic effects at late stages of DMD.
Collapse
Affiliation(s)
- Silvia Consalvi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Luca Tucciarone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Elisa Macrì
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Marco De Bardi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Mario Picozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Illari Salvatori
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), Rome Unit, Rome, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
123
|
Song L, Wu F, Li C, Zhang S. Dietary intake of GDF11 delays the onset of several biomarkers of aging in male mice through anti-oxidant system via Smad2/3 pathway. Biogerontology 2022; 23:341-362. [PMID: 35604508 PMCID: PMC9125541 DOI: 10.1007/s10522-022-09967-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
Current studies have generated controversy over the age-related change in concentration of growth differentiation factor 11 (GDF11) and its role in the genesis of rejuvenation conditions. In this study, we displayed rGDF11 on the surface of Yarrowic Lipolytica (Y. lipolytica), and proved the bioavailability of the yeast-displayed rGDF11 by oral delivery in aged male mice. On the basis of these findings, we started to explore the anti-aging activity and underlying mechanisms of displayed rGDF11. It was found that dietary intake of displayed rGDF11 had little influence on the body weight and biochemical parameters of aged male mice, but delayed the occurrence and development of age-related biomarkers such as lipofuscin (LF) and senescence-associated-β-galactosidase, and to some extent, prolonged the lifespan of aged male mice. Moreover, we demonstrated once again that dietary intake of displayed rGDF11 enhanced the activity of anti-oxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX), reduced the reactive oxygen species (ROS) level, and slowed down the protein oxidation and lipid peroxidation. Importantly, we showed for the first time that rGDF11 enhanced the activity of CAT, SOD and GPX through activation of the Smad2/3 signaling pathway. Our study also provided a simple and safe route for delivery of recombinant GDF11, facilitating its therapeutic application in the future.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Fei Wu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
124
|
Li X, Yang W, Shen Y, Liu F, Xiong X, Wu Q, Xiao Z, Yang X, Dang R, Manaenko A, Xie P, Li Q. Analysis of Age-Dependent Transcriptomic Changes in Response to Intracerebral Hemorrhage in Mice. Front Mol Neurosci 2022; 15:908683. [PMID: 35677585 PMCID: PMC9169040 DOI: 10.3389/fnmol.2022.908683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Age is a well-known risk factor that is independently associated with poor outcomes after intracerebral hemorrhage (ICH). However, the interrelationship between age and poor outcomes after ICH is not well defined. In this study, we aimed to investigate this relationship based on collagenase-induced ICH mice models. After being assessed neurological deficit 24 h after ICH, mice were euthanized and brain perihematomal tissues were used for RNA-sequencing (RNA-seq). And then the functions of differentially expressed genes (DEGs) identified by RNA-seq were analyzed using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Ingenuity Pathway Analysis (IPA) and protein-protein interaction (PPI) analysis. In addition, we performed real-time quantitative polymerase chain reaction (RT-qPCR) for validation of candidate DEGs. In the behavioral tests, aged mice presented significantly worse neurological function than young mice and greater weight loss than aged sham controls 24 h after ICH. In DEGs analysis, ICH affected the expression of more genes in young mice (2,337 DEGs) compared with aged mice (2,005 DEGs). We found aged mice exhibited increased brain inflammatory responses compared with young animals and ICH induced significant activation of the interferon-β (IFN-β) and IFN signaling pathways exclusively in aged mice. Moreover, further analysis demonstrated that ICH resulted in the activation of cytosolic DNA-sensing pathway with the production of downstream molecule type I IFN, and the response to type I IFN was more significant in aged mice than in young mice. In agreement with the results of RNA-seq, RT-qPCR indicated that the expression of candidate genes of cyclic GMP-AMP synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), and IFN-β was significantly altered in aged mice after ICH. Taken together, our study indicated that compared to young animals, aged mice exhibit increased vulnerability to ICH and that the differences in transcriptional response patterns to ICH between young and aged mice. We believe that these findings will facilitate our understanding of ICH pathology and help to translate the results of preclinical studies into a clinical setting.
Collapse
Affiliation(s)
- Xinhui Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wensong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiqing Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangyu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Xiong
- Department of Neurology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Zhongsong Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruozhi Dang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Qi Li,
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Qi Li,
| |
Collapse
|
125
|
de Liyis BG, Halim W, Widyadharma IPE. Potential role of recombinant growth differentiation factor 11 in Alzheimer’s disease treatment. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAlzheimer's disease (AD) is a neurodegenerative disease closely related to the accumulation of beta-amyloid (Aβ) plaques. Growth differentiation factor 11 (GDF11) is one of the proteins that play a role in the aggravation of AD. Decreased concentration of GDF11 disrupts regenerative nervous system, blood vessels, and various vital systems. Low levels of GDF11 with age can be overcome with recombinant GDF11 (rGDF11) to rejuvenate the regenerative effect. Based on research results, rGDF11 enhance the proliferation rate of neuronal precursor cells as well as angiogenesis. rGDF11 can replace lost levels of GDF11, overcome astrogliosis and activation of nerve cell microglia. Therapeutic effect of rGDF11 leads to an improved prognosis in AD patients by neurogenesis and angiogenesis. The prospects of rGDF11 in the treatment of AD have great potential for further research in the future.
Collapse
|
126
|
Li Y, Li Y, Li L, Wang H, Wang B, Feng L, Lin S, Li G. The emerging translational potential of GDF11 in chronic wound healing. J Orthop Translat 2022; 34:113-120. [PMID: 35891714 PMCID: PMC9283991 DOI: 10.1016/j.jot.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic skin wounds impose immense suffers and economic burdens. Current research mainly focuses on acute wound management which exhibits less effective in chronic wound healing. Growth differentiation factor 11 (GDF11) has profound effects on several important physiological processes related to chronic wound healing, such as inflammation, cell proliferation, migration, angiogenesis, and neurogenesis. This review summarizes recent advances in biology of chronic wounds and the potential role of GDF11 on wound healing with its regenerative effects, as well as the potential delivery methods of GDF11. The challenges and future perspectives of GDF11-based therapy for chronic wound care are also discussed. The Translational Potential of this Article: This review summarized the significance of GDF11 in the modulation of inflammation, vascularization, cell proliferation, and remodeling, which are important physiological processes of chronic wound healing. The potential delivery methods of GDF11 in the management of chronic wound healing is also summarized. This review may provide potential therapeutic approaches based on GDF11 for chronic wound healing.
Collapse
Affiliation(s)
- Yuan Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Linlong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Bin Wang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China
| |
Collapse
|
127
|
Baklaushev VP, Samoilova EM, Kalsin VA, Yusubalieva GM. Aging and “rejuvenation” of resident stem cells — a new way to active longevity? КЛИНИЧЕСКАЯ ПРАКТИКА 2022; 13:79-91. [DOI: 10.17816/clinpract104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This review presents the current data on the methodology for assessing the biological and epigenetic age, describes the concept of the epigenetic clock, and characterizes the main types of resident stem cells and the specifics of their aging. It has been shown that age-related changes in organs and tissues, as well as age-related diseases, are largely due to the aging of resident stem cells. The latter represent an attractive target for cell rejuvenation, as they can be isolated, cultured ex vivo, modified, and re-introduced into the resident niches. Two main methodologies for the cellular rejuvenation are presented: genetic reprogramming with zeroing the age of a cell using transient expression of transcription factors, and various approaches to epigenetic rejuvenation. The close relationship between aging, regeneration, and oncogenesis, and between these factors and the functioning of resident stem cell niches requires further precision studies, which, we are sure, can result in the creation of an effective anti-aging strategy and prolongation of human active life.
Collapse
|
128
|
Oxfeldt M, Dalgaard LB, Farup J, Hansen M. Sex Hormones and Satellite Cell Regulation in Women. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:9065923. [PMID: 38655160 PMCID: PMC11022763 DOI: 10.1155/2022/9065923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 04/26/2024]
Abstract
Recent years have seen growing scholarly interest in female physiology in general. Moreover, particular attention has been devoted to how concentrations of female sex hormones vary during the menstrual cycle and menopausal transition and how hormonal contraception and hormonal therapy influence skeletal muscle tissue. While much effort has been paid to macro outcomes, such as muscle function or mass, rather less attention has been paid to mechanistic work that may help explain the underlying mechanism through which sex hormones regulate skeletal muscle tissue. Evidence from animal studies shows a strong relationship between the female sex hormone estrogen and satellite cells (SCs), a population of muscle stem cells involved in skeletal muscle regulation. A few human studies investigating this relationship have been published only recently. Thus, the purpose of this study was to bring an updated review on female sex hormones and their role in SC regulation. First, we describe how SCs regulate skeletal muscle maintenance and repair and introduce sex hormone signaling within the muscle. Second, we present evidence from animal studies elucidating how estrogen deficiency and supplementation influence SCs. Third, we present results from investigations from human trials including women whose concentrations of female hormones differ due to menopause, hormone therapy, hormonal contraceptives, and the menstrual cycle. Finally, we discuss research and methodological recommendations for future studies aiming at elucidating the link between female sex hormones and SCs with respect to aging and training.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
129
|
Peng L, Gagliano-Jucá T, Pencina KM, Krishnan S, Li Z, Tracy RP, Jasuja R, Bhasin S. Age Trends in Growth and Differentiation Factor-11 and Myostatin Levels in Healthy Men, and Differential Response to Testosterone, Measured Using Liquid Chromatography-Tandem Mass Spectrometry. J Gerontol A Biol Sci Med Sci 2022; 77:763-769. [PMID: 34037752 PMCID: PMC8974345 DOI: 10.1093/gerona/glab146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Growth and differentiation factor (GDF)-11 controls embryonic development and has been proposed as an antiaging factor. GDF-8 (myostatin) inhibits skeletal muscle growth. Difficulties in accurately measuring circulating GDF-11 and GDF-8 have generated controversy. METHODS We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous measurement of circulating GDF-8 and GDF-11 that employs denaturation, reduction, and alkylation; cation-exchange solid-phase extraction; tryptic digestion; followed by separation and quantification using 2 signature peptides for multiple reaction monitoring and C-terminal [13C615N4]-Arg peptides as internal standards. We evaluated age trends in serum GDF-11 and GDF-8 concentrations in community-dwelling healthy men, 19 years or older, and determined the effects of graded testosterone doses on GDF-8 and GDF-11 concentrations in healthy men in a randomized trial. RESULTS The assay demonstrated linearity over a wide range, lower limit of quantitation 0.5 ng/mL for both proteins, and excellent precision, accuracy, and specificity (no detectable cross-reactivity of GDF-8 in GDF-11 assay or of GDF-11 in GDF-8 assay). Mean ± SD (median ± 1QR) GDF-8 and GDF-11 levels in healthy community-dwelling men, 19 years and older, were 7.2 ± 1.9 (6.8 ± 1.4) ng/mL. Neither GDF-8 nor GDF-11 levels were related to age or body composition. Testosterone treatment significantly increased serum GDF-8 but not GDF-11 levels. CONCLUSIONS The LC-MS/MS method for the simultaneous measurement of circulating total GDF-8 and GDF-11 demonstrates the characteristics of a valid assay. Testosterone treatment increased GDF-8 levels, but not GDF-11. Increase in GDF-8 levels by testosterone treatment, which increased muscle mass, suggests that GDF-8 acts as a chalone to restrain muscle growth.
Collapse
Affiliation(s)
- Liming Peng
- Brigham Research Assay Core Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thiago Gagliano-Jucá
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Karol M Pencina
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Zhuoying Li
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Russell P Tracy
- Larner College of Medicine, University of Vermont, Burlington, USA
| | - Ravi Jasuja
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shalender Bhasin
- Brigham Research Assay Core Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
130
|
Lee SJ, Lehar A, Rydzik R, Youngstrom DW, Bhasin S, Liu Y, Germain-Lee EL. Functional replacement of myostatin with GDF-11 in the germline of mice. Skelet Muscle 2022; 12:7. [PMID: 35287700 PMCID: PMC8922734 DOI: 10.1186/s13395-022-00290-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression. METHODS We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11. RESULTS In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected. CONCLUSIONS GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Adam Lehar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Renata Rydzik
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Shalender Bhasin
- Brigham Research Assay Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA.,Division of Endocrinology & Diabetes and Center for Rare Bone Disorders, Connecticut Children's, Farmington, CT, USA
| |
Collapse
|
131
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
132
|
Mashinchian O, Hong X, Michaud J, Migliavacca E, Lefebvre G, Boss C, De Franceschi F, Le Moal E, Collerette-Tremblay J, Isern J, Metairon S, Raymond F, Descombes P, Bouche N, Muñoz-Cánoves P, Feige JN, Bentzinger CF. In vivo transcriptomic profiling using cell encapsulation identifies effector pathways of systemic aging. eLife 2022; 11:e57393. [PMID: 35245177 PMCID: PMC8926399 DOI: 10.7554/elife.57393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Sustained exposure to a young systemic environment rejuvenates aged organisms and promotes cellular function. However, due to the intrinsic complexity of tissues it remains challenging to pinpoint niche-independent effects of circulating factors on specific cell populations. Here, we describe a method for the encapsulation of human and mouse skeletal muscle progenitors in diffusible polyethersulfone hollow fiber capsules that can be used to profile systemic aging in vivo independent of heterogeneous short-range tissue interactions. We observed that circulating long-range signaling factors in the old systemic environment lead to an activation of Myc and E2F transcription factors, induce senescence, and suppress myogenic differentiation. Importantly, in vitro profiling using young and old serum in 2D culture does not capture all pathways deregulated in encapsulated cells in aged mice. Thus, in vivo transcriptomic profiling using cell encapsulation allows for the characterization of effector pathways of systemic aging with unparalleled accuracy.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
- School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Xiaotong Hong
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
| | | | - Gregory Lefebvre
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
| | - Christophe Boss
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
| | | | - Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de SherbrookeSherbrookeCanada
| | - Jasmin Collerette-Tremblay
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de SherbrookeSherbrookeCanada
| | - Joan Isern
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Sylviane Metairon
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
| | - Frederic Raymond
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
| | - Patrick Descombes
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
| | - Nicolas Bouche
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
| | - Pura Muñoz-Cánoves
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
- Department of Experimental and Health Sciences, Pompeu Fabra University, CIBERNED and ICREA, Barcelona, SpainBarcelonaSpain
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
- School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - C Florian Bentzinger
- Nestlé Institute of Health Sciences, Nestlé ResearchLausanneSwitzerland
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de SherbrookeSherbrookeCanada
| |
Collapse
|
133
|
Chen R, Skutella T. Synergistic Anti-Ageing through Senescent Cells Specific Reprogramming. Cells 2022; 11:830. [PMID: 35269453 PMCID: PMC8909644 DOI: 10.3390/cells11050830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
In this review, we seek a novel strategy for establishing a rejuvenating microenvironment through senescent cells specific reprogramming. We suggest that partial reprogramming can produce a secretory phenotype that facilitates cellular rejuvenation. This strategy is desired for specific partial reprogramming under control to avoid tumour risk and organ failure due to loss of cellular identity. It also alleviates the chronic inflammatory state associated with ageing and secondary senescence in adjacent cells by improving the senescence-associated secretory phenotype. This manuscript also hopes to explore whether intervening in cellular senescence can improve ageing and promote damage repair, in general, to increase people's healthy lifespan and reduce frailty. Feasible and safe clinical translational protocols are critical in rejuvenation by controlled reprogramming advances. This review discusses the limitations and controversies of these advances' application (while organizing the manuscript according to potential clinical translation schemes) to explore directions and hypotheses that have translational value for subsequent research.
Collapse
Affiliation(s)
| | - Thomas Skutella
- Group for Regeneration and Reprogramming, Medical Faculty, Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
134
|
Pence BD. Growth Differentiation Factor-15 in Immunity and Aging. FRONTIERS IN AGING 2022; 3:837575. [PMID: 35821815 PMCID: PMC9261309 DOI: 10.3389/fragi.2022.837575] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022]
Abstract
Aging increases susceptibility to and severity of a variety of chronic and infectious diseases. Underlying this is dysfunction of the immune system, including chronic increases in low-grade inflammation (inflammaging) and age-related immunosuppression (immunosenescence). Growth differentiation factor-15 (GDF-15) is a stress-, infection-, and inflammation-induced cytokine which is increased in aging and suppresses immune responses. This mini review briefly covers existing knowledge on the immunoregulatory and anti-inflammatory roles of GDF-15, as well as its potential importance in aging and immune function.
Collapse
|
135
|
Growth factors, gene activation, and cell recruitment: From intraovarian condensed platelet cytokines to de novo oocyte development. J Clin Transl Res 2022; 8:49-53. [PMID: 35187289 PMCID: PMC8848765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Interest in decelerating or reversing reproductive aging is unlikely to diminish in the era of molecular genetics. For the adult human ovary, meeting the challenge of menopause without synthetic hormone replacement has now moved beyond proof-of-concept, as shown from treatments validated with standard metabolic markers and ovarian reserve estimates. However, without proper recruitment and differentiation of oocytes, such outcomes would be impossible. The full inventory of factors required for such folliculogenesis is not yet final, but growth differentiation factor-9, transforming growth factor-beta1, vascular endothelial growth factor, and insulin-like growth factor-1 are consistently identified as relevant. Platelet-derived growth factor and, more recently, bone morphogenic proteins are also central to cell migration, vascular support, and general ovarian function. Interestingly, when cells secreting these moieties are surgically grafted near undifferentiated oocyte stem precursors, the latency phase transitions to delineate follicle development and restoration of reproductive capacity. Direct intraovarian injection of condensed platelet-derived cytokines (a platelet-rich plasma/PRP product) likewise enables return of menses, ovulation, and term live birth. AIM This report extends our previous work on the proangiogenic effects of intraovarian PRP by connecting clinical responses to specific cytokine-dependent gene activation pathways likely needed to induce oocyte differentiation. RELEVANCE FOR PATIENTS Ovarian rejuvenation is a promising new application for platelet-rich plasma and/or condensed plasma cytokines of platelet origin, which are injected into older ovarian tissue.
Collapse
|
136
|
Chen ZH, Li S, Xu M, Liu CC, Ye H, Wang B, Wu QF. Single-cell Transcriptomic Profiling of the Hypothalamic Median Eminence during Aging. J Genet Genomics 2022; 49:523-536. [PMID: 35032691 DOI: 10.1016/j.jgg.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Aging is a slow and progressive natural process that compromises the normal functions of cells, tissues, organs and systems. The aging of the hypothalamic median eminence (ME), a structural gate linking neural and endocrine systems, may impair hormone release, energy homeostasis and central sensing of circulating molecules, leading to systemic and reproductive aging. However, the molecular and cellular features of ME aging remain largely unknown. Here we describe the transcriptional landscape of young and middle-aged mouse ME at single-cell resolution, revealing the common and cell-type-specific transcriptional changes with age. The transcriptional changes in cell-intrinsic programs, cell-cell crosstalk and cell-extrinsic factors highlight five molecular features of ME aging and also implicate several potentially druggable targets at cellular, signaling and molecular levels. Importantly, our results suggest that vascular and leptomeningeal cells (VLMCs) may lead the asynchronized aging process among diverse cell types and drive local inflammation and cellular senescence via a unique secretome. Together, our study uncovers how intrinsic and extrinsic features of each cell type in the hypothalamic ME are changed by the aging process, which will facilitate our understanding of brain aging and provide clues for efficient anti-aging intervention at the middle-aged stage.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Si Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Candace C Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ben Wang
- Department of Obstetrics and Gynecology, Baoding Second Central Hospital, Baoding, Hebei 072750, China
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Institute for Brain Research, Beijing 102206, China; Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
137
|
Mi L, Hu J, Li N, Gao J, Huo R, Peng X, Zhang N, Liu Y, Zhao H, Liu R, Zhang L, Xu K. The Mechanism of Stem Cell Aging. Stem Cell Rev Rep 2022; 18:1281-1293. [PMID: 35000109 PMCID: PMC9033730 DOI: 10.1007/s12015-021-10317-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
Stem cells have self-renewal ability and multi-directional differentiation potential. They have tissue repair capabilities and are essential for maintaining the tissue homeostasis. The depletion of stem cells is closely related to the occurrence of body aging and aging-related diseases. Therefore, revealing the molecular mechanisms of stem cell aging will set new directions for the therapeutic application of stem cells, the study of aging mechanisms, and the prevention and treatment of aging-related diseases. This review comprehensively describes the molecular mechanisms related to stem cell aging and provides the basis for further investigations aimed at developing new anti-stem cell aging strategies and promoting the clinical application of stem cells.
Collapse
Affiliation(s)
- Liangyu Mi
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Junping Hu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Immunology, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Na Li
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinfang Gao
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Rongxiu Huo
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xinyue Peng
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Na Zhang
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ying Liu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Hanxi Zhao
- Silc Business School, Shanghai University, Shanghai, 200444, China
| | - Ruiling Liu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Immunology, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Liyun Zhang
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ke Xu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
138
|
Barghouth PG, Rojas S, O'Dell LR, Betancourt AM, Oviedo NJ. Analysis of DNA Double-Stranded Breaks Using the Comet Assay in Planarians. Methods Mol Biol 2022; 2450:479-491. [PMID: 35359324 PMCID: PMC9761910 DOI: 10.1007/978-1-0716-2172-1_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Comet assay provides the opportunity to detect and characterize DNA strand breaks. Cellular lysing followed by embedding in agarose slide is used to visualize under an electrical current migration patterns corresponding to DNA fragments of different sizes. Here we describe the process of detecting and characterizing DNA damage by Comet assay on planarians, which is a model organism commonly used to understand the process of whole-body regeneration, stem cell regulation, and adult tissue maintenance.
Collapse
Affiliation(s)
- Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, CA, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, CA, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Lacey R O'Dell
- Department of Molecular & Cell Biology, University of California, Merced, CA, USA
| | - Andrew M Betancourt
- Department of Molecular & Cell Biology, University of California, Merced, CA, USA
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, CA, USA.
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA.
- Health Sciences Research Institute, University of California, Merced, CA, USA.
| |
Collapse
|
139
|
Hong X, Campanario S, Ramírez-Pardo I, Grima-Terrén M, Isern J, Muñoz-Cánoves P. Stem cell aging in the skeletal muscle: The importance of communication. Ageing Res Rev 2022; 73:101528. [PMID: 34818593 DOI: 10.1016/j.arr.2021.101528] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
Adult stem cells sustain tissue homeostasis and regeneration; their functional decline is often linked to aging, which is characterized by the progressive loss of physiological functions across multiple tissues and organs. The resident stem cells in skeletal muscle, termed satellite cells, are normally quiescent but activate upon injury to reconstitute the damaged tissue. In this review, we discuss the current understanding of the molecular processes that contribute to the functional failure of satellite cells during aging. This failure is due not only to intrinsic changes but also to extrinsic factors, most of which are still undefined but originate from the muscle tissue microenvironment of the satellite cells (the niche), or from the systemic environment. We also highlight the emerging applications of the powerful single-cell sequencing technologies in the study of skeletal muscle aging, particularly in the heterogeneity of the satellite cell population and the molecular interaction of satellite cells and other cell types in the niche. An improved understanding of how satellite cells communicate with their environment, and how this communication is perturbed with aging, will be helpful for defining countermeasures against loss of muscle regenerative capacity in sarcopenia.
Collapse
Affiliation(s)
- Xiaotong Hong
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Silvia Campanario
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Ignacio Ramírez-Pardo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Mercedes Grima-Terrén
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain; ICREA, E-08010 Barcelona, Spain.
| |
Collapse
|
140
|
Sun J, Li Y, Yang X, Dong W, Yang J, Hu Q, Zhang C, Fang H, Liu A. Growth differentiation factor 11 accelerates liver senescence through the inhibition of autophagy. Aging Cell 2022; 21:e13532. [PMID: 34905649 PMCID: PMC8761011 DOI: 10.1111/acel.13532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
The “rejuvenating” effect of growth differentiation factor 11 (GDF11) is called into question recently, and its role, as well as plausible signaling mechanisms in liver senescence, is unclear. To overexpress or knockdown GDF11, aged male mice are injected with a single dose of adeno‐associated viruses‐GDF11 or adenovirus‐small hairpin RNA‐GDF11, respectively. GDF11 overexpression significantly accelerates liver senescence in aged mice, whereas GDF11 knockdown has opposite effects. Concomitantly, autophagic flux is impaired in livers from GDF11 overexpression mice. Conversely, GDF11 knockdown increases autophagic flux. Moreover, rapamycin successfully restores the impaired autophagic flux and alleviates liver senescence in GDF11 overexpression mice, while the GDF11 knockdown‐mediated benefits are abolished by the autophagy inhibitor bafilomycin A1. GDF11 leads to a drop in lysosomal biogenesis resulting in defective autophagic flux at autophagosome clearance step. Mechanistically, GDF11 significantly activates mammalian target of rapamycin complex 1 (mTORC1) and subsequently represses transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy. Inhibition of mTORC1 or TFEB overexpression rescues the GDF11‐impaired autophagic flux and cellular senescence. Hepatocyte‐specific deletion of GDF11 does not alter serum GDF11 levels and liver senescence. Collectively, suppression of autophagic activity via mTORC1/TFEB signaling may be a critical molecular mechanism by which GDF11 exacerbates liver senescence. Rather than a “rejuvenating” agent, GDF11 may have a detrimental effect on liver senescence.
Collapse
Affiliation(s)
- Jian Sun
- Department of Biliopancreatic Surgery Sun Yat‐sen Memorial Hospital,Sun Yat‐sen University Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Sun Yat‐sen Memorial Hospital,Sun Yat‐sen University Guangzhou, Guangdong China
| | - Ying Li
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Xiao Yang
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Wei Dong
- Hepatic Surgery Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary Diseases Hubei Clinical Medicine Research Center of Hepatic Surgery Wuhan, Hubei China
- Key Laboratory of Organ Transplantation,Ministry of Education;NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan, Hubei China
| | - Jiankun Yang
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Qi Hu
- Department of Geriatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Cuntai Zhang
- Department of Geriatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Haoshu Fang
- Department of Pathophysiology Anhui Medical University Hefei, Anhui China
| | - Anding Liu
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| |
Collapse
|
141
|
Su HH, Yen JC, Liao JM, Wang YH, Liu PH, MacDonald IJ, Tsai CF, Chen YH, Huang SS. In situ slow-release recombinant growth differentiation factor 11 exhibits therapeutic efficacy in ischemic stroke. Biomed Pharmacother 2021; 144:112290. [PMID: 34673423 DOI: 10.1016/j.biopha.2021.112290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Systemic growth differentiation factor 11 (GDF11) treatment improves the vasculature in the hippocampus and cortex in mice in recent studies. However, systemic application of recombinant GDF11 (rGDF11) cannot cross the brain blood barrier (BBB). Thus, large doses and long-term administration are required, while systemically applied high-dose rGDF11 is associated with deleterious effects, such as severe cachexia. This study tested whether in situ low dosage rGDF11 (1 μg/kg) protects the brain against ischemic stroke and it investigated the underlying mechanisms. Fibrin glue mixed with rGDF11 was applied to the surgical cortex for the slow release of rGDF11 in mice after permanent middle cerebral artery occlusion (MCAO). In situ rGDF11 improved cerebral infarction and sensorimotor function by upregulating Smad2/3 and downregulating FOXO3 expression. In situ rGDF11 was associated with reductions in protein and lipid oxidation, Wnt5a, iNOS and COX2 expression, at 24 h after injury. In situ rGDF11 protected hippocampal neurons and subventricular neural progenitor cells against MCAO injury, and increased newborn neurogenesis in the peri-infarct cortex. Systematic profiling and qPCR analysis revealed that Pax5, Sox3, Th, and Cdk5rap2, genes associated with neurogenesis, were increased by in situ rGDF11 treatment. In addition, greater numbers of newborn neurons in the peri-infarct cortex were observed with in situ rGDF11 than with systemic application. Our evidence indicates that in situ rGDF11 effectively decreases the extent of damage after ischemic stroke via antioxidative, anti-inflammatory and proneurogenic activities. We suggest that in situ slow-release rGDF11 with fibrin glue is a potential therapeutic approach against ischemic stroke.
Collapse
Affiliation(s)
- Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC; Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC
| | - Jiin-Cherng Yen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Yi-Hsin Wang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Pei-Hsun Liu
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Iona J MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC
| | - Chin-Feng Tsai
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC.
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan,ROC; Department of Computer Science and Information Engineering, Asia University, Wufeng, Taichung, 41354, Taiwan.
| | - Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC.
| |
Collapse
|
142
|
de Lucia C, Murphy T, Maruszak A, Wright P, Powell TR, Hartopp N, de Jong S, O'Sullivan MJ, Breen G, Price J, Lovestone S, Thuret S. Serum from Older Adults Increases Apoptosis and Molecular Aging Markers in Human Hippocampal Progenitor Cells. Aging Dis 2021; 12:2151-2172. [PMID: 34881092 PMCID: PMC8612606 DOI: 10.14336/ad.2021.0409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related alteration in neural stem cell function is linked to neurodegenerative conditions and cognitive decline. In rodents, this can be reversed by exposure to a young systemic milieu and conversely, the old milieu can inhibit stem cell function in young rodents. In this study, we investigated the in vitro effect of the human systemic milieu on human hippocampal progenitor cells (HPCs) using human serum from early adulthood, mid-life and older age. We showed that neuroblast number following serum treatment is predictive of larger dentate gyrus, CA3, CA4 and whole hippocampus volumes and that allogeneic human serum from asymptomatic older individuals induced a two-fold increase in apoptotic cell death of HPCs compared with serum from young adults. General linear models revealed that variability in markers of proliferation and differentiation was partly attributable to use of antihypertensive medication and very mild cognitive decline among older subjects. Finally, using an endophenotype approach and whole-genome expression arrays, we showed upregulation of established and novel ageing molecular hallmarks in response to old serum. Serum from older subjects induced a wide range of cellular and molecular phenotypes, likely reflecting a lifetime of environmental exposures. Our findings support a role for the systemic enviroment in neural stem cell maintenance and are in line with others highlighting a distinction between neurobiological and chronological ageing. Finally, the herein described serum assay can be used by future studies to further analyse the effect of environmental exposures as well as to determine the role of the systemic environment in health and disease.
Collapse
Affiliation(s)
- Chiara de Lucia
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tytus Murphy
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aleksandra Maruszak
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Wright
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Timothy R Powell
- 2Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Naomi Hartopp
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Simone de Jong
- 2Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michael J O'Sullivan
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- 3UQ Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Gerome Breen
- 2Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jack Price
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Sandrine Thuret
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
143
|
Picerno A, Stasi A, Franzin R, Curci C, di Bari I, Gesualdo L, Sallustio F. Why stem/progenitor cells lose their regenerative potential. World J Stem Cells 2021; 13:1714-1732. [PMID: 34909119 PMCID: PMC8641024 DOI: 10.4252/wjsc.v13.i11.1714] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, it is clear that adult stem cells, also called as tissue stem cells, play a central role to repair and maintain the tissue in which they reside by their self-renewal ability and capacity of differentiating into distinct and specialized cells. As stem cells age, their renewal ability declines and their capacity to maintain organ homeostasis and regeneration is impaired. From a molecular perspective, these changes in stem cells properties can be due to several types of cell intrinsic injury and DNA aberrant alteration (i.e epigenomic profile) as well as changes in the tissue microenviroment, both into the niche and by systemic circulating factors. Strikingly, it has been suggested that aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Therefore, understanding how resident stem cell age and affects near and distant tissues is fundamental. Here, we examine the current knowledge about aging mechanisms in several kinds of adult stem cells under physiological and pathological conditions and the principal aging-related changes in number, function and phenotype that determine the loss of tissue renewal properties. Furthermore, we examine the possible cell rejuvenation strategies. Stem cell rejuvenation may reverse the aging phenotype and the discovery of effective methods for inducing and differentiating pluripotent stem cells for cell replacement therapies could open up new possibilities for treating age-related diseases.
Collapse
Affiliation(s)
- Angela Picerno
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Rossana Franzin
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Claudia Curci
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Ighli di Bari
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari 70124, Italy
| |
Collapse
|
144
|
Zhou Y, Ni S, Li C, Song L, Zhang S. Gonadal rejuvenation of mice by GDF11. J Gerontol A Biol Sci Med Sci 2021; 77:892-901. [PMID: 34791251 DOI: 10.1093/gerona/glab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/15/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been shown to have rejuvenation and anti-aging properties, but little information is available regarding the role of GDF11 in reproductive system to date. In this study, we first confirmed the bioavailability of recombinant GDF11 (rGDF11) by oral delivery in mice. We also showed that dietary intake of rGDF11 had little influence on body and gonadal (ovary/testis) weights of recipient mice, indicating their general condition and physiology were not affected. Based on these findings, we started to test the function of rGDF11 in ovary and testis of mice and to explore the underlying mechanisms. It was found that to some extent, rGDF11 could attenuate the senescence of ovarian and testicular cells, and contribute to the recovery of ovarian and testicular endocrine functions. Moreover, rGDF11 could rescue the diminished ovarian reserve in female mice and enhance the activities of marker enzymes of testicular function (SDH and G6PD) in male mice, suggesting a potential improvement of fertility. Notably, rGDF11 markedly promoted the activities of antioxidant enzymes in the ovary and testis, and remarkably reduced the levels of lipid peroxidation, protein oxidation and ROS in the ovary and testis. Collectively, these results suggest that GDF11 can protect ovarian and testicular functions of aged mice via slowing down the generation of ROS through enhancing activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shousheng Ni
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
145
|
Restoration of aged hematopoietic cells by their young counterparts through instructive microvesicles release. Aging (Albany NY) 2021; 13:23981-24016. [PMID: 34762598 PMCID: PMC8610119 DOI: 10.18632/aging.203689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
This study addresses the potential to reverse age-associated morbidity by establishing methods to restore the aged hematopoietic system. Parabiotic animal models indicated that young secretome could restore aged tissues, leading us to establish a heterochronic transwell system with aged mobilized peripheral blood (MPB), co-cultured with young MPB or umbilical cord blood (UCB) cells. Functional studies and omics approaches indicate that the miRNA cargo of microvesicles (MVs) restores the aged hematopoietic system. The in vitro findings were validated in immune deficient (NSG) mice carrying an aged hematopoietic system, improving aged hallmarks such as increased lymphoid:myeloid ratio, decreased inflammation and cellular senescence. Elevated MYC and E2F pathways, and decreased p53 were key to hematopoietic restoration. These processes require four restorative miRs that target the genes for transcription/differentiation, namely PAX and phosphatase PPMIF. These miRs when introduced in aged cells were sufficient to restore the aged hematopoietic system in NSG mice. The aged MPBs were the drivers of their own restoration, as evidenced by the changes from distinct baseline miR profiles in MPBs and UCB to comparable expressions after exposure to aged MPBs. Restorative natural killer cells eliminated dormant breast cancer cells in vivo, indicating the broad relevance of this cellular paradigm - preventing and reversing age-associated disorders such as clearance of early malignancies and enhanced responses to vaccine and infection.
Collapse
|
146
|
Mei W, Zhu B, Shu Y, Liang Y, Lin M, He M, Luo H, Ye J. GDF11 protects against glucotoxicity-induced mice retinal microvascular endothelial cell dysfunction and diabetic retinopathy disease. Mol Cell Endocrinol 2021; 537:111422. [PMID: 34391845 DOI: 10.1016/j.mce.2021.111422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been implicated in the regulation of embryonic development and age-related dysfunction, including the regulation of retinal progenitor cells. However, little is known about the functions of GDF11 in diabetic retinopathy. In this study, we demonstrated that GDF11 treatment improved diabetes-induced retinal cell death, capillary degeneration, pericyte loss, inflammation, and blood-retinal barrier breakdown in mice. Treatment of isolated mouse retinal microvascular endothelial cells with recombinant GDF11 in vitro attenuated glucotoxicity-induced retinal endothelial apoptosis and the inflammatory response. The protective mechanisms exerted are associated with TGF-β/Smad2, PI3k-Akt-FoxO1 activation,and NF-κB pathway inhibition. This study indicated that GDF11 is a novel therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Wen Mei
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China; Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China
| | - Biao Zhu
- Department of Stomatology, Fuxing Hospital, Capital Medical University, Fuxingmen Wai Street A 20, Beijing, 100038, China
| | - Yi Shu
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| | - Yanhua Liang
- Department of Ophthalmology, People's Hospital of Jiangmen, Penglai Road 19, Jiangmen, 529000, Guangdong Province, China
| | - Mei Lin
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China.
| | - Mingjuan He
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China
| | - Haizhao Luo
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| | - Jingwen Ye
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| |
Collapse
|
147
|
Li P, Ma Y, Yu C, Wu S, Wang K, Yi H, Liang W. Autophagy and Aging: Roles in Skeletal Muscle, Eye, Brain and Hepatic Tissue. Front Cell Dev Biol 2021; 9:752962. [PMID: 34778264 PMCID: PMC8581214 DOI: 10.3389/fcell.2021.752962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionary conserved degradative process contributing to cytoplasm quality control, metabolic recycling and cell defense. Aging is a universal phenomenon characterized by the progressive accumulation of impaired molecular and reduced turnover of cellular components. Recent evidence suggests a unique role for autophagy in aging and age-related disease. Indeed, autophagic activity declines with age and enhanced autophagy may prevent the progression of many age-related diseases and prolong life span. All tissues experience changes during aging, while the role of autophagy in different tissues varies. This review summarizes the links between autophagy and aging in the whole organism and discusses the physiological and pathological roles of autophagy in the aging process in tissues such as skeletal muscle, eye, brain, and liver.
Collapse
Affiliation(s)
- Ping Li
- College of Life Sciences and Health, Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Yuanzheng Ma
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, China
| | - Chengwei Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shoutong Wu
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Kai Wang
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Hongyang Yi
- Harbin Institute of Technology, Harbin, China
| | | |
Collapse
|
148
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
149
|
Zhang C, Wang D, Wang J, Wang L, Qiu W, Kume T, Dowell R, Yi R. Escape of hair follicle stem cells causes stem cell exhaustion during aging. NATURE AGING 2021; 1:889-903. [PMID: 37118327 PMCID: PMC11323283 DOI: 10.1038/s43587-021-00103-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/25/2021] [Indexed: 04/30/2023]
Abstract
Stem cell (SC) exhaustion is a hallmark of aging. However, the process of SC depletion during aging has not been observed in live animals, and the underlying mechanism contributing to tissue deterioration remains obscure. We find that, in aged mice, epithelial cells escape from the hair follicle (HF) SC compartment to the dermis, contributing to HF miniaturization. Single-cell RNA-seq and assay for transposase-accessible chromatin using sequencing (ATAC-seq) reveal reduced expression of cell adhesion and extracellular matrix genes in aged HF-SCs, many of which are regulated by Foxc1 and Nfatc1. Deletion of Foxc1 and Nfatc1 recapitulates HF miniaturization and causes hair loss. Live imaging captures individual epithelial cells migrating away from the SC compartment and HF disintegration. This study illuminates a hitherto unknown activity of epithelial cells escaping from their niche as a mechanism underlying SC reduction and tissue degeneration. Identification of homeless epithelial cells in aged tissues provides a new perspective for understanding aging-associated diseases.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dongmei Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jingjing Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Li Wang
- 10x Genomics, Pleasanton, CA, USA
| | - Wenli Qiu
- Lung Biology Center, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robin Dowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Rui Yi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
150
|
Wang DX, Zhu XD, Ma XR, Wang LB, Dong ZJ, Lin RR, Cao YN, Zhao JW. Loss of Growth Differentiation Factor 11 Shortens Telomere Length by Downregulating Telomerase Activity. Front Physiol 2021; 12:726345. [PMID: 34588995 PMCID: PMC8473905 DOI: 10.3389/fphys.2021.726345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Maintenance of telomere length is essential to delay replicative cellular senescence. It is controversial on whether growth differentiation factor 11 (GDF11) can reverse cellular senescence, and this work aims to establish the causality between GDF11 and the telomere maintenance unequivocally. Using CRISPR/Cas9 technique and a long-term in vitro culture model of cellular senescence, we show here that in vitro genetic deletion of GDF11 causes shortening of telomere length, downregulation of telomeric reverse transcriptase (TERT) and telomeric RNA component (TERC), the key enzyme and the RNA component for extension of the telomere, and reduction of telomerase activity. In contrast, both recombinant and overexpressed GDF11 restore the transcription of TERT in GDF11KO cells to the wild-type level. Furthermore, loss of GDF11-induced telomere shortening is likely caused by enhancing the nuclear entry of SMAD2 which inhibits the transcription of TERT and TERC. Our results provide the first proof-of-cause-and-effect evidence that endogenous GDF11 plays a causal role for proliferative cells to maintain telomere length, paving the way for potential rejuvenation of the proliferative cells, tissues, and organs.
Collapse
Affiliation(s)
- Di-Xian Wang
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu-Dong Zhu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Xiao-Ru Ma
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Bin Wang
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhao-Jun Dong
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong-Rong Lin
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Na Cao
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Wei Zhao
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|