101
|
Lamis A, Siddiqui SW, Ashok T, Patni N, Fatima M, Aneef AN. Hutchinson-Gilford Progeria Syndrome: A Literature Review. Cureus 2022; 14:e28629. [PMID: 36196312 PMCID: PMC9524302 DOI: 10.7759/cureus.28629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging condition that involves genetic mutations, resulting in debilitating phenotypic features. The present state of knowledge on the molecular pathways that contribute to the pathophysiology of HGPS and the techniques being tested in vitro and in vivo to combat progerin toxicity have been discussed here. Nuclear morphological abnormalities, dysregulated gene expression, DNA repair deficiencies, telomere shortening, and genomic instability are all caused by progerin accumulation, all of which impair cellular proliferative capability. In addition, HGPS cells and preclinical animal models have revealed new information about the disease's molecular and cellular pathways and putative mechanisms involved in normal aging. This article has discussed the understanding of the molecular pathways by which progerin expression leads to HGPS and how the advanced therapy options for HGPS patients can help us understand and treat the condition.
Collapse
|
102
|
Liu HY, Liu YY, Zhang YL, Ning Y, Zhang FL, Li DQ. Poly(ADP-ribosyl)ation of acetyltransferase NAT10 by PARP1 is required for its nucleoplasmic translocation and function in response to DNA damage. Cell Commun Signal 2022; 20:127. [PMID: 35986334 PMCID: PMC9389688 DOI: 10.1186/s12964-022-00932-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background N-acetyltransferase 10 (NAT10), an abundant nucleolar protein with both lysine and RNA cytidine acetyltransferase activities, has been implicated in Hutchinson-Gilford progeria syndrome and human cancer. We and others recently demonstrated that NAT10 is translocated from the nucleolus to the nucleoplasm after DNA damage, but the underlying mechanism remains unexplored. Methods The NAT10 and PARP1 knockout (KO) cell lines were generated using CRISPR-Cas9 technology. Knockdown of PARP1 was performed using specific small interfering RNAs targeting PARP1. Cells were irradiated with γ-rays using a 137Cs Gammacell-40 irradiator and subjected to clonogenic survival assays. Co-localization and interaction between NAT10 and MORC2 were examined by immunofluorescent staining and immunoprecipitation assays, respectively. PARylation of NAT10 and translocation of NAT10 were determined by in vitro PARylation assays and immunofluorescent staining, respectively. Results Here, we provide the first evidence that NAT10 underwent covalent PARylation modification following DNA damage, and poly (ADP-ribose) polymerase 1 (PARP1) catalyzed PARylation of NAT10 on three conserved lysine (K) residues (K1016, K1017, and K1020) within its C-terminal nucleolar localization signal motif (residues 983–1025). Notably, mutation of those three PARylation residues on NAT10, pharmacological inhibition of PARP1 activity, or depletion of PARP1 impaired NAT10 nucleoplasmic translocation after DNA damage. Knockdown or inhibition of PARP1 or expression of a PARylation-deficient mutant NAT10 (K3A) attenuated the co-localization and interaction of NAT10 with MORC family CW-type zinc finger 2 (MORC2), a newly identified chromatin-remodeling enzyme involved in DNA damage response, resulting in a decrease in DNA damage-induced MORC2 acetylation at lysine 767. Consequently, expression of a PARylation-defective mutant NAT10 resulted in enhanced cellular sensitivity to DNA damage agents. Conclusion Collectively, these findings indicate that PARP1-mediated PARylation of NAT10 is key for controlling its nucleoplasmic translocation and function in response to DNA damage. Moreover, our findings provide novel mechanistic insights into the sophisticated paradigm of the posttranslational modification-driven cellular response to DNA damage. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00932-1.
Collapse
|
103
|
Hao H, Liu W, Miao Y, Ma L, Yu B, Liu L, Yang C, Zhang K, Chen Z, Yang J, Zheng Z, Zhang B, Deng F, Gong P, Yuan J, Hu Z, Guan W. N4-acetylcytidine regulates the replication and pathogenicity of enterovirus 71. Nucleic Acids Res 2022; 50:9339-9354. [PMID: 35971620 PMCID: PMC9458434 DOI: 10.1093/nar/gkac675] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Chemical modifications are important for RNA function and metabolism. N4-acetylcytidine (ac4C) is critical for the translation and stability of mRNA. Although ac4C is found in RNA viruses, the detailed mechanisms through which ac4C affects viral replication are unclear. Here, we reported that the 5' untranslated region of the enterovirus 71 (EV71) genome was ac4C modified by the host acetyltransferase NAT10. Inhibition of NAT10 and mutation of the ac4C sites within the internal ribosomal entry site (IRES) suppressed EV71 replication. ac4C enhanced viral RNA translation via selective recruitment of PCBP2 to the IRES and boosted RNA stability. Additionally, ac4C increased the binding of RNA-dependent RNA polymerase (3D) to viral RNA. Notably, ac4C-deficient mutant EV71 showed reduced pathogenicity in vivo. Our findings highlighted the essential role of ac4C in EV71 infection and provided insights into potential antiviral treatments.
Collapse
Affiliation(s)
- Haojie Hao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China,Hanshan Normal University, Chaozhou 521041, China,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Weichi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yuanjiu Miao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ma
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocheng Yu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunjie Yang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Kui Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jingwen Yang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Zhenhua Zheng
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Bo Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Fei Deng
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Peng Gong
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jianhui Yuan
- Correspondence may also be addressed to Jianhui Yuan.
| | - Zhangli Hu
- Correspondence may also be addressed to Zhangli Hu.
| | - Wuxiang Guan
- To whom correspondence should be addressed. Tel: +86 27 87197258; Fax: +86 27 87197258;
| |
Collapse
|
104
|
Zhang Y, Deng Z, Sun S, Xie S, Jiang M, Chen B, Gu C, Yang Y. NAT10 acetylates BCL-XL mRNA to promote the proliferation of multiple myeloma cells through PI3K-AKT pathway. Front Oncol 2022; 12:967811. [PMID: 35978804 PMCID: PMC9376478 DOI: 10.3389/fonc.2022.967811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is a clinically distinctive plasma cell malignancy in the bone marrow (BM), in which epigenetic abnormalities are featured prominently. Epigenetic modifications including acetylation have been deemed to contribute to tumorigenesis. N-acetyltransferase 10 (NAT10) is an important regulator of mRNA acetylation in many cancers, however its function in MM is poorly studied. We first analyzed MM clinical databases and found that elevated NAT10 expression conferred a poor prognosis in MM patients. Furthermore, overexpression of NAT10 promoted MM cell proliferation. The correlation analysis of acRIP-seq screened BCL-XL (BCL2L1) as a significant downstream target of NAT10. Further RNA decay assay showed that increased NAT10 improved the stability of BCL-XL mRNA and promoted protein translation to suppress cell apoptosis. NAT10 activated PI3K-AKT pathway and upregulated CDK4/CDK6 to accelerate cellular proliferation. Importantly, inhibition of NAT10 by Remodelin suppressed MM cell growth and induced cell apoptosis. Our findings show the important role of NAT10/BCL-XL axis in promoting MM cell proliferation. Further explorations are needed to fully define the potential of targeting NAT10 therapy in MM treatment.
Collapse
Affiliation(s)
- Yuanjiao Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhendong Deng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Xie
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingmei Jiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
105
|
Zhang L, Bernardo KD, Vickers TA, Tian J, Liang XH, Crooke ST. NAT10 and DDX21 Proteins Interact with RNase H1 and Affect the Performance of Phosphorothioate Oligonucleotides. Nucleic Acid Ther 2022; 32:280-299. [PMID: 35852833 PMCID: PMC9416547 DOI: 10.1089/nat.2021.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNase H1-dependent phosphorothioate oligonucleotides (PS-ASOs) have been developed to treat various diseases through specific degradation of target RNAs. Although many factors or features of RNA and PS-ASOs have been demonstrated to affect antisense activity of PS-ASOs, little is known regarding the roles of RNase H1-associated proteins in PS-ASO performance. In this study, we report that two nucleolar proteins, NAT10 and DDX21, interact with RNase H1 and affect the potency and safety of PS-ASOs. The interactions of these two proteins with RNase H1 were determined using BioID proximity labeling in cells and confirmed biochemically. Reduction of NAT10 and DDX21 decreased PS-ASO activity in cells, and purified NAT10 and DDX21 proteins enhanced RNase H1 cleavage rates, indicating that these two proteins facilitate RNase H1 endoribonuclease activity. Consistently, reduction of these proteins increased the levels of R-loops, and impaired pre-rRNA processing. In addition, reduction of the two proteins increased the cytotoxicity of toxic PS-ASOs, and treatment of toxic PS-ASOs also altered the localization of these proteins. Together, this study shows for the first time that NAT10 and DDX21 interact with RNase H1 protein and enhance its enzymatic activity, contributing to the potency and safety of PS-ASOs.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Karla D. Bernardo
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Timothy A. Vickers
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Jun Tian
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Xue-hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Stanley T. Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| |
Collapse
|
106
|
Zou YJ, Shan MM, Wan X, Liu JC, Zhang KH, Ju JQ, Xing CH, Sun SC. Kinesin KIF15 regulates tubulin acetylation and spindle assembly checkpoint in mouse oocyte meiosis. Cell Mol Life Sci 2022; 79:422. [PMID: 35835966 PMCID: PMC11072983 DOI: 10.1007/s00018-022-04447-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
Microtubule dynamics ensure multiple cellular events during oocyte meiosis, which is critical for the fertilization and early embryo development. KIF15 (also termed Hklp2) is a member of kinesin-12 family motor proteins, which participates in Eg5-related bipolar spindle formation in mitosis. In present study, we explored the roles of KIF15 in mouse oocyte meiosis. KIF15 expressed during oocyte maturation and localized with microtubules. Depletion or inhibition of KIF15 disturbed meiotic cell cycle progression, and the oocytes which extruded the first polar body showed a high aneuploidy rate. Further analysis showed that disruption of KIF15 did not affect spindle morphology but resulted in chromosome misalignment. This might be due to the reduced stability of the K-fibers, which further induced the loss of kinetochore-microtubule attachment and activated spindle assembly checkpoint, showing with the failed release of Bub3 and BubR1. Based on mass spectroscopy analysis and coimmunoprecipitation data we showed that KIF15 was responsible for recruiting HDAC6, NAT10 and SIRT2 to maintain the acetylated tubulin level, which further affected tubulin acetylation for microtubule stability. Taken together, these results suggested that KIF15 was essential for the microtubule acetylation and cell cycle control during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
107
|
Wang Z, Huang Y, Lu W, Liu J, Li X, Zhu S, Liu H, Song Y. c-myc-mediated upregulation of NAT10 facilitates tumor development via cell cycle regulation in non-small cell lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:140. [PMID: 35834140 DOI: 10.1007/s12032-022-01736-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022]
Abstract
N-acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase and has been reported to facilitate tumorigenesis in various cancers, but its role in NSCLC and how it is regulated remain to be assessed. The expression of NAT10 was explored in online databases and our collected clinical specimens. The relationship of NAT10 and clinical characteristics was evaluated using the online databases. Functional analyses were utilized to determine the effect of NAT10 on the proliferation and migration abilities. KEGG pathway analyses were conducted to investigate NAT10-related pathways in NSCLC. The influence of NAT10 on cell cycle was assessed by flow cytometry and cell synchronization assay. The association between c-myc and NAT10 promoter was determined by ChIP. Compared with normal tissue, NAT10 was significantly overexpressed in NSCLC. Upregulated NAT10 was associated with more advanced stage for lung adenocarcinoma and shorter overall survival and first progression time for lung cancer. NAT10 could promote proliferation and migration of NSCLC cells in vitro. c-myc positively regulated the expression of NAT10 as a transcription factor. KEGG pathway analyses indicated that NAT10 was significantly involved in cell cycle regulation, cytokine-cytokine receptor interaction and other pathways. The knockdown of NAT10-induced G1 arrest, which was possibly mediated by the downregulation of cyclin D1.Our findings suggested that c-myc-mediated upregulation of NAT10 promoted the proliferation and migration of NSCLC cells and NAT10 might be a marker for prognosis and a promising target for treatment in NSCLC.
Collapse
Affiliation(s)
- Zimu Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yicong Huang
- Donald Bren School of Information and Computer Sciences, University of California, Irvine, USA
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xinying Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, 210008, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
108
|
Buchinskaya NV, Akhenbekova AZ, Bugybay AA, Kostik MM. Progeria (Hutchinson-Gilford Syndrome): Literature Review and Clinical Case. CURRENT PEDIATRICS 2022; 21:253-264. [DOI: 10.15690/vsp.v21i3.2431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Progeria, or Hutchinson-Gilford Syndrome is a rare disease from the group of laminopathies characterized by premature aging with skin, bones and cardiovascular system lesions. Pathogenesis is based on pathogenic variants in the LMNA gene leading to anomalies in the nuclear membrane morphology, gene expression disruption, chromatin structure changes, mitochondrial dysfunction, DNA repair and alternative splicing defects, and telomere shortening acceleration. Major manifestations of the disease are: skin lesions (scleroderma-like syndrome and pigmented lesions), lipodystrophy, late teeth eruption, teeth crowding, alopecia, nail dystrophy, osteolysis of distal phalanges, hip joints valgus deformation, joints contractures, atherosclerosis, hearing loss, early heart attacks and strokes. Scleroderma-like skin changes, osteoporosis, flexion contractures of hands’ interphalangeal joints, and hip joints osteoarthritis require differential diagnosis with rheumatic diseases. The basic strategy in management of patients with progeria is the prevention and treatment of its cardiovascular manifestations (early strokes and heart attacks, arterial hypertension, and atherosclerosis), as well as the increase of patients’ quality of life and daily activity. The efficacy of therapy in patients with progeria via the use of farnesyltransferase inhibitors (monotherapy; combination with bisphosphonates or statins), retinoids, and 1,25(OH)2 — vitamin D3 is studied. This literature review is updated with clinical case description of a girl with progeria. The diagnosis was confirmed by sequencing of the LMNA gene (Sanger), and previously described pathogenic variant in exon 11 (c.1824C>T, rs58596362) in the heterozygous state (p.Gly608Gly, NM_170707.3) was revealed.
Collapse
Affiliation(s)
| | | | | | - Mikhail M. Kostik
- Saint-Petersburg State Pediatric Medical University; Almazov National Medical Research Centre
| |
Collapse
|
109
|
Chen L, Wang WJ, Liu Q, Wu YK, Wu YW, Jiang Y, Liao XQ, Huang F, Li Y, Shen L, Yu C, Zhang SY, Yan LY, Qiao J, Sha QQ, Fan HY. NAT10-mediated N4-acetylcytidine modification is required for meiosis entry and progression in male germ cells. Nucleic Acids Res 2022; 50:10896-10913. [PMID: 35801907 PMCID: PMC9638909 DOI: 10.1093/nar/gkac594] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2022] Open
Abstract
Post-transcriptional RNA modifications critically regulate various biological processes. N4-acetylcytidine (ac4C) is an epi-transcriptome, which is highly conserved in all species. However, the in vivo physiological functions and regulatory mechanisms of ac4C remain poorly understood, particularly in mammals. In this study, we demonstrate that the only known ac4C writer, N-acetyltransferase 10 (NAT10), plays an essential role in male reproduction. We identified the occurrence of ac4C in the mRNAs of mouse tissues and showed that ac4C undergoes dynamic changes during spermatogenesis. Germ cell-specific ablation of Nat10 severely inhibits meiotic entry and leads to defects in homologous chromosome synapsis, meiotic recombination and repair of DNA double-strand breaks during meiosis. Transcriptomic profiling revealed dysregulation of functional genes in meiotic prophase I after Nat10 deletion. These findings highlight the crucial physiological functions of ac4C modifications in male spermatogenesis and expand our understanding of its role in the regulation of specific physiological processes in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiu-Quan Liao
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Huang
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Li-Ying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- Correspondence may also be addressed to Jie Qiao. Tel: +86 571 88981751;
| | - Qian-Qian Sha
- Correspondence may also be addressed to Qian-Qian Sha. Tel: +86 20 89169199;
| | - Heng-Yu Fan
- To whom correspondence should be addressed. Tel: +86 571 88981370;
| |
Collapse
|
110
|
Sladitschek-Martens HL, Guarnieri A, Brumana G, Zanconato F, Battilana G, Xiccato RL, Panciera T, Forcato M, Bicciato S, Guzzardo V, Fassan M, Ulliana L, Gandin A, Tripodo C, Foiani M, Brusatin G, Cordenonsi M, Piccolo S. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature 2022; 607:790-798. [PMID: 35768505 PMCID: PMC7613988 DOI: 10.1038/s41586-022-04924-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/01/2022] [Indexed: 02/06/2023]
Abstract
Ageing is intimately connected to the induction of cell senescence1,2, but why this is so remains poorly understood. A key challenge is the identification of pathways that normally suppress senescence, are lost during ageing and are functionally relevant to oppose ageing3. Here we connected the structural and functional decline of ageing tissues to attenuated function of the master effectors of cellular mechanosignalling YAP and TAZ. YAP/TAZ activity declines during physiological ageing in stromal cells, and mimicking such decline through genetic inactivation of YAP/TAZ in these cells leads to accelerated ageing. Conversely, sustaining YAP function rejuvenates old cells and opposes the emergence of ageing-related traits associated with either physiological ageing or accelerated ageing triggered by a mechano-defective extracellular matrix. Ageing traits induced by inactivation of YAP/TAZ are preceded by induction of tissue senescence. This occurs because YAP/TAZ mechanotransduction suppresses cGAS-STING signalling, to the extent that inhibition of STING prevents tissue senescence and premature ageing-related tissue degeneration after YAP/TAZ inactivation. Mechanistically, YAP/TAZ-mediated control of cGAS-STING signalling relies on the unexpected role of YAP/TAZ in preserving nuclear envelope integrity, at least in part through direct transcriptional regulation of lamin B1 and ACTR2, the latter of which is involved in building the peri-nuclear actin cap. The findings demonstrate that declining YAP/TAZ mechanotransduction drives ageing by unleashing cGAS-STING signalling, a pillar of innate immunity. Thus, sustaining YAP/TAZ mechanosignalling or inhibiting STING may represent promising approaches for limiting senescence-associated inflammation and improving healthy ageing.
Collapse
Affiliation(s)
| | | | - Giulia Brumana
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Giusy Battilana
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
| | - Lorenzo Ulliana
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Alessandro Gandin
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Claudio Tripodo
- Department of Health Sciences Unit, Human Pathology Section, University of Palermo, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- University of Milan, Milan, Italy
| | - Giovanna Brusatin
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | | | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
111
|
Stiekema M, Houben F, Verheyen F, Borgers M, Menzel J, Meschkat M, van Zandvoort MAMJ, Ramaekers FCS, Broers JLV. The Role of Lamins in the Nucleoplasmic Reticulum, a Pleiomorphic Organelle That Enhances Nucleo-Cytoplasmic Interplay. Front Cell Dev Biol 2022; 10:914286. [PMID: 35784476 PMCID: PMC9243388 DOI: 10.3389/fcell.2022.914286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Invaginations of the nuclear membrane occur in different shapes, sizes, and compositions. Part of these pleiomorphic invaginations make up the nucleoplasmic reticulum (NR), while others are merely nuclear folds. We define the NR as tubular invaginations consisting of either both the inner and outer nuclear membrane, or only the inner nuclear membrane. Specifically, invaginations of both the inner and outer nuclear membrane are also called type II NR, while those of only the inner nuclear membrane are defined as type I NR. The formation and structure of the NR is determined by proteins associated to the nuclear membrane, which induce a high membrane curvature leading to tubular invaginations. Here we review and discuss the current knowledge of nuclear invaginations and the NR in particular. An increase in tubular invaginations of the nuclear envelope is associated with several pathologies, such as laminopathies, cancer, (reversible) heart failure, and Alzheimer’s disease. Furthermore, viruses can induce both type I and II NR. In laminopathies, the amount of A-type lamins throughout the nucleus is generally decreased or the organization of lamins or lamin-associated proteins is disturbed. Also, lamin overexpression or modulation of lamin farnesylation status impacts NR formation, confirming the importance of lamin processing in NR formation. Virus infections reorganize the nuclear lamina via (de)phosphorylation of lamins, leading to an uneven thickness of the nuclear lamina and in turn lobulation of the nuclear membrane and the formation of invaginations of the inner nuclear membrane. Since most studies on the NR have been performed with cell cultures, we present additional proof for the existence of these structures in vivo, focusing on a variety of differentiated cardiovascular and hematopoietic cells. Furthermore, we substantiate the knowledge of the lamin composition of the NR by super-resolution images of the lamin A/C and B1 organization. Finally, we further highlight the essential role of lamins in NR formation by demonstrating that (over)expression of lamins can induce aberrant NR structures.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Frederik Houben
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Healthcare, PXL University College, Hasselt, Belgium
| | - Fons Verheyen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marcel Borgers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | | | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Aachen, Germany
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- *Correspondence: Jos L. V. Broers,
| |
Collapse
|
112
|
Ma N, Liu H, Wu Y, Yao M, Zhang B. Inhibition of N-Acetyltransferase 10 Suppresses the Progression of Prostate Cancer through Regulation of DNA Replication. Int J Mol Sci 2022; 23:ijms23126573. [PMID: 35743017 PMCID: PMC9223896 DOI: 10.3390/ijms23126573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer suppression through the inhibition of N-acetyltransferase 10 (NAT10) by its specific inhibitor Remodelin has been demonstrated in a variety of human cancers. Here, we report the inhibitory effects of Remodelin on prostate cancer (PCa) cells and the possible associated mechanisms. The prostate cancer cell lines VCaP, LNCaP, PC3, and DU145 were used. The in vitro proliferation, migration, and invasion of cells were measured by a cell proliferation assay, colony formation, wound healing, and Transwell assays, respectively. In vivo tumor growth was analyzed by transplantation into nude mice. The inhibition of NAT10 by Remodelin not only suppressed growth, migration, and invasion in vitro, but also the in vivo cancer growth of prostate cancer cells. The involvement of NAT10 in DNA replication was assessed by EdU labeling, DNA spreading, iPOND, and ChIP-PCR assays. The inhibition of NAT10 by Remodelin slowed DNA replication. NAT10 was detected in the prereplication complex, and it could also bind to DNA replication origins. Furthermore, the interaction between NAT10 and CDC6 was analyzed by Co-IP. The altered expression of NAT10 was measured by immunofluorescence staining and Western blotting. Remodelin markedly reduced the levels of CDC6 and AR. The expression of NAT10 could be altered under either castration or noncastration conditions, and Remodelin still suppressed the growth of in vitro-induced castration-resistant prostate cancers. The analysis of a TCGA database revealed that the overexpression of NAT10, CDC6, and MCM7 in prostate cancers were correlated with the Gleason score and node metastasis. Our data demonstrated that Remodelin, an inhibitor of NAT10, effectively inhibits the growth of prostate cancer cells under either no castration or castration conditions, likely by impairing DNA replication.
Collapse
Affiliation(s)
| | | | | | | | - Bo Zhang
- Correspondence: ; Tel.: +86-10-82802627
| |
Collapse
|
113
|
Bortolin-Cavaillé ML, Quillien A, Thalalla Gamage S, Thomas J, Sas-Chen A, Sharma S, Plisson-Chastang C, Vandel L, Blader P, Lafontaine DLJ, Schwartz S, Meier J, Cavaillé J. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Res 2022; 50:6284-6299. [PMID: 35648437 PMCID: PMC9226516 DOI: 10.1093/nar/gkac404] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 01/06/2023] Open
Abstract
NAT10 is an essential enzyme that catalyzes N4-acetylcytidine (ac4C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.
Collapse
Affiliation(s)
- Marie-Line Bortolin-Cavaillé
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | | | | | - Justin M Thomas
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sunny Sharma
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - Célia Plisson-Chastang
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Laurence Vandel
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Jérôme Cavaillé
- To whom correspondence should be addressed. Tel: +33 561335927; Fax: +33 561335886;
| |
Collapse
|
114
|
Demange P, Joly E, Marcoux J, Zanon PRA, Listunov D, Rullière P, Barthes C, Noirot C, Izquierdo JB, Rozié A, Pradines K, Hee R, de Brito MV, Marcellin M, Serre RF, Bouchez O, Burlet-Schiltz O, Oliveira MCF, Ballereau S, Bernardes-Génisson V, Maraval V, Calsou P, Hacker SM, Génisson Y, Chauvin R, Britton S. SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species. eLife 2022; 11:73913. [PMID: 35535493 PMCID: PMC9090334 DOI: 10.7554/elife.73913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.
Collapse
Affiliation(s)
- Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Patrick R A Zanon
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Dymytrii Listunov
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pauline Rullière
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, Castanet-Tolosan, France
| | - Jean-Baptiste Izquierdo
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Alexandrine Rozié
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Karen Pradines
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Romain Hee
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Maria Vieira de Brito
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | | | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Stephan M Hacker
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Yves Génisson
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Remi Chauvin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|
115
|
Wang G, Zhang M, Zhang Y, Xie Y, Zou J, Zhong J, Zheng Z, Zhou X, Zheng Y, Chen B, Liu C. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med 2022; 12:e738. [PMID: 35522942 PMCID: PMC9076013 DOI: 10.1002/ctm2.738] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dysregulation of the epitranscriptome causes abnormal expression of oncogenes in the tumorigenic process. Previous studies have shown that NAT10 can regulate mRNA translation efficiency through RNA acetylation. However, the role of NAT10-mediated acetylation modification in bladder cancer remains elusive. METHODS The clinical value of NAT10 was estimated according to NAT10 expression pattern based on TCGA data set and the tumor tissue array. Acetylated RNA immunoprecipitation sequencing was utilized to explore the role of NAT10 in mRNA ac4C modification. Translation efficiency and mRNA stability assay were applied to study the effect of NAT10-deletion on target genes. The nude mouse model and genetically engineered mice were conducted to further verify the characteristics of NAT10 in promoting BLCA progression and regulating downstream targets. RESULTS NAT10 was essential for the proliferation, migration, invasion, survival and the stem-cell-like properties of bladder cancer cell lines. NAT10 was responsible for mRNA ac4C modification in BLCA cells, including BCL9L, SOX4 and AKT1. Deficient NAT10 in both xenograft and transgenic mouse models of bladder cancer reduced the tumor burden. Furthermore, acetylated RNA immunoprecipitation sequencing data and RNA immunoprecipitation qPCR results revealed that NAT10 is responsible for a set of ac4C mRNA modifications in bladder cancer cells. Inhibition of NAT10 led to a loss of ac4C peaks in these transcripts and represses the mRNA's stability and protein expression. Mechanistically, the ac4C reduction modification in specific regions of mRNAs resulting from NAT10 downregulation impaired the translation efficiency of BCL9L, SOX4 and AKT1 as well as the stability of BCL9L, SOX4. CONCLUSIONS In summary, these findings provide new insights into the dynamic characteristics of mRNA's post-transcriptional modification via NAT10-dependent acetylation and predict a role for NAT10 as a therapeutic target in bladder cancer. HIGHLIGHTS NAT10 is highly expressed in BLCA patients and its abnormal level predicts bladder cancer progression and low overall survival rate. NAT10 is necessary and sufficient for BLCA tumourigenic properties. NAT10 is responsible for ac4C modification of target transcripts, including BCL9L, SOX4 and AKT1. NAT10 may serve as an effective and novel therapeutic target for BLCA.
Collapse
Affiliation(s)
- Ganping Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yiming Zhang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqi Xie
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiepeng Zou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianye Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhijia Zheng
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xianghui Zhou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhang Zheng
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Binshen Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
116
|
Micropillar-based phenotypic screening platform uncovers involvement of HDAC2 in nuclear deformability. Biomaterials 2022; 286:121564. [DOI: 10.1016/j.biomaterials.2022.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
|
117
|
NAT10 regulates mitotic cell fate by acetylating Eg5 to control bipolar spindle assembly and chromosome segregation. Cell Death Differ 2022; 29:846-860. [PMID: 35210604 PMCID: PMC8989979 DOI: 10.1038/s41418-021-00899-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cell fate of mitotic cell is controlled by spindle assembly. Deficient spindle assembly results in mitotic catastrophe leading to cell death to maintain cellular homeostasis. Therefore, inducing mitotic catastrophe provides a strategy for tumor therapy. Nucleolar acetyltransferase NAT10 has been found to regulate various cellular processes to maintain cell homeostasis. Here we report that NAT10 regulates mitotic cell fate by acetylating Eg5. NAT10 depletion results in multinuclear giant cells, which is the hallmark of mitotic catastrophe. Live-cell imaging showed that knockdown of NAT10 dramatically prolongs the mitotic time and induces defective chromosome segregation including chromosome misalignment, bridge and lagging. NAT10 binds and co-localizes with Eg5 in the centrosome during mitosis. Depletion of NAT10 reduces the centrosome loading of Eg5 and impairs the poleward movement of centrosome, leading to monopolar and asymmetrical spindle formation. Furthermore, NAT10 stabilizes Eg5 through its acetyltransferase function. NAT10 acetylates Eg5 at K771 to control Eg5 stabilization. We generated K771-Ac specific antibody and showed that Eg5 K771-Ac specifically localizes in the centrosome during mitosis. Additionally, K771 acetylation is required for the motor function of Eg5. The hyper-acetylation mimic Flag-Eg5 K771Q but not Flag-Eg5 rescued the NAT10 depletion-induced defective spindle formation and mitotic catastrophe, demonstrating that NAT10 controls mitosis through acetylating Eg5 K771. Collectively, we identify Eg5 as an important substrate of NAT10 in the control of mitosis and provide K771 as an essential acetylation site in the stabilization and motor function of Eg5. Our findings reveal that targeting the NAT10-mediated Eg5 K771 acetylation provides a potential strategy for tumor therapy.
Collapse
|
118
|
Bartee D, Nance KD, Meier JL. Site-Specific Synthesis of N4-Acetylcytidine in RNA Reveals Physiological Duplex Stabilization. J Am Chem Soc 2022; 144:3487-3496. [PMID: 35172571 PMCID: PMC11583671 DOI: 10.1021/jacs.1c11985] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
N4-Acetylcytidine (ac4C) is a post-transcriptional modification of RNA that is conserved across all domains of life. All characterized sites of ac4C in eukaryotic RNA occur in the central nucleotide of a 5'-CCG-3' consensus sequence. However, the thermodynamic consequences of cytidine acetylation in this context have never been assessed due to its challenging synthesis. Here, we report the synthesis and biophysical characterization of ac4C in its endogenous eukaryotic sequence context. First, we develop a synthetic route to homogeneous RNAs containing electrophilic acetyl groups. Next, we use thermal denaturation to interrogate the biochemical effects of ac4C on duplex stability and mismatch discrimination in a native sequence found in human rRNA. Finally, we demonstrate the ability of this chemistry to incorporate ac4C into the complex modification landscape of human tRNA and use duplex melting to highlight an enforcing role for ac4C in this unique sequence context. By enabling ex vivo biophysical analyses of nucleic acid acetylation in its physiological sequence context, these studies establish a chemical foundation for understanding the function of a universally conserved nucleobase in biology and disease.
Collapse
Affiliation(s)
- David Bartee
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Kellie D Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
119
|
Shan MM, Zou YJ, Pan ZN, Zhang HL, Xu Y, Ju JQ, Sun SC. Kinesin motor KIFC1 is required for tubulin acetylation and actin-dependent spindle migration in mouse oocyte meiosis. Development 2022; 149:274327. [DOI: 10.1242/dev.200231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mammalian oocyte maturation is a unique asymmetric division, which is mainly because of actin-based spindle migration to the cortex. In the present study, we report that a kinesin motor KIFC1, which is associated with microtubules for the maintenance of spindle poles in mitosis, is also involved in actin dynamics in murine oocyte meiosis, co-localizing with microtubules during mouse oocyte maturation. Depletion of KIFC1 caused the failure of polar body extrusion, and we found that meiotic spindle formation and chromosome alignment were disrupted. This might be because of the effects of KIFC1 on HDAC6 and NAT10-based tubulin acetylation, which further affected microtubule stability. Mass spectroscopy analysis revealed that KIFC1 also associated with several actin nucleation factors and we found that KIFC1 was essential for the distribution of actin filaments, which further affected spindle migration. Depletion of KIFC1 leaded to aberrant expression of formin 2 and the ARP2/3 complex, and endoplasmic reticulum distribution was also disturbed. Exogenous KIFC1 mRNA supplement could rescue these defects. Taken together, as well as its roles in tubulin acetylation, our study reported a previously undescribed role of kinesin KIFC1 on the regulation of actin dynamics for spindle migration in mouse oocytes.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
120
|
Vahabikashi A, Adam SA, Medalia O, Goldman RD. Nuclear lamins: Structure and function in mechanobiology. APL Bioeng 2022; 6:011503. [PMID: 35146235 PMCID: PMC8810204 DOI: 10.1063/5.0082656] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Nuclear lamins are type V intermediate filament proteins that polymerize into complex filamentous meshworks at the nuclear periphery and in less structured forms throughout the nucleoplasm. Lamins interact with a wide range of nuclear proteins and are involved in numerous nuclear and cellular functions. Within the nucleus, they play roles in chromatin organization and gene regulation, nuclear shape, size, and mechanics, and the organization and anchorage of nuclear pore complexes. At the whole cell level, they are involved in the organization of the cytoskeleton, cell motility, and mechanotransduction. The expression of different lamin isoforms has been associated with developmental progression, differentiation, and tissue-specific functions. Mutations in lamins and their binding proteins result in over 15 distinct human diseases, referred to as laminopathies. The laminopathies include muscular (e.g., Emery-Dreifuss muscular dystrophy and dilated cardiomyopathy), neurological (e.g., microcephaly), and metabolic (e.g., familial partial lipodystrophy) disorders as well as premature aging diseases (e.g., Hutchinson-Gilford Progeria and Werner syndromes). How lamins contribute to the etiology of laminopathies is still unknown. In this review article, we summarize major recent findings on the structure, organization, and multiple functions of lamins in nuclear and more global cellular processes.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
121
|
Wang L, Paudyal SC, Kang Y, Owa M, Liang FX, Spektor A, Knaut H, Sánchez I, Dynlacht BD. Regulators of tubulin polyglutamylation control nuclear shape and cilium disassembly by balancing microtubule and actin assembly. Cell Res 2022; 32:190-209. [PMID: 34782749 PMCID: PMC8807603 DOI: 10.1038/s41422-021-00584-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
Cytoskeletal networks play an important role in regulating nuclear morphology and ciliogenesis. However, the role of microtubule (MT) post-translational modifications in nuclear shape regulation and cilium disassembly has not been explored. Here we identified a novel regulator of the tubulin polyglutamylase complex (TPGC), C11ORF49/CSTPP1, that regulates cytoskeletal organization, nuclear shape, and cilium disassembly. Mechanistically, loss of C11ORF49/CSTPP1 impacts the assembly and stability of the TPGC, which modulates long-chain polyglutamylation levels on microtubules (MTs) and thereby balances the binding of MT-associated proteins and actin nucleators. As a result, loss of TPGC leads to aberrant, enhanced assembly of MTs that penetrate the nucleus, which in turn leads to defects in nuclear shape, and disorganization of cytoplasmic actin that disrupts the YAP/TAZ pathway and cilium disassembly. Further, we showed that C11ORF49/CSTPP1-TPGC plays mechanistically distinct roles in the regulation of nuclear shape and cilium disassembly. Remarkably, disruption of C11ORF49/CSTPP1-TPGC also leads to developmental defects in vivo. Our findings point to an unanticipated nexus that links tubulin polyglutamylation with nuclear shape and ciliogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| | - Sharad C Paudyal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuchen Kang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, New York, NY, USA
| | - Alexander Spektor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Irma Sánchez
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
122
|
Macías Á, Díaz-Larrosa JJ, Blanco Y, Fanjul V, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, da Rocha AM, Ponce-Balbuena D, Allan A, Filgueiras-Rama D, Jalife J, Andrés V. Paclitaxel mitigates structural alterations and cardiac conduction system defects in a mouse model of Hutchinson-Gilford progeria syndrome. Cardiovasc Res 2022; 118:503-516. [PMID: 33624748 PMCID: PMC8803078 DOI: 10.1093/cvr/cvab055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown. METHODS AND RESULTS We conducted studies in heart tissue from progerin-expressing LmnaG609G/G609G (G609G) mice, including microscopy, intracellular calcium dynamics, patch-clamping, in vivo magnetic resonance imaging, and electrocardiography. G609G mouse cardiomyocytes showed tubulin-cytoskeleton disorganization, t-tubular system disruption, sarcomere shortening, altered excitation-contraction coupling, and reductions in ventricular thickening and cardiac index. G609G mice exhibited severe bradycardia, and significant alterations of atrio-ventricular conduction and repolarization. Most importantly, 50% of G609G mice had altered heart rate variability, and sinoatrial block, both significant signs of premature cardiac aging. G609G cardiomyocytes had electrophysiological alterations, which resulted in an elevated action potential plateau and early afterdepolarization bursting, reflecting slower sodium current inactivation and long Ca+2 transient duration, which may also help explain the mild QT prolongation in some HGPS patients. Chronic treatment with low-dose paclitaxel ameliorated structural and functional alterations in G609G hearts. CONCLUSIONS Our results demonstrate that tubulin-cytoskeleton disorganization in progerin-expressing cardiomyocytes causes structural, cardiac conduction, and excitation-contraction coupling defects, all of which can be partially corrected by chronic treatment with low dose paclitaxel.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Anti-Arrhythmia Agents/pharmacology
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Cytoskeleton/pathology
- Disease Models, Animal
- Excitation Contraction Coupling/drug effects
- Female
- Genetic Predisposition to Disease
- Heart Conduction System/drug effects
- Heart Conduction System/metabolism
- Heart Conduction System/physiopathology
- Heart Rate/drug effects
- Lamin Type A/genetics
- Lamin Type A/metabolism
- Male
- Mice, Mutant Strains
- Mutation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Paclitaxel/pharmacology
- Progeria/drug therapy
- Progeria/genetics
- Progeria/metabolism
- Progeria/physiopathology
- Refractory Period, Electrophysiological/drug effects
- Swine
- Swine, Miniature
- Tubulin/metabolism
- Mice
Collapse
Affiliation(s)
- Álvaro Macías
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - J Jaime Díaz-Larrosa
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Yaazan Blanco
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Víctor Fanjul
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Cristina González-Gómez
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Pilar Gonzalo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - María Jesús Andrés-Manzano
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Andre Monteiro da Rocha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Andrew Allan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - David Filgueiras-Rama
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Cardiology, Cardiac Electrophysiology Unit, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Myocardial, Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - José Jalife
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
- Myocardial, Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Vicente Andrés
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
123
|
Janssen AFJ, Breusegem SY, Larrieu D. Current Methods and Pipelines for Image-Based Quantitation of Nuclear Shape and Nuclear Envelope Abnormalities. Cells 2022; 11:347. [PMID: 35159153 PMCID: PMC8834579 DOI: 10.3390/cells11030347] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
Any given cell type has an associated "normal" nuclear morphology, which is important to maintain proper cellular functioning and safeguard genomic integrity. Deviations from this can be indicative of diseases such as cancer or premature aging syndrome. To accurately assess nuclear abnormalities, it is important to use quantitative measures of nuclear morphology. Here, we give an overview of several nuclear abnormalities, including micronuclei, nuclear envelope invaginations, blebs and ruptures, and review the current methods used for image-based quantification of these abnormalities. We discuss several parameters that can be used to quantify nuclear shape and compare their outputs using example images. In addition, we present new pipelines for quantitative analysis of nuclear blebs and invaginations. Quantitative analyses of nuclear aberrations and shape will be important in a wide range of applications, from assessments of cancer cell anomalies to studies of nucleus deformability under mechanical or other types of stress.
Collapse
Affiliation(s)
| | | | - Delphine Larrieu
- Department of Clinical Biochemistry, Addenbrookes Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; (A.F.J.J.); (S.Y.B.)
| |
Collapse
|
124
|
NAT10 promotes cell proliferation by acetylating CEP170 mRNA to enhance translation efficiency in multiple myeloma. Acta Pharm Sin B 2022; 12:3313-3325. [PMID: 35967285 PMCID: PMC9366180 DOI: 10.1016/j.apsb.2022.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
|
125
|
Singh I, Lele TP. Nuclear Morphological Abnormalities in Cancer: A Search for Unifying Mechanisms. Results Probl Cell Differ 2022; 70:443-467. [PMID: 36348118 PMCID: PMC9722227 DOI: 10.1007/978-3-031-06573-6_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
126
|
Yang W, Li HY, Wu YF, Mi RJ, Liu WZ, Shen X, Lu YX, Jiang YH, Ma MJ, Shen HY. ac4C acetylation of RUNX2 catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents ovariectomy-induced bone loss. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:135-147. [PMID: 34513300 PMCID: PMC8413676 DOI: 10.1016/j.omtn.2021.06.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/25/2021] [Indexed: 12/16/2022]
Abstract
N-acetyltransferase 10 (NAT10) is the key enzyme for N4-acetylcytidine (ac4C) modification of mRNA, which participates in various cellular processes and is related to many diseases. Here, we explore the relationships among osteoblast differentiation, NAT10, and ac4C, and we found that NAT0 expression and the ac4C level of total RNA were decreased in the bone tissues of bilateral ovariectomized (OVX) mice and osteoporosis patients. Adenoviruses overexpressing NAT10 reversed bone loss, and Remodelin, an NAT10 inhibitor, enhanced the loss of bone mass in OVX mice. Moreover, bone marrow-derived mesenchymal stem cells (BMSCs) with low-level ac4C modification formed fewer calcium nodules in vitro with NAT10 silencing, whereas BMSCs with high-level ac4C modification formed more calcium nodules with NAT10 overexpression. Moreover, we demonstrated that the ac4C level of runt-related transcription factor 2 (RUNX2) mRNA was increased after BMSCs were cultured in osteogenic medium (OM) and decreased after NAT10 silencing. The RUNX2 mRNA half-life and protein expression decreased after silencing NAT10 in BMSCs. Therefore, NAT10-based ac4C modification promotes the osteogenic differentiation of BMSCs by regulating the RUNX2 ac4C level. Because abnormal levels of NAT10 are probably one of the mechanisms responsible for osteoporosis, NAT10 is a new potential therapeutic target for this disease.
Collapse
Affiliation(s)
- W Yang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong 518033, People's Republic of China
| | - H Y Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong 518033, People's Republic of China
| | - Y F Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, People's Republic of China
| | - R J Mi
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, People's Republic of China
| | - W Z Liu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - X Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong 518033, People's Republic of China
| | - Y X Lu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, People's Republic of China
| | - Y H Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong 518033, People's Republic of China
| | - M J Ma
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong 518033, People's Republic of China
| | - H Y Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong 518033, People's Republic of China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| |
Collapse
|
127
|
Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus 2021; 12:21-41. [PMID: 33435791 PMCID: PMC7889174 DOI: 10.1080/19491034.2021.1874135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
Collapse
Affiliation(s)
- Norma E. Padilla-Mejia
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexandr A. Makarov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lael D. Barlow
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Erin R. Butterfield
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České, Czech Republic
| |
Collapse
|
128
|
The RNA modification in Echinococcus granulosus cysts revealed by mass spectrometry. INFECTION GENETICS AND EVOLUTION 2021; 96:105124. [PMID: 34710588 DOI: 10.1016/j.meegid.2021.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022]
Abstract
RNA modifications, as one of epigenetic mechanisms, are important and conserved mechanisms for maintaining the homeostasis of organisms. Little is known about RNA modifications in Echinococcus granulosus, an obligate parasite that inhabits mammals and gives rise to a huge public health and economic impact. Here, we focused on the RNA modification characteristics of E. granulosus for the first time by using mass spectrometry (UPLC-MS/MS) to qualitatively and quantitatively analyze 47 types of RNA modifications in E. granulosus total RNA. Furthermore, the E. granulosus homologs of writer enzymes preforming RNA modifications were identified, and their gene expression pattern at different developmental stages were analyzed by bioinformatics analysis. Finally, 23 types of RNA modifications were found in E. granulosus cysts total RNA, of which m1A, Ψ and m5C are the most abundant. The homologs of writer enzymes involved in these modifications were identified in the E. granulosus genome, with the dynamic gene expression during the different parasitic developmental stages. This work confirms that E. granulosus retains the conserved RNA modification mechanism during evolution, suggesting the important role of RNA modification in regulating its development and parasitic process. Moreover, the differences of amino acid sequences of RNA modification writer enzymes between parasite and host make it possible to use these enzymes as the candidate drug targets in the follow-up in-depth researches.
Collapse
|
129
|
Preclinical Advances of Therapies for Laminopathies. J Clin Med 2021; 10:jcm10214834. [PMID: 34768351 PMCID: PMC8584472 DOI: 10.3390/jcm10214834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Laminopathies are a group of rare disorders due to mutation in LMNA gene. Depending on the mutation, they may affect striated muscles, adipose tissues, nerves or are multisystemic with various accelerated ageing syndromes. Although the diverse pathomechanisms responsible for laminopathies are not fully understood, several therapeutic approaches have been evaluated in patient cells or animal models, ranging from gene therapies to cell and drug therapies. This review is focused on these therapies with a strong focus on striated muscle laminopathies and premature ageing syndromes.
Collapse
|
130
|
Dalhat MH, Mohammed MRS, Ahmad A, Khan MI, Choudhry H. Remodelin, a N-acetyltransferase 10 (NAT10) inhibitor, alters mitochondrial lipid metabolism in cancer cells. J Cell Biochem 2021; 122:1936-1945. [PMID: 34605570 DOI: 10.1002/jcb.30155] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
Remodelin is a small molecule inhibitor of N-acetyltransferase 10 (NAT10), reported to reverse the effect of cancer conditions such as epithelial to mesenchymal transition, hypoxia, and drug resistance. We analysed RNA seq data of siNAT10 and found many metabolic pathways were altered, this made us perform unbiased metabolic analysis. Here we performed untargeted metabolomics in Remodelin treated cancer cells using high-performance liquid chromatography-tandem mass spectrometry. Statistical analysis revealed a total number of 138 of which 52 metabolites were significantly modified in Remodelin treated cells. Among the most significantly altered metabolites, we identified metabolites related with mitochondrial fatty acid elongation (MFAE) and mitochondrial beta-oxidation such as lauroyl-CoA, cholesterol, triglycerides, (S)-3-hydroxyhexadecanoyl-CoA, and NAD+ . Furthermore, assessment showed alteration in expression of Enoyl-CoA hydratase, short chain 1, mitochondrial (ECHS1), and Mitochondrial trans-2-enoyl-CoA reductase (MECR) genes, associated with MFAE pathway. We also found statistically significant decrease in total cholesterol and triglycerides in Remodelin treated cancer cells. Overall, our results showed that Remodelin alters mitochondrial fatty acid metabolism and lipid accumulation in cancer cells. Finally, we validated these results in NAT10 knockdown cancer cells and found that NAT10 reduction results in alteration in gene expression associated with mitochondrial fatty acid metabolism, clearly suggesting the possible role of NAT10 in maintaining mitochondrial fatty acid metabolism.
Collapse
Affiliation(s)
- Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Razeeth Shait Mohammed
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
131
|
Tao W, Tian G, Xu S, Li J, Zhang Z, Li J. NAT10 as a potential prognostic biomarker and therapeutic target for HNSCC. Cancer Cell Int 2021; 21:413. [PMID: 34362389 PMCID: PMC8344148 DOI: 10.1186/s12935-021-02124-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has demonstrated the critical roles of mRNA modification regulators on multiple types of cancers. However, it is still poorly known about the prognostic and therapeutic value of mRNA modification regulators in HNSCC. Methods The gene expression profile of 36 mRNA modification regulators and their corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Stepwise regression in R with both directions was used to construct a model for the prognosis of HNSCC. Univariate Cox regression survival analysis was performed to identify the most significant risk gene. Gene set enrichment analysis (GSEA) was applied to determine the cancer-associated pathways with NAT10. Immunohistochemistry (IHC) staining was performed to evaluate the expression of NAT10 in formalin fixed paraffin-embedded (FFPE) samples of HNSCC. Univariate and multivariate Cox regression survival analysis performed to identify the independent risk factors associated with the OS of patients with HNSCC. HNSCC cell lines (Cal-27, FaDu, and Detroit-562) were transfected with short interfering RNA (siRNA) targeting NAT10 or treated with Remodelin, a small-molecule inhibitor of NAT10. Knockdown efficiency of siRNA was assessed by quantitative real-time PCR (qRT-PCR) and western blotting. In addition, CCK-8 assay, scratch assay and transwell assay were used to examine the proliferation, migration, and invasion abilities of the three HNSCC cell lines after NAT10 was inhibited genetically and pharmaceutically. Cell cycle and cell apoptosis assays were performed by flow cytometry. Finally, the therapeutic value of Remodelin in HNSCC was evaluated via a patient-derived xenograft (PDX) model. The statistical analysis was performed with SPSS 23.0. Results A risk prediction model containing 10 mRNA modification regulators was constructed and showed prognostic value in HNSCC. NAT10 was further identified as a key risk gene and independent prognostic factor in TCGA HNSCC dataset. The GSEA analysis suggested that high NAT10 expression was associated with MYC, E2F, G2M checkpoint, mTORC1, DNA repair and oxidative phosphorylation pathways. NAT10 protein expression was significantly up-regulated in tumour cells compared to normal epithelial cells in FFPE samples and increased NAT10 protein expression was correlated with poor overall survival of 267 HNSCC patients. Genetic depletion of NAT10 using siRNA or chemical inhibition of NAT10 using Remodelin resulted in reduced cell proliferation, migration and invasion abilities in Cal-27, FaDu and Detroit-562 cells. Knockdown of NAT10 using siRNA significantly increased cell cycle arrest in S/G2-phase. Remodelin significantly inhibited tumour growth and tumour cell proliferation in the PDX model of HNSCC. Conclusions NAT10 could be a potential prognostic marker and a therapeutic target for HNSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02124-2.
Collapse
Affiliation(s)
- Wenjie Tao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Guocai Tian
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Shengming Xu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Jiayi Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China. .,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China.
| | - Jiang Li
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China. .,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China. .,Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
132
|
Bartee D, Thalalla Gamage S, Link CN, Meier JL. Arrow pushing in RNA modification sequencing. Chem Soc Rev 2021; 50:9482-9502. [PMID: 34259263 DOI: 10.1039/d1cs00214g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methods to accurately determine the location and abundance of RNA modifications are critical to understanding their functional role. In this review, we describe recent efforts in which chemical reactivity and next-generation sequencing have been integrated to detect modified nucleotides in RNA. For eleven exemplary modifications, we detail chemical, enzymatic, and metabolic labeling protocols that can be used to differentiate them from canonical nucleobases. By emphasizing the molecular rationale underlying these detection methods, our survey highlights new opportunities for chemistry to define the role of RNA modifications in disease.
Collapse
Affiliation(s)
- David Bartee
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler St, Frederick, MD 21702, USA.
| | - Supuni Thalalla Gamage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler St, Frederick, MD 21702, USA.
| | - Courtney N Link
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler St, Frederick, MD 21702, USA.
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler St, Frederick, MD 21702, USA.
| |
Collapse
|
133
|
Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-Molecule Therapeutic Perspectives for the Treatment of Progeria. Int J Mol Sci 2021; 22:7190. [PMID: 34281245 PMCID: PMC8267806 DOI: 10.3390/ijms22137190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), or progeria, is an extremely rare disorder that belongs to the class of laminopathies, diseases characterized by alterations in the genes that encode for the lamin proteins or for their associated interacting proteins. In particular, progeria is caused by a point mutation in the gene that codifies for the lamin A gene. This mutation ultimately leads to the biosynthesis of a mutated version of lamin A called progerin, which accumulates abnormally in the nuclear lamina. This accumulation elicits several alterations at the nuclear, cellular, and tissue levels that are phenotypically reflected in a systemic disorder with important alterations, mainly in the cardiovascular system, bones, skin, and overall growth, which results in premature death at an average age of 14.5 years. In 2020, lonafarnib became the first (and only) FDA approved drug for treating progeria. In this context, the present review focuses on the different therapeutic strategies currently under development, with special attention to the new small molecules described in recent years, which may represent the upcoming first-in-class drugs with new mechanisms of action endowed with effectiveness not only to treat but also to cure progeria.
Collapse
Affiliation(s)
| | | | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.M.); (B.M.-R.)
| |
Collapse
|
134
|
Shrimp J, Jing Y, Gamage ST, Nelson KM, Han J, Bryson KM, Montgomery DC, Thomas JM, Nance KD, Sharma S, Fox SD, Andressen T, Sinclair WR, Wu H, Allali-Hassani A, Senisterra G, Vedadi M, Lafontaine D, Dahlin JL, Marmorstein R, Walters MA, Meier JL. Remodelin Is a Cryptic Assay Interference Chemotype That Does Not Inhibit NAT10-Dependent Cytidine Acetylation. ACS Med Chem Lett 2021; 12:887-892. [PMID: 34141066 PMCID: PMC8201477 DOI: 10.1021/acsmedchemlett.0c00193] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Remodelin is a putative small molecule inhibitor of the RNA acetyltransferase NAT10 which has shown preclinical efficacy in models of the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Here we evaluate remodelin's assay interference characteristics and effects on NAT10-catalyzed RNA cytidine acetylation. We find the remodelin chemotype constitutes a cryptic assay interference compound, which does not react with small molecule thiols but demonstrates protein reactivity in ALARM NMR and proteome-wide affinity profiling assays. Biophysical analyses find no direct evidence for interaction of remodelin with the NAT10 acetyltransferase active site. Cellular studies verify that N4-acetylcytidine (ac4C) is a nonredundant target of NAT10 activity in human cell lines and find that this RNA modification is not affected by remodelin treatment in several orthogonal assays. These studies display the potential for remodelin's chemotype to interact with multiple protein targets in cells and indicate remodelin should not be applied as a specific chemical inhibitor of NAT10-catalyzed RNA acetylation.
Collapse
Affiliation(s)
- Jonathan
H. Shrimp
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yihang Jing
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Supuni Thalalla Gamage
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kathryn M. Nelson
- University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph Han
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Keri M. Bryson
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David C. Montgomery
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Justin M. Thomas
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kellie D. Nance
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sunny Sharma
- Department
of Cell Biology and Neuroscience, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Stephen D. Fox
- Protein
Characterization Laboratory, Cancer Research Technology Program, Frederick
National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Thorkell Andressen
- Protein
Characterization Laboratory, Cancer Research Technology Program, Frederick
National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Wilson R. Sinclair
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hong Wu
- Structural
Genomics Consortium, Toronto, Ontario M5G 1L7, Canada
| | | | | | - Masoud Vedadi
- Structural
Genomics Consortium, Toronto, Ontario M5G 1L7, Canada
| | - Denis Lafontaine
- RNA
Molecular Biology, Université Libre
de Bruxelles, Fonds de la Recherche Scientifique
(F.R.S./FNRS), 6041 Gosselies, Belgium
| | - Jayme L. Dahlin
- Department
of Pathology, Brigham and Women’s
Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ronen Marmorstein
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Biochemistry and Biophysics and Abramson Family Cancer Research
Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Jordan L. Meier
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
135
|
Bin Imtiaz MK, Jaeger BN, Bottes S, Machado RAC, Vidmar M, Moore DL, Jessberger S. Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell 2021; 28:967-977.e8. [PMID: 33631115 DOI: 10.1016/j.stem.2021.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/19/2020] [Accepted: 01/21/2021] [Indexed: 01/04/2023]
Abstract
Neural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus. With advancing age, levels of neurogenesis sharply drop, which has been associated with a decline in hippocampal memory function. However, cell-intrinsic mechanisms mediating age-related changes in NSC activity remain largely unknown. Here, we show that the nuclear lamina protein lamin B1 (LB1) is downregulated with age in mouse hippocampal NSCs, whereas protein levels of SUN-domain containing protein 1 (SUN1), previously implicated in Hutchinson-Gilford progeria syndrome (HGPS), increase. Balancing the levels of LB1 and SUN1 in aged NSCs restores the strength of the endoplasmic reticulum diffusion barrier that is associated with segregation of aging factors in proliferating NSCs. Virus-based restoration of LB1 expression in aged NSCs enhances stem cell activity in vitro and increases progenitor cell proliferation and neurogenesis in vivo. Thus, we here identify a mechanism that mediates age-related decline of neurogenesis in the mammalian hippocampus.
Collapse
Affiliation(s)
- Muhammad Khadeesh Bin Imtiaz
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Sara Bottes
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Raquel A C Machado
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Mojca Vidmar
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
136
|
Hedgespeth BA, Birkenheuer AJ, Friedenberg SG, Olby NJ, Meurs KM. A novel missense mutation of the NAT10 gene in a juvenile Schnauzer dog with chronic respiratory tract infections. J Vet Intern Med 2021; 35:1542-1546. [PMID: 33755251 PMCID: PMC8162599 DOI: 10.1111/jvim.16100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
An 18-month-old intact male Schnauzer dog was evaluated for chronic, lifelong respiratory tract infections that were unresponsive to administration of a variety of antibiotics and corticosteroids. The dog developed persistent vomiting and diarrhea around 1 year of age that was minimally responsive to diet change, antibiotics, and corticosteroids. Despite supportive care, the dog was ultimately euthanized at 20 months of age due to persistent respiratory and gastrointestinal disease. Whole genome sequencing discovered a deleterious missense A/C mutation within the NAT10 gene, a gene essential for microtubule acetylation, appropriate ciliary development, and cytokinesis. Pipeline analysis of the genomes of 579 dogs from 55 breeds did not detect this mutation. Though never described in veterinary medicine, NAT10 mutation occurs in humans with ciliary aplasia, suggesting a pathophysiological mechanism for this dog and highlighting an associated mutation or possible novel genetic cause of chronic respiratory infections in dogs.
Collapse
Affiliation(s)
- Barry A. Hedgespeth
- Department of Clinical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Adam J. Birkenheuer
- Department of Clinical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Steven G. Friedenberg
- Department of Veterinary Clinical SciencesUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Natasha J. Olby
- Department of Clinical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kathryn M. Meurs
- Department of Clinical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
137
|
Shokrollahi M, Mekhail K. Interphase microtubules in nuclear organization and genome maintenance. Trends Cell Biol 2021; 31:721-731. [PMID: 33902985 DOI: 10.1016/j.tcb.2021.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Microtubules are major cytoskeletal components mediating fundamental cellular processes, including cell division. Recent evidence suggests that microtubules also regulate the nucleus during the cell cycle's interphase stage. Deciphering such roles of microtubules should uncover direct crosstalk between the nucleus and cytoplasm, impacting genome function and organismal health. Here, we review emerging roles for microtubules in interphase genome regulation. We explore how microtubules exert cytoplasmic forces on the nucleus or transport molecular cargo, including DNA, into or within the nucleus. We also describe how microtubules perform these functions by establishing transient or stable connections with nuclear envelope elements. Lastly, we discuss how the regulation of the nucleus by microtubules impacts genome organization and repair. Together, the literature indicates that interphase microtubules are critical regulators of nuclear structure and genome stability.
Collapse
Affiliation(s)
- Mitra Shokrollahi
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
138
|
Yu C, Xiao JH. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635460. [PMID: 34012501 PMCID: PMC8106771 DOI: 10.1155/2021/6635460] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a term that describes the imbalance between oxidants and antioxidants, leads to the disruption of redox signals and causes molecular damage. Increased oxidative stress from diverse sources has been implicated in most senescence-related diseases and in aging itself. The Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor-erythroid 2-related factor 2 (Nrf2) system can be used to monitor oxidative stress; Keap1-Nrf2 is closely associated with aging and controls the transcription of multiple antioxidant enzymes. Simultaneously, Keap1-Nrf2 signaling is also modulated by a more complex regulatory network, including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C, and mitogen-activated protein kinase. This review presents more information on aging-related molecular mechanisms involving Keap1-Nrf2. Furthermore, we highlight several major signals involved in Nrf2 unbinding from Keap1, including cysteine modification of Keap1 and phosphorylation of Nrf2, PI3K/Akt/glycogen synthase kinase 3β, sequestosome 1, Bach1, and c-Myc. Additionally, we discuss the direct interaction between Keap1-Nrf2 and the mammalian target of rapamycin pathway. In summary, we focus on recent progress in research on the Keap1-Nrf2 system involving oxidative stress and aging, providing an empirical basis for the development of antiaging drugs.
Collapse
Affiliation(s)
- Chao Yu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| |
Collapse
|
139
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
140
|
Thalalla Gamage S, Sas-Chen A, Schwartz S, Meier JL. Quantitative nucleotide resolution profiling of RNA cytidine acetylation by ac4C-seq. Nat Protoc 2021; 16:2286-2307. [PMID: 33772246 DOI: 10.1038/s41596-021-00501-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
A prerequisite to defining the transcriptome-wide functions of RNA modifications is the ability to accurately determine their location. Here, we present N4-acetylcytidine (ac4C) sequencing (ac4C-seq), a protocol for the quantitative single-nucleotide resolution mapping of cytidine acetylation in RNA. This method exploits the kinetically facile chemical reaction of ac4C with sodium cyanoborohydride under acidic conditions to form a reduced nucleobase. RNA is then fragmented, ligated to an adapter at its 3' end and reverse transcribed to introduce a non-cognate nucleotide at reduced ac4C sites. After adapter ligation, library preparation and high-throughput sequencing, a bioinformatic pipeline enables identification of ac4C positions on the basis of the presence of C→T misincorporations in reduced samples but not in controls. Unlike antibody-based approaches, ac4C-seq identifies specific ac4C residues and reports on their level of modification. The ac4C-seq library preparation protocol can be completed in ~4 d for transcriptome-wide sequencing.
Collapse
Affiliation(s)
- Supuni Thalalla Gamage
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
141
|
dos Santos Á, Toseland CP. Regulation of Nuclear Mechanics and the Impact on DNA Damage. Int J Mol Sci 2021; 22:3178. [PMID: 33804722 PMCID: PMC8003950 DOI: 10.3390/ijms22063178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, the nucleus houses the genomic material of the cell. The physical properties of the nucleus and its ability to sense external mechanical cues are tightly linked to the regulation of cellular events, such as gene expression. Nuclear mechanics and morphology are altered in many diseases such as cancer and premature ageing syndromes. Therefore, it is important to understand how different components contribute to nuclear processes, organisation and mechanics, and how they are misregulated in disease. Although, over the years, studies have focused on the nuclear lamina-a mesh of intermediate filament proteins residing between the chromatin and the nuclear membrane-there is growing evidence that chromatin structure and factors that regulate chromatin organisation are essential contributors to the physical properties of the nucleus. Here, we review the main structural components that contribute to the mechanical properties of the nucleus, with particular emphasis on chromatin structure. We also provide an example of how nuclear stiffness can both impact and be affected by cellular processes such as DNA damage and repair.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Christopher P. Toseland
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
142
|
Dahlin JL, Auld DS, Rothenaigner I, Haney S, Sexton JZ, Nissink JWM, Walsh J, Lee JA, Strelow JM, Willard FS, Ferrins L, Baell JB, Walters MA, Hua BK, Hadian K, Wagner BK. Nuisance compounds in cellular assays. Cell Chem Biol 2021; 28:356-370. [PMID: 33592188 PMCID: PMC7979533 DOI: 10.1016/j.chembiol.2021.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/02/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Compounds that exhibit assay interference or undesirable mechanisms of bioactivity ("nuisance compounds") are routinely encountered in cellular assays, including phenotypic and high-content screening assays. Much is known regarding compound-dependent assay interferences in cell-free assays. However, despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably less known about nuisance compounds in more complex cell-based assays. In our view, a major obstacle to realizing the full potential of chemical biology will not just be difficult-to-drug targets or even the sheer number of targets, but rather nuisance compounds, due to their ability to waste significant resources and erode scientific trust. In this review, we summarize our collective academic, government, and industry experiences regarding cellular nuisance compounds. We describe assay design strategies to mitigate the impact of nuisance compounds and suggest best practices to efficiently address these compounds in complex biological settings.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Steve Haney
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jarrod Walsh
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park SK10 4TG, UK
| | | | | | | | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02140, USA
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA
| |
Collapse
|
143
|
Dalhat MH, Altayb HN, Khan MI, Choudhry H. Structural insights of human N-acetyltransferase 10 and identification of its potential novel inhibitors. Sci Rep 2021; 11:6051. [PMID: 33723305 PMCID: PMC7960695 DOI: 10.1038/s41598-021-84908-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
N-acetyltransferase 10 (NAT10), is an acetyltransferase that regulates RNA stability and translation processes. Association of NAT10 with several diseases including cancer, makes it a promising therapeutic target. Remodelin is the only known NAT10 inhibitor, but the structural information related to its binding with NAT10 is still obscure. Here, we predicted the human NAT10 structure using homology modeling that was not available previously and used human NAT10 to identify the novel binding site(s) of Remodelin. The alignment of the modeled human NAT10 showed 24% identity and 37% positivity with crystal structure of tRNA (Met) cytidine acetyltransferase. Molecular docking showed binding of Remodelin with NAT10 in acetyl-CoA binding pocket. Additionally, we screened a library of FDA-approved drugs for the identification of novel inhibitors of NAT10 activity. Binding score showed that four drugs namely, Fosaprepitant (- 11.709), Leucal (- 10.46), Fludarabine (- 10.347) and Dantrolene (- 9.875) bind to NAT10 and have better binding capability when compared with Acetyl-CoA (- 5.691) and Remodelin (- 5.3). Acetyl-CoA, Remodelin, and others exhibit hits for hydrophobic, hydrophilic and hydrogen interactions. Interestingly, Remodelin and others interact with the amino acid residues ILE629, GLY639, GLY641, LEU719, and PHE722 in the Acetyl-CoA binding pocket of NAT10 similar to Acetyl-CoA. Our findings revealed that Fosaprepitant, Leucal, Fludarabine, and Dantrolene are promising molecules that can be tested and developed as potential inhibitors of NAT10 acetyltransferase activity.
Collapse
Affiliation(s)
- Mahmood Hassan Dalhat
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hisham N Altayb
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Imran Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
144
|
The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 2021; 22:375-392. [PMID: 33658722 DOI: 10.1038/s41580-021-00342-0] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Transfer RNA (tRNA) is an adapter molecule that links a specific codon in mRNA with its corresponding amino acid during protein synthesis. tRNAs are enzymatically modified post-transcriptionally. A wide variety of tRNA modifications are found in the tRNA anticodon, which are crucial for precise codon recognition and reading frame maintenance, thereby ensuring accurate and efficient protein synthesis. In addition, tRNA-body regions are also frequently modified and thus stabilized in the cell. Over the past two decades, 16 novel tRNA modifications were discovered in various organisms, and the chemical space of tRNA modification continues to expand. Recent studies have revealed that tRNA modifications can be dynamically altered in response to levels of cellular metabolites and environmental stresses. Importantly, we now understand that deficiencies in tRNA modification can have pathological consequences, which are termed 'RNA modopathies'. Dysregulation of tRNA modification is involved in mitochondrial diseases, neurological disorders and cancer.
Collapse
|
145
|
Puttaraju M, Jackson M, Klein S, Shilo A, Bennett CF, Gordon L, Rigo F, Misteli T. Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson-Gilford progeria syndrome. Nat Med 2021; 27:526-535. [PMID: 33707772 PMCID: PMC10167920 DOI: 10.1038/s41591-021-01262-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, invariably fatal childhood premature aging disorder caused by a pre-messenger RNA (mRNA) splicing defect in the LMNA gene. We used combined in vitro screening and in vivo validation to systematically explore the effects of target sequence, backbone chemistry and mechanism of action to identify optimized antisense oligonucleotides (ASOs) for therapeutic use in HGPS. In a library of 198 ASOs, the most potent ASOs targeted the LMNA exon 12 junction and acted via non-RNase H-mediated mechanisms. Treatment with an optimized lead candidate resulted in extension of lifespan in a mouse model of HGPS. Progerin mRNA levels were robustly reduced in vivo, but the extent of progerin protein reduction differed between tissues, suggesting a long half-life and tissue-specific turnover of progerin in vivo. These results identify a novel therapeutic agent for HGPS and provide insight into the HGPS disease mechanism.
Collapse
Affiliation(s)
- Madaiah Puttaraju
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Asaf Shilo
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Leslie Gordon
- Division of Genetics, Department of Pediatrics, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
146
|
Maran SR, de Lemos Padilha Pitta JL, Dos Santos Vasconcelos CR, McDermott SM, Rezende AM, Silvio Moretti N. Epitranscriptome machinery in Trypanosomatids: New players on the table? Mol Microbiol 2021; 115:942-958. [PMID: 33513291 DOI: 10.1111/mmi.14688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Trypanosoma and Leishmania parasites cause devastating tropical diseases resulting in serious global health consequences. These organisms have complex life cycles with mammalian hosts and insect vectors. The parasites must, therefore, survive in different environments, demanding rapid physiological and metabolic changes. These responses depend upon regulation of gene expression, which primarily occurs posttranscriptionally. Altering the composition or conformation of RNA through nucleotide modifications is one posttranscriptional mechanism of regulating RNA fate and function, and modifications including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and pseudouridine (Ψ), dynamically regulate RNA stability and translation in diverse organisms. Little is known about RNA modifications and their machinery in Trypanosomatids, but we hypothesize that they regulate parasite gene expression and are vital for survival. Here, we identified Trypanosomatid homologs for writers of m1A, m5C, ac4C, and Ψ and analyze their evolutionary relationships. We systematically review the evidence for their functions and assess their potential use as therapeutic targets. This work provides new insights into the roles of these proteins in Trypanosomatid parasite biology and treatment of the diseases they cause and illustrates that Trypanosomatids provide an excellent model system to study RNA modifications, their molecular, cellular, and biological consequences, and their regulation and interplay.
Collapse
Affiliation(s)
- Suellen Rodrigues Maran
- Laboratory of Molecular Biology of Pathogens, Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Nilmar Silvio Moretti
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
147
|
Zi J, Han Q, Gu S, McGrath M, Kane S, Song C, Ge Z. Targeting NAT10 Induces Apoptosis Associated With Enhancing Endoplasmic Reticulum Stress in Acute Myeloid Leukemia Cells. Front Oncol 2020; 10:598107. [PMID: 33425753 PMCID: PMC7793641 DOI: 10.3389/fonc.2020.598107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
N-acetyltransferase 10 (NAT10) has oncogenic properties in many tumors through its role in different cellular biological processes. NAT10 is also a potential biomarker in acute myeloid leukemia (AML); however, the mechanisms underlying NAT10’s contribution to disease states and the effect of targeting NAT10 as a therapeutic target remain unclear. NAT10 was found to be highly expressed in patients with AML, and increased NAT10 expression was associated with poor outcomes. Additionally, targeting NAT10 via the shRNA knockdown and its pharmacotherapeutic inhibitor resulted in inhibition of cell proliferation, induction of cell cycle arrest in the G1 phase, and apoptosis in AML cells. Moreover, NAT10 induces cell cycle arrest by decreasing expression of CDK2, CDK4, CyclinD1, Cyclin E while simultaneously increasing the expression of p16 and p21. Targeting NAT10 induces ER stress through the increased expression of GRP78 and the cleavage of caspase 12, which are classical markers of ER stress. This triggered the Unfolded Protein Response (UPR) pathway by consequently increasing IRE1, CHOP, and PERK expression, all of which play crucial roles in the UPR pathway. Targeting NAT10 also activated the classical apoptotic pathway through the upregulation of the Bax/bak and the concurrent downregulation of Bcl-2. In summary, our data indicate that targeting NAT10 promotes ER stress, triggers the UPR pathway, and activates the Bax/Bcl-2 axis in AML cells. Our results thus indicate a novel mechanism underlying the induction of NAT10 inhibition-mediated apoptosis and reveal the potential for the therapeutic effect of a NAT10 specific inhibitor in AML.
Collapse
Affiliation(s)
- Jie Zi
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Qi Han
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Siyu Gu
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, United States
| | - Shriya Kane
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, United States.,Georgetown University School of Medicine, Washington, DC, United States
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, United States
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
148
|
Dubik N, Mai S. Lamin A/C: Function in Normal and Tumor Cells. Cancers (Basel) 2020; 12:cancers12123688. [PMID: 33316938 PMCID: PMC7764147 DOI: 10.3390/cancers12123688] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to summarize lamin A/C’s currently known functions in both normal and diseased cells. Lamin A/C is a nuclear protein with many functions in cells, such as maintaining a cell’s structural stability, cell motility, mechanosensing, chromosome organization, gene regulation, cell differentiation, DNA damage repair, and telomere protection. Mutations of the lamin A/C gene, incorrect processing of the protein, and lamin A/C deregulation can lead to various diseases and cancer. This review touches on diseases caused by mutation and incorrect processing of lamin A/C, called laminopathies. The effect of lamin A/C deregulation in cancer is also reviewed, and lamin A/C’s potential in helping to diagnose prostate cancers more accurately is discussed. Abstract This review is focused on lamin A/C, a nuclear protein with multiple functions in normal and diseased cells. Its functions, as known to date, are summarized. This summary includes its role in maintaining a cell’s structural stability, cell motility, mechanosensing, chromosome organization, gene regulation, cell differentiation, DNA damage repair, and telomere protection. As lamin A/C has a variety of critical roles within the cell, mutations of the lamin A/C gene and incorrect processing of the protein results in a wide variety of diseases, ranging from striated muscle disorders to accelerated aging diseases. These diseases, collectively termed laminopathies, are also touched upon. Finally, we review the existing evidence of lamin A/C’s deregulation in cancer. Lamin A/C deregulation leads to various traits, including genomic instability and increased tolerance to mechanical insult, which can lead to more aggressive cancer and poorer prognosis. As lamin A/C’s expression in specific cancers varies widely, currently known lamin A/C expression in various cancers is reviewed. Additionally, Lamin A/C’s potential as a biomarker in various cancers and as an aid in more accurately diagnosing intermediate Gleason score prostate cancers is also discussed.
Collapse
|
149
|
Bryson KM, Thalalla-Gamage S, Meier JL. Visualizing RNA Cytidine Acetyltransferase Activity by Northern Blotting. ACTA ACUST UNITED AC 2020; 12:e89. [PMID: 33275333 DOI: 10.1002/cpch.89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytidine acetyltransferases are an emerging class of nucleic-acid-modifying enzymes responsible for the establishment of N4 -acetylcytidine (ac4C) in RNA. In contrast to histone acetyltransferases, whose activity is commonly studied by western blotting, relatively few methods exist for quickly assessing the activity of cytidine acetyltransferases from a biological sample of interest or the distribution of ac4C across different RNA species. In this protocol, we describe a method for analysis of cellular cytidine acetyltransferase activity using dot- and immuno-northern-blotting-based detection. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Detection of N4 -Acetylcytidine in RNA by dot blotting Basic Protocol 2: Visualizing N4 -Acetylcytidine Distribution in RNA by northern blotting.
Collapse
Affiliation(s)
- Keri M Bryson
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland
| | | | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
150
|
Karthiya R, Wasil SM, Khandelia P. Emerging role of N4-acetylcytidine modification of RNA in gene regulation and cellular functions. Mol Biol Rep 2020; 47:9189-9199. [PMID: 33174082 DOI: 10.1007/s11033-020-05963-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
Post-transcriptional chemical modification of RNA is rapidly emerging as a key player in regulating gene expression and has propelled the development of 'epitranscriptomics' or 'RNA epigenetics' as a frontier area of research. Several RNA modifications are known to decorate RNAs and impact its structure and function. One such recently discovered modification is acetylation of RNA i.e. N4-acetylcytidine (ac4C) chemical modification. N4-acetylcytidine is an ancient and evolutionarily conserved modification, which maps to a wide spectrum of RNAs from archaea bacteria to humans. This modification results in a variety of functional outcomes which impact normal development and disease. In this review, we summarize the recent progress, emerging methods, biological implications and the future challenges for ac4C modification.
Collapse
Affiliation(s)
- R Karthiya
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - S Mohammed Wasil
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|