101
|
Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res 2017; 803-805:56-75. [PMID: 28734548 DOI: 10.1016/j.mrfmmm.2017.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Genomic DNA is damaged at an extremely high frequency by both endogenous and environmental factors. An improper response to DNA damage can lead to genome instability, accelerate the aging process and ultimately cause various human diseases, including cancers and neurodegenerative disorders. The mechanisms that underlie the cellular DNA damage response (DDR) are complex and are regulated at many levels, including at the level of post-translational modification (PTM). Since the discovery of ubiquitin in 1975 and ubiquitylation as a form of PTM in the early 1980s, a number of ubiquitin-like modifiers (UBLs) have been identified, including small ubiquitin-like modifiers (SUMOs), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), interferon-stimulated gene 15 (ISG15), human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), ubiquitin-fold modifier 1 (UFRM1), URM1 ubiquitin-related modifier-1 (URM1), autophagy-related protein 12 (ATG12), autophagy-related protein 8 (ATG8), fan ubiquitin-like protein 1 (FUB1) and histone mono-ubiquitylation 1 (HUB1). All of these modifiers have known roles in the cellular response to various forms of stress, and delineating their underlying molecular mechanisms and functions is fundamental in enhancing our understanding of human disease and longevity. To date, however, the molecular mechanisms and functions of these UBLs in the DDR remain largely unknown. This review summarizes the current status of PTMs by UBLs in the DDR and their implication in cancer diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China; Beijing Key Laboratory of DNA Damage Response, Capital Normal University College of Life Sciences, Beijing 100048, China.
| |
Collapse
|
102
|
Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 2017; 216:2259-2271. [PMID: 28684425 PMCID: PMC5551716 DOI: 10.1083/jcb.201703170] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Gilberto and Peter discuss the role of ubiquitylation in the regulation of DNA replication and mitosis. The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation.
Collapse
Affiliation(s)
- Samuel Gilberto
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.,Molecular Life Science PhD Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
103
|
Affiliation(s)
- Vincenzo D'Angiolella
- Department of Oncology, Cancer Research UK and Medical Research Council Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Daniele Guardavaccaro
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
104
|
Ye Y, Tang WK, Zhang T, Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci 2017; 4:39. [PMID: 28660197 PMCID: PMC5468458 DOI: 10.3389/fmolb.2017.00039] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
p97/VCP (known as Cdc48 in S. cerevisiae or TER94 in Drosophila) is one of the most abundant cytosolic ATPases. It is highly conserved from archaebacteria to eukaryotes. In conjunction with a large number of cofactors and adaptors, it couples ATP hydrolysis to segregation of polypeptides from immobile cellular structures such as protein assemblies, membranes, ribosome, and chromatin. This often results in proteasomal degradation of extracted polypeptides. Given the diversity of p97 substrates, this "segregase" activity has profound influence on cellular physiology ranging from protein homeostasis to DNA lesion sensing, and mutations in p97 have been linked to several human diseases. Here we summarize our current understanding of the structure and function of this important cellular machinery and discuss the relevant clinical implications.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
105
|
Abstract
Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.
Collapse
|
106
|
Abstract
The eukaryotic replicative DNA helicase, Mcm2-7, is loaded in inactive form as a double hexameric complex around double-stranded DNA. To ensure that replication origins fire no more than once per S phase, activation of the Mcm2-7 helicase is temporally separated from Mcm2-7 loading in the cell cycle. This 2-step mechanism requires that inactive Mcm2-7 complexes be maintained for variable periods of time in a topologically bound state on chromatin, which may create a steric obstacle to other DNA transactions. We have recently found in the budding yeast, Saccharomyces cerevisiae, that Mcm2-7 double hexamers can respond to collisions with transcription complexes by sliding along the DNA template. Importantly, Mcm2-7 double hexamers remain functional after displacement along DNA and support replication initiation from sites distal to the origin. These results reveal a novel mechanism to specify eukaryotic replication origin sites and to maintain replication origin competence without the need for Mcm2-7 reloading.
Collapse
Affiliation(s)
- Charanya Kumar
- a Molecular Biology Program, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| | - Dirk Remus
- a Molecular Biology Program, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
107
|
Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication. Genes (Basel) 2017; 8:genes8040117. [PMID: 28383499 PMCID: PMC5406864 DOI: 10.3390/genes8040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 01/30/2023] Open
Abstract
The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described.
Collapse
|
108
|
Sonneville R, Moreno SP, Knebel A, Johnson C, Hastie CJ, Gartner A, Gambus A, Labib K. CUL-2 LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat Cell Biol 2017; 19:468-479. [PMID: 28368371 PMCID: PMC5410169 DOI: 10.1038/ncb3500] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Replisome disassembly is the final step of DNA replication in eukaryotes, involving the ubiquitylation and CDC48-dependent dissolution of the CMG helicase (CDC45-MCM-GINS). Using Caenorhabditis elegans early embryos and Xenopus laevis egg extracts, we show that the E3 ligase CUL-2LRR-1 associates with the replisome and drives ubiquitylation and disassembly of CMG, together with the CDC-48 cofactors UFD-1 and NPL-4. Removal of CMG from chromatin in frog egg extracts requires CUL2 neddylation, and our data identify chromatin recruitment of CUL2LRR1 as a key regulated step during DNA replication termination. Interestingly, however, CMG persists on chromatin until prophase in worms that lack CUL-2LRR-1, but is then removed by a mitotic pathway that requires the CDC-48 cofactor UBXN-3, orthologous to the human tumour suppressor FAF1. Partial inactivation of lrr-1 and ubxn-3 leads to synthetic lethality, suggesting future approaches by which a deeper understanding of CMG disassembly in metazoa could be exploited therapeutically.
Collapse
Affiliation(s)
- Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sara Priego Moreno
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
109
|
Maric M, Mukherjee P, Tatham MH, Hay R, Labib K. Ufd1-Npl4 Recruit Cdc48 for Disassembly of Ubiquitylated CMG Helicase at the End of Chromosome Replication. Cell Rep 2017; 18:3033-3042. [PMID: 28355556 PMCID: PMC5382235 DOI: 10.1016/j.celrep.2017.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase is the key regulated step during DNA replication termination in eukaryotes, involving ubiquitylation of the Mcm7 helicase subunit, leading to a disassembly process that requires the Cdc48 "segregase". Here, we employ a screen to identify partners of budding yeast Cdc48 that are important for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. We demonstrate that the ubiquitin-binding Ufd1-Npl4 complex recruits Cdc48 to ubiquitylated CMG. Ubiquitylation of CMG in yeast cell extracts is dependent upon lysine 29 of Mcm7, which is the only detectable site of ubiquitylation both in vitro and in vivo (though in vivo other sites can be modified when K29 is mutated). Mutation of K29 abrogates in vitro recruitment of Ufd1-Npl4-Cdc48 to the CMG helicase, supporting a model whereby Ufd1-Npl4 recruits Cdc48 to ubiquitylated CMG at the end of chromosome replication, thereby driving the disassembly reaction.
Collapse
Affiliation(s)
- Marija Maric
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Progya Mukherjee
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michael H Tatham
- Gene Regulation and Expression Division, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ronald Hay
- Gene Regulation and Expression Division, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
110
|
Dewar JM, Low E, Mann M, Räschle M, Walter JC. CRL2 Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 2017; 31:275-290. [PMID: 28235849 PMCID: PMC5358724 DOI: 10.1101/gad.291799.116] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/30/2017] [Indexed: 01/26/2023]
Abstract
Here, Dewar et al. use a proteomic screen in Xenopus egg extracts to identify factors that are enriched on chromatin when CMG unloading from chromatin, which is a key event during eukaryotic replication termination, is blocked. Their results show that CRL2Lrr1 is a master regulator of replisome disassembly during vertebrate DNA replication termination. A key event during eukaryotic replication termination is the removal of the CMG helicase from chromatin. CMG unloading involves ubiquitylation of its Mcm7 subunit and the action of the p97 ATPase. Using a proteomic screen in Xenopus egg extracts, we identified factors that are enriched on chromatin when CMG unloading is blocked. This approach identified the E3 ubiquitin ligase CRL2Lrr1, a specific p97 complex, other potential regulators of termination, and many replisome components. We show that Mcm7 ubiquitylation and CRL2Lrr1 binding to chromatin are temporally linked and occur only during replication termination. In the absence of CRL2Lrr1, Mcm7 is not ubiquitylated, CMG unloading is inhibited, and a large subcomplex of the vertebrate replisome that includes DNA Pol ε is retained on DNA. Our data identify CRL2Lrr1 as a master regulator of replisome disassembly during vertebrate DNA replication termination.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Emily Low
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
111
|
Abstract
Anomalies in dismantling the machinery of DNA replication can compromise genome integrity and contribute to tumorigenesis and aging. In this issue of Genes & Development, Dewar and colleagues (pp. 275-290) identified an E3 ubiquitin ligase, CUL2LRR2, that modifies a subunit of the replicative CMG (Cdc45, minichromosome maintenance [MCM] subunits 2-7, and the GINS complex) helicase and triggers disassembly of the replication machinery. Their study offers critical insight into the mechanism of DNA replication termination while at the same time raising important questions for future research.
Collapse
Affiliation(s)
- David Akopian
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
112
|
Matson JP, Cook JG. Cell cycle proliferation decisions: the impact of single cell analyses. FEBS J 2017; 284:362-375. [PMID: 27634578 PMCID: PMC5296213 DOI: 10.1111/febs.13898] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/23/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022]
Abstract
Cell proliferation is a fundamental requirement for organismal development and homeostasis. The mammalian cell division cycle is tightly controlled to ensure complete and precise genome duplication and segregation of replicated chromosomes to daughter cells. The onset of DNA replication marks an irreversible commitment to cell division, and the accumulated efforts of many decades of molecular and cellular studies have probed this cellular decision, commonly called the restriction point. Despite a long-standing conceptual framework of the restriction point for progression through G1 phase into S phase or exit from G1 phase to quiescence (G0), recent technical advances in quantitative single cell analysis of mammalian cells have provided new insights. Significant intercellular heterogeneity revealed by single cell studies and the discovery of discrete subpopulations in proliferating cultures suggests the need for an even more nuanced understanding of cell proliferation decisions. In this review, we describe some of the recent developments in the cell cycle field made possible by quantitative single cell experimental approaches.
Collapse
Affiliation(s)
- Jacob P. Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill. Chapel Hill, North Carolina 27599
| | - Jeanette G. Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill. Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill. Chapel Hill, North Carolina 27599
| |
Collapse
|
113
|
Ravoitytė B, Wellinger RE. Non-Canonical Replication Initiation: You're Fired! Genes (Basel) 2017; 8:genes8020054. [PMID: 28134821 PMCID: PMC5333043 DOI: 10.3390/genes8020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis-acting DNA sequences, the so-called origins of replication (ori), with trans-acting factors involved in the onset of DNA synthesis. The interplay of cis-acting elements and trans-acting factors ensures that cells initiate replication at sequence-specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause break-induced (BIR) or transcription-initiated replication (TIR), respectively. These non-canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non-canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Nature Research Centre, Akademijos g. 2, LT-08412 Vilnius, Lithuania.
| | - Ralf Erik Wellinger
- CABIMER-Universidad de Sevilla, Avd Americo Vespucio sn, 41092 Sevilla, Spain.
| |
Collapse
|
114
|
Villa-Hernández S, Bueno A, Bermejo R. The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:395-419. [PMID: 29357068 DOI: 10.1007/978-981-10-6955-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA replication is essential for the propagation of life and the development of complex organisms. However, replication is a risky process as it can lead to mutations and chromosomal alterations. Conditions challenging DNA synthesis by replicative polymerases or DNA helix unwinding, generally termed as replication stress, can halt replication fork progression. Stalled replication forks are unstable, and mechanisms exist to protect their integrity, which promote an efficient restart of DNA synthesis and counteract fork collapse characterized by the accumulation of DNA lesions and mutagenic events. DNA replication is a highly regulated process, and several mechanisms control replication timing and integrity both during unperturbed cell cycles and in response to replication stress. Work over the last two decades has revealed that key steps of DNA replication are controlled by conjugation of the small peptide ubiquitin. While ubiquitylation was traditionally linked to protein degradation, the complexity and flexibility of the ubiquitin system in regulating protein function have recently emerged. Here we review the multiple roles exerted by ubiquitin-conjugating enzymes and ubiquitin-specific proteases, as well as readers of ubiquitin chains, in the control of eukaryotic DNA replication and replication-coupled DNA damage tolerance and repair.
Collapse
Affiliation(s)
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
115
|
Wei L, Zhao X. Roles of SUMO in Replication Initiation, Progression, and Termination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:371-393. [PMID: 29357067 PMCID: PMC6643980 DOI: 10.1007/978-981-10-6955-0_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accurate genome duplication during cell division is essential for life. This process is accomplished by the close collaboration between replication factors and many additional proteins that provide assistant roles. Replication factors establish the replication machineries capable of copying billions of nucleotides, while regulatory proteins help to achieve accuracy and efficiency of replication. Among regulatory proteins, protein modification enzymes can bestow fast and reversible changes to many targets, leading to coordinated effects on replication. Recent studies have begun to elucidate how one type of protein modification, sumoylation, can modify replication proteins and regulate genome duplication through multiple mechanisms. This chapter summarizes these new findings, and how they can integrate with the known regulatory circuitries of replication. As this area of research is still at its infancy, many outstanding questions remain to be explored, and we discuss these issues in light of the new advances.
Collapse
Affiliation(s)
- Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
116
|
Gambus A. Termination of Eukaryotic Replication Forks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:163-187. [DOI: 10.1007/978-981-10-6955-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
117
|
VCP/p97 regulates β 2AR quality control during receptor biosynthesis. Cell Signal 2016; 30:50-58. [PMID: 27887991 DOI: 10.1016/j.cellsig.2016.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022]
Abstract
GPCRs form signalling complexes with other receptors as part of dimers, G proteins and effector partners. A proteomic screen to identify proteins that associate with the β2-adrenergic receptor (β2AR) identified many of components of the Endoplasmic-Reticulum-Associated Degradation (ERAD) quality control system [1], including the valosin-containing protein (VCP/p97). Here, we validated the interaction of VCP with co-expressed FLAG-β2AR, demonstrating, using an inducible expression system, that the interaction of FLAG-β2AR and VCP is not an artifact of overexpression of the β2AR per se. We knocked down VCP and noted that levels of FLAG-β2AR were increased in cells with lower VCP levels. This increase in the level of FLAG-β2AR did not lead to an increase in the level of functional receptor observed at the cell surface. Similarly, inhibition of the proteasome lead to a dramatic increase in the abundance of TAP-β2AR, while cellular responses again remained unchanged. Taken together, our data suggests that a substantial proportion of the β2AR produced is non-functional and VCP plays a key role in the maturation and trafficking of the β2AR as part of the ERAD quality control process.
Collapse
|
118
|
p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair. Mol Cell Biol 2016; 36:2983-2994. [PMID: 27644328 DOI: 10.1128/mcb.00434-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/16/2016] [Indexed: 01/07/2023] Open
Abstract
Interstrand cross-links (ICLs) are extremely toxic DNA lesions that create an impassable roadblock to DNA replication. When a replication fork collides with an ICL, it triggers a damage response that promotes multiple DNA processing events required to excise the cross-link from chromatin and resolve the stalled replication fork. One of the first steps in this process involves displacement of the CMG replicative helicase (comprised of Cdc45, MCM2-7, and GINS), which obstructs the underlying cross-link. Here we report that the p97/Cdc48/VCP segregase plays a critical role in ICL repair by unloading the CMG complex from chromatin. Eviction of the stalled helicase involves K48-linked polyubiquitylation of MCM7, p97-mediated extraction of CMG, and a largely degradation-independent mechanism of MCM7 deubiquitylation. Our results show that ICL repair and replication termination both utilize a similar mechanism to displace the CMG complex from chromatin. However, unlike termination, repair-mediated helicase unloading involves the tumor suppressor protein BRCA1, which acts upstream of MCM7 ubiquitylation and p97 recruitment. Together, these findings indicate that p97 plays a conserved role in dismantling the CMG helicase complex during different cellular events, but that distinct regulatory signals ultimately control when and where unloading takes place.
Collapse
|
119
|
Schuetz AK, Kay LE. A Dynamic molecular basis for malfunction in disease mutants of p97/VCP. eLife 2016; 5. [PMID: 27828775 PMCID: PMC5102582 DOI: 10.7554/elife.20143] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/25/2016] [Indexed: 12/04/2022] Open
Abstract
p97/VCP is an essential, abundant AAA+ ATPase that is conserved throughout eukaryotes, with central functions in diverse processes ranging from protein degradation to DNA damage repair and membrane fusion. p97 has been implicated in the etiology of degenerative diseases and in cancer. Using Nuclear Magnetic Resonance spectroscopy we reveal how disease-causing mutations in p97 deregulate dynamics of the N-terminal domain that binds adaptor proteins involved in controlling p97 function. Our results provide a molecular basis for understanding how malfunction occurs whereby mutations shift the ADP-bound form of the enzyme towards an ATP-like state in a manner that correlates with disease severity. This deregulation interferes with the two-pronged binding of an adaptor that affects p97 function in lysosomal degradation of substrates. Subtle structural changes propagate from mutation sites to regions distal in space, defining allosteric networks that facilitate inter-domain communication, with potential implications for modulation of enzyme activity by drug molecules. DOI:http://dx.doi.org/10.7554/eLife.20143.001
Collapse
Affiliation(s)
- Anne K Schuetz
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Cananda.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Cananda.,Department of Chemistry, University of Toronto, Toronto, Canada.,Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
120
|
RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:3431-3442. [PMID: 27543292 PMCID: PMC5068962 DOI: 10.1534/g3.116.033043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint.
Collapse
|
121
|
Replication-Dependent Unhooking of DNA Interstrand Cross-Links by the NEIL3 Glycosylase. Cell 2016; 167:498-511.e14. [PMID: 27693351 DOI: 10.1016/j.cell.2016.09.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022]
Abstract
During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.
Collapse
|
122
|
Lecona E, Fernandez-Capetillo O. A SUMO and ubiquitin code coordinates protein traffic at replication factories. Bioessays 2016; 38:1209-1217. [DOI: 10.1002/bies.201600129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Emilio Lecona
- Spanish National Cancer Research Centre; CNIO; Madrid Spain
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Centre; CNIO; Madrid Spain
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
123
|
Mulvaney KM, Matson JP, Siesser PF, Tamir TY, Goldfarb D, Jacobs TM, Cloer EW, Harrison JS, Vaziri C, Cook JG, Major MB. Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate. J Biol Chem 2016; 291:23719-23733. [PMID: 27621311 DOI: 10.1074/jbc.m116.729418] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/30/2022] Open
Abstract
KEAP1 is a substrate adaptor protein for a CUL3-based E3 ubiquitin ligase. Ubiquitylation and degradation of the antioxidant transcription factor NRF2 is considered the primary function of KEAP1; however, few other KEAP1 substrates have been identified. Because KEAP1 is altered in a number of human pathologies and has been proposed as a potential therapeutic target therein, we sought to better understand KEAP1 through systematic identification of its substrates. Toward this goal, we combined parallel affinity capture proteomics and candidate-based approaches. Substrate-trapping proteomics yielded NRF2 and the related transcription factor NRF1 as KEAP1 substrates. Our targeted investigation of KEAP1-interacting proteins revealed MCM3, an essential subunit of the replicative DNA helicase, as a new substrate. We show that MCM3 is ubiquitylated by the KEAP1-CUL3-RBX1 complex in cells and in vitro Using ubiquitin remnant profiling, we identify the sites of KEAP1-dependent ubiquitylation in MCM3, and these sites are on predicted exposed surfaces of the MCM2-7 complex. Unexpectedly, we determined that KEAP1 does not regulate total MCM3 protein stability or subcellular localization. Our analysis of a KEAP1 targeting motif in MCM3 suggests that MCM3 is a point of direct contact between KEAP1 and the MCM hexamer. Moreover, KEAP1 associates with chromatin in a cell cycle-dependent fashion with kinetics similar to the MCM2-7 complex. KEAP1 is thus poised to affect MCM2-7 dynamics or function rather than MCM3 abundance. Together, these data establish new functions for KEAP1 within the nucleus and identify MCM3 as a novel substrate of the KEAP1-CUL3-RBX1 E3 ligase.
Collapse
Affiliation(s)
- Kathleen M Mulvaney
- From the Departments of Cell Biology and Physiology.,Lineberger Comprehensive Cancer Center, and
| | | | | | - Tigist Y Tamir
- Lineberger Comprehensive Cancer Center, and.,Pharmacology
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, and.,Computer Science, and
| | - Timothy M Jacobs
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Erica W Cloer
- From the Departments of Cell Biology and Physiology.,Lineberger Comprehensive Cancer Center, and
| | - Joseph S Harrison
- Lineberger Comprehensive Cancer Center, and.,Biochemistry and Biophysics
| | - Cyrus Vaziri
- Lineberger Comprehensive Cancer Center, and.,Pathology
| | - Jeanette G Cook
- Lineberger Comprehensive Cancer Center, and .,Biochemistry and Biophysics
| | - Michael B Major
- From the Departments of Cell Biology and Physiology, .,Lineberger Comprehensive Cancer Center, and.,Pharmacology.,Computer Science, and
| |
Collapse
|
124
|
Abstract
DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Superieure, PSL Research University, Paris, France
| |
Collapse
|
125
|
Dimude JU, Midgley-Smith SL, Stein M, Rudolph CJ. Replication Termination: Containing Fork Fusion-Mediated Pathologies in Escherichia coli. Genes (Basel) 2016; 7:genes7080040. [PMID: 27463728 PMCID: PMC4999828 DOI: 10.3390/genes7080040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 01/18/2023] Open
Abstract
Duplication of bacterial chromosomes is initiated via the assembly of two replication forks at a single defined origin. Forks proceed bi-directionally until they fuse in a specialised termination area opposite the origin. This area is flanked by polar replication fork pause sites that allow forks to enter but not to leave. The precise function of this replication fork trap has remained enigmatic, as no obvious phenotypes have been associated with its inactivation. However, the fork trap becomes a serious problem to cells if the second fork is stalled at an impediment, as replication cannot be completed, suggesting that a significant evolutionary advantage for maintaining this chromosomal arrangement must exist. Recently, we demonstrated that head-on fusion of replication forks can trigger over-replication of the chromosome. This over-replication is normally prevented by a number of proteins including RecG helicase and 3’ exonucleases. However, even in the absence of these proteins it can be safely contained within the replication fork trap, highlighting that multiple systems might be involved in coordinating replication fork fusions. Here, we discuss whether considering the problems associated with head-on replication fork fusion events helps us to better understand the important role of the replication fork trap in cellular metabolism.
Collapse
Affiliation(s)
- Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Sarah L Midgley-Smith
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Monja Stein
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
126
|
García-Rodríguez N, Wong RP, Ulrich HD. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress. Front Genet 2016; 7:87. [PMID: 27242895 PMCID: PMC4865505 DOI: 10.3389/fgene.2016.00087] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse.
Collapse
|
127
|
Franz A, Ackermann L, Hoppe T. Ring of Change: CDC48/p97 Drives Protein Dynamics at Chromatin. Front Genet 2016; 7:73. [PMID: 27200082 PMCID: PMC4853748 DOI: 10.3389/fgene.2016.00073] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
The dynamic composition of proteins associated with nuclear DNA is a fundamental property of chromosome biology. In the chromatin compartment dedicated protein complexes govern the accurate synthesis and repair of the genomic information and define the state of DNA compaction in vital cellular processes such as chromosome segregation or transcription. Unscheduled or faulty association of protein complexes with DNA has detrimental consequences on genome integrity. Consequently, the association of protein complexes with DNA is remarkably dynamic and can respond rapidly to cellular signaling events, which requires tight spatiotemporal control. In this context, the ring-like AAA+ ATPase CDC48/p97 emerges as a key regulator of protein complexes that are marked with ubiquitin or SUMO. Mechanistically, CDC48/p97 functions as a segregase facilitating the extraction of substrate proteins from the chromatin. As such, CDC48/p97 drives molecular reactions either by directed disassembly or rearrangement of chromatin-bound protein complexes. The importance of this mechanism is reflected by human pathologies linked to p97 mutations, including neurodegenerative disorders, oncogenesis, and premature aging. This review focuses on the recent insights into molecular mechanisms that determine CDC48/p97 function in the chromatin environment, which is particularly relevant for cancer and aging research.
Collapse
Affiliation(s)
- André Franz
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Institute for Genetics, University of Cologne Cologne, Germany
| | - Leena Ackermann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Institute for Genetics, University of Cologne Cologne, Germany
| | - Thorsten Hoppe
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Institute for Genetics, University of Cologne Cologne, Germany
| |
Collapse
|
128
|
Xia D, Tang WK, Ye Y. Structure and function of the AAA+ ATPase p97/Cdc48p. Gene 2016. [DOI: 10.1016/j.gene.2016.02.042 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
|
129
|
Xia D, Tang WK, Ye Y. Structure and function of the AAA+ ATPase p97/Cdc48p. Gene 2016. [DOI: 10.1016/j.gene.2016.02.042 and 67=89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
130
|
Ramadan K, Halder S, Wiseman K, Vaz B. Strategic role of the ubiquitin-dependent segregase p97 (VCP or Cdc48) in DNA replication. Chromosoma 2016; 126:17-32. [PMID: 27086594 DOI: 10.1007/s00412-016-0587-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
Abstract
Genome amplification (DNA synthesis) is one of the most demanding cellular processes in all proliferative cells. The DNA replication machinery (also known as the replisome) orchestrates genome amplification during S-phase of the cell cycle. Genetic material is particularly vulnerable to various events that can challenge the replisome during its assembly, activation (firing), progression (elongation) and disassembly from chromatin (termination). Any disturbance of the replisome leads to stalling of the DNA replication fork and firing of dormant replication origins, a process known as DNA replication stress. DNA replication stress is considered to be one of the main causes of sporadic cancers and other pathologies related to tissue degeneration and ageing. The mechanisms of replisome assembly and elongation during DNA synthesis are well understood. However, once DNA synthesis is complete, the process of replisome disassembly, and its removal from chromatin, remains unclear. In recent years, a growing body of evidence has alluded to a central role in replisome regulation for the ubiquitin-dependent protein segregase p97, also known as valosin-containing protein (VCP) in metazoans and Cdc48 in lower eukaryotes. By orchestrating the spatiotemporal turnover of the replisome, p97 plays an essential role in DNA replication. In this review, we will summarise our current knowledge about how p97 controls the replisome from replication initiation, to elongation and finally termination. We will also further examine the more recent findings concerning the role of p97 and how mutations in p97 cofactors, also known as adaptors, cause DNA replication stress induced genomic instability that leads to cancer and accelerated ageing. To our knowledge, this is the first comprehensive review concerning the mechanisms involved in the regulation of DNA replication by p97.
Collapse
Affiliation(s)
- Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Swagata Halder
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Katherine Wiseman
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Bruno Vaz
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
131
|
Deegan TD, Diffley JFX. MCM: one ring to rule them all. Curr Opin Struct Biol 2016; 37:145-51. [PMID: 26866665 DOI: 10.1016/j.sbi.2016.01.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
Abstract
Precise replication of the eukaryotic genome is achieved primarily through strict regulation of the enzyme responsible for DNA unwinding, the replicative helicase. The motor of this helicase is a hexameric AAA+ ATPase called MCM. The loading of MCM onto DNA and its subsequent activation and disassembly are each restricted to separate cell cycle phases; this ensures that a functional replisome is only built once at any replication origin. In recent years, biochemical and structural studies have shown that distinct conformational changes in MCM, each requiring post-translational modifications and/or the activity of other replication proteins, define the various stages of the chromosome replication cycle. Here, we review recent progress in this area.
Collapse
Affiliation(s)
- Tom D Deegan
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom
| | - John F X Diffley
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom.
| |
Collapse
|
132
|
Xia D, Tang WK, Ye Y. Structure and function of the AAA+ ATPase p97/Cdc48p. Gene 2016; 583:64-77. [PMID: 26945625 DOI: 10.1016/j.gene.2016.02.042] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/29/2022]
Abstract
p97 (also known as valosin-containing protein (VCP) in mammals or Cdc48p in Saccharomyces cerevisiae) is an evolutionarily conserved ATPase present in all eukaryotes and archaebacteria. In conjunction with a collection of cofactors and adaptors, p97/Cdc48p performs an array of biological functions mostly through modulating the stability of 'client' proteins. Using energy from ATP hydrolysis, p97/Cdc48p segregates these molecules from immobile cellular structures such as protein assemblies, membrane organelles, and chromatin. Consequently, the released polypeptides can be efficiently degraded by the ubiquitin proteasome system or recycled. This review summarizes our current understanding of the structure and function of this essential cellular chaperoning system.
Collapse
Affiliation(s)
- Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
133
|
Coli A, Asa SL, Fadda G, Scannone D, Chiloiro S, De Marinis L, Lauretti L, Ranelletti FO, Lauriola L. Minichromosome maintenance protein 7 as prognostic marker of tumor aggressiveness in pituitary adenoma patients. Eur J Endocrinol 2016; 174:307-14. [PMID: 26620390 DOI: 10.1530/eje-15-0586] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 11/30/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Ki-67 labeling index (LI) is currently regarded as a useful prognostic marker of pituitary adenoma (PA) clinical behavior, although its relevance as a reliable clinical indicator is far from being universally accepted, since both validations and criticisms are found in the literature. Minichromosome maintenance 7 (MCM7), a cell-cycle regulator protein, has been recently proposed as a marker of tumor aggressiveness in tumors from many sites, including the CNS. Therefore, we evaluated MCM7, in comparison to Ki-67, as a potential marker of clinical outcome in PA. DESIGN AND METHODS In this single-institution retrospective study, 97 patients with PA (23 ACTH, 12 GH, 29 PRL, 10 FSH/LH, and 23 non-secreting adenomas) were recruited and the prognostic value of both MCM7 and Ki-67 was evaluated by immunohistochemical techniques. In addition, p53 nuclear expression and mitotic index were also evaluated. RESULTS Twenty-six of the 97 PA patients recurred during the follow-up period. Cox's regression analysis showed that high nuclear expression of MCM7 LI, unlike Ki-67 LI, was directly associated with a higher (7.7-fold) risk of recurrence/progression. Kaplan-Meier analysis of recurrence/progression-free survival curves revealed that patients with high MCM7 LI (≥15%) had a shorter recurrence/progression-free survival than those with low MCM7 LI (<15%). Moreover, among patients with invasive tumors, high MCM7 LI identified those with the highest risk of recurrence/progression. CONCLUSIONS Data from this study suggest that MCM7 is a prognostic marker of clinical outcome in PA patients, more reliable and informative than Ki-67.
Collapse
Affiliation(s)
- Antonella Coli
- Department of Anatomic PathologyCatholic University, Largo F Vito 1, 00168 Rome, ItalyDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Ontario, CanadaDepartments of EndocrinologyNeurosurgeryHistologyCatholic University, Rome, Italy
| | - Sylvia L Asa
- Department of Anatomic PathologyCatholic University, Largo F Vito 1, 00168 Rome, ItalyDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Ontario, CanadaDepartments of EndocrinologyNeurosurgeryHistologyCatholic University, Rome, Italy
| | - Guido Fadda
- Department of Anatomic PathologyCatholic University, Largo F Vito 1, 00168 Rome, ItalyDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Ontario, CanadaDepartments of EndocrinologyNeurosurgeryHistologyCatholic University, Rome, Italy
| | - Domenico Scannone
- Department of Anatomic PathologyCatholic University, Largo F Vito 1, 00168 Rome, ItalyDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Ontario, CanadaDepartments of EndocrinologyNeurosurgeryHistologyCatholic University, Rome, Italy
| | - Sabrina Chiloiro
- Department of Anatomic PathologyCatholic University, Largo F Vito 1, 00168 Rome, ItalyDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Ontario, CanadaDepartments of EndocrinologyNeurosurgeryHistologyCatholic University, Rome, Italy
| | - Laura De Marinis
- Department of Anatomic PathologyCatholic University, Largo F Vito 1, 00168 Rome, ItalyDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Ontario, CanadaDepartments of EndocrinologyNeurosurgeryHistologyCatholic University, Rome, Italy
| | - Liverana Lauretti
- Department of Anatomic PathologyCatholic University, Largo F Vito 1, 00168 Rome, ItalyDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Ontario, CanadaDepartments of EndocrinologyNeurosurgeryHistologyCatholic University, Rome, Italy
| | - Franco O Ranelletti
- Department of Anatomic PathologyCatholic University, Largo F Vito 1, 00168 Rome, ItalyDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Ontario, CanadaDepartments of EndocrinologyNeurosurgeryHistologyCatholic University, Rome, Italy
| | - Libero Lauriola
- Department of Anatomic PathologyCatholic University, Largo F Vito 1, 00168 Rome, ItalyDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Ontario, CanadaDepartments of EndocrinologyNeurosurgeryHistologyCatholic University, Rome, Italy
| |
Collapse
|
134
|
Franz A, Pirson PA, Pilger D, Halder S, Achuthankutty D, Kashkar H, Ramadan K, Hoppe T. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun 2016; 7:10612. [PMID: 26842564 PMCID: PMC4743000 DOI: 10.1038/ncomms10612] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging. Cdc48/p97 is a key component of the ubiquitin-proteasome system, acting as a ubiquitin-directed segregase to regulate multiple cellular functions. Here the authors identify UBXN-3/FAF1 as a crucial regulator of chromatin-associated protein degradation that recruits Cdc48/p97 to DNA replication forks.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Paul A Pirson
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Domenic Pilger
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.,Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Swagata Halder
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Divya Achuthankutty
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne and Institute for Medical Microbiology, Immunology and Hygiene at CECAD Research Center, University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Kristijan Ramadan
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Thorsten Hoppe
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
135
|
Identifying novel protein interactions: Proteomic methods, optimisation approaches and data analysis pipelines. Methods 2016; 95:46-54. [DOI: 10.1016/j.ymeth.2015.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
|
136
|
Gillespie PJ, Neusiedler J, Creavin K, Chadha GS, Blow JJ. Cell Cycle Synchronization in Xenopus Egg Extracts. Methods Mol Biol 2016; 1342:101-47. [PMID: 26254920 DOI: 10.1007/978-1-4939-2957-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Peter J Gillespie
- Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
137
|
Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol 2015; 37:49-60. [PMID: 26512453 PMCID: PMC4688103 DOI: 10.1016/j.ceb.2015.09.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Fanconi anemia (FA) is a rare human genetic disease characterized by bone marrow failure, cancer predisposition, and genomic instability. It has been known for many years that FA patient-derived cells are exquisitely sensitive to DNA interstrand cross-linking agents such as cisplatin and mitomycin C. On this basis, it was widely assumed that failure to repair endogenous interstrand cross-links (ICLs) causes FA, although the endogenous mutagen that generates these lesions remained elusive. Recent genetic evidence now suggests that endogenous aldehydes are the driving force behind FA. Importantly, aldehydes cause a variety of DNA lesions, including ICLs and DNA protein cross-links (DPCs), re-kindling the debate about which DNA lesions cause FA. In this review, we discuss new developments in our understanding of DPC and ICL repair, and how these findings bear on the question of which DNA lesion underlies FA.
Collapse
Affiliation(s)
- Julien P Duxin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
138
|
PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress. Cell Rep 2015; 13:1295-1303. [DOI: 10.1016/j.celrep.2015.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023] Open
|
139
|
Lin KW, McDonald KR, Guise AJ, Chan A, Cristea IM, Zakian VA. Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. Nat Commun 2015; 6:8290. [PMID: 26365526 PMCID: PMC4579843 DOI: 10.1038/ncomms9290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
Almost 400 genes affect yeast telomere length, including Est1, which is critical for recruitment and activation of telomerase. Here we use mass spectrometry to identify novel telomerase regulators by their co-purification with the telomerase holoenzyme. In addition to all known subunits, over 100 proteins are telomerase associated, including all three subunits of the essential Cdc48-Npl4-Ufd1 complex as well as three E3 ubiquitin ligases. The Cdc48 complex is evolutionarily conserved and targets ubiquitinated proteins for degradation. Est1 levels are ∼40-fold higher in cells with reduced Cdc48, yet, paradoxically, telomeres are shorter. Furthermore, Est1 is ubiquitinated and its cell cycle-regulated abundance is lost in Cdc48-deficient cells. Deletion of the telomerase-associated E3 ligase, Ufd4, in cdc48-3 cells further increases Est1 abundance but suppresses the telomere length phenotype of the single mutant. These data argue that, in concert with Ufd4, the Cdc48 complex regulates telomerase by controlling the level and activity of Est1.
Collapse
Affiliation(s)
- Kah-Wai Lin
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Karin R McDonald
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Amanda J Guise
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Angela Chan
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| |
Collapse
|
140
|
Dewar JM, Budzowska M, Walter JC. The mechanism of DNA replication termination in vertebrates. Nature 2015; 525:345-50. [PMID: 26322582 PMCID: PMC4575634 DOI: 10.1038/nature14887] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 07/01/2015] [Indexed: 12/18/2022]
Abstract
Eukaryotic DNA replication terminates when replisomes from adjacent replication origins converge. Termination involves local completion of DNA synthesis, decatenation of daughter molecules, and replisome disassembly. Termination has been difficult to study because termination events are generally asynchronous and sequence non-specific. To overcome these challenges, we paused converging replisomes with a site-specific barrier in Xenopus egg extracts. Upon removal of the barrier, forks underwent synchronous and site-specific termination, allowing mechanistic dissection of this process. We show that DNA synthesis does not slow detectably as forks approach each other and that leading strands pass each other unhindered before undergoing ligation to downstream lagging strands. Dissociation of CMG helicases occurs only after the final ligation step, and is not required for completion of DNA synthesis, strongly suggesting that converging CMGs pass one another and dissociate from double-stranded DNA. This termination mechanism allows rapid completion of DNA synthesis while avoiding premature replisome disassembly
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Magda Budzowska
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
141
|
Maculins T, Nkosi PJ, Nishikawa H, Labib K. Tethering of SCF(Dia2) to the Replisome Promotes Efficient Ubiquitylation and Disassembly of the CMG Helicase. Curr Biol 2015; 25:2254-9. [PMID: 26255844 PMCID: PMC4562905 DOI: 10.1016/j.cub.2015.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 01/27/2023]
Abstract
Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase, which unwinds the parental DNA duplex at eukaryotic replication forks, is the key regulated step during replication termination but is poorly understood [1, 2]. In budding yeast, the F-box protein Dia2 drives ubiquitylation of the CMG helicase at the end of replication, leading to a disassembly pathway that requires the Cdc48 segregase [3]. The substrate-binding domain of Dia2 comprises leucine-rich repeats, but Dia2 also has a TPR domain at its amino terminus that interacts with the Ctf4 and Mrc1 subunits of the replisome progression complex [4, 5], which assembles around the CMG helicase at replication forks [6]. Previous studies suggested two disparate roles for the TPR domain of Dia2, either mediating replisome-specific degradation of Mrc1 and Ctf4 [4] or else tethering SCFDia2 (SCF [Skp1/cullin/F-box protein]) to the replisome to increase its local concentration at replication forks [5]. Here, we show that SCFDia2 does not mediate replisome-specific degradation of Mrc1 and Ctf4, either during normal S phase or in response to replication stress. Instead, the tethering of SCFDia2 to the replisome progression complex increases the efficiency of ubiquitylation of the Mcm7 subunit of CMG, both in vitro and in vivo. Correspondingly, loss of tethering reduces the efficiency of CMG disassembly in vivo and is synthetic lethal in combination with a disassembly-defective allele of CDC48. Residual ubiquitylation of Mcm7 in dia2-ΔTPR cells is still CMG specific, highlighting the complex regulation of the final stages of chromosome replication, about which much still remains to be learned. Replisome tethering of SCFDia2 promotes efficient ubiquitylation of the CMG helicase Loss of tethering and mutation of Cdc48 cause synthetic CMG disassembly defects
Collapse
Affiliation(s)
- Timurs Maculins
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Pedro Junior Nkosi
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Hiroko Nishikawa
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
142
|
Rutz N, Heilbronn R, Weger S. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization. Biochem Biophys Res Commun 2015; 464:922-8. [PMID: 26188516 DOI: 10.1016/j.bbrc.2015.07.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023]
Abstract
Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability.
Collapse
Affiliation(s)
- Natalja Rutz
- Institute of Virology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | - Regine Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | - Stefan Weger
- Institute of Virology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
143
|
Affiliation(s)
- Lynne S Cox
- a Department of Biochemistry ; University of Oxford ; Oxford , UK
| |
Collapse
|
144
|
Moreno SP, Gambus A. Regulation of Unperturbed DNA Replication by Ubiquitylation. Genes (Basel) 2015; 6:451-68. [PMID: 26121093 PMCID: PMC4584310 DOI: 10.3390/genes6030451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation) represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks.
Collapse
Affiliation(s)
- Sara Priego Moreno
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK
| | - Agnieszka Gambus
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK.
| |
Collapse
|
145
|
Beattie TR, Reyes-Lamothe R. A Replisome's journey through the bacterial chromosome. Front Microbiol 2015; 6:562. [PMID: 26097470 PMCID: PMC4456610 DOI: 10.3389/fmicb.2015.00562] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/21/2015] [Indexed: 01/03/2023] Open
Abstract
Genome duplication requires the coordinated activity of a multi-component machine, the replisome. In contrast to the background of metabolic diversity across the bacterial domain, the composition and architecture of the bacterial replisome seem to have suffered few changes during evolution. This immutability underlines the replisome’s efficiency in copying the genome. It also highlights the success of various strategies inherent to the replisome for responding to stress and avoiding problems during critical stages of DNA synthesis. Here we summarize current understanding of bacterial replisome architecture and highlight the known variations in different bacterial taxa. We then look at the mechanisms in place to ensure that the bacterial replisome is assembled appropriately on DNA, kept together during elongation, and disassembled upon termination. We put forward the idea that the architecture of the replisome may be more flexible that previously thought and speculate on elements of the replisome that maintain its stability to ensure a safe journey from origin to terminus.
Collapse
|
146
|
Abstract
To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component – Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field.
Collapse
Key Words
- CMG, Cdc45, Mcm2–7, GINS complex
- CRL, cullin-RING ligase
- D loop, displacement loop
- DDR, DNA damage response
- DNA replication
- DSB, double strand break
- DUB, deubiquitylating enzyme
- ER, endoplasmic reticulum
- ERAD, endoplasmic reticulum associated protein degradation
- GINS, Go-Ichi-Ni-San, complex made of Sld5, Psf1, Psf2, Psf3
- ICL, intra-strand crosslink
- MCM, Minichromosome maintenance
- Mcm2–7
- OriC, chromosomal replication origin
- R loop, RNA:DNA hybrid
- RING, really interesting gene
- RPC, Replisome Progression Complex
- Ter, termination site
- Tus-Ter, terminus utilisation substance - termination
- Xenopus
- p97 segregase
- replication termination
- replicative helicase
- replisome
- ubiquitin
Collapse
Affiliation(s)
- Rachael Bailey
- a School of Cancer Sciences; University of Birmingham ; Birmingham , UK
| | | | | |
Collapse
|
147
|
Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol 2015; 5:150018. [PMID: 25833379 PMCID: PMC4422126 DOI: 10.1098/rsob.150018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.
Collapse
Affiliation(s)
- Jessica S Brown
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
148
|
Lee H, Knockleby J. Two birds with one stone. Cell Cycle 2015; 14:801. [PMID: 25760228 DOI: 10.1080/15384101.2015.1010957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Hoyun Lee
- a Advanced Medical Research Institute of Canada; Health Sciences North ; Sudbury , Ontario , Canada
| | | |
Collapse
|
149
|
Neelsen KJ, Lopes M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 2015; 16:207-20. [PMID: 25714681 DOI: 10.1038/nrm3935] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The remodelling of replication forks into four-way junctions following replication perturbation, known as fork reversal, was hypothesized to promote DNA damage tolerance and repair during replication. Albeit conceptually attractive, for a long time fork reversal in vivo was found only in prokaryotes and specific yeast mutants, calling its evolutionary conservation and physiological relevance into question. Based on the recent visualization of replication forks in metazoans, fork reversal has emerged as a global, reversible and regulated process, with intriguing implications for replication completion, chromosome integrity and the DNA damage response. The study of the putative in vivo roles of recently identified eukaryotic factors in fork remodelling promises to shed new light on mechanisms of genome maintenance and to provide novel attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Kai J Neelsen
- 1] Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. [2] The Novo Nordisk Foundation Center for Protein Research, 2200 Copenhagen, Denmark
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
150
|
Replisome function during replicative stress is modulated by histone h3 lysine 56 acetylation through Ctf4. Genetics 2015; 199:1047-63. [PMID: 25697176 DOI: 10.1534/genetics.114.173856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45-Mcm2-7-GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.
Collapse
|